JP4101573B2 - 光伝送装置 - Google Patents

光伝送装置 Download PDF

Info

Publication number
JP4101573B2
JP4101573B2 JP2002207776A JP2002207776A JP4101573B2 JP 4101573 B2 JP4101573 B2 JP 4101573B2 JP 2002207776 A JP2002207776 A JP 2002207776A JP 2002207776 A JP2002207776 A JP 2002207776A JP 4101573 B2 JP4101573 B2 JP 4101573B2
Authority
JP
Japan
Prior art keywords
optical
node
output
wavelengths
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002207776A
Other languages
English (en)
Other versions
JP2004056245A (ja
Inventor
清敏 野辺地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002207776A priority Critical patent/JP4101573B2/ja
Priority to US10/614,791 priority patent/US7224899B2/en
Publication of JP2004056245A publication Critical patent/JP2004056245A/ja
Application granted granted Critical
Publication of JP4101573B2 publication Critical patent/JP4101573B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は閉ループトポロジーに適用可能な光伝送装置に関する。
【0002】
【従来の技術】
近年、低損失(例えば0.2dB/km)な石英系の光ファイバの製造技術及び使用技術が確立され、光ファイバを伝送路とする光通信システムが実用化されている。また、光ファイバにおける損失を補償して長距離の伝送を可能にするために、光信号又は信号光を増幅するための光増幅器が実用に供されている。
【0003】
従来知られているのは、増幅されるべき信号光が供給される光増幅媒体と、光増幅媒体が信号光の波長を含む利得帯域を提供するように光増幅媒体をポンピング(励起)するポンピングユニットとから構成される光増幅器である。
【0004】
例えば、石英系ファイバで損失が小さい波長1.55μm帯の信号光を増幅するために、エルビウムドープファイバ増幅器(EDFA)が開発されている。EDFAは、光増幅媒体としてエルビウムドープファイバ(EDF)と、予め定められた波長を有するポンプ光をEDFに供給するためのポンプ光源とを備えている。0.98μm帯あるいは1.48μm帯の波長を有するポンプ光を用いることによって、波長1.55μmを含む利得帯域が得られる。
【0005】
光ファイバによる伝送容量を増大させるための技術として、波長分割多重(WDM)がある。WDMが適用されるシステムにおいては、異なる波長を有する複数の光キャリアが用いられる。各光キャリアを独立に変調することによって得られた複数の光信号が光マルチプレクサにより波長分割多重され、その結果得られたWDM信号光が光ファイバ伝送路に送出される。受信側では、受けたWDM信号光が光デマルチプレクサによって個々の光信号に分離され、各光信号に基づいて伝送データが再生される。従って、WDMを適用することによって、多重数に応じて1本の光ファイバにおける伝送容量を増大させることができる。
【0006】
このように、光増幅器を線形中継器として用いることによって、従来の再生中継器を用いる場合と比較して、中継器内における部品点数を大幅に削減して、信頼性を確保すると共に、大幅なコストダウンが可能になる。
【発明が解決しようとする課題】
【0007】
このように基幹線路へのWDMの導入は近年盛んに実施されており、そのネットワークトポロジーとしてはリング形態、即ち閉ループトポロジーが一般的である。しかしながら、基幹線路の高速化に対して、都市部など中距離ネットワーク(メトロポリタンネットワーク)の領域ではWDMの導入は遅れており、単一波長による光通信システムあるいはメタルケーブルによる電気通信システムがいまだに主流である。このため、インターネットの普及や通信のブロードバンド化に伴い、メトロポリタンネットワークへのWDMの導入の要求が高まっている。
【0008】
メトロポリタンネットワークは、通常、閉ループトポロジーに沿って複数のノードを設けて構成される。これは、線路断線などの障害発生時においても安定な通信環境を提供することができるようにするためである。
【0009】
一般的には、閉ループトポロジーでは、WDMの特徴を生かして、各ノードで任意の単一又は複数の光信号のアッド・ドロップが行われる。そのために光スイッチなどのデバイスが多用され、そこでの損失を補償するために各ノードは光増幅器を含む。その光増幅器は、ノードを通過する光信号の波長とアッド・ドロップする光信号の波長の違いやチャネル数の変化などに対応することができるように設計されている。また、伝送路の損失偏差を許容するために、必要とされる出力を維持するための出力一定制御(Automatic Level Control:ALC)も必要になる。
【0010】
ALCを行う場合、その光増幅器に入力するWDM信号光のチャネル数を把握しておく必要があるので、チャネル数に関する情報を含む監視信号が上流側のノードから下流側のノードに伝送される。しかし、システムの立ち上げ時(コールドスタート時)にはアッド・ドロップのチャネル数などが定まらないのでチャネル数に関する情報が確定せずに、ノードの起動に手間がかかるという問題がある。
【0011】
よって、本発明の目的は、ノードの起動などが容易で閉ループトポロジーに適用可能な光伝送装置を提供することである。
【0012】
【課題を解決するための手段】
本発明によると、伝送路中に挿入され波長分割多重された光信号を分岐・挿入する光伝送装置において、該伝送路から受信した光信号を増幅する第1の光増幅部と、該第1の光増幅器にて増幅された光信号を波長単位で分岐・挿入か通過を切換える光スイッチと、該光スイッチからの出力を増幅する第2の光増幅部と、直上流の光伝送装置から自光伝送装置に伝送されたWDM信号光の波長数に応じて該第1の光増幅部の出力が波長数によって決まる一定レベルになるように制御し、且つ該第1の光増幅部の出力が一定に引き込まれるまで直上流の光伝送装置にてその上流からの光信号を下流に出力しないように直上流の光伝送装置の光スイッチを制御する制御部とを備えた光伝送装置が提供される。
【0013】
本発明の他の側面によると、伝送路中に挿入され波長分割多重された光信号を分岐・挿入する光伝送装置において、該伝送路から受信した光信号を増幅する第1の光増幅部と、該第1の光増幅器にて増幅された光信号を波長単位で分岐・挿入か通過を切換える光スイッチと、該光スイッチからの出力を増幅する第2の光増幅部と、直上流の光伝送装置から自光伝送装置に伝送されたWDM信号光の波長数が変化したとき、該第1の光増幅部の波長数によって決まる一定レベルにする制御を中止し、所定時間が経過した後に該第1の光増幅部の波長数によって決まる一定レベルにする制御を再開するように制御する制御部とを備えた光伝送装置が提供される。
【0014】
本発明の更に他の側面によると、閉ループトポロジに従った光信号の波長分割多重を行う光伝送装置における起動制御方法において、直上流の光伝送装置から受信した波長分割多重光の波長数に従って光増幅器の出力が波長数によって決まる一定レベルになるように制御する第1ステップと、該第1ステップによる制御が収束するまで、直上流の光伝送装置にて上流からの光信号を下流に出力しないよう直上流の光伝送装置の光スイッチを制御する第2ステップとを含む起動制御方法が提供される。
【0016】
また、本発明によると、複数の光信号を波長分割多重して得られたWDM信号光に適合する閉ループトポロジーに沿って複数設けて使用される装置が提供される。この装置は、入力した信号光を増幅する第1の光増幅器と、第1の光増幅器から出力した信号光を複数の光信号に分ける光デマルチプレクサと、光デマルチプレクサから出力した複数の光信号に対して動作する光スイッチと、光スイッチから出力した複数の光信号を波長分割多重する光マルチプレクサと、光マルチプレクサから出力された信号光を増幅する第2の光増幅器と、第1及び第2の光増幅器を制御する制御ユニットとを備えている。制御ユニットは、当該ノードから出力されるWDM信号光のチャネル数を直下流側のノードに伝達する第1の手段と、当該ノードに伝達されたチャネル数に従って第1の光増幅器の出力が一定になるように制御する第2の手段と、第2の手段による制御が収束するまで、当該ノードで加えられる単一又は複数の光信号以外の光信号が当該ノードから出力されなくなるように光スイッチを制御する第3の手段とを含む。
【0017】
本発明の他の側面によると、複数の光信号を波長分割多重して得られたWDM信号光に適合する閉ループトポロジーに沿って複数設けて使用される装置が提供される。この装置は、入力した信号光を増幅する第1の光増幅器と、第1の光増幅器から出力した信号光を複数の光信号に分ける光デマルチプレクサと、光デマルチプレクサから出力した複数の光信号に対して動作する光スイッチと、光スイッチから出力した複数の光信号を波長分割多重する光マルチプレクサと、光マルチプレクサから出力された信号光を増幅する第2の光増幅器と、第1及び第2の光増幅器を制御する制御ユニットとを備えている。制御ユニットは、当該ノードから出力されるWDM信号光のチャネル数を直下流側のノードに伝達する第1の手段と、当該ノードに伝達された前記チャネル数に従って第1の光増幅器の出力が一定になるように制御する第2の手段と、伝送されたチャネル数が変化したときに第2の手段による制御を中断する第3の手段と、第3の手段による中断から複数のノードでそれぞれ異なる時間が経過した後に第2の手段による制御を再開する第4の手段とを含む。
【0018】
また、本発明によると、複数の光信号を波長分割多重して得られたWDM信号光に適用可能な光ファイバを用いた閉ループトポロジーを提供するステップと、閉ループトポロジーに沿って各々光増幅器を含む複数のノードを設けるステップと、各ノードを制御するステップとを備えた方法が提供される。制御するステップは、直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて前記光増幅器の出力が一定になるように制御する第1のステップと、第1のステップによる制御が収束するまで、当該ノードで加えられる単一又は複数の光信号以外の光信号が当該ノードから出力されなくなるように光信号を遮断する第2のステップとを含む。
【0019】
また、本発明によると、複数の光信号を波長分割多重して得られたWDM信号光に適用可能な光ファイバを用いた閉ループトポロジーと、閉ループトポロジーに沿って設けられ各々光増幅器を含む複数のノードとを備えた装置が提供される。各ノードは、直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて光増幅器の出力が一定になるように前記光増幅器を制御する第1の手段と、第1のステップによる制御が収束するまで、当該ノードで加えられる単一又は複数の光信号以外の光信号が当該ノードから出力されなくなるように光信号を遮断する第2の手段とを含む装置が提供される。
【0020】
また、本発明によると、複数の光信号を波長分割多重して得られたWDM信号光に適用可能な光ファイバを用いた閉ループトポロジーを提供するステップと、閉ループトポロジーに沿って各々光増幅器を含む複数のノードを設けるステップと、各ノードを制御するステップとを備えた方法が提供される。制御するステップは、直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて前記光増幅器の出力が一定になるように制御する第1のステップと、伝送されたチャネル数が変化したときに第1のステップによる制御を中断する第2のステップと、第2のステップによる中断から前記複数のノードでそれぞれ異なる時間が経過した後に第1のステップによる制御を再開する第3のステップとを含む。
【0021】
また、本発明によると、複数の光信号を波長分割多重して得られたWDM信号光に適用可能な光ファイバを用いた閉ループトポロジーと、閉ループトポロジーに沿って設けられ各々光増幅器を含む複数のノードとを備えた装置が提供される。各ノードは、直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて前記光増幅器の出力が一定になるように光増幅器を制御する第1の手段と、伝送されたチャネル数が変化したときに第1の手段による制御を中断する第2の手段と、第2のステップによる中断から前記複数のノードでそれぞれ異なる時間が経過した後に前記第1の手段による制御を再開する第3の手段とを備えている。
【0022】
【発明の実施の形態】
以下、添付図面を参照して、本発明の望ましい実施の形態を詳細に説明する。
【0023】
図1を参照すると、本発明を適用可能な閉ループトポロジーによるネットワークが示されている。このネットワークは、光ファイバ伝送路2によって提供される閉ループトポロジーCLTと、閉ループトポロジーCLTに沿って設けられるノード4とを備えている。ここでは、六つのノード4(#1〜#6)が示されている。この閉ループトポロジーCLTは、複数の光信号を波長分割多重して得られたWDM信号光に適合する。
【0024】
各ノード4は、光ファイバ伝送路2から入力したWDM信号光を増幅する第1の光増幅器としてのプリアンプ6と、プリアンプ6から出力した信号光を複数の光信号に分ける光デマルチプレクサ(DMUX)8と、光デマルチプレクサ8から出力した複数の光信号に対して動作する光スイッチ10と、光スイッチ10から出力した複数の光信号を波長分割多重する光マルチプレクサ(MUX)12と、光マルチプレクサ12から出力された信号光を増幅する第2の光増幅器としてのホストアンプ14とを備えている。
【0025】
プリアンプ6は、光ファイバ伝送路2での損失を補うための光増幅器であり、伝送路損失の偏差を補償するために、AGC(自動利得制御)に加えてALC(自動レベル制御)による出力一定制御の機能を備えている。
【0026】
光スイッチ10では、当該光信号の波長に応じて、入力から出力へ通過する経路(Through)、ノード4の外部へ出力する分岐の経路(Drop)、ノード4の外部から光信号を挿入する経路(Add)の三つの経路が選択される。これらの経路の選択は全ノードで独立して設定可能であり、この設定により任意の光信号を特定のノードから別のノードまで伝送することができる。
【0027】
ポストアンプ14はノード4内で損失した分を補償する光増幅器である。一般的には、そのような損失補償に対してはAGCだけで十分であるが、プリアンプ6と同様にALCの機能が備わっていてもよい。
【0028】
このようにポストアンプ14においては、通常は光スイッチ10によって光信号レベルが補償されているので、AGCだけでも十分であるが、プリアンプ6においては、伝送路損失の偏差を補償するためにALCが不可欠である。そして、ALCでは、プリアンプ6のトータル光出力パワーによってフィードバック制御を行うので、その時点でのWDM信号光の波長チャネル数に関する情報が必要である。これをより具体的に説明する。
【0029】
図2の(A)及び(B)を参照すると、それぞれAGC及びALCを行っている状態でWDM信号光のチャネル数が変化した場合が示されている。図2の(A)に示されるように、利得が3に固定されたAGCでは、チャネル数が2チャネルから3チャネルに増大しても出力レベルは変化しない。これに対して、トータル出力が6に固定されたALCでは、図2の(B)に示されるように、チャネル数が2チャネルから3チャネルに変化すると、出力の各チャネルのレベルは低下する。
【0030】
従って、ALCを行ってトータル出力を一定に保つためには、ALCの出力目標値をチャネル数に応じて設定するために、チャネル数に関する情報が必要になる。
【0031】
いま、図1に示される閉ループトポロジーにおいて、全てのノード4(#1〜#6)を同時に立ち上げる場合を考える。この場合各ノード4においては、プリアンプ6のALCが安定になるまでの時間を必要とする。この際、各ノード4におけるプリアンプ6のALCが収束していないときには、結果としてそのプリアンプ6に入力されるWDM信号光のチャネル数が決定されず、うまく立ち上がらないという問題がある。このような問題に対処するために、例えば従来は次のような制御が行われている。
【0032】
第1に、ALCを伴わない制御とするものである。利得が一定なAGCのみの光増幅器を用いることで、閉ループトポロジーに対しての制約に対して対応する。しかし、この方法であると、伝送路損失の偏差を許容することができないので、各ノード4の初期立ち上げ時に際しては、保守者による対応(現地調整)が必要になる。
【0033】
第2に、立ち上げ時に閉ループトポロジーをオープンリング化するものである。初期立ち上げに際して、閉ループトポロジーの一部を切断し、あるいは特定のノード4の立ち上げを行わないようにして、オープンリングネットワークトポロジーとすることで、ALCを行う光増幅器の入力パワー(チャネル数情報)を決定することができるように対応するものである。しかし、この方法においても、初期立ち上げに際しては固有のノードの設定を行う必要があり、保守者による対応が必要になる。
【0034】
図3は本発明によるシステムの第1実施形態を示すブロック図である。ここでは、各ノード4の光スイッチ10の動作に従って、ノード4(#1)では1チャネルの光信号がドロップされると共に1チャネルの光信号がアッドされ、ノード4(#2)では2チャネルの光信号がアッドされ、ノード4(#3)では1チャネルの光信号がドロップされ、ノード4(#4)では1チャネルの光信号がドロップされ、ノード4(#5)では1チャネルの光信号がアッドされ、ノード4(#6)では1チャネルの光信号がドロップされている。
【0035】
この実施形態は、各ノード4のポストアンプ14に直上流のノード4でアッドされた光信号のみが供給され得るように光スイッチ10が光路の遮断を行い得るようにしている点で特徴付けられる。
【0036】
より特定的には、各ノード4の光スイッチ10の内部には、スイッチ記号で示されるスイッチ機能が提供されており、このスイッチ機能は、システムの通常運用状態ではオン(通過)状態にされ、システムの初期立ち上げに際しては、予め定められた時間だけオフ(遮断)状態にされる。
【0037】
上述のアッド/ドロップの状態の例示及び光スイッチ10の動作に伴って、各ノード4における光スイッチ10の入力及び出力での波長数(チャネル数)は以下のようになる。ノード4(#1)の入力では、設定情報による波長数は1、スイッチでの規制による波長数は0、出力では、設定情報による波長数は1、スイッチでの規制による波長数は1である。ノード4(#2)の入力では、設定情報による波長数は1、スイッチでの規制による波長数は1、出力では、設定情報による波長数は3、スイッチでの規制による波長数は2である。ノード4(#3)の入力では、設定情報による波長数は3、スイッチでの規制による波長数は2、出力では、設定情報による波長数は2、スイッチでの規制による波長数は0である。ノード4(#4)の入力では、設定情報による波長数は2、スイッチでの規制による波長数は0、出力では、設定情報による波長数は1、スイッチでの規制による波長数は0である。ノード4(#5)の入力では、設定情報による波長数は1、スイッチでの規制による波長数は0、出力では、設定情報による波長数は2、スイッチでの規制による波長数は1である。ノード4(#6)の入力では、設定情報による波長数は2、スイッチでの規制による波長数は1、出力では、設定情報による波長数は1、スイッチでの規制による波長数はゼロである。
【0038】
図3に示されるシステムを立ち上げる場合には、各ノード4の光スイッチ10を前述したような遮断状態にしてプリアンプ6に入力する信号光の波長数を確定させ、その状態でALCが安定になるようにする。例えば、ノード4(#2)では、プリアンプ6のALCが安定になっていないので直上流のノード4(#1)の光スイッチ10を遮断状態にする。こうすると、ノード4(#2)のポストアンプ14には、直上流のノード4(#)でアッドされている波長の光信号のみが入力される。また、ノード4(#2)の直下流側のノード4(#3)では、ノード4(#2)のポストアンプ14と同様2波長の光信号のみがノード4(#3)のプリアンプ6に入力されることになる。
【0039】
従って、ノード4(#3)ではプリアンプ6に入力される信号光の波長数が確定するので、その波長数に応じてプリアンプ6のトータル出力パワーを設定し、ALCを開始する。そのALCが収束すると、ノード4(#)の光スイッチ10が遮断状態から通過状態にされることとなる。
【0040】
このように、本実施形態によると、他のノードの状態によらず次ノードのプリアンプの状態によってのみ光スイッチを制限することで、閉ループトポロジーを維持したままALCによる立ち上げを実現することができる。
【0041】
図4は図3に示されるシステムの各ノード4のブロック図である。ノード4は、そのノード4の直上流側のノード4からの信号(例えば光信号)に基づき監視情報を得るための光監視回路(OSC)16を有している。この監視情報には、例えば、直上流側のノード4からこのノード4に伝送されてくるWDM信号光の波長情報(波長数に関する情報)が含まれている。監視回路16からの波長情報はプリアンプ6、もう一つの光監視回路18及び制御ユニット20に送られる。プリアンプ6では、供給された波長情報に基づきALCにおけるトータル出力光パワーの目標値が設定される。
【0042】
制御ユニット20は、プリアンプ6におけるALCが収束するまで、このノード4でアッドされる単一又は複数の光信号以外の光信号がこのノード4から出力されなくなるように、プリアンプ6及び/又は光スイッチ10を制御する。
【0043】
光監視回路18は、光監視回路16からの波長情報及び光スイッチ10又は光マルチプレクサ12からの波長情報に基づきこのノード4における新たな波長情報を生成し、生成された波長情報を含む監視情報をこのノード4の直下流側のノード4に送り出す。
【0044】
図5は本発明によるシステムの第2実施形態を示すブロック図である。図3に示されるシステムでは、各ノード4でALCが収束するまで特定の光信号を遮断するために光スイッチ10の機能を用いている。これに対して、図5に示されるシステムでは、光スイッチ10の内部に付加的に設けられている光アッテネータ(ATT)を最大減衰量にすることによって、各ノード4のALCが収束するまで特定の光信号を遮断するようにしている。
【0045】
一般的に、WDMが適用される伝送装置では、光信号のレベル差を補償するために、光信号毎に光パワーの減衰量を変化させる光アッテネータが用いられている。ここでは、これらの光アッテネータは光スイッチ10の内部に設けられているとしたが、光アッテネータは、光デマルチプレクサ8及び光スイッチ10の間あるいは光スイッチ10及び光マルチプレクサ12の間に設けられていてもよい。
【0046】
このように、本実施形態では、WDM信号光の光信号のレベル差を補償するために用いられる光アッテネータを本発明の実施のために兼用しているので、装置構成を簡単にすることができる。また、図3に示される実施形態と対比して、光スイッチ10の制御を簡単に行うことができる。
【0047】
このように、図3及び図5の実施形態では、各ノード4におけるALCが収束するまで(例えば、ALCが開始されてから予め定められた時間が経過するまで)、そのノード4でアッドされる単一又は複数の光信号以外の光信号がそのノード4から出力されなくなるように光信号が遮断される。
【0048】
これに対して、以下で説明する実施形態では、各ノード4において、入力するWDM信号光の波長チャネル数が変化したときにALCを中断し、この中断からノード4毎にそれぞれ異なる時間が経過した後にALCを再開するようにしている。具体的には次の通りである。
【0049】
図6は本発明によるシステムの第3実施形態を示すブロック図、図7は図6に示される各ノード4の構成例を示すブロック図である。図7に示されるように、この実施形態で使用されるノード4は、図4に示される実施形態と対比して、制御ユニット20(図4参照)に代えて乱数発生器22及びステートマシン24を有している点で特徴付けられる。
【0050】
乱数発生器22は、光監視回路16からの波長情報に基き、そのノード4に入力されるWDM信号光の波長数が変化したときに、その時点からのランダムな時間を計算するための乱数データを生成する。ステータスマシン24は、前述の波長数の変化と同時にプリアンプ6におけるALCを中断し、乱数発生器20から供給される乱数データに従って計算される時間経過した後にそのALCを再開する。
【0051】
例えば、ステータスマシン24は、プリアンプ6におけるALC中断時には、プリアンプ6においてAGCがなされるように切り換えを行う。AGCは、プリアンプ6の入力レベル及び出力レベルを検知し、これらの比が一定になるようにポンプ条件等を制御することで実施可能である。また、ALCは、プリアンプ6の出力レベルを検知し、その値が一定になるようにポンプ条件等を制御することで実施可能である。
【0052】
図6に示されるシステムの初期立ち上げを行う場合、各ノード4で独立してプリアンプ6のALCを立ち上げようと制御を開始する。ALCが安定になるまでは正常に光出力が安定していないので、波長数情報は零となる。このため、プリアンプ6は直上流のノード4でアッドされている光信号の波長数でのALCを実行していることになる。
【0053】
ところが、あるノード(例えばノード4(#2))でプリアンプ6がALCの立ち上げを完了すると、そのノード4(#2)では光信号の通過設定があるので、ポストアンプ14に入力する光信号の波長数が変化してしまう。すると、直下流側のノード(ここではノード4(#3))のプリアンプ6に入力する光信号の数が変化してしまう。プリアンプ6でALCを行うためには、入力信号光の波長数が確定している必要があるので、そのままノード4(#3)でALCを立ち上げようとすると、誤った光出力レベルとなってしまう。
【0054】
本実施形態では、波長数が変化したときには一時的にプリアンプ6におけるALCをAGCに切換えて、再度ALCを新規に立ち上げるようにしている。しかし、この切り換え及び新規の立ち上げを複数のノード4で同時に行うと、結果としてALCが永久に収束することができないという事態が想定される。そこで、本実施形態では、複数のノード4で同じタイミングでALCの新規立ち上げがなされないようにするために、ALCが中断されてから複数のノード4で異なる時間が経過した後にALCの新規立ち上げを行うようにしているのである。
【0055】
これにより閉ループトポロジーにおける装置の初期立ち上げを安定に実施することができ、本発明の目的が達成される。
【0056】
図8は本発明によるシステムの第4実施形態を示すブロック図である。図6に示される実施形態では、プリアンプ6に入力する信号光の波長数が変化したときに、プリアンプ6の制御形態の設定を一時的にALCからAGCに変更している。これに対して、本実施形態では、プリアンプ6に入力する信号光の波長数が変化したときに、プリアンプ6の出力それ自体が遮断されるようにプリアンプ6を制御するようにしている。
【0057】
このような制御によっても、閉ループトポロジーにおける装置の初期立ち上げを安定に実施することができ、本発明の目的が達成される。
【0058】
図9は本発明によるシステムの第5実施形態を示すブロック図、図10は図9に示される各ノード4の構成例を示すブロック図である。
【0059】
図6及び図7の実施形態では、各ノード4のプリアンプ6でALCが中断されてから、複数のノード4で異なる時間が経過した後にALCの新規立ち上げを行うようにするために、乱数データに従ってその経過時間を得るようにしている。
【0060】
これに対して本実施形態では、複数のノード4で異なる時間が経過した後にALCの新規立ち上げを行うために、本実施形態では、図10に示されるように、乱数発生器22に代えて固有値発生器26を用いて制御ユニットを構成している。
【0061】
固有値発生器26は、光監視回路16からの波長情報に基き、そのノード4に入力されるWDM信号光の波長数が変化したときに、その時点からのそのノードに固有な時間を計算するための固有値データを生成する。ステータスマシン24は、前述の波長数の変化と同時にプリアンプ6におけるALCを中断し、固有値発生器26から供給される固有値データに従って計算される時間経過した後にそのALCを再開する。例えば、ステータスマシン24は、プリアンプ6におけるALC中断時には、プリアンプ6の出力が遮断されるように切り換えを行う。
【0062】
図9に示されるシステムの初期立ち上げを行う場合、各ノード4で独立してプリアンプ6のALCを立ち上げようと制御を開始する。ALCが安定になるまでは正常に光出力が安定していないので、波長数情報は零となる。このため、プリアンプ6は直上流のノード4でアッドされている光信号の波長数でのALCを実行していることになる。
【0063】
ところが、あるノード(例えばノード4(#2))でプリアンプ6がALCの立ち上げを完了すると、そのノード4(#2)では光信号の通過設定があるので、ポストアンプ14に入力する光信号の波長数が変化してしまう。すると、直下流側のノード(ここではノード4(#3))のプリアンプ6に入力する光信号の数が変化してしまう。プリアンプ6でALCを行うためには、入力信号光の波長数が確定している必要があるので、そのままノード4(#3)でALCを立ち上げようとすると、誤った光出力レベルとなってしまう。
【0064】
本実施形態では、波長数が変化したときには一時的にプリアンプ6におけるALCを遮断状態に切換えて、再度ALCを新規に立ち上げるようにしている。しかし、この切り換え及び新規の立ち上げを複数のノード4で同時に行うと、結果としてALCが永久に収束することができないという事態が想定される。そこで、本実施形態では、複数のノード4で同じタイミングでALCの新規立ち上げがなされないようにするために、ALCが中断されてから複数のノード4で異なる時間が経過した後にALCの新規立ち上げを行うようにしているのである。
【0065】
これにより閉ループトポロジーにおける装置の初期立ち上げを安定に実施することができ、本発明の目的が達成される。
【0066】
本発明は以下の付記を含むものである。
【0067】
(付記1) 複数の光信号を波長分割多重して得られたWDM信号光に適合する閉ループトポロジーに沿って複数設けて使用される装置であって、
入力した信号光を増幅する第1の光増幅器と、
前記第1の光増幅器から出力した信号光を複数の光信号に分ける光デマルチプレクサと、
前記光デマルチプレクサから出力した複数の光信号に対して動作する光スイッチと、
前記光スイッチから出力した複数の光信号を波長分割多重する光マルチプレクサと、
前記光マルチプレクサから出力された信号光を増幅する第2の光増幅器と、
前記第1及び第2の光増幅器を制御する制御ユニットとを備え、
前記制御ユニットは、当該ノードから出力されるWDM信号光のチャネル数を直下流側のノードに伝達する第1の手段と、当該ノードに伝達された前記チャネル数に従って前記第1の光増幅器の出力が一定になるように制御する第2の手段と、前記第2の手段による制御が収束するまで、当該ノードで加えられる単一又は複数の光信号以外の光信号が当該ノードから出力されなくなるように前記光スイッチを制御する第3の手段とを含む装置。
【0068】
(付記2) 前記第3の手段は前記光スイッチのパスを切換える手段を含む付記1記載の装置。
【0069】
(付記3) 前記第3の手段は前記光スイッチを通過する光信号を減衰させる手段を含む付記1記載の装置。
【0070】
(付記4) 複数の光信号を波長分割多重して得られたWDM信号光に適合する閉ループトポロジーに沿って複数設けて使用される装置であって、
入力した信号光を増幅する第1の光増幅器と、
前記第1の光増幅器から出力した信号光を複数の光信号に分ける光デマルチプレクサと、
前記光デマルチプレクサから出力した複数の光信号に対して動作する光スイッチと、
前記光スイッチから出力した複数の光信号を波長分割多重する光マルチプレクサと、
前記光マルチプレクサから出力された信号光を増幅する第2の光増幅器と、
前記第1及び第2の光増幅器を制御する制御ユニットとを備え、
前記制御ユニットは、当該ノードから出力されるWDM信号光のチャネル数を直下流側のノードに伝達する第1の手段と、当該ノードに伝達された前記チャネル数に従って前記第1の光増幅器の出力が一定になるように制御する第2の手段と、前記伝送されたチャネル数が変化したときに前記第2の手段による制御を中断する第3の手段と、前記第3の手段による中断から前記複数のノードでそれぞれ異なる時間が経過した後に前記第2の手段による制御を再開する第4の手段とを含む装置。
【0071】
(付記5) 前記第3の手段は前記第1の光増幅器の出力を遮断する手段を含む付記4記載の装置。
【0072】
(付記6) 前記第3の手段は前記第1の光増幅器の制御を自動利得制御に切換える手段を含む付記4記載の装置。
【0073】
(付記7) 前記第4の手段は前記異なる時間を得るための乱数発生器を含む付記4記載の装置。
【0074】
(付記8) 前記第4の手段は前記異なる時間を得るための固有値発生器を含む付記4記載の装置。
【0075】
(付記9) 前記固有値発生器は前記複数のノードで異なる値を記憶している付記8記載の装置。
【0076】
(付記10) 複数の光信号を波長分割多重して得られたWDM信号光に適用可能な光ファイバを用いた閉ループトポロジーを提供するステップと、
前記閉ループトポロジーに沿って各々光増幅器を含む複数のノードを設けるステップと、
各ノードを制御するステップとを備え、
前記制御するステップは、
直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて前記光増幅器の出力が一定になるように制御する第1のステップと、
前記第1のステップによる制御が収束するまで、当該ノードで加えられる単一又は複数の光信号以外の光信号が当該ノードから出力されなくなるように光信号を遮断する第2のステップとを含む方法。
【0077】
(付記11) 前記第2のステップは前記複数の光信号に対して動作する光スイッチを提供するステップを含む付記10記載の方法。
【0078】
(付記12) 前記第2のステップは前記複数の光信号を減衰させる減衰器を提供するステップを含む付記10記載の方法。
【0079】
(付記13) 複数の光信号を波長分割多重して得られたWDM信号光に適用可能な光ファイバを用いた閉ループトポロジーと、
前記閉ループトポロジーに沿って設けられ各々光増幅器を含む複数のノードとを備え、
各ノードは、
直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて前記光増幅器の出力が一定になるように前記光増幅器を制御する第1の手段と、
前記第1の手段による制御が収束するまで、当該ノードで加えられる単一又は複数の光信号以外の光信号が当該ノードから出力されなくなるように光信号を遮断する第2の手段とを含む装置。
【0080】
(付記14) 前記第2の手段は前記複数の光信号に対して動作する光スイッチを含む付記13記載の装置。
【0081】
(付記15) 前記第2の手段は前記複数の光信号を減衰させる減衰器を含む付記13記載の装置。
【0082】
(付記16) 複数の光信号を波長分割多重して得られたWDM信号光に適用可能な光ファイバを用いた閉ループトポロジーを提供するステップと、
前記閉ループトポロジーに沿って各々光増幅器を含む複数のノードを設けるステップと、
各ノードを制御するステップとを備え、
前記制御するステップは、
直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて前記光増幅器の出力が一定になるように制御する第1のステップと、
前記伝送されたチャネル数が変化したときに前記第1のステップによる制御を中断する第2のステップと、
前記第2のステップによる中断から前記複数のノードでそれぞれ異なる時間が経過した後に前記第1のステップによる制御を再開する第3のステップとを備えた方法。
【0083】
(付記17) 前記第2のステップは前記光増幅器の出力を遮断するステップを含む付記16記載の方法。
【0084】
(付記18) 前記第2のステップは前記光増幅器の制御を自動利得制御に切換えるステップを含む付記16記載の方法。
【0085】
(付記19) 前記第3のステップは前記異なる時間を得るための乱数発生器を提供するステップを含む付記16記載の方法。
【0086】
(付記20) 前記第3のステップは前記異なる時間を得るための固有値発生器を提供するステップを含む付記16記載の方法。
【0087】
(付記21) 前記固有値発生器は前記複数のノードで異なる値を記憶している付記20記載の方法。
【0088】
(付記22) 複数の光信号を波長分割多重して得られたWDM信号光に適用可能な光ファイバを用いた閉ループトポロジーと、
前記閉ループトポロジーに沿って設けられ各々光増幅器を含む複数のノードとを備え、
各ノードは、
直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて前記光増幅器の出力が一定になるように前記光増幅器を制御する第1の手段と、
前記伝送されたチャネル数が変化したときに前記第1の手段による制御を中断する第2の手段と、
前記第2の手段による中断から前記複数のノードでそれぞれ異なる時間が経過した後に前記第1の手段による制御を再開する第3の手段とを備えた装置。
【0089】
(付記23) 前記第2の手段は前記光増幅器の出力を遮断する手段を含む付記22記載の装置。
【0090】
(付記24) 前記第2の手段は前記光増幅器の制御を自動利得制御に切換える手段を含む付記22記載の装置。
【0091】
(付記25) 前記第3の手段は前記異なる時間を得るための乱数発生器を含む付記22記載の装置。
【0092】
(付記26) 前記第3の手段は前記異なる時間を得るための固有値発生器を含む付記22記載の装置。
【0093】
(付記27) 前記固有値発生器は前記複数のノードで異なる値を記憶している付記26記載の装置。
【0094】
(付記28) 伝送路中に挿入され波長分割多重された光信号を分岐・挿入する光伝送装置において、
直上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて光増幅器の出力が一定になるように制御し、
前記光増幅器の出力が一定に引き込まれるまで上流からの光信号を下流に出力しないことを特徴とする光伝送装置。
【0095】
(付記29) 伝送路中に挿入され波長分割多重された光信号を分岐・挿入する光伝送装置において、
上流側のノードから当該ノードに伝送されたWDM信号光のチャネル数に応じて光増幅器の出力が一定になるように前記光増幅器を制御し、
前記波長分割多重された光信号のチャネル数が変化したときに出力一定制御を中止し所定の時間が経過した後に前記光増幅器の出力一定制御を再開することを特徴とする光伝送装置。
【0096】
(付記30) 光伝送路に接続された波長分割多重光を分岐・挿入する光伝送装置において、
該光伝送路からの光を増幅する第1の光増幅器と、
該第1の光増幅器の出力を複数の波長に分ける光デマルチプレクサと、
該光デマルチプレクサで分離された波長の光と挿入する光を入力し分岐・挿入か通過を切換える光スイッチと、
該光スイッチからの出力を増幅する第2の光増幅器と、
上流からの波長分割多重光のチャネル数に従って該第1の光増幅器の出力が一定になるように制御し、該第1の光増幅器の出力が一定に引き込まれるまでの間は該光スイッチによる挿入光以外を遮断する制御装置とを備えた光伝送装置。
【0097】
(付記31) 光伝送路に接続された波長分割多重光を分岐・挿入する光伝送装置において、
該光伝送路からの光を増幅する第1の光増幅器と、
該第1の光増幅器の出力を複数の波長に分ける光デマルチプレクサと、
該光デマルチプレクサで分離された波長の光と挿入する光を入力し分岐・挿入か通過を切換える光スイッチと、
該光スイッチからの出力を増幅する第2の光増幅器と、
上流からの波長分割多重光のチャネル数に従って該第1の光増幅器の出力が一定になるように制御し、前記波長分割多重光のチャネル数が変化したときに該第1の光増幅器の出力を一定にする制御を中止し、所定の時間が経過した後に再開する制御装置とを備えた光伝送装置。
【0098】
【発明の効果】
以上説明したように、本発明によると、ノードの起動などが容易な光伝送装置の提供が可能になるという効果が生じる。
【図面の簡単な説明】
【図1】図1は本発明を適用可能な閉ループトポロジーによるネットワークを示すブロック図である。
【図2】図2の(A)及び(B)はそれぞれAGC及びALCを行っている状態でWDM信号光のチャネル数が変化した場合を説明するための図である。
【図3】図3は本発明によるシステムの第1実施形態を示すブロック図である。
【図4】図4は図3に示される各ノードの構成例を示すブロック図である。
【図5】図5は本発明によるシステムの第2実施形態を示すブロック図である。
【図6】図6は本発明によるシステムの第3実施形態を示すブロック図である。
【図7】図7は図6に示される各ノードの構成例を示すブロック図である。
【図8】図8は本発明によるシステムの第4実施形態を示すブロック図である。
【図9】図9は本発明によるシステムの第5実施形態を示すブロック図である。
【図10】図10は図9に示される各ノードの構成例を示すブロック図である。
【符号の説明】
2 光ファイバ伝送路(閉ループトポロジー)
4 ノード
6 第1の光増幅器
8 光デマルチプレクサ
10 光スイッチ
12 光マルチプレクサ
14 第2の光マルチプレクサ
16,18 光監視回路
20 制御ユニット
22 乱数発生器
24 ステートマシン
26 固有値発生回路

Claims (3)

  1. 伝送路中に挿入され波長分割多重された光信号を分岐・挿入する光伝送装置において、
    該伝送路から受信した光信号を増幅する第1の光増幅部と、
    該第1の光増幅器にて増幅された光信号を波長単位で分岐・挿入か通過を切換える光スイッチと、
    該光スイッチからの出力を増幅する第2の光増幅部と、
    直上流の光伝送装置から自光伝送装置に伝送されたWDM信号光の波長数に応じて該第1の光増幅部の出力が波長数によって決まる一定レベルになるように制御し、且つ該第1の光増幅部の出力が一定に引き込まれるまで直上流の光伝送装置にてその上流からの光信号を下流に出力しないように直上流の光伝送装置の光スイッチを制御する制御部と、
    を備えた光伝送装置。
  2. 伝送路中に挿入され波長分割多重された光信号を分岐・挿入する光伝送装置において、
    該伝送路から受信した光信号を増幅する第1の光増幅部と、
    該第1の光増幅器にて増幅された光信号を波長単位で分岐・挿入か通過を切換える光スイッチと、
    該光スイッチからの出力を増幅する第2の光増幅部と、
    直上流の光伝送装置から自光伝送装置に伝送されたWDM信号光の波長数が変化したとき、該第1の光増幅部の波長数によって決まる一定レベルにする制御を中止し、所定時間が経過した後に該第1の光増幅部の波長数によって決まる一定レベルにする制御を再開するように制御する制御部と、
    を備えた光伝送装置。
  3. 閉ループトポロジに従った光信号の波長分割多重を行う光伝送装置における起動制御方法において、
    直上流の光伝送装置から受信した波長分割多重光の波長数に従って光増幅器の出力が波長数によって決まる一定レベルになるように制御する第1ステップと、
    該第1ステップによる制御が収束するまで、直上流の光伝送装置にて上流からの光信号を下流に出力しないよう直上流の光伝送装置の光スイッチを制御する第2ステップとを含む起動制御方法。
JP2002207776A 2002-07-17 2002-07-17 光伝送装置 Expired - Fee Related JP4101573B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002207776A JP4101573B2 (ja) 2002-07-17 2002-07-17 光伝送装置
US10/614,791 US7224899B2 (en) 2002-07-17 2003-07-09 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207776A JP4101573B2 (ja) 2002-07-17 2002-07-17 光伝送装置

Publications (2)

Publication Number Publication Date
JP2004056245A JP2004056245A (ja) 2004-02-19
JP4101573B2 true JP4101573B2 (ja) 2008-06-18

Family

ID=31492043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207776A Expired - Fee Related JP4101573B2 (ja) 2002-07-17 2002-07-17 光伝送装置

Country Status (2)

Country Link
US (1) US7224899B2 (ja)
JP (1) JP4101573B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721508B1 (en) * 1998-12-14 2004-04-13 Tellabs Operations Inc. Optical line terminal arrangement, apparatus and methods
JP4822727B2 (ja) * 2005-03-30 2011-11-24 富士通株式会社 波長多重伝送装置,漏洩光防止方法および波長多重通信システム
US7630634B1 (en) * 2005-06-22 2009-12-08 Tellab Operations, Inc. Method and apparatus for managing an optical signal
US8428461B2 (en) * 2005-06-22 2013-04-23 Tellabs Operations, Inc. Apparatus for managing an optical signal
US20080013953A1 (en) * 2006-07-12 2008-01-17 Tellabs Operations, Inc. Multifunctional and reconfigurable opticalnode and optical network
US8190027B2 (en) * 2006-07-12 2012-05-29 Tellabs Operations, Inc. Multifunctional and reconfigurable optical node and optical network
WO2009059635A1 (en) * 2007-11-06 2009-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Allocation of transmission power in an optical communication system
JP5018893B2 (ja) 2007-11-21 2012-09-05 富士通株式会社 ビア設計装置、ビア設計プログラム、ビア設計方法
KR101257070B1 (ko) * 2009-09-01 2013-04-22 한국전자통신연구원 노드 장치 및 그의 광 신호 수신 방법과 링 네트워크 시스템
CN101645750B (zh) * 2009-09-02 2013-09-11 中兴通讯股份有限公司 分布式电交叉装置实现snc级联保护的系统和方法
US10036396B2 (en) 2013-03-08 2018-07-31 Coriant Operations, Inc. Field configurable fan operational profiles
US9819436B2 (en) 2013-08-26 2017-11-14 Coriant Operations, Inc. Intranodal ROADM fiber management apparatuses, systems, and methods
EP3061200B1 (en) * 2013-10-24 2019-06-12 Telefonaktiebolaget LM Ericsson (publ) Method of changing operating mode of optical amplifier in an amplifier chain, optical apparatus and optical network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1277204B1 (it) * 1995-10-19 1997-11-05 Pirelli S P A Ora Pirelli Cavi Rete di comunicazione ottica trasparente ad anello autoprotetto
JP2993432B2 (ja) 1996-08-01 1999-12-20 日本電気株式会社 波長多重光伝送用光増幅装置
CA2310293A1 (en) * 2000-05-30 2001-11-30 Alan F. Graves Photonic network node

Also Published As

Publication number Publication date
US20040028407A1 (en) 2004-02-12
US7224899B2 (en) 2007-05-29
JP2004056245A (ja) 2004-02-19

Similar Documents

Publication Publication Date Title
JP4481540B2 (ja) 光増幅器
US7509055B2 (en) Optical transmission system with automatic signal level adjustment and startup functions
JP3860278B2 (ja) 遠隔励起方式の波長多重光伝送システム
US5966237A (en) Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US7515829B2 (en) Wavelength division multiplexing optical transmission system
JP3306700B2 (ja) 光増幅装置及び波長多重光伝送システム
JP5494669B2 (ja) 光分岐装置、光通信システムおよび光合波方法
US7650072B2 (en) Method of upgrading optical node, and an optical node apparatus
JP4612038B2 (ja) 光増幅装置および光伝送システム
JP4101573B2 (ja) 光伝送装置
US20040052524A1 (en) Method of power control in an optical communication system
US8682167B2 (en) Optical transmission device
US6959149B2 (en) Power balancing in DWDM optical networks
JP4707542B2 (ja) 伝送装置
JP4771530B2 (ja) 光増幅器
US7072585B2 (en) Per-channel optical amplification using saturation mode
JP2002016550A (ja) 光増幅装置
JP3306712B2 (ja) 波長多重光伝送システムの制御方法
US20040005152A1 (en) Optical transmission system
JP3306713B2 (ja) 光増幅装置
JP3684531B2 (ja) 光受信機
JP3583694B2 (ja) 光通信ノード及び光通信システム
JP2004320483A (ja) 波長多重光伝送装置および波長多重光通信システム
JP2000059312A (ja) 光波長多重伝送装置
WO2001084725A2 (en) Optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees