WO2011088788A1 - 一种突发光信号的放大方法、装置和系统 - Google Patents

一种突发光信号的放大方法、装置和系统 Download PDF

Info

Publication number
WO2011088788A1
WO2011088788A1 PCT/CN2011/070406 CN2011070406W WO2011088788A1 WO 2011088788 A1 WO2011088788 A1 WO 2011088788A1 CN 2011070406 W CN2011070406 W CN 2011070406W WO 2011088788 A1 WO2011088788 A1 WO 2011088788A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
input
output
power
signal
Prior art date
Application number
PCT/CN2011/070406
Other languages
English (en)
French (fr)
Inventor
丁锋
刘鸿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11734370A priority Critical patent/EP2506461A4/en
Publication of WO2011088788A1 publication Critical patent/WO2011088788A1/zh
Priority to US13/489,110 priority patent/US8922880B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/296Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2931Signal power control using AGC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1613Solid materials characterised by an active (lasing) ion rare earth praseodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a method, device and system for amplifying a burst optical signal.
  • optical communication networks there is a kind of signal light which is composed of different optical signal packets in time, and each optical signal packet is discontinuous in time, there is a certain time interval of no light, and the power amplitude between two adjacent optical signal packets May not be continuous.
  • a signal is called a burst optical signal.
  • a burst optical signal exists in an optical switching system composed of Optical Packet Switching (OPS) technology or Optical Burst Switching (OBS) technology and a passive optical network of an access network ( Passive Optical Network, PON) system.
  • OPS Optical Packet Switching
  • OBS Optical Burst Switching
  • PON Passive Optical Network
  • the optical signal in the optical fiber increases with the transmission distance, the signal optical power will gradually decay.
  • the optical signal needs to be amplified; or when the optical signal passes through the optical device, the optical device is inserted. Loss, the signal light power is attenuated, and the optical signal needs to be amplified.
  • An optical amplifier burst optical amplifier
  • An existing optical amplifier is implemented by an automatic power control (APC), also called a constant power control scheme.
  • the power of the optical amplifier output light is a fixed value, specifically: using a photodetector Monitoring the intensity of the amplified signal light, controlling the power of the pump light generated by increasing the pump source when the signal light intensity is less than a fixed value, and controlling the pump light generated by the pump source when the signal light intensity is greater than a fixed value Power; pump light and signal light input wavelength division multiplexer (WDM), WDM input signal light and pump light multiplexed into the gain medium, the gain medium absorbs the energy provided by the pump light, so that The electron jumps to the high energy level, producing a population inversion.
  • the signal photons trigger these activated electrons through the stimulated radiation process, causing them to leap to a lower energy level, thereby generating an amplified signal and amplifying the signal light.
  • the optical amplifier drives the pump source with a large output power of the pump source to make the Amplified Spontaneous Emission (ASE) optical power generated by the gain medium equal to the output optical power of the fixed value.
  • the power of the Puguang will be higher than the power of the pump light when there is a signal light input.
  • the pump light power at this time is higher than the pump light power when there is signal light input, it will cause a serious gain over the surging surge, up to several tens of micro In the second or so, the transmission signal is seriously damaged, resulting in distortion of the optical signal.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method, a device and a system for amplifying a burst optical signal, and realizing the fidelity of the burst optical signal in the amplification process.
  • the method for amplifying the burst optical signal provided by the present invention can be implemented by the following technical solutions:
  • the output power of the pump light is controlled so that the gain medium has an output optical power, and the output optical power is smaller than the maximum optical power that the gain medium can output when there is a signal light input;
  • the pump light is input to the optical wavelength division multiplexer, so that the optical wavelength division multiplexer combines the signal light and the pump light into the gain medium.
  • a burst optical amplifier comprising:
  • a monitoring unit for monitoring an input state of the signal light
  • a pump source for generating pump light, when no signal light is input, controlling output power of the pump light, so that the gain medium has output optical power, and the output optical power is smaller than the gain medium output when there is signal light input Maximum optical power, and the pump light is input to the optical wavelength division multiplexer;
  • An optical communication system comprising: any of the burst optical amplifiers provided by the embodiments of the present invention; the burst optical amplifier is connected to the optical burst signal source and the burst optical receiver through an optical fiber;
  • the burst optical amplifier is configured to receive a burst optical signal generated by an optical burst signal source through an optical fiber; and amplify the burst optical signal and send the optical signal to the burst optical receiver through an optical fiber.
  • the above technical solution has the following beneficial effects: by controlling the power of the pump light when no signal light is input, thereby improving the transient response speed of the optical amplifier, thereby avoiding the problem of avoiding the surge and avoiding the slow start of the optical amplifier, realizing the burst The fidelity of the optical signal during the amplification process.
