WO2011086696A1 - 光通信システム、光送信器、光受信器及び光トランスポンダ - Google Patents
光通信システム、光送信器、光受信器及び光トランスポンダ Download PDFInfo
- Publication number
- WO2011086696A1 WO2011086696A1 PCT/JP2010/050474 JP2010050474W WO2011086696A1 WO 2011086696 A1 WO2011086696 A1 WO 2011086696A1 JP 2010050474 W JP2010050474 W JP 2010050474W WO 2011086696 A1 WO2011086696 A1 WO 2011086696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- signal
- output
- oscillator
- unit
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 248
- 238000004891 communication Methods 0.000 title claims abstract description 82
- 239000013307 optical fiber Substances 0.000 claims abstract description 49
- 238000012545 processing Methods 0.000 claims abstract description 47
- 230000005540 biological transmission Effects 0.000 claims abstract description 42
- 230000000644 propagated effect Effects 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims description 53
- 238000001514 detection method Methods 0.000 claims description 32
- 230000001360 synchronised effect Effects 0.000 claims description 26
- 230000001427 coherent effect Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 20
- 239000006185 dispersion Substances 0.000 description 19
- 230000005684 electric field Effects 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 8
- 239000000835 fiber Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000013506 data mapping Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0298—Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2614—Peak power aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2614—Peak power aspects
- H04L27/2621—Reduction thereof using phase offsets between subcarriers
Definitions
- the present invention relates to an optical communication system, an optical transmitter, an optical receiver, and an optical transponder. More particularly, the present invention relates to an optical OFDM communication system and an optical communication system using multicarriers, and more specifically, an optical OFDM (Orthogora Frequency Division).
- the present invention relates to an optical communication system, an optical transmitter, an optical receiver, and an optical transponder that reduce PAPR (Peak-to-Average Power Ratio, peak power to average power ratio) in a Multiplexing (Orthogonal Frequency Division Multiplexing) communication system.
- PAPR Peak-to-Average Power Ratio, peak power to average power ratio
- An optical communication system that has been put into practical use so far employs a binary modulation / demodulation technique using light intensity. Specifically, digital information “0” and “1” are converted to on / off of light intensity on the transmitting side and transmitted to the optical fiber, and the light propagated through the optical fiber is photoelectrically converted on the receiving side. The original information is restored.
- the communication capacity required for optical communication systems has increased dramatically.
- the demand for higher communication capacity has been met by increasing the speed at which light is turned on and off, that is, the modulation speed.
- the technique of increasing the modulation speed to realize a large capacity generally has the following problems.
- the transmittable distance limited by the chromatic dispersion of the optical fiber is shortened.
- the transmission distance limited by chromatic dispersion is shortened by the square of the bit rate. That is, when the bit rate is doubled, the transmission distance limited by chromatic dispersion becomes 1/4.
- the modulation speed is increased, there is a problem that the transmission distance limited by the polarization dispersion of the optical fiber is shortened.
- the transmission distance limited by the polarization dispersion is halved. Specifically, the influence of chromatic dispersion is shown.
- the transmission distance limited by chromatic dispersion is 60 km, but when the system has a bit rate of 40 Gbps, the distance is approximately It becomes as short as 4km. Further, in the case of the next-generation 100 Gbps system, the transmission distance limited by chromatic dispersion is 0.6 km, and a trunk optical communication system with a transmission distance of about 500 km cannot be realized as it is.
- a special optical fiber called a dispersion compensating fiber having negative chromatic dispersion is installed in a repeater or transmitter / receiver to cancel the chromatic dispersion of the transmission line. Yes.
- This special fiber is expensive and requires a sophisticated design of how much dispersion compensation fiber is installed at each site (the length of the dispersion compensation fiber). Both of these increase the price of optical communication systems. Yes.
- An optical OFDM communication system is a communication system that applies OFDM technology using light as a carrier.
- OFDM technology as described above, a large number of subcarriers are used, and for each subcarrier, a modulation scheme such as 4-QAM, 8-PSK, or 16-QAM can be applied. Therefore, one symbol time is much longer than the reciprocal of the bit rate.
- the transmission distance limited by the above-mentioned chromatic dispersion and polarization dispersion is sufficiently longer than the transmission distance assumed in an optical communication system (for example, 500 km in a domestic trunk line system), and the above-mentioned dispersion compensation fiber is not required. Or the number thereof can be reduced. As a result, there is a possibility that a low-cost optical communication system can be realized.
- FIG. 2 shows a configuration diagram of a conventional optical OFDM communication system using the direct detection method.
- the optical transmitter 1-1 and the optical receiver 2-1 are connected by an optical fiber 3.
- the signal is converted into a baseband OFDM signal by the transmission signal processing unit 100 inside the optical transmitter 1-1.
- An optical OFDM signal is generated by electric field modulation or intensity modulation of light that is amplified and is a carrier by the optical modulator 12.
- This optical OFDM signal reaches the optical receiver 2-1 through the optical fiber 3 as a transmission path.
- the optical OFDM signal is directly detected and received by the photodiode 21 and converted into an electrical signal.
- This electric signal is ideally the above-described baseband OFDM signal.
- This signal is amplified by the preamplifier 22 and demodulated into data to be originally communicated by the reception signal processing unit 200 and output from the output terminal 5.
- FIG. 3 shows a functional configuration diagram of the transmission signal processing unit 100.
- FIG. 4 shows a functional configuration diagram of the received signal processing unit 200.
- Data to be communicated is first converted into 2N parallel data by the serial-parallel converter 110.
- N is the number of subcarriers that carry data.
- the subcarrier modulation is 4-QAM, there are 2N parallel data.
- the subcarrier modulation is 16-QAM, the number is 4N. That is, the serial data is converted into parallel data of “the number of bits of one symbol ⁇ the number of subcarriers”.
- the subcarrier modulation unit 120 modulates N subcarriers using the parallel data.
- the modulated subcarrier is converted into time-axis data by the inverse FFT unit 130 and converted into serial data by the parallel-serial conversion unit 140.
- the serial data is cyclically inserted by the cyclic prefix insertion unit 150, passes through the D / A conversion unit 160, and is sent to the driver amplifier as an analog signal.
- the received electrical signal amplified by the preamplifier is converted into a digital signal by the A / D conversion unit 210, the cyclic prefix is deleted by the cyclic prefix deletion unit 220, and the serial-parallel conversion unit 230 Converted to N parallel data.
- These parallel data are separated into N subcarrier signals by the FFT unit 240, the data on each subcarrier is demodulated by the subcarrier demodulating unit 250, and converted into serial data by the parallel-serial converting unit 260. Is done.
- the problem is that the OFDM signal has a large PAPR (peak power to average power ratio).
- PAPR peak power to average power ratio
- the linearity of the power amplifier that drives the transmission antenna is poor, the signal is distorted at peak power, reception sensitivity is deteriorated, or interference with adjacent wireless channels due to the spread of the signal spectrum is caused.
- ⁇ 0 is the linear phase
- ⁇ NL (t) is the nonlinear phase
- ⁇ is the nonlinear constant of the optical fiber
- ⁇ is the loss factor of the optical fiber
- P (t) is the optical power
- P ave is the average optical power
- PAPR (T) represents the peak-to-average power ratio (PAPR) at each time.
- the symbol shown with an italic character in a numerical formula is shown with a normal format in this specification for convenience. As can be seen from this equation, the nonlinear phase of light rotates in proportion to PAPR.
- phase rotation occurs due to the peak power of the signal itself (self-phase modulation effect), which causes waveform distortion due to wavelength dispersion and increases the error rate.
- phase rotation is induced by the peak power of signals of adjacent wavelengths (cross phase modulation effect), and the error rate is increased in the same manner as the self phase modulation effect.
- cross phase modulation effect causes phase rotation of subcarriers in the OFDM signal.
- a random phase rotation according to PAPR is induced around a fixed phase rotation determined by the average power. If this random phase rotation exceeds the threshold for symbol determination, the symbol is determined to be an error.
- subcarrier modulation is QPSK
- symbol determination is erroneous when ⁇ ⁇ / 4 phase rotation occurs from an ideal symbol point. Therefore, it is important from the viewpoint of reducing the error rate that optical transmission is performed using a signal in which the PAPR is minimized.
- Non-Patent Document 1 collectively describes the principles, advantages, and disadvantages of these methods.
- Patent Document 1 Japanese Patent Laid-Open No. 2009-188510 has devised an optical OFDM communication system that keeps the envelope constant by using the above-described phase modulation.
- the PAPR is 6 dB or more, which is larger than the conventional optical communication system using OOK, and the effect is limited.
- the reception method is limited to the coherent reception method, and the receiver configuration is four times that of the direct detection reception method and the reception signal processing unit is complicated.
- the communication system is more expensive than the reception method.
- the present invention has been made in view of the above points.
- the PAPR is smaller than the PAPR (6 dB) of a conventional optical communication system at a location where the optical power in the transmission line is large.
- Another object of the present invention is to provide an optical communication system, an optical transmitter, an optical receiver, and an optical transponder that can be applied to a direct detection reception system.
- An object of the present invention is to provide an optical communication system, an optical transmitter, an optical receiver, and an optical transponder having a PAPR of less than 6 dB.
- the phase of the RF sine wave is modulated with a baseband OFDM signal, the light wave is modulated using this sine wave, transmitted through an optical fiber, and then optical-electrically converted.
- a baseband OFDM signal is reproduced by synchronous detection with a sine wave.
- An optical transmitter that maps and modulates digital data into a plurality of subcarriers orthogonal to each other over a symbol time, and transmits an optical signal through an optical fiber;
- An optical receiver that photoelectrically converts an optical signal propagated through the optical fiber, demodulates each subcarrier signal, and regenerates the original digital data;
- the optical transmitter is A transmission signal processing unit that maps and modulates digital data onto a plurality of subcarriers orthogonal to each other over a symbol time, and generates a baseband OFDM signal by performing an inverse FFT operation on the modulated subcarrier signal;
- a first oscillator that outputs a sine wave of a predetermined frequency;
- a phase modulation unit that phase-modulates the baseband OFDM signal into a sine wave that is an output of the first oscillator;
- An electro-optical conversion unit that converts a sine wave output from the phase modulation unit into an optical signal;
- the optical receiver is: An optical-electrical converter that converts an optical signal received from the optical
- Digital data is mapped to a plurality of subcarriers orthogonal to each other over a symbol time, modulated, an optical transmitter that transmits an optical signal through an optical fiber, and an optical signal propagated through the optical fiber is photoelectrically converted
- An optical transmitter in an optical communication system comprising an optical receiver that demodulates each subcarrier signal and reproduces the original digital data, A transmission signal processing unit that maps and modulates digital data on a plurality of subcarriers orthogonal to each other over a symbol time, and performs a base FFT OFDM signal by performing an inverse FFT operation on the modulated subcarrier signal;
- An oscillator that outputs a sine wave of a predetermined frequency;
- an optical transmitter including an electro-optical conversion unit that converts a sine wave output from the phase modulation unit into an optical signal.
- Digital data is mapped to a plurality of subcarriers orthogonal to each other over a symbol time, modulated, an optical transmitter that transmits an optical signal through an optical fiber, and an optical signal propagated through the optical fiber is photoelectrically converted
- An optical receiver in an optical communication system comprising an optical receiver that demodulates each subcarrier signal and regenerates the original digital data,
- the optical receiver is: An optical-electric conversion unit that receives an optical signal obtained by phase-modulating a baseband OFDM signal into a sine wave having a predetermined frequency through the optical fiber and converts the optical signal into an electrical signal; A frequency that substantially matches the frequency is preset, and an oscillator that generates a sine wave of the frequency; A synchronous detector for synchronously detecting the output of the photoelectric conversion unit with a sine wave that is an output of the oscillator; There is provided an optical receiver having a reception signal processing unit for reproducing original digital data from a subcarrier signal obtained by FFT-converting the output of the synchronous detection
- a transmission signal processing unit that maps and modulates digital data onto a plurality of subcarriers orthogonal to each other over a symbol time, and generates a baseband OFDM signal by performing an inverse FFT operation on the modulated subcarrier signal;
- a first oscillator that outputs a sine wave of a predetermined frequency;
- a phase modulation unit that phase-modulates the baseband OFDM signal into a sine wave that is an output of the first oscillator; and an electro-optical conversion unit that converts the sine wave output from the phase modulation unit into an optical signal.
- a transmission unit An optical-electrical converter for converting an optical signal received via the optical fiber into an electrical signal;
- a second oscillator that generates a sine wave having a frequency substantially matching that of the first oscillator;
- a synchronous detector that synchronously detects the output of the opto-electric converter with a sine wave that is the output of the second oscillator, and the original digital data is recovered from a subcarrier signal obtained by FFT-converting the output of the synchronous detector
- an optical transponder including a reception unit having a reception signal processing unit.
- an optical communication system capable of reducing PAPR at a location where optical power is high in a transmission line and reducing deterioration in reception sensitivity in an optical OFDM communication system.
- the PAPR can be reduced, it is possible to provide an optical communication system, an optical transmitter, an optical receiver, and an optical transponder capable of long-distance transmission.
- the transmission distance determined by nonlinear phase noise induced by PAPR is approximately three times that of a conventional optical OFDM communication system.
- the functional block diagram of the optical communication system of this invention The functional block diagram of the conventional optical OFDM communication system.
- the functional block diagram of the optical communication system which shows 1st embodiment. 1 is a functional block diagram of an optical communication system using direct modulation.
- the functional block diagram of the optical communication system which uses a narrow-band optical filter in 2nd embodiment The schematic diagram of the spectrum of the electrical signal generated by optical OFDM signal and direct detection reception.
- an optical transmitter 1 and an optical receiver 2 are connected by an optical fiber 3.
- the transmission signal processing unit 100 in the optical transmitter 1 converts communication data input from the input terminal 4 into a baseband OFDM signal.
- the phase of the sine wave of frequency f m from the optical transmitter inside the RF oscillator (first oscillator) 6 phase-modulated by the phase modulation unit 8 by the base band OFDM signal.
- the phase-modulated sine wave is converted into an optical signal by the electro-optical converter 10.
- the sine wave is converted into light power or electric field. This optical signal propagates through the optical fiber 3 serving as a transmission path and enters the optical receiver 2.
- the light-electric conversion unit 20 converts the light into an electric signal.
- This electrical signal is synchronously detected with a sine wave from the RF oscillator (second oscillator) 7 inside the optical receiver 2, and its output signal is reproduced as communication data by the received signal processing unit 200 and output from the output terminal 5. Is done.
- the baseband OFDM signal that is an output signal of the transmission signal processing unit 100 in FIG. 1 needs to be a real number so as to be suitable for phase modulation.
- a real number it is necessary to use a real part or an imaginary part of a complex OFDM signal, or to devise mapping to a subcarrier so that a negative frequency component becomes a Hermitian conjugate of a positive frequency component.
- the baseband OFDM signal can be expressed by the following equation.
- C k represents data (signal space coordinates.
- N is the number of subcarriers
- ⁇ f is a subcarrier frequency interval
- t time
- Ts one symbol time.
- the signal as a modulation signal, the frequency f m output signals of the phase modulation part 8 when the phase modulated sine wave which is the output of the RF oscillator 6 is expressed by the following equation (2).
- h is a modulation degree of phase modulation.
- the phase-modulated sine wave is converted into an optical signal by the electro-optical converter 10.
- the output optical power of the semiconductor laser Is expressed by equation (3).
- P 0 is the average optical power.
- the PAPR is 3 dB, which can be greatly reduced from the PAPR in the case of conventional optical OFDM communication.
- the optical signal of Expression (3) propagates through the optical fiber 3 that is a transmission path and reaches the optical receiver 2.
- the photoelectric conversion unit 20 converts the current into a current proportional to the power (3) of the optical signal, which is further converted into a voltage and amplified.
- the output signal of the photoelectric conversion unit 20 is synchronously detected by the sine wave output from the RF oscillator 7 and the synchronous detection unit 9.
- the frequency of this sine wave is the frequency f m of the same RF oscillator 6 in the interior of the transmitter 1 (or substantially identical). Further, as shown in FIG.
- Equation (4) represents the AC component of the input of the synchronous detector 9
- the second term represents the output of the RF oscillator 7, and the entire left side represents the operation of the mixer 90.
- This signal passes through the low-pass filter 91 of the synchronous detector 9 and is output, and this output signal can be expressed by the middle side of the equation (4).
- phase modulation is a small signal (h ⁇ 1)
- Equation (4) which is proportional to the baseband OFDM signal of Equation (1).
- the output of the synchronous detection unit 9 is the middle side of the equation (4), but the communication is performed by changing the reception signal processing unit 200 to 200-1 shown in FIG. Data can be obtained.
- Received signal processing unit 200-1 after the A / D conversion, inverse sine function (or, sin output of said RF oscillator 7 (2 ⁇ ⁇ f m ⁇ t ) rather than cos (2 ⁇ ⁇ f m ⁇ t )
- a signal processing unit 270 that executes an inverse cosine function is inserted into the reception signal processing unit 200.
- the MZ modulator 12-1 in FIG. 7 outputs a light electric field proportional to the input electric signal. This is called electric field modulation.
- Input electric signal of the MZ modulator 12-1 is amplified signal a sine wave driver amplifier 13-2 of the frequency f m which is phase-modulated by the real baseband OFDM signal. That is, Formula (2) is an electric signal input to the MZ modulator.
- Continuous light of the frequency f c from the laser 11-2 of FIG. 7 is the electric field modulated by the MZ modulator 12-1, the light can be expressed by the following equation.
- the first item of the equation (5) expresses the electric field of the electric field modulated light
- the second item expresses the electric field of the continuous light which is not modulated.
- the electric field modulated light and continuous light are simultaneously transmitted through an optical fiber, and when direct detection is received, a beat between the electric field modulated light and continuous light occurs. It becomes.
- the light inside the case receiver - installing a double band pass filter or a low pass filter for blocking the harmonics of the formula (2) having a center frequency 2 ⁇ f m is the output of the electrical converter There is a need.
- the light of the formula (5) has a PAPR of 6 dB or less at a portion where the optical power in the optical fiber 3 is large, and it can be seen that this method is a means for solving the problem.
- a method for setting the electric field intensity of continuous light as shown in Equation (5) there is a method for adjusting the DC bias of the MZ modulator 12-1.
- the electro-optical conversion unit 10 realizes using optical SSB (Single Side Band) modulation.
- the electric field of transmitter output light when optical SSB modulation is used can be expressed by the following equation.
- the first item in equation (6) represents the upper sideband, and the second item represents the electric field of continuous light.
- the discussion here is for the upper sideband, but the same applies when the lower sideband is used.
- the PAPR of equation (6) is obtained as 3 dB.
- the PAPR becomes 3 dB at a place where the optical power is large inside the optical fiber, and it can be seen that the above-described means using the optical SSB modulation is one means for solving the problem.
- the output light is passed through the narrow-band optical filter 14 regardless of whether the semiconductor laser is directly modulated or an MZ modulator is used. This can be realized by blocking unnecessary sidebands. In this case as well, when direct detection reception is used in the photoelectric conversion unit 20, an appropriate amount of continuous light is simultaneously transmitted through the narrowband optical filter.
- another means for realizing the optical SSB modulation uses an optical IQ modulator 12-2 as the electro-optical conversion unit 10-4, and uses an I component modulation signal as a Q component modulation signal.
- an I component modulation signal as a Q component modulation signal.
- a technique that uses a Hilbert transformed signal In this case, the above-mentioned narrow band optical filter is unnecessary. In this case as well, when direct detection reception is used in the photoelectric conversion unit 20, an appropriate amount of continuous light is simultaneously output from the optical IQ modulator.
- the above solution uses direct detection reception.
- the solution means using the MZ modulator or optical SSB modulation and direct detection reception
- continuous light and modulated light cause a beat in direct detection and are converted into an electric signal.
- a beat between subcarriers of the signal also occurs and an electric signal is generated. This occurs in the range from DC to 2 ⁇ B on the frequency axis.
- the beat signal between the subcarriers interferes with the beat signal of the original continuous light and the modulated light, and the reception error rate is deteriorated.
- FIG. 9A shows the spectrum arrangement of the optical signal
- FIG. 9B shows the spectrum of the electrical signal obtained when the optical signal is directly detected and received.
- the beat signal between subcarriers becomes smaller on the high frequency side when observed in the electrical spectrum, so in order to avoid this interference, at least f m > 2B, in order to completely avoid this interference It is necessary to satisfy f m > 3B.
- the optical-electric conversion unit of the receiver according to the present embodiment is not limited to this, and can also be applied to the case where coherent reception shown in FIG. 13 is used. .
- subcarrier modulation is assumed to be 4-QAM, but this embodiment is not limited to this, and can be applied to any subcarrier modulation scheme.
- the number of subcarriers is N (N is an integer).
- FIG. 1 shows a configuration diagram of an optical OFDM communication system.
- the optical OFDM communication system includes, for example, a transmitter (optical transmitter) 1, an optical fiber 3, and a receiver (optical receiver) 2.
- the transmitter 1 includes, for example, a transmission signal processing unit 100, an RF oscillator 6, and an electro-optical conversion unit 10.
- the transmitter 1 may include an input terminal 4.
- the receiver 2 includes an opto-electric conversion unit 20 and a reception signal processing unit 200.
- the receiver 2 may include an output terminal 8.
- the transmitter 1 and the receiver 2 are connected via an optical fiber 3.
- the electro-optical converter 10 of the transmitter 1 may be realized by a driver amplifier 13-1 and a direct modulation semiconductor laser 11-1 as shown in FIG. 6, for example, or as shown in FIG.
- the driver amplifier 13-2, the laser 11-2, and the MZ modulator 12-1 may be provided.
- FIG. 3 is a configuration diagram of the transmission signal processing unit 100 according to the first embodiment.
- the transmission signal processing unit 100 includes, for example, a serial-parallel conversion unit (S / P) 110, a subcarrier modulation unit 120, an inverse FFT unit (inverse Fourier transform unit) 130, and a parallel-serial conversion unit (P / S). ) 140, a cyclic prefix insertion unit (CPI) 150, and a digital-analog conversion unit (D / A conversion unit) 160.
- Data to be originally communicated is converted into 2N parallel data by the serial-parallel converter 110.
- the subcarrier modulation unit 120 modulates N subcarriers using the parallel data.
- the input signal is converted to time-axis data by the inverse FFT unit 130 and converted to serial data by the parallel-serial conversion unit 140.
- the serial data is inserted with a cyclic prefix by the cyclic prefix insertion unit 150, passes through the D / A conversion unit 160, and is output as an analog signal. This signal is called a baseband OFDM signal.
- the sine wave that is the output of the RF oscillator 6 in FIG. 1 is phase-modulated by the above-described baseband OFDM signal in the phase modulation unit 8, and then converted into an optical signal by the electro-optical conversion unit 10, and is transmitted to the optical fiber 3. Emitted.
- the phase modulation unit can be realized by, for example, a VCO (Voltage-Controlled Oscillator).
- VCO Voltage-Controlled Oscillator
- the equation (A) becomes Can be expressed as If this is realized by a circuit, FIG. 16 is obtained. That is, the phase modulation circuit 8 in the small signal approximation is as shown in FIG.
- the configuration of the electro-optical converter 10 for example, direct modulation (FIG. 6) or MZ modulation (FIG. 7) can be used as described above.
- This optical signal enters the receiver 2 through the optical fiber 3 which is a transmission path. Here, it is converted into an electric signal by the photoelectric conversion unit 20.
- This electric signal is synchronously detected by the synchronous detection unit 9 by a sine wave that is the output of the RF oscillator 7.
- the output signal is demodulated by the reception signal processing unit 200 and taken out from the output terminal 10 as serial data.
- the configuration of received signal processing section 200 is the same as the configuration shown in FIG. 4, for example, and a normal OFDM signal processing configuration can be used.
- the configuration of the synchronous detection unit 9 is, for example, as shown in FIG.
- the electric signal of the preamplifier output performs a multiplication and an output of the oscillator 7 which oscillation frequency and outputs a RF signal substantially coincident with the oscillation frequency f m of the RF oscillator 6 of the transmitter in a mixer 90, a low of its output Synchronous detection is realized by passing through a low-pass filter 91 that extracts a frequency component (oscillation frequency f m or less).
- the received signal processing unit 200-1 in FIG. 14 can also be used as the received signal processing.
- the reception signal processing unit 200-1 is different from the reception signal processing unit 200 in that a signal processing unit 270 that executes an inverse sine function or an inverse cosine function is provided at a subsequent stage of the A / D conversion unit 210.
- this signal processing unit 270 By introducing this signal processing unit 270, there is a feature that accurate demodulation is possible in the case of a large degree of phase modulation.
- FIG. 5 shows a configuration diagram in which the direct detection receiving method is used for the photoelectric conversion unit 20-1 in the present embodiment.
- the photoelectric conversion unit 20-1 includes, for example, a photodiode 21 and a preamplifier 22.
- FIG. 8 shows a system configuration diagram of the second embodiment.
- the difference from the first embodiment is that a narrow-band optical filter 14 is installed at the optical output of the electro-optical converter 10 inside the transmitter 1-4.
- the sideband of the output optical signal of the electro-optical converter 10 is cut off, and an optical SSB (Single Side Band) signal is generated.
- the optical SSB signal is known not to cause waveform degradation due to the wavelength dispersion characteristic of the optical fiber, and is a signal suitable for a long-distance communication system.
- the electro-optical converter 10 in the second embodiment is 10-2 in FIG. 6 or 10-3 in FIG.
- the photoelectric conversion unit 20 is 20-1 in FIG.
- FIG. 10 is a configuration diagram including a laser 11-2, an optical IQ modulator, a Hilbert converter 15, and a driver amplifier 13-2 in an electro-optical converter 10-4. is there.
- This embodiment has a feature that the wavelength of the semiconductor laser can be arbitrarily selected because the above-described narrowband optical filter 14 is not used.
- the Hilbert transform unit 15 in FIG. 10 can be considered as follows.
- the output of the phase modulator 8 in FIG. 10, that is, the input signal to the Hilbert transformer 15 is It can be expressed as If phase modulation can approximate a small signal, equation (9) can be expressed by equation (10).
- FIG. 11 is a diagram in which the right side of Expression (11) is applied to the Hilbert transform unit 15 in FIG. That is, make a sin (w m ⁇ t) output cos oscillator 6 (w m ⁇ t) by shifting the - [pi] / 2 by the phase, by the baseband signal phi (t) in the phase modulator 8 to the sine wave
- the Hilbert transform can be realized, and the same optical SSB signal as in FIG. 10 can be generated.
- FIG. 10 becomes FIG. That is, FIG. 12 can generate the same optical SSB signal as FIG.
- FIG. 13 is a configuration diagram of the entire communication system according to the third embodiment.
- the receiver 2-3 according to the third embodiment includes, for example, an opto-electric converter 20-2, an RF oscillator 7-1, a synchronous detector 9, a received signal processor 200, and a local semiconductor.
- a laser 50 and an optical multiplexing unit 60 are included.
- the optical signal that has propagated from the transmitter 1 through the optical fiber 3 enters the receiver 2-3.
- This optical signal is combined with the output light of the local laser diode 50 installed in the receiver 2-3 by the optical multiplexing unit 60, and is so-called coherently received by the optical-electrical conversion unit 20-2. Is converted to This signal is detected by the synchronous detection unit 9 by a sine wave that is an output of the RF oscillator 7-1 inside the receiver 2-3, and the output is demodulated by the received signal processing 200 and output from the terminal 5 as data.
- the optical multiplexing unit 60 of the present embodiment may be an optical coupler, an optical 90-degree hybrid, or a polarization-diversity-compatible polarization separation element (PBS) and two optical 90-degree hybrids.
- the photodiode 21 is a balanced photodiode or a photodiode pair corresponding to the configuration of the photosynthesis unit 60.
- Transponder Another embodiment is an optical transponder 300 shown in FIG.
- This optical transponder 300 has a transmitter 1 and a receiver 2 mounted on one housing or board. Accordingly, the optical transponder 300 has two optical fibers 3-1 and 3-2.
- the optical fiber 3-1 is used for transmitting an optical signal
- the optical fiber 3-2 is used for receiving an optical signal.
- the transmitter 1 and the receiver 2 of the optical transponder 300 appropriate ones of the above-described embodiments can be used.
- FIG. 18 is a diagram using an RF oscillator inside the transmitter 1, but the RF oscillator may be mounted anywhere within the optical transponder 300-1.
- This embodiment can be used for an optical communication system, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
Description
この特殊ファイバは高価であり、またその分散補償ファイバを各サイトにどれだけ(分散補償ファイバの長さ)設置するかという高度な設計が必要になり、これら両者が光通信システムの価格を押し上げている。
光送信器1-1と光受信器2-1は光ファイバ3で接続されている。本来通信すべきデータが光送信器1-1に入力端子4より入力すると、光送信器1-1の内部の送信信号処理部100でベースバンドOFDM信号に変換され、この信号はドライバアンプ13で増幅され光変調器12でキャリアである光を電界変調あるいは強度変調することによって光OFDM信号が生成される。この光OFDM信号は伝送路である光ファイバ3を通って光受信器2-1に到達する。光OFDM信号はフォトダイオード21で直接検波受信されて電気信号に変換される。この電気信号は理想的には前述のベースバンドOFDM信号であり、この信号はプリアンプ22で増幅されて受信信号処理部200で本来通信すべきデータに復調されて出力端子5より出力される。
通信すべきデータは、まずシリアル-パラレル変換部110で2N個のパラレルデータに変換される。ここでNはデータを乗せるサブキャリアの本数である。サブキャリアの変調が4-QAMの場合は2N個のパラレルデータであるが、これが例えば16-QAMの場合は4N個となる。つまりシリアルデータは、「1シンボルのビット数×サブキャリアの本数」個のパラレルデータに変換する。サブキャリア変調部120は、このパラレルデータを用いてN本のサブキャリアに変調をかける。この変調されたサブキャリアは逆FFT部130で時間軸のデータに変換され、パラレル-シリアル変換部140でシリアルデータに変換される。このシリアルデータはサイクリックプリフィックス挿入部150でサイクリックプリフィックスが挿入され、D/A変換部160を通過してアナログ信号としてドライバアンプへ信号を送出する。
これらのPAPR低減策を光OFDM通信システムに適用した研究も、すでに発表されている(非特許文献3、4)。さらに特開2009-188510号公報(特許文献1)では、上述の位相変調を用いて包絡線を一定に保つ光OFDM通信システムも考案されている。
本発明は、以上の点に鑑みてなされたものであり、光OFDM通信システムにおいて、伝送路内部での光電力が大きい箇所でそのPAPRが従来の光通信システムのPAPR(である6dB)より小さく、かつ直接検波受信方式にも適用できる光通信システム、光送信器、光受信器及び光トランスポンダを提供することを目的とする。本発明は、PAPRが6dBより小さい光通信システム、光送信器、光受信器及び光トランスポンダを提供することを目的のひとつとする。
本発明の第1の解決手段によると、
ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号を送信する光送信器と、
該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデ-タを再生する光受信器と
を備え、
前記光送信器は、
ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆FFT演算してベ-スバンドOFDM信号を生成する送信信号処理部と、
予め定められた周波数の正弦波を出力する第1発振器と、
該ベ-スバンドOFDM信号を、前記第1発振器の出力である正弦波に位相変調する位相変調部と、
前記位相変調部から出力された正弦波を光信号に変換する電気-光変換部と
を有し、
前記光受信器は、
前記光ファイバを介して前記光送信器から受信した光信号を電気信号に変換する光-電気変換部と、
前記第1発振器と略一致する周波数の正弦波を生成する第2発振器と、
前記光-電気変換部の出力を前記第2発振器の出力である正弦波で同期検波する同期検波部と、
前記同期検波部の出力をFFT変換したサブキャリア信号から元のディジタルデ-タを再生する受信信号処理部と
を有する光通信システムが提供される。
本発明の第2の解決手段によると、
ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号を送信する光送信器と、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデ-タを再生する光受信器とを備えた光通信システムにおける前記光送信器であって、
ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆FFT演算してベ-スバンドOFDM信号を生成する送信信号処理部と、
予め定められた周波数の正弦波を出力する発振器と、
該ベ-スバンドOFDM信号を、前記発振器の出力である正弦波に位相変調する位相変調部と、
前記位相変調部から出力された正弦波を光信号に変換する電気-光変換部と
を備えた光送信器が提供される。
本発明の第3の解決手段によると、
ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号を送信する光送信器と、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデ-タを再生する光受信器とを備えた光通信システムにおける前記光受信器であって、
前記光受信器は、
ベ-スバンドOFDM信号が予め定められた周波数の正弦波に位相変調された光信号を、前記光ファイバを介して受信して電気信号に変換する光-電気変換部と、
前記周波数と略一致する周波数が予め設定され、該周波数の正弦波を生成する発振器と、
前記光-電気変換部の出力を前記発振器の出力である正弦波で同期検波する同期検波部と、
前記同期検波部の出力をFFT変換したサブキャリア信号から元のディジタルデ-タを再生する受信信号処理部と
を有する光受信器が提供される。
本発明の第4の解決手段によると、
ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆FFT演算してベ-スバンドOFDM信号を生成する送信信号処理部、
予め定められた周波数の正弦波を出力する第1発振器、
該ベ-スバンドOFDM信号を、前記第1発振器の出力である正弦波に位相変調する位相変調部、及び
前記位相変調部から出力された正弦波を光信号に変換する電気-光変換部
を有する送信部と、
前記光ファイバを介して受信した光信号を電気信号に変換する光-電気変換部、
前記第1発振器と略一致する周波数の正弦波を生成する第2発振器、
前記光-電気変換部の出力を前記第2発振器の出力である正弦波で同期検波する同期検波部、及び
前記同期検波部の出力をFFT変換したサブキャリア信号から元のディジタルデ-タを再生する受信信号処理部
を有する受信部と
を備えた光トランスポンダが提供される。
例えば、本発明のPAPRが3dBの光通信システムにおいて、PAPRによって誘起される非線形位相雑音で決まる伝送距離は、従来の光OFDM通信システムのそれと比べるとおよそ3倍となる。
図1を用いて本実施の形態の原理を説明する。本実施の形態の光通信システムは、光送信器1と光受信器2が光ファイバ3で接続されている。光送信器1内部の送信信号処理部100では、入力端4から入力された通信するデータを、ベースバンドOFDM信号に変換する。光送信器内部のRF発振器(第1発振器)6からの周波数fmの正弦波の位相を上記ベースバンドOFDM信号によって位相変調部8で位相変調する。この位相変調された正弦波は電気-光変換部10によって光信号に変換される。この電気-光変換部10では、上記正弦波は光の電力あるいは電界に変換される。この光信号は、伝送路である光ファイバ3を伝播し、光受信器2に入射する。光受信器2では、光-電気変換部20で電気信号に変換される。この電気信号は、光受信器2内部のRF発振器(第2発振器)7からの正弦波と同期検波され、その出力信号は、受信信号処理部200で通信データに再生され、出力端5から出力される。
この位相変調が施された正弦波を電気-光変換部10で光信号に変換する。例えば電気-光変換素子として直接変調用の半導体レーザを用いた場合は、半導体レーザに印加する電流を式(2)に比例させ、適当なバイアス電流に重畳させると、この半導体レーザの出力光電力は式(3)であらわせる。
電界変調と直接検波受信を組み合わせた光通信システムでは、電界変調された光と連続光を同時に光ファイバ伝送し、直接検波受信すると、電界変調された光と連続光のビートが起こり、これが電気信号となる。なお、この場合受信器内部の光-電気変換部の出力には2×fmを中心周波数とする式(2)の2倍の高調波を遮断する帯域通過フィルタあるいは低域通過フィルタを設置する必要がある。
なお、連続光の電界強度を式(5)のように設定する方法としては、MZ変調器12-1の直流バイアスを調整する方法がある。
図1等を参照して第1の実施の形態を説明する。ここでは説明のためサブキャリアの変調は4-QAMと仮定するが、本実施の形態はこれに制限されるものではなく、任意のサブキャリア変調方式に対して適用可能である。またサブキャリアの本数はN本(Nは整数)とする。
光OFDM通信システムは、例えば、送信器(光送信器)1と、光ファイバ3と、受信器(光受信器)2とを備える。送信器1は、例えば、送信信号処理部100と、RF発振器6と、電気-光変換部10とを有する。送信器1は、入力端子4を備えてもよい。受信器2は、光-電気変換部20と、受信信号処理部200とを有する。受信器2は、出力端子8を備えてもよい。送信器1と受信器2は、光ファイバ3を介して接続される。なお、送信器1の電気-光変換部10は、例えば、図6に示すようにドライバアンプ13-1及び直接変調用半導体レーザ11-1で実現しても良いし、あるいは図7に示すようにドライバアンプ13-2とレーザ11-2及びMZ変調器12-1を備えてもよい。
送信信号処理部100は、例えば、シリアル-パラレル変換部(S/P)110と、サブキャリア変調部120と、逆FFT部(逆フーリエ変換部)130と、パラレル-シリアル変換部(P/S)140と、サイクリックプリフィックス挿入部(CPI)150と、ディジタル-アナログ変換部(D/A変換部)160を備える。
また、位相変調が小信号近似できる場合を考えてみる。一般に位相変調信号は、
ここで位相変調の小信号近似を行うと、式(A)は、
電気-光変換部10の構成は、例えば、上述のように直接変調(図6)やMZ変調(図7)を用いることができる。
この光信号は伝送路である光ファイバ3を通って受信器2に入射する。ここで光-電気変換部20によって電気信号に変換される。この電気信号は、RF発振器7の出力である正弦波によって同期検波部9で同期検波される。その出力信号は、受信信号処理部200で復調されシリアルデータとして出力端子10から取り出される。受信信号処理部200の構成は例えば図4に示される構成と同様であり、通常のOFDM信号処理構成を用いることができる。
同期検波部9の構成は、例えば図15に示すとおりである。つまり、プリアンプ出力の電気信号と、発振周波数が送信器のRF発振器6の発振周波数fmと略一致したRF信号を出力する発振器7の出力とをミキサー90で掛け算を行い、その出力のうち低周波成分(発振周波数fm以下)を抽出する低域通過フィルタ91を通すことによって同期検波が実現する。
第2の実施の形態を図8等を参照して説明する。図8は、第2の実施の形態のシステム構成図を示す。第1の実施の形態との違いは、送信器1-4の内部の電気-光変換部10の光出力に狭帯域光フィルタ14が設置されている点である。この狭帯域光フィルタによって、電気-光変換部10の出力光信号の側帯波を遮断し、光SSB(Single Side Band)信号が生成される。光SSB信号は、光ファイバの波長分散特性による波形劣化を生じさせないことが知られており、長距離通信システムに適した信号である。
また、位相変調が小信号近似できる場合、図10のヒルベルト変換部15は次のように考えることができる。図10の位相変調器8の出力、すなわちヒルベルト変換部15への入力信号は、
さらに、図11のヒルベルト変換部に対応する位相変調部を式(11)の左辺で構成し、I側の位相変調部に図16(式(8))を用いると、小信号近似の下で図10は図12となる。すなわち図12によって、図10と同じ光SSB信号を発生することができる。
第3の実施の形態を図13を参照して説明する。図13は、第3の実施の形態の通信システム全体の構成図である。
第3の実施の形態の受信器2-3は、例えば、光-電気変換部20-2と、RF発振器7-1と、同期検波部9と、受信信号処理部200と、局発用半導体レーザ50と、光合波部60を有する。送信器1から光ファイバ3を伝播してきた光信号は、受信器2-3に入射する。この光信号は、受信器2-3内部に設置された局発用半導体レーザ50の出力光と光合波部60で合波され、光-電気変換部20-2でいわゆるコヒーレント受信され、電気信号に変換される。この信号は受信器2-3内部のRF発振器7-1の出力である正弦波によって同期検波部9で検波され、その出力は受信信号処理200で復調されデータとして端子5から出力される。
他の実施形態としては図17に示す光トランスポンダ300がある。この光トランスポンダ300はひとつの筐体あるいはボードに送信器1と受信器2を搭載したものである。したがって、光トランスポンダ300は2つの光ファイバ3-1と3-2を持つ。光ファイバ3-1は光信号を送信するために用い、光ファイバ3-2は光信号を受信するために使用する。光トランスポンダ300の送信器1、受信器2は、上述の各実施の形態の適宜のものを用いることができる。
2、2-1、2-2、2-3 受信器(光受信器)
3、3-1、3-2 光ファイバ
4 入力端子
5 出力端子
6、7 RF発振器
8 位相変調部
9 同期検波部
10、10-1、10-2、10-3、10-4、10-5 電気-光変換部
11、11-2 レーザ、
11-1 直接変調用半導体レーザ
12 光変調器
12-1 MZ変調器
12-2 光IQ変調器
13、13-1、13-2 ドライバアンプ
14 狭帯域光フィルタ
15 ヒルベルト変換部
16 -π/2移相回路
16-1 +π/2移相回路
20、20-1、20-2 光-電気変換部
21 フォトダイオード
22 プリアンプ
30 光フィルタ
50 局発用レーザ
60 光合波部
90 ミキサー
91 低域通過フィルタ
92 加算器
100 送信信号処理部
110、230 シリアル-パラレル変換部
120 サブキャリア変調部
130 逆FFT部
140、260 パラレル-シリアル変換部
150 サイクリックプリフィックス挿入部
160 ディジタル-アナログ変換部
200、200-1 受信信号処理部
210 アナログ-ディジタル変換部
220 サイクリックプリフィックス削除部
240 FFT部
250 サブキャリア復調部
270 逆正弦関数(あるいは逆余弦関数)部
300、301 光トランスポンダ
Claims (15)
- ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号を送信する光送信器と、
該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデ-タを再生する光受信器と
を備え、
前記光送信器は、
ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆FFT演算してベ-スバンドOFDM信号を生成する送信信号処理部と、
予め定められた周波数の正弦波を出力する第1発振器と、
該ベ-スバンドOFDM信号を、前記第1発振器の出力である正弦波に位相変調する位相変調部と、
前記位相変調部から出力された正弦波を光信号に変換する電気-光変換部と
を有し、
前記光受信器は、
前記光ファイバを介して前記光送信器から受信した光信号を電気信号に変換する光-電気変換部と、
前記第1発振器と略一致する周波数の正弦波を生成する第2発振器と、
前記光-電気変換部の出力を前記第2発振器の出力である正弦波で同期検波する同期検波部と、
前記同期検波部の出力をFFT変換したサブキャリア信号から元のディジタルデ-タを再生する受信信号処理部と
を有する光通信システム。 - 前記光-電気変換部は、フォトダイオ-ドを用いて直接検波受信することを特徴とする請求項1に記載の光通信システム。
- 前記第1及び第2発振器から出力される正弦波の周波数fmは、前記ベ-スバンドOFDM信号の帯域Bとfm>2Bなる関係を満たすことを特徴とする請求項1又は2に記載の光通信システム。
- 前記電気-光変換部は、光SSB(Single Side Band)信号を発生することを特徴とする請求項1乃至3のいずれかに記載の光通信システム。
- 前記光SSB信号を発生させる手段として、前記電気-光変換部は、前記位相変調部の出力をI成分の変調信号とし、該I成分の変調信号をヒルベルト変換した信号をQ成分の変調信号とする光IQ変調器を有する請求項4に記載の光通信システム。
- 前記光-電気変換部は、
局発用レ-ザと合波用光カプラ部とフォトダイオ-ドを備え、コヒ-レント検波受信することを特徴とする請求項1、3、4及び5のいずれかに記載の光通信システム。 - ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号を送信する光送信器と、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデ-タを再生する光受信器とを備えた光通信システムにおける前記光送信器であって、
ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆FFT演算してベ-スバンドOFDM信号を生成する送信信号処理部と、
予め定められた周波数の正弦波を出力する発振器と、
該ベ-スバンドOFDM信号を、前記発振器の出力である正弦波に位相変調する位相変調部と、
前記位相変調部から出力された正弦波を光信号に変換する電気-光変換部と
を備えた光送信器。 - 前記発振器から出力される正弦波の周波数fmは、前記ベ-スバンドOFDM信号の帯域Bとfm>2Bなる関係を満たすことを特徴とする請求項7に記載の光送信器。
- 前記電気-光変換部は、光SSB(Single Side Band)信号を発生することを特徴とする請求項7又は8に記載の光送信器。
- 前記光SSB信号を発生させる手段として、前記電気-光変換部は、前記位相変調部の出力をI成分の変調信号とし、該I成分の変調信号をヒルベルト変換した信号をQ成分の変調信号とする光IQ変調器を有する請求項9に記載の光送信器。
- ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号を送信する光送信器と、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデ-タを再生する光受信器とを備えた光通信システムにおける前記光受信器であって、
前記光受信器は、
ベ-スバンドOFDM信号が予め定められた周波数の正弦波に位相変調された光信号を、前記光ファイバを介して受信して電気信号に変換する光-電気変換部と、
前記周波数と略一致する周波数が予め設定され、該周波数の正弦波を生成する発振器と、
前記光-電気変換部の出力を前記発振器の出力である正弦波で同期検波する同期検波部と、
前記同期検波部の出力をFFT変換したサブキャリア信号から元のディジタルデ-タを再生する受信信号処理部と
を有する光受信器。 - 前記光-電気変換部は、フォトダイオ-ドを用いて直接検波受信することを特徴とする請求項11に記載の光受信器。
- 前記光-電気変換部は、
局発用レ-ザと光合波部とフォトダイオ-ドを備え、コヒ-レント検波受信することを特徴とする請求項11に記載の光受信器。 - ディジタルデ-タをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆FFT演算してベ-スバンドOFDM信号を生成する送信信号処理部、
予め定められた周波数の正弦波を出力する第1発振器、
該ベ-スバンドOFDM信号を、前記第1発振器の出力である正弦波に位相変調する位相変調部、及び
前記位相変調部から出力された正弦波を光信号に変換する電気-光変換部
を有する送信部と、
前記光ファイバを介して受信した光信号を電気信号に変換する光-電気変換部、
前記第1発振器と略一致する周波数の正弦波を生成する第2発振器、
前記光-電気変換部の出力を前記第2発振器の出力である正弦波で同期検波する同期検波部、及び
前記同期検波部の出力をFFT変換したサブキャリア信号から元のディジタルデ-タを再生する受信信号処理部
を有する受信部と
を備えた光トランスポンダ。 - 前記送信部の第1発振器と前記受信部の第2発振器を一台の発振器で共用したことを特徴とする請求項14に記載の光トランスポンダ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800616225A CN102714541A (zh) | 2010-01-18 | 2010-01-18 | 光通信系统、光发送器、光接收器以及光转发器 |
PCT/JP2010/050474 WO2011086696A1 (ja) | 2010-01-18 | 2010-01-18 | 光通信システム、光送信器、光受信器及び光トランスポンダ |
US13/522,660 US20120294616A1 (en) | 2010-01-18 | 2010-01-18 | Optical communication system, optical transmitter, optical receiver, and optical transponder |
JP2011549830A JP5296226B2 (ja) | 2010-01-18 | 2010-01-18 | 光通信システム、光送信器、光受信器及び光トランスポンダ |
EP10843054A EP2528251A1 (en) | 2010-01-18 | 2010-01-18 | Optical communication system, optical transmitter, optical receiver and optical transponder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/050474 WO2011086696A1 (ja) | 2010-01-18 | 2010-01-18 | 光通信システム、光送信器、光受信器及び光トランスポンダ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011086696A1 true WO2011086696A1 (ja) | 2011-07-21 |
Family
ID=44303999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050474 WO2011086696A1 (ja) | 2010-01-18 | 2010-01-18 | 光通信システム、光送信器、光受信器及び光トランスポンダ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120294616A1 (ja) |
EP (1) | EP2528251A1 (ja) |
JP (1) | JP5296226B2 (ja) |
CN (1) | CN102714541A (ja) |
WO (1) | WO2011086696A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013143657A (ja) * | 2012-01-10 | 2013-07-22 | Icom Inc | 通信機および通信方法 |
JP2013153247A (ja) * | 2012-01-24 | 2013-08-08 | Icom Inc | 通信機および通信方法 |
JP2013162298A (ja) * | 2012-02-03 | 2013-08-19 | Icom Inc | 通信機および通信方法 |
JP2017157974A (ja) * | 2016-02-29 | 2017-09-07 | 日本オクラロ株式会社 | 光情報伝送システム、及び光送信器 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102684819B (zh) * | 2011-03-15 | 2015-06-03 | 华为技术有限公司 | 一种数据传输方法及相关设备、系统 |
JP6287866B2 (ja) * | 2013-02-07 | 2018-03-07 | 日本電気株式会社 | 信号処理装置及び信号処理方法 |
US9088359B2 (en) * | 2013-03-14 | 2015-07-21 | Elwah LLC | Multi-wavelength visible light communications systems and methods |
US9641374B2 (en) * | 2014-02-04 | 2017-05-02 | Huawei Technologies Co., Ltd. | Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing |
CN104243120A (zh) * | 2014-09-10 | 2014-12-24 | 武汉邮电科学研究院 | 一种基于希尔伯特编码的可见光通信方法 |
CN104794292B (zh) * | 2015-04-24 | 2018-12-25 | 深圳市国电科技通信有限公司 | 频响曲线实时仿真生成电力线信道的方法 |
WO2017118482A1 (en) * | 2016-01-07 | 2017-07-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Opto-electronic oscillator and method of generating an electrical carrier signal |
US10177850B2 (en) * | 2016-07-18 | 2019-01-08 | Zte Corporation | Dual polarization vector signal generation and detection |
CN109478933A (zh) * | 2016-08-04 | 2019-03-15 | 华为技术有限公司 | 一种单边带调制装置 |
US10951344B2 (en) * | 2017-06-27 | 2021-03-16 | Nippon Telegraph And Telephone Corporation | Optical transmitter, optical receiver, and optical transmission system |
US11333837B2 (en) * | 2017-09-07 | 2022-05-17 | Murata Machinery, Ltd. | Optical communication system for rail-guided truck |
CN107682044B (zh) * | 2017-09-29 | 2019-12-24 | 长春理工大学 | 激光和微波混合传输系统 |
CN108234061B (zh) * | 2018-01-09 | 2019-12-17 | 北京科技大学 | 一种基于斯托克斯空间直接检测的偏振复用系统 |
US10516420B1 (en) * | 2018-06-12 | 2019-12-24 | Mitsubishi Electric Research Laboratories, Inc. | High speed digital bit generator for optical frontal interface |
US11064448B2 (en) * | 2018-10-11 | 2021-07-13 | Nokia Technologies Oy | Power and energy efficient waveform for frequency range FR2 and FR3 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05235894A (ja) * | 1992-02-20 | 1993-09-10 | Fujitsu Ltd | スペクトル拡散変調方式およびその復調方式 |
JPH09219625A (ja) * | 1996-02-13 | 1997-08-19 | Sony Corp | 無線通信機 |
JP2008135992A (ja) * | 2006-11-28 | 2008-06-12 | Nippon Telegr & Teleph Corp <Ntt> | 光ofdm受信回路、光ofdm受信装置、光ofdm伝送システム、光ofcdm受信回路、光ofcdm受信装置および光ofcdm伝送システム |
JP2009188509A (ja) * | 2008-02-04 | 2009-08-20 | Kddi Corp | 光通信装置、システム及び光通信方法 |
JP2009188510A (ja) | 2008-02-04 | 2009-08-20 | Kddi Corp | 光通信方法及び装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7187916B2 (en) * | 2003-02-07 | 2007-03-06 | Broadcom Corporation | Method and system for measuring receiver mixer IQ mismatch |
JP4414800B2 (ja) * | 2004-03-25 | 2010-02-10 | 株式会社日立コミュニケーションテクノロジー | 光伝送装置およびその制御方法 |
NZ566407A (en) * | 2005-09-02 | 2011-04-29 | Ofidium Pty Ltd | Methods and apparatus for optical transmission of digital signals |
US8112001B2 (en) * | 2006-12-20 | 2012-02-07 | Ofidium Pty, Ltd. | Non-linearity compensation in an optical transmission |
JP4839266B2 (ja) * | 2007-06-07 | 2011-12-21 | 株式会社日立製作所 | 光通信システム |
EP2026520A1 (en) * | 2007-08-17 | 2009-02-18 | Nokia Siemens Networks Oy | Method and arrangement for transmitting an optical OFDM-signal |
-
2010
- 2010-01-18 EP EP10843054A patent/EP2528251A1/en not_active Withdrawn
- 2010-01-18 US US13/522,660 patent/US20120294616A1/en not_active Abandoned
- 2010-01-18 CN CN2010800616225A patent/CN102714541A/zh active Pending
- 2010-01-18 WO PCT/JP2010/050474 patent/WO2011086696A1/ja active Application Filing
- 2010-01-18 JP JP2011549830A patent/JP5296226B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05235894A (ja) * | 1992-02-20 | 1993-09-10 | Fujitsu Ltd | スペクトル拡散変調方式およびその復調方式 |
JPH09219625A (ja) * | 1996-02-13 | 1997-08-19 | Sony Corp | 無線通信機 |
JP2008135992A (ja) * | 2006-11-28 | 2008-06-12 | Nippon Telegr & Teleph Corp <Ntt> | 光ofdm受信回路、光ofdm受信装置、光ofdm伝送システム、光ofcdm受信回路、光ofcdm受信装置および光ofcdm伝送システム |
JP2009188509A (ja) * | 2008-02-04 | 2009-08-20 | Kddi Corp | 光通信装置、システム及び光通信方法 |
JP2009188510A (ja) | 2008-02-04 | 2009-08-20 | Kddi Corp | 光通信方法及び装置 |
Non-Patent Citations (5)
Title |
---|
B. GOEBEL; S. HELLERBRAND; N. HAUFE ET AL.: "Nonlinear Limits for High Bit-Rate O-OFDM Systems", IEEE SUMMER TOPICAL MEETING2009, MC4. 2, 2009 |
B. GOEBEL; S. HELLERBRAND; N. HAUFE ET AL.: "PAPR Reduction Techniques for Coherent Optical OFDM Transmission", ICTON2009, April 2009 (2009-04-01) |
S. C. THOMPSON; A. U. AHMED; J. G. PROAKIS ET AL.: "Constant Envelope OFDM", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 56, no. 8, August 2008 (2008-08-01), pages 1300 - 1312 |
S. H. HAN; J. H. LEE: "An Overview of Peak-to-Average Power Ratio Reduction Techniques for Multicarrier Transmission", IEEE WIRELESS COMMUNICATIONS, April 2005 (2005-04-01), pages 56 - 65 |
XINYING LI ET AL.: "Study of IQ Imbalance Effect in Direct-Detection Optical OFDM Systems", ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE AND EXHIBITION 2009, 6 November 2009 (2009-11-06), pages 1 - 6, XP031623327 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013143657A (ja) * | 2012-01-10 | 2013-07-22 | Icom Inc | 通信機および通信方法 |
JP2013153247A (ja) * | 2012-01-24 | 2013-08-08 | Icom Inc | 通信機および通信方法 |
JP2013162298A (ja) * | 2012-02-03 | 2013-08-19 | Icom Inc | 通信機および通信方法 |
US9001906B2 (en) | 2012-02-03 | 2015-04-07 | Icom Incorporated | Communication apparatus and communication method |
JP2017157974A (ja) * | 2016-02-29 | 2017-09-07 | 日本オクラロ株式会社 | 光情報伝送システム、及び光送信器 |
Also Published As
Publication number | Publication date |
---|---|
CN102714541A (zh) | 2012-10-03 |
US20120294616A1 (en) | 2012-11-22 |
JP5296226B2 (ja) | 2013-09-25 |
JPWO2011086696A1 (ja) | 2013-05-16 |
EP2528251A1 (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5296226B2 (ja) | 光通信システム、光送信器、光受信器及び光トランスポンダ | |
JP5404925B2 (ja) | 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ | |
TWI396033B (zh) | Multi - frequency electrical signal of the photoelectric device | |
US9722707B2 (en) | Dual-channel orthogonal carriers assisted optical signal transmitting device, direct detection method and system | |
WO2010073990A1 (ja) | 光送信器及び光ofdm通信システム | |
Singh et al. | Modeling and performance analysis of 400 Gbps CO-OFDM based inter-satellite optical wireless communication (IsOWC) system incorporating polarization division multiplexing with enhanced detection | |
US20140341576A1 (en) | Method for processing data in an optical network element and optical network element | |
JP5583788B2 (ja) | 光通信システム、光送信器及びトランスポンダ | |
US10014954B2 (en) | Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation | |
CN101771471A (zh) | 一种多载波偏振复用传输的方法、装置和系统 | |
Stöhr et al. | High spectral-efficient 512-QAM-OFDM 60 GHz CRoF system using a coherent photonic mixer (CPX) and an RF envelope detector | |
CN103873424A (zh) | 一种适用于正交频分多址无源光网络的系统、设备及调制解调方法 | |
Kaur | Performance analysis of DP-QPSK with CO-OFDM using OSSB generation | |
Yahia et al. | Performance evaluation of a 60-GHz RoF-OFDM system for wireless applications | |
Fàbrega et al. | Constant envelope coherent optical OFDM based on fast Hartley transform | |
Ming et al. | Synthesis of MSBS-32QAM in a DD-MZM Based Simplified twin-SSB System via IM/DD | |
Pandey et al. | Long reach colorless WDM OFDM-PON using direct detection OFDM transmission for downstream and OOK for upstream | |
Zhang et al. | Full-duplex link with a unified optical OFDM signal for wired and millimeter-wave wireless accesses based on direct detection | |
Shen et al. | Hybrid W-band/baseband transmission for fixed-mobile convergence supported by heterodyne detection with data-carrying local oscillator | |
Mandal et al. | 10 Gbps wired and 10 Gbps/20 GHz wireless transmission system employing S and P polarization states of light and OFDM technique | |
Xiang et al. | Spectrally Efficient Dual Signal Transmission in Direct-Detection THz Communication System | |
Lowery et al. | Nanosecond-latency IM/DD/DSB to coherent/SSB converter | |
JP2012249122A (ja) | 光通信システム及び光送信器 | |
Lowery et al. | Nanosecond-latency IM/DD/DSB short-haul to coherent/SSB long-haul converter | |
JP5182154B2 (ja) | 光通信システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080061622.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10843054 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011549830 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13522660 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010843054 Country of ref document: EP |