  • FIG. 1 is a schematic flow chart of a method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a burst optical amplifier according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural diagram of a burst optical amplifier according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic structural diagram of a burst optical amplifier according to Embodiment 2 of the present invention
  • Embodiment 3 is a schematic structural diagram of an optical communication system
  • FIG. 6 is a schematic structural diagram of a fourth burst optical amplifier according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a fourth burst optical amplifier according to an embodiment of the present invention.
  • Embodiment 1 As shown in FIG. 1 , an embodiment of the present invention provides a method for amplifying a burst optical signal, including:
  • the monitoring method can be monitored by using a photodetector, and whether there is a signal light input.
  • a photodetector for example, a photodetector
  • the pump light may be a fixed-power pump light or a variable pump light before being controlled, which is not limited in this embodiment.
  • the solution for implementing 102 can be: input pump light output from the pump source into the variable optical attenuator (Variable Optical Attenuator, VOA), adjusts the attenuation value of the variable attenuator, so that the gain medium has output optical power, and the output optical power is smaller than the maximum optical power that the gain medium can output when there is signal light input; it can also be: The operating current of the pump source causes the gain medium to have an output optical power, and the output optical power is less than the maximum optical power that the gain medium can output when there is a signal light input.
  • VOA variable Optical Attenuator
  • the input signal light may be a single wave or a multi-wave, which is not limited in this embodiment of the present invention.
  • the power of the pump light generated when there is no signal light input can be 4 dB or less than the maximum power of the pump light when the signal light is input, and a good effect can be achieved.
  • generating the pump light includes: generating pump light of a power corresponding to the power of the input signal light.
  • AGC Automatic Gain Control
  • ACC Automatic Current Control
  • API Automatic Power Control
  • the gain medium may be any one of an erbium doped fiber, a planar erbium doped waveguide, an erbium doped fiber, or an erbium doped fiber. It is to be understood that the above examples of gain media are not exhaustive of the gain medium and should not be construed as limiting the embodiments of the invention.
  • the solution of the first embodiment improves the transient response speed of the optical amplifier by controlling the power of the pump light when no signal light is input, thereby avoiding the problem of avoiding the surge and avoiding the slow start of the optical amplifier, and realizing the sudden optical signal. Fidelity in the process of zooming in.
  • an embodiment of the present invention further provides a burst optical amplifier, including: a monitoring unit 201, configured to monitor an input state of signal light;
  • the pump source 202 is configured to generate pump light.
  • the output power of the pump light is controlled so that the gain medium has output optical power, and the output optical power is smaller than the gain medium output when there is signal light input. Maximum optical power, and the above pump light is input to the optical wavelength division multiplexer;
  • the optical wavelength division multiplexer 203 is configured to combine the signal light and the pump light into the gain medium, and the gain medium 204 is configured to amplify and output the input signal light.
  • the pump source 202 includes: a pump light generating unit 301, configured to generate pump light, and send the pump light to the pump light control unit;
  • the pump light control unit 302 is configured to adjust the attenuation value of the variable attenuator when there is no signal light input, so that the gain medium has output optical power, and the output optical power is smaller than the maximum output of the gain medium when there is signal light input.
  • Optical power, and the attenuated pump light is input to the optical wavelength division multiplexer.
  • the pump source 202 includes:
  • the current control unit 401 is configured to adjust an operating current of the pump light generating unit 402 when no signal light is input;
  • the pump light generating unit 402 is configured to generate pump light under the operating current controlled by the current control unit 401, and input the generated pump light into the optical wavelength division multiplexer.
  • the pump source 202 is further configured to generate pump light of a power corresponding to the power of the input signal light.
  • the gain medium is any one of an erbium-doped fiber, a planar erbium-doped waveguide, an erbium-doped fiber, and an erbium-doped fiber.
  • an embodiment of the present invention further provides an optical communication system, including: any one of the burst optical amplifiers 501 in Embodiment 2; a signal source 502 and a burst optical receiver 503;
  • the burst optical amplifier 501 is configured to receive the burst optical signal generated by the optical burst signal source 502 through the optical fiber; and amplify the burst optical signal and send the optical signal to the burst optical receiver 503 through the optical fiber.
  • the above optical communication system may be a Passive Optical Network (PON) Optical Burst Switching (OBS) network, an Optical Packet Switching (OPS) network, or the like that uses a burst optical amplifier.
  • PON Passive Optical Network
  • OBS Optical Burst Switching
  • OPS Optical Packet Switching
  • the communication system, the above examples should not be construed as an exhaustive use of an optical communication system to a burst optical amplifier, and thus the above examples should not be construed as limiting the optical communication system of the present embodiment.
  • the solution of the second embodiment and the third embodiment improves the transient response speed of the optical amplifier by controlling the power of the pump light when no signal light is input, thereby avoiding the problem of avoiding the surge and avoiding the slow start of the optical amplifier.
  • Embodiment 4 this embodiment will adopt a scheme of using an operating current for controlling a pump source, respectively.
  • the method of using a variable optical attenuator is taken as an example to further explain the burst optical amplifier provided by the embodiment of the present invention.
  • the burst optical amplifier shown in FIG. 6 is a burst optical amplifier using an operating current for controlling the pump source; and includes: a coupler 601, an optical wavelength division multiplexer 602, a gain medium 603, a photodetector 604, and a pump Source 605;
  • the input end of the coupler 601 is connected to the transmission fiber of the burst optical amplifier, and the output end is connected to the optical wavelength division multiplexer 602 and the photodetector 604.
  • the input end of the photodetector 604 is connected to the output end of the clutch 601 and connected to the pump source. 605, the input end of the pump source 605 is connected to the output of the photodetector 604 and connected to the optical wavelength division multiplexer 602.
  • the input end of the optical wavelength division multiplexer 602 is connected to the clutch 601 and the output end of the pump source 605 is connected to the gain medium 603.
  • the input end of the gain medium 603 is connected to the optical wavelength division multiplexer 602, and the output end is connected to the transmission optical fiber of the burst optical amplifier;
  • the coupler 601 is configured to split the signal light entering the clutch 601 into a small portion of the signal light into the photodetector 604. (Of course, if there is no signal light, no signal light is distributed to the photodetector 604. The remaining signal light is input to the optical wavelength division multiplexer 602;
  • the light detector 604 is configured to monitor whether there is signal light, and the power of the signal light, and send a control signal to the pump source 605 according to the power of the signal light to control the power of the pump source 605 to generate the pump light; specifically: When the optical power is small, the pump source 605 is controlled to generate a pump light of a smaller power, and when the signal light power is large, the pump source 605 is controlled to generate a pump light of a larger power, and when there is no signal light, the pump is controlled.
  • the source 605 generates pump light in a certain power range, so that the gain medium has output optical power, and the output optical power is smaller than the maximum optical power that the gain medium can output when there is signal light input, which can be compared with the output of the optical amplifier when there is signal light input.
  • the maximum power is 4dB or less.
  • the specific control manner may be: controlling the input working current of the pump source 605 according to the characteristic that the pumping source 605 operating current is larger as the operating power of the pumping light is larger;
  • a pump source 605, configured to generate pump light at an operating current and output to the optical wavelength division multiplexer 602; the optical wavelength division multiplexer 602, configured to combine the signal light and the pump light to the gain medium 603;
  • the medium 603 is configured to amplify and output the input signal light.
  • the burst optical amplifier shown in FIG. 7 is a burst optical amplifier using a variable optical attenuator; and includes: a coupler 701, an optical wavelength division multiplexer 702, a gain medium 703, a pump source 704, and Variable light attenuator 705;
  • the input end of the coupler 701 connects the signal light into the transmission fiber of the burst optical amplifier, and the output terminal
  • the optical wavelength division multiplexer 702; the output of the pump source 704 is connected to the variable optical attenuator 705; the input end of the variable optical attenuator 705 is connected to the output of the pump source 704 to connect the optical wavelength division multiplexer 702;
  • the input end of the 702 is connected to the clutch 701 and the output of the variable optical attenuator 705 is connected to the gain medium 703;
  • the coupler 701 is configured to send the input signal light to the optical wavelength division multiplexer 702;
  • a pump source 704 for generating a fixed power of pump light, and pumping the pump light to the variable optical attenuator 705;
  • variable optical attenuator 705 configured to attenuate the pump light input to the variable optical attenuator 705 and send the light to the optical wavelength division multiplexer 702; wherein, when no signal light is input, the attenuation value of the variable attenuator is adjusted,
  • the gain medium has an output optical power, and the output optical power is smaller than the maximum optical power that the gain medium can output when there is a signal light input;
  • the optical wavelength division multiplexer 702 is configured to combine the signal light of the input optical wavelength division multiplexer 702 and the pump light to the gain medium 703;
  • the gain medium 703 is configured to amplify and output the input signal light.
  • the solution of the fourth embodiment improves the transient response speed of the optical amplifier by controlling the power of the pump light when no signal light is input, thereby avoiding the problem of avoiding the surge and avoiding the slow start of the optical amplifier, and realizing the sudden optical signal. Fidelity in the process of zooming in.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

一种^ 光信号的放大方法、 装置和系统
本申请要求于 2010 年 1 月 22 日提交中国专利局、 申请号为 201010103726.X, 发明名称为"一种突发光信号的放大方法、 装置和系统"的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信技术领域, 特别涉及一种突发光信号的放大方法、装置 和系统。
背景技术
光通信网络中有一种信号光在时间上由不同的光信号包组成,各个光信号 包之间时间上不连续,存在一定的无光时间间隔,相邻两个光信号包之间的功 率幅度可能不连续。 这样的信号称为突发光信号。 目前, 这样的突发光信号存 在于由光分组交换( Optical Packet Switching, OPS )技术或光突发交换( Optical Burst Switching, OBS ) 技术组成的光交换系统以及接入网的无源光网络 ( Passive Optical Network, PON ) 系统中。 其中产生这种突发光信号的设备、 仪表或系统, 统称为光突发信号源。 目前光突发信号源包括光突发发射机、 光 突发交换机等。
突发光信号在光纤中随着传输距离加大,信号光功率会逐渐衰减, 为了延 伸光信号的传输距离,需要对光信号进行放大;或者突发光信号经过光器件时, 由于光器件插损, 信号光功率会衰减, 也需要对光信号进行放大。 采用支持突 发光信号放大的光放大器(突发光放大器)就是其中的优选方案之一。 现有的 一种光放大器, 采用自动功率控制 (Automatic Power Control, APC ) 又叫恒 功率控制的方案来实现,在该方案中光放大器输出光的功率为固定值,具体为: 使用光探测器监测放大后的信号光的强度,在信号光强度小于固定值时控制泵 浦源增大产生的泵浦光的功率,在信号光强度大于固定值时控制泵浦源调节产 生的泵浦光的功率; 泵浦光和信号光输入光波分复用器 (Wavelength Division Multiplexer, WDM ), WDM对输入的信号光和泵浦光合波后输入增益介质中, 增益介质吸收泵浦光提供的能量, 使电子跳到高能级上, 产生粒子数反转, 信 号光子通过受激辐射过程触发这些已经激活的电子, 使它们跃起到较低的能 级, 从而产生一个放大信号, 实现信号光的放大。
发明人在实现本发明的过程中发现: 由于需要保持输出光功率恒定, 在无 信号光输入时,光放大器会驱动泵浦源输出功率很大的泵浦光使增益介质产生 的放大自发辐射(Amplified Spontaneous Emission, ASE ) 光功率与固定值的 输出光功率相等, 此时的泵浦光功率会比有信号光输入时的泵浦光功率要高。 当从无信号光输入到有信号光输入时,由于此时的泵浦光功率比有信号光输入 时的泵浦光功率还要高, 会引起严重的增益过沖浪涌, 达几十微秒左右, 造成 传输信号严重受损, 导致光信号失真。 发明内容
本发明实施例要解决的技术问题是提供一种突发光信号的放大方法、装置 和系统, 实现突发光信号在放大过程中的保真。
为解决上述技术问题,本发明所提供的突发光信号的放大方法实施例可以 通过以下技术方案实现:
监测信号光的输入状态;
当无信号光输入时, 控制泵浦光的输出功率, 使增益介质有输出光功率, 且输出的光功率小于有信号光输入时增益介质能输出的最大光功率;
将所述泵浦光输入光波分复用器,以便于光波分复用器将信号光和泵浦光 合波后输入增益介质中。
一种突发光放大器, 包括:
监测单元, 用于监测信号光的输入状态;
泵浦源, 用于产生泵浦光, 当无信号光输入时, 控制泵浦光的输出功率, 使增益介质有输出光功率,且输出的光功率小于有信号光输入时增益介质能输 出的最大光功率, 并将所述泵浦光输入光波分复用器;
一种光通信系统,包括:包括本发明实施例提供的任意一种突发光放大器; 所述突发光放大器通过光纤连接光突发信号源和突发光接收机;
所述突发光放大器, 用于通过光纤接收光突发信号源产生的突发光信号; 将所述突发光信号放大后通过光纤发送给突发光接收机。
上述技术方案具有如下有益效果: 通过在无信号光输入时,控制泵浦光的 功率,从而提升光放大器的瞬态响应速度, 达到避免浪涌以及规避光放大器启 动过慢的问题, 实现突发光信号在放大过程中的保真。 附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提 下, 还可以根据这些附图获得其他的附图。 图 1本发明实施例一方法流程示意图;
图 2为本发明实施例二突发光放大器结构示意图; 图 3为本发明实施例二突发光放大器结构示意图; 图 4为本发明实施例二突发光放大器结构示意图; 图 5为本发明实施例三光通信系统结构示意图; 图 6为本发明实施例四突发光放大器结构示意图; 图 7为本发明实施例四突发光放大器结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一,如图 1所示,本发明实施例提供了一种突发光信号的放大方法, 包括:
101 : 监测信号光的输入状态;
监测的方式可以采用光探测器来监测, 是否有信号光输入, 当然, 进一步 监测输入的信号光的功率也是可以的, 本发明实施例对此不予限定; 另外监测 是否有信号光的输入的方式本发明实施例不予限定。
102: 当无信号光输入时, 控制泵浦光的输出功率, 使增益介质有输出光 功率, 且输出的光功率小于有信号光输入时增益介质能输出的最大光功率; 上述泵浦源产生的泵浦光在未控制前,可以是固定功率的泵浦光也可以是 可变泵浦光, 本实施例不予限定。
实现 102 的方案可以是: 将泵浦源输出的泵浦光输入可变光衰减器 ( Variable Optical Attenuator, VOA ) , 调节可变衰减器的衰减值, 使增益介 质有输出光功率,且输出的光功率小于有信号光输入时增益介质能输出的最大 光功率; 还可以是: 调节泵浦源的工作电流, 使增益介质有输出光功率, 且输 出的光功率小于有信号光输入时增益介质能输出的最大光功率。在后续装置实 施例中, 将就这两种方式做具体说明; 需要说明的是, 以上两种方式只是控制 泵浦光功率的两个举例,并不是穷举,因而不应理解为对本发明实施例的限定。 上述输入的信号光可以是单波也可以是多波的, 对此本发明实施例不予限定。
根据测试结果显示,在没有信号光输入时产生的泵浦光的功率可以比有信 号光输入时泵浦光的最大功率小 4dB或小 4dB以上能够达到很好的效果。
以上是没有输入信号光的情况,在有信号光的时候,产生上述泵浦光包括: 才艮据输入信号光的功率大小产生与之对应的功率的泵浦光。具体可以参照自动 增益控制 ( Automatic Gain Control, AGC )、 自动电流控制( Automatic Current Control, ACC ) 、 自动功率控制 ( Automatic Power Control, APC ) 中的任一 方案来实现。
103: 将上述泵浦光输入光波分复用器, 以便于光波分复用器将信号光和 泵浦光合波后输入增益介质中。
上述增益介质可以为掺铒光纤、 平面掺铒波导、 掺镨光纤、 掺铥光纤中的 任意一项。 可以理解的是以上对增益介质的举例不是增益介质的穷举, 不应理 解为对本发明实施例的限定。
实施例一的方案, 通过在无信号光输入时, 控制泵浦光的功率, 从而提升 光放大器的瞬态响应速度, 达到避免浪涌以及规避光放大器启动过慢的问题, 实现突发光信号在放大过程中的保真。
实施例二,如图 2所示,本发明实施例还提供了一种突发光放大器, 包括: 监测单元 201, 用于监测信号光的输入状态;
泵浦源 202, 用于产生泵浦光, 当无信号光输入时, 控制泵浦光的输出功 率,使增益介质有输出光功率,且输出的光功率小于有信号光输入时增益介质 能输出的最大光功率, 并将上述泵浦光输入光波分复用器;
光波分复用器 203, 用于将信号光和上述泵浦光合波后输入增益介质; 增益介质 204, 用于对输入的信号光进行放大并输出。
可选地, 如图 3所示, 上述泵浦源 202包括: 泵浦光产生单元 301, 用于产生泵浦光, 并将泵浦光发送给泵浦光控制单 元;
泵浦光控制单元 302,用于当无信号光输入时,调节可变衰减器的衰减值, 使增益介质有输出光功率,且输出的光功率小于有信号光输入时增益介质能输 出的最大光功率, 并将衰减后的泵浦光输入光波分复用器。
可选地, 如图 4所示, 上述泵浦源 202包括:
电流控制单元 401, 用于当无信号光输入时, 调节泵浦光产生单元 402的 工作电流;
泵浦光产生单元 402, 用于在上述电流控制单元 401控制的工作电流下产 生泵浦光, 并将产生的泵浦光输入光波分复用器。
进一步地,
上述泵浦源 202, 还用于根据输入信号光的功率大小产生与之对应的功率 的泵浦光。
具体地, 上述增益介质为掺铒光纤、 平面掺铒波导、 掺镨光纤、 掺铥光纤 中的任意一项。
实施例三, 如图 5所示, 本发明实施例还提供了一种光通信系统, 包括: 实施例二中的任意一种突发光放大器 501 ; 上述突发光放大器 501通过光纤连 接光突发信号源 502和突发光接收机 503;
上述突发光放大器 501, 用于通过光纤接收光突发信号源 502产生的突发 光信号; 将上述突发光信号放大后通过光纤发送给突发光接收机 503。
以上光通信系统可以为无源光网络 ( Passive Optical Network, PON ) 光突发交换 ( Optical Burst Switching, OBS )网络, 光分组交换 ( Optical Packet Switching, OPS ) 网络等使用到突发光放大器的光通信系统, 以上举例不应理 解为使用到突发光放大器的光通信系统的穷举,因而以上举例不应理解为对本 实施例的光通信系统的限定。
实施例二和实施例三的方案,通过在无信号光输入时,控制泵浦光的功率, 从而提升光放大器的瞬态响应速度,达到避免浪涌以及规避光放大器启动过慢 的问题, 实现突发光信号在放大过程中的保真。 实施例四, 本实施例将以分别采用使用控制泵浦源的工作电流的方案、 以 及采用可变光衰减器的方案为例,对本发明实施例提供的突发光放大器作进一 步说明。
如图 6所示的突发光放大器,为使用控制泵浦源的工作电流的突发光放大 器; 包括: 耦合器 601、 光波分复用器 602、 增益介质 603、 光探测器 604、 泵 浦源 605;
耦合器 601的输入端连接信号光进入突发光放大器的传输光纤,输出端连 接光波分复用器 602和光探测器 604, 光探测器 604的输入端连接輛合器 601 输出端连接泵浦源 605, 泵浦源 605的输入端连接光探测器 604输出端连接光 波分复用器 602, 光波分复用器 602的输入端连接輛合器 601以及泵浦源 605 输出端连接增益介质 603, 增益介质 603的输入端连接光波分复用器 602, 输 出端连接信号光出突发光放大器的传输光纤;
其中, 耦合器 601, 用于将进入輛合器 601的信号光分出少部分信号光进 入光探测器 604, (当然如果没有信号光, 那么就不会有信号光被分给光探测 器 604 ) , 其余的信号光输入光波分复用器 602;
光探测器 604, 用于监测是否有信号光, 以及信号光的功率, 根据信号光 的功率来向泵浦源 605发送控制信号控制泵浦源 605产生泵浦光的功率;具体 为: 在信号光功率小的时候控制泵浦源 605产生较小功率的泵浦光, 在信号光 功率大的时候控制泵浦源 605产生较大功率的泵浦光,在无信号光的时候,控 制泵浦源 605产生在一定功率范围的泵浦光,使增益介质有输出光功率, 且输 出的光功率小于有信号光输入时增益介质能输出的最大光功率,可以比有信号 光输入时光放大器输出的最大功率小 4dB或小 4dB以上。 具体的控制方式可 以是: 根据泵浦源 605工作电流越大输出泵浦光的功率越大的特性,控制输入 泵浦源 605的工作电流来实现;
泵浦源 605, 用于在工作电流下产生泵浦光并输出给光波分复用器 602; 光波分复用器 602, 用于将信号光和泵浦光合波后发送给增益介质 603 ; 增益介质 603, 用于对输入的信号光进行放大并输出。
如图 7所示的突发光放大器,为采用可变光衰减器的方案为的突发光放大 器; 包括: 耦合器 701、 光波分复用器 702、 增益介质 703、 泵浦源 704、 可变 光衰减器 705;
耦合器 701的输入端连接信号光进入突发光放大器的传输光纤,输出端连 接光波分复用器 702; 泵浦源 704的输出端连接可变光衰减器 705; 可变光衰 减器 705的输入端连接泵浦源 704输出端连接光波分复用器 702; 光波分复用 器 702的输入端连接輛合器 701 以及可变光衰减器 705输出端连接增益介质 703;
其中, 耦合器 701, 用于将输入的信号光发送给光波分复用器 702;
泵浦源 704, 用于产生固定功率的泵浦光, 并将泵浦光发送给可变光衰减 器 705;
可变光衰减器 705, 用于将输入可变光衰减器 705的泵浦光衰减后发送给 光波分复用器 702; 其中, 在无信号光输入时, 调节可变衰减器的衰减值, 使 增益介质有输出光功率,且输出的光功率小于有信号光输入时增益介质能输出 的最大光功率;
光波分复用器 702, 用于将输入光波分复用器 702的信号光和泵浦光合波 后发送给增益介质 703;
增益介质 703, 用于对输入的信号光进行放大并输出。
实施例四的方案, 通过在无信号光输入时, 控制泵浦光的功率, 从而提升 光放大器的瞬态响应速度, 达到避免浪涌以及规避光放大器启动过慢的问题, 实现突发光信号在放大过程中的保真。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,上述程序可以存储于一种计算机可读 存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明实施例所提供的一种突发光信号的放大方法、装置和系统进 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员,依据本发明的思想, 在具体实施方式及应用范围 上均会有改变之处, 综上, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种突发光信号的放大方法, 其特征在于, 包括:
监测信号光的输入状态;
当无信号光输入时, 控制泵浦光的输出功率, 使增益介质有输出光功率, 且输出的光功率小于有信号光输入时增益介质能输出的最大光功率;
将所述泵浦光输入光波分复用器,以便于光波分复用器将信号光和泵浦光 合波后输入增益介质中。
2、 根据权利要求 1所述方法, 其特征在于: 所述控制泵浦光的输出功率, 使增益介质有输出光功率,且输出的光功率小于有信号光输入时增益介质能输 出的最大光功率包括:
将泵浦源输出的泵浦光输入可变光衰减器,调节可变衰减器的衰减值,使 增益介质有输出光功率,且输出的光功率小于有信号光输入时增益介质能输出 的最大光功率; 或
调节泵浦源的工作电流,使增益介质有输出光功率,且输出的光功率小于 有信号光输入时增益介质能输出的最大光功率。
3、 根据权利要求 1所述方法, 其特征在于, 产生所述泵浦光包括: 根据 输入信号光的功率大小产生与之对应的功率的泵浦光。
4、 根据权利要求 1至 3任意一项所述方法, 其特征在于: 所述增益介质 为掺铒光纤、 平面掺铒波导、 掺镨光纤、 掺铥光纤中的任意一项。
5、 一种突发光放大器, 其特征在于, 包括:
监测单元, 用于监测信号光的输入状态;
泵浦源, 用于产生泵浦光, 当无信号光输入时, 控制泵浦光的输出功率, 使增益介质有输出光功率,且输出的光功率小于有信号光输入时增益介质能输 出的最大光功率, 并将所述泵浦光输入光波分复用器;
光波分复用器, 用于将信号光和所述泵浦光合波后输入增益介质; 增益介质, 用于对输入的信号光进行放大并输出。
6、 根据权利要求 5所述突发光放大器, 其特征在于, 所述泵浦源包括: 泵浦光产生单元, 用于产生泵浦光, 并将泵浦光发送给泵浦光控制单元; 泵浦光控制单元, 用于当无信号光输入时, 调节可变衰减器的衰减值, 使 增益介质有输出光功率,且输出的光功率小于有信号光输入时增益介质能输出 的最大光功率, 并将衰减后的泵浦光输入光波分复用器。
7、 根据权利要求 5所述突发光放大器, 其特征在于, 所述泵浦源包括: 电流控制单元,用于当无信号光输入时,调节泵浦光产生单元的工作电流; 泵浦光产生单元, 用于在所述电流控制单元控制的工作电流下产生泵浦 光, 并将产生的泵浦光输入光波分复用器。
8、 根据权利要求 5所述的突发光放大器, 其特征在于:
所述泵浦源,还用于根据输入信号光的功率大小产生与之对应的功率的泵 浦光。
9、 根据权利要求 5至 8任意一项所述方法, 其特征在于: 所述增益介质 为掺铒光纤、 平面掺铒波导、 掺镨光纤、 掺铥光纤中的任意一项。
10、 一种光通信系统, 其特征在于, 包括: 包含 5至 9任意一项所述的突 发光放大器; 所述突发光放大器通过光纤连接光突发信号源和突发光接收机; 所述突发光放大器, 用于通过光纤接收光突发信号源产生的突发光信号; 将所述突发光信号放大后通过光纤发送给突发光接收机。
PCT/CN2011/070406 2010-01-22 2011-01-20 一种突发光信号的放大方法、装置和系统 WO2011088788A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11734370A EP2506461A4 (en) 2010-01-22 2011-01-20 REINFORCEMENT PROCESS, DEVICE AND SYSTEM FOR OPTICAL BURST SIGNALS
US13/489,110 US8922880B2 (en) 2010-01-22 2012-06-05 Method, apparatus, and system for amplifying a burst optical signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010103726.XA CN102136870B (zh) 2010-01-22 2010-01-22 一种突发光信号的放大方法、装置和系统
CN201010103726.X 2010-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/489,110 Continuation US8922880B2 (en) 2010-01-22 2012-06-05 Method, apparatus, and system for amplifying a burst optical signal

Publications (1)

Publication Number Publication Date
WO2011088788A1 true WO2011088788A1 (zh) 2011-07-28

Family

ID=44296534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070406 WO2011088788A1 (zh) 2010-01-22 2011-01-20 一种突发光信号的放大方法、装置和系统

Country Status (4)

Country Link
US (1) US8922880B2 (zh)
EP (1) EP2506461A4 (zh)
CN (1) CN102136870B (zh)
WO (1) WO2011088788A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393473A (zh) * 2014-08-20 2015-03-04 广东高聚激光有限公司 高增益全光纤激光放大器及高增益激光放大方法
CN105703834B (zh) * 2014-11-28 2019-10-01 南京中兴新软件有限责任公司 一种控制光功率的方法和主节点
CN106301579B (zh) * 2015-06-01 2021-09-28 中兴通讯股份有限公司 一种突发光信号放大控制方法、装置及突发光信号放大系统
CN108599851A (zh) * 2018-05-22 2018-09-28 武汉光迅科技股份有限公司 一种单跨距光传输系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020097484A1 (en) * 2000-02-03 2002-07-25 Toru Shiozaki Optical amplifying device
US20060093357A1 (en) * 2004-11-02 2006-05-04 Samsung Electronics Co., Ltd. Method and apparatus for suppressing optical surge in optical burst switching network
CN101350670A (zh) * 2007-07-20 2009-01-21 华为技术有限公司 一种用于无源光网络中光信号的放大装置和方法以及光线路终端
US20090226188A1 (en) * 2008-03-05 2009-09-10 Hirokazu Komatsu Burst-mode automatic gain control circuit

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2068975C (en) * 1991-05-20 2002-03-26 Kazunori Nakamura Optical amplification system
JPH0816761B2 (ja) * 1993-04-13 1996-02-21 日本電気株式会社 光増幅器制御回路
JPH0795160A (ja) * 1993-09-20 1995-04-07 Fujitsu Ltd 光増幅器の応答信号変調方法
JP2800715B2 (ja) * 1995-05-12 1998-09-21 日本電気株式会社 光ファイバ増幅器
US5859716A (en) * 1996-01-18 1999-01-12 Northern Telecom Limited Self-stimulation signal detection in an optical transmission system
JP3730299B2 (ja) * 1996-02-07 2005-12-21 富士通株式会社 光等化増幅器および光等化増幅方法
US6025947A (en) * 1996-05-02 2000-02-15 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US5809049A (en) * 1996-12-19 1998-09-15 Lucent Technologies Inc. Method and apparatus for monitoring the RF drive circuit of a linear laser transmitter
JP3452768B2 (ja) * 1997-08-11 2003-09-29 富士通株式会社 光増幅のための方法及び装置並びに該装置を有するシステム
JPH11121848A (ja) * 1997-10-16 1999-04-30 Fujitsu Ltd 光増幅器及び該光増幅器を備えた光伝送システム
US20010050805A1 (en) * 1997-10-17 2001-12-13 Chihiro Ohshima Optical amplifier for use in optical communications equipment
US6335823B2 (en) * 1997-10-17 2002-01-01 Fujitsu Limited Optical amplifier for use in optical communications equipment
DE60138935D1 (de) * 2000-02-23 2009-07-23 Fujitsu Ltd Optischer Verstärker
JP3771785B2 (ja) * 2000-08-21 2006-04-26 株式会社日立製作所 光増幅装置
JP5226164B2 (ja) * 2001-06-14 2013-07-03 富士通株式会社 光増幅器
US6751014B2 (en) * 2001-06-19 2004-06-15 International Business Machines Corporation Automatic gain control and dynamic equalization of erbium doped optical amplifiers in wavelength multiplexing networks
US7158723B2 (en) * 2001-10-05 2007-01-02 Tropic Networks Inc. Channel identification in communications networks
US6690508B2 (en) * 2002-03-26 2004-02-10 Fujitsu Network Communications, Inc. Control system and method for an optical amplifier
US20080137179A1 (en) * 2006-12-08 2008-06-12 General Instrument Corporation Method and Apparatus for Controlling an Optical Amplifier for Use in a Passive Optical Network
CN101895345A (zh) 2009-05-22 2010-11-24 华为技术有限公司 突发光信号放大方法、突发光放大器及系统和通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020097484A1 (en) * 2000-02-03 2002-07-25 Toru Shiozaki Optical amplifying device
US20060093357A1 (en) * 2004-11-02 2006-05-04 Samsung Electronics Co., Ltd. Method and apparatus for suppressing optical surge in optical burst switching network
CN101350670A (zh) * 2007-07-20 2009-01-21 华为技术有限公司 一种用于无源光网络中光信号的放大装置和方法以及光线路终端
US20090226188A1 (en) * 2008-03-05 2009-09-10 Hirokazu Komatsu Burst-mode automatic gain control circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2506461A4 *

Also Published As

Publication number Publication date
CN102136870B (zh) 2014-02-26
US20120243076A1 (en) 2012-09-27
US8922880B2 (en) 2014-12-30
EP2506461A1 (en) 2012-10-03
EP2506461A4 (en) 2013-01-30
CN102136870A (zh) 2011-07-27

Similar Documents

Publication Publication Date Title
Ismail et al. EDFA-WDM optical network design system
US8774635B2 (en) Fiber-optic automatic gain control systems and methods
US6426817B1 (en) Optical wavelength multiplexing system and terminal
JP5646976B2 (ja) 光パケット交換装置および光パケット交換システム
CN101197626A (zh) 用于控制在无源光网络中使用的光放大器的方法和装置
WO2019041682A1 (zh) 一种分布式拉曼光纤放大器的增益瞬态控制系统和方法
Chen et al. Control of transient effects in distributed and lumped Raman amplifiers
US8873135B2 (en) Extended dynamic range optical amplifier
WO2011088788A1 (zh) 一种突发光信号的放大方法、装置和系统
US8351112B2 (en) Optical amplifier
US8908264B2 (en) Reducing transients in an optical amplifier
US8390923B2 (en) Optical amplifier and optical amplification method
JP4101573B2 (ja) 光伝送装置
JP4666364B2 (ja) 光増幅器
JP2014103218A (ja) 光増幅装置及び伝送システム
EP0887955B1 (en) Robust multi-wavelength optical fiber communication systems
Fukada et al. First demonstration of fast automatic-gain-control (AGC) PDFA for amplifying burst-mode PON upstream signal
US20030021009A1 (en) Wide dynamic range EDFA
Othman et al. EDFA-WDM optical network analysis
US8164826B2 (en) Multi-stage optical amplifier and method of controlling the same
JP2004006887A (ja) 光伝送装置及び波長多重光通信システム
Gnauck et al. Efficient pumping scheme for amplifier arrays with shared pump laser
JP2011243765A (ja) 光増幅装置
Krol et al. Gain variations in optically gain clamped erbium doped fiber amplifiers
Ishii et al. Experimental investigation of transients in six cascaded AGC EDFAs and their suppression using a high-speed VOA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011734370

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE