WO2011086671A1 - 突入電流抑制装置および突入電流抑制方法 - Google Patents

突入電流抑制装置および突入電流抑制方法 Download PDF

Info

Publication number
WO2011086671A1
WO2011086671A1 PCT/JP2010/050282 JP2010050282W WO2011086671A1 WO 2011086671 A1 WO2011086671 A1 WO 2011086671A1 JP 2010050282 W JP2010050282 W JP 2010050282W WO 2011086671 A1 WO2011086671 A1 WO 2011086671A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
magnetic flux
circuit breaker
voltage
transformer
Prior art date
Application number
PCT/JP2010/050282
Other languages
English (en)
French (fr)
Inventor
定之 木下
健次 亀井
森 智仁
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/509,806 priority Critical patent/US9082562B2/en
Priority to PCT/JP2010/050282 priority patent/WO2011086671A1/ja
Priority to JP2010513516A priority patent/JP4549436B1/ja
Priority to EP10843030.7A priority patent/EP2525380A4/en
Publication of WO2011086671A1 publication Critical patent/WO2011086671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers

Definitions

  • the present invention relates to an inrush current suppressing device and an inrush current suppressing method for suppressing a transient excitation inrush current in a transformer connected to an electric power system through an electric power switching device.
  • Patent Document 1 the residual magnetic flux of each phase of a three-phase transformer is detected, and after the reference phase AC voltage is applied at the timing when the steady magnetic flux and the residual magnetic flux of the reference phase match, A technique is disclosed that suppresses the magnetizing inrush current by supplying the remaining two-phase AC voltage at the timing when the AC voltage becomes zero.
  • JP 2006-040566 A (Embodiment 1, FIG. 4, “0017”, etc.)
  • the three-phase circuit breaker of the three-phase circuit breaker is configured so that the reference phase AC voltage is input at the timing when the steady magnetic flux and the residual magnetic flux of the reference phase match.
  • the target closing phase corresponding to the residual magnetic flux is calculated in consideration of the pre-arc characteristic, and the amplitude of the three-phase transformer magnetic flux when the rated voltage is applied is normalized to the rated value to 1 PU (Per Unit).
  • the maximum amplitude of the voltage is 1 PU, and the steady magnetic flux value is obtained by setting the maximum amplitude of the steady magnetic flux whose phase is delayed by 90 degrees from the power supply side voltage as 1 PU.
  • the present invention has been made in view of the above, and it is possible to suppress an inrush current that can suppress an exciting inrush current even when the magnitude of an AC voltage changes when a circuit breaker is opened and when a voltage is applied.
  • An object is to provide a device and a method for suppressing inrush current.
  • the inrush current suppressing device is applied to a configuration in which a three-phase AC power source is supplied to and cut off from a three-phase transformer via a three-phase circuit breaker.
  • An inrush current suppressing device for suppressing an exciting inrush current that may be generated in the three-phase transformer when the three-phase circuit breaker is turned on, the three-phase transformer before and after the opening of the three-phase circuit breaker Based on the voltage applied to the transformer, the residual magnetic flux calculation unit for obtaining the residual magnetic flux in the reference phase of the three-phase transformer with the maximum magnetic flux level generated when the rated voltage is applied as 1 PU, and the closing command for the three-phase circuit breaker In response, based on the voltage applied to the three-phase circuit breaker by the three-phase AC power source, the steady magnetic field for obtaining the steady magnetic flux in the reference phase of the three-phase transformer based on the maximum magnetic flux level obtained as the 1PU.
  • the stationary magnetic flux of the reference phase obtained by the stationary magnetic flux computing unit and the residual magnetic flux of the reference phase obtained by the residual magnetic flux computing unit coincide with each other.
  • the inrush current suppressing device According to the inrush current suppressing device according to the present invention, it is possible to suppress the magnetizing inrush current even when the magnitude of the AC voltage changes when the circuit breaker is opened and when the voltage is applied.
  • FIG. 1 is a diagram illustrating a configuration of the inrush current suppressing device according to the first embodiment.
  • FIG. 2 is a diagram for explaining a method for deriving the residual magnetic flux in the inrush current suppressing device of the first embodiment.
  • FIG. 3 is a time chart for explaining an inrush current suppression method by switching on the reference phase (R phase).
  • FIG. 4 is a diagram illustrating the voltage behavior, magnetic flux behavior, and excitation inrush current of each phase for explaining the inrush current suppression effect in the reference phase (R phase).
  • FIG. 5 is a diagram illustrating a configuration of the inrush current suppressing device according to the second embodiment.
  • FIG. 6 is a diagram illustrating a configuration of the inrush current suppressing device according to the third embodiment.
  • FIG. 1 is a diagram illustrating a configuration of an inrush current suppressing device 50 according to the first embodiment.
  • the inrush current suppression device 50 according to the first embodiment includes a residual magnetic flux calculation unit 51, a steady magnetic flux calculation unit 52, a control unit 53, a transformer voltage measurement unit 60 having a voltage measurement function, and a power source.
  • a voltage measurement unit 61 is provided, and the transformer voltage measurement unit 60 and the power supply voltage measurement unit 61 are configured to monitor the voltage of the power system line (R phase, S phase, T phase).
  • the residual magnetic flux calculation unit 51, the steady magnetic flux calculation unit 52, and the control unit 53 can be configured by, for example, a computer having a control processor, a memory, an input / output device, and the like.
  • the power system line (R phase, S phase, T phase) is provided with a three-phase circuit breaker 1 and a three-phase transformer 30, and the three-phase transformer 30 passes through the three-phase circuit breaker 1, AC power from a three-phase AC power supply (not shown) is supplied.
  • the three-phase circuit breaker 1 shuts off the power supply when maintenance or inspection or some accident occurs, and includes three switches 2 to 4 that can be controlled independently.
  • R-phase, S-phase, and T-phase AC voltages are applied to terminals on one side of the switches 2 to 4 from a three-phase AC power supply (not shown).
  • switches 2 to 4 are closed and power is supplied.
  • switches 2 to 4 are opened and power is supplied. Is cut off.
  • the three-phase transformer 30 is a three-phase transformer connected by Y- ⁇ connection. Specifically, it includes a three-phase primary winding 31 that is star-connected and whose neutral point is grounded, and a three-phase secondary winding 32 that is triangular-connected. Three input terminals of the three-phase primary winding 31 are connected to the other terminals of the switches 2 to 4, and three output terminals of the three-phase secondary winding 32 are connected to a load (not shown). .
  • the three-phase circuit breaker 1 When the three-phase circuit breaker 1 is closed, steady magnetic flux is generated in each phase of the three-phase transformer 30, and when the three-phase circuit breaker 1 is opened, residual magnetic flux is generated in each phase of the three-phase transformer 30.
  • the transformer voltage measuring unit 60 continuously measures instantaneous voltage values at the other terminals of the switches 2 to 4, that is, at the three input terminals of the three-phase primary winding 31 of the three-phase transformer 30. This measurement value by the transformer voltage measurement unit 60 is given to the residual magnetic flux calculation unit 51 and the control unit 53.
  • the residual magnetic flux calculation unit 51 integrates the measured values of the transformer voltage measurement unit 60 before and after the three-phase circuit breaker 1 is opened, and sets the maximum magnetic flux level generated when the rated voltage is applied to 1 PU (Per Unit). The residual magnetic flux in the reference phase of the phase transformer 30 is obtained, and the obtained residual magnetic flux is notified to the control unit 53.
  • the power supply voltage measurement unit 61 continuously measures the voltage instantaneous values in one terminal of the switches 2 to 4, that is, the R phase, S phase, and T phase of the three-phase AC power supply. This measurement value by the power supply voltage measurement unit 61 is given to the steady magnetic flux calculation unit 52 and the control unit 53.
  • the steady magnetic flux calculation unit 52 integrates the measured value of the power supply voltage measurement unit 61 in response to the closing command signal 25 to obtain the steady magnetic flux of the reference phase with the maximum magnetic flux level generated when the rated voltage is applied as 1 PU, The obtained steady magnetic flux is notified to the control unit 53.
  • the control unit 53 When the opening command signal 20 is input, the control unit 53 has three zeros at which the AC voltage of the reference phase (the R phase in the first embodiment) of the three phases changes from the minus side to the plus side. Switches 2 to 4 are opened simultaneously.
  • the DC component of the residual magnetic flux in the R phase of the three-phase transformer 30 is controlled to, for example, a negative predetermined value “ ⁇ K” (K is a positive real number), and the residual of the S phase and the T phase
  • the DC component of the magnetic flux can be controlled to a value of approximately -1/2 (that is, K / 2) of the residual magnetic flux in the reference phase (R phase).
  • the control unit 53 receives the R phase at a timing at which the residual magnetic flux obtained by the residual magnetic flux calculation unit 51 and the steady magnetic flux obtained by the steady magnetic flux calculation unit 52 coincide with each other. While the switch 2 corresponding to the (reference phase) is turned on, for the S phase and the T phase, after the switch 2 corresponding to the R phase is turned on, the remaining 2 at the timing when the AC voltage of the R phase becomes 0 Two switches 3 and 4 are turned on.
  • control unit 53 matches the zero point timing, residual magnetic flux, steady magnetic flux, steady magnetic flux and residual magnetic flux in each phase based on the measured value of the power supply voltage measuring unit 61 when the three-phase circuit breaker 1 is closed. Find the timing to do.
  • turning on the switches 2 to 4 means that a current caused by pre-arcing (a phenomenon in which a current starts to flow between the contacts before the switches 2 to 4 are closed) flows to the switches 2 to 4. It should be noted that a predetermined charging time is required until the switches 2 to 4 are actually turned on after the control unit 53 instructs the switches 2 to 4 to close the contacts.
  • a predetermined opening time is required until the switches 2 to 4 are actually opened after the control unit 53 outputs a command for opening the switches 2 to 4.
  • the control unit 53 controls the switches 2 to 4 at the above timing in consideration of the above closing time, closing time, and opening time.
  • FIG. 2 is a diagram for explaining a method for deriving the residual magnetic flux in the inrush current suppressing device 50 according to the first embodiment, and compares the voltage behavior and magnetic flux behavior of each phase when the circuit breaker is opened with the conventional method.
  • FIG. 2 is a diagram for explaining a method for deriving the residual magnetic flux in the inrush current suppressing device 50 according to the first embodiment, and compares the voltage behavior and magnetic flux behavior of each phase when the circuit breaker is opened with the conventional method.
  • each of the waveforms on the upper side shows that the transformer voltage measurement unit 60 has terminals on the other side of the switches 2 to 4 (that is, three input terminals of the three-phase primary winding 31 of the three-phase transformer 30).
  • the waveform at the lower side is the method according to the first embodiment, and is measured by the transformer voltage measuring unit 60 before and after the three-phase circuit breaker 1 is opened.
  • the value is a residual magnetic flux waveform of the three-phase transformer 30 obtained by integrating the value by the residual magnetic flux calculation unit 51 and obtaining (normalized) the maximum magnetic flux level generated when the rated voltage is applied as 1.0 PU.
  • FIGS. 2 (a-2), (b-2), and (c-2) are similar to FIGS. 2 (a-1), (b-1), and (c-1) in the three-phase circuit breaker.
  • the waveform at the time of changing the alternating voltage level at the time of opening of 1 with 0.9PU, 1.0PU, and 1.1PU is shown.
  • the waveform on the upper side indicates the voltage instantaneous value at the other terminal of the switches 2 to 4 (that is, the three input terminals of the three-phase primary winding 31 of the three-phase transformer 30) by the transformer voltage measuring unit 60.
  • the waveforms measured continuously are the same as those shown in FIGS.
  • the residual magnetic flux calculation unit 51 integrates the measured value of the transformer voltage measuring unit 60 before and after the calculation, and the residual magnetic flux is obtained (normalized) by setting the maximum amplitude of the three-phase transformer magnetic flux to 1.0 PU. is there.
  • FIG. 3 is a time chart for explaining an inrush current suppression method by switching on the reference phase (R phase).
  • the curve indicated by the broken line in FIG. 6A is an AC voltage waveform when the maximum value of the AC voltage applied to the R phase is 1.0 PU, and the curve indicated by the solid line is applied to the R phase.
  • the AC voltage waveform when the maximum value of the AC voltage to be applied is 1.1 PU is shown.
  • the curve indicated by the broken line in FIG. 3B is a steady magnetic flux waveform having a maximum value of 1.0 PU generated when the maximum value of the AC voltage applied to the R phase is 1.0 PU.
  • the curve indicated by the solid line in b) is a steady magnetic flux waveform having a maximum value of 1.1 PU generated when the maximum value of the AC voltage applied to the R phase is 1.1 PU.
  • the residual magnetic flux waveform is also shown, but the value of the residual magnetic flux is shown as a constant value for ease of explanation.
  • FIG. 3 (a) shows the RDDS (Rate of Decay of Dielectric Strength) curve 107 passing through the point 101 when the maximum value of the AC voltage is 1.0 PU, and the maximum value of the AC voltage.
  • RDDS curve 108 passing through the point 102 is written.
  • the RDDS curve 107 and the RDDS curve 108 have the same slope.
  • times t1 and t2 when the RDDS curves 107 and 108 intersect with the time axis indicate times when the switch 2 is mechanically closed.
  • control unit 53 issues a command for closing the switch 2 at a time before the closing time of the switch 2 before the times t1 and t2, a pre-arc is generated at the points 101 and 102, respectively.
  • the switch 2 is turned on at the points 104 and 105 where the magnetic flux and the residual magnetic flux coincide.
  • the maximum value of the AC voltage is 1.1 PU
  • the maximum amplitude of the AC voltage on the power supply side is 1.0 PU and the phase is delayed by 90 degrees from the power supply voltage, as in the conventional method. If a closing command obtained with the maximum magnetic flux amplitude of 1.0 PU is output to the switch 2, the switch 2 is turned on at the point 103. When the input point of the switch 2 is the point 103, the steady magnetic flux of the R phase is at the position of the point 106. Therefore, the steady magnetic flux does not match the residual magnetic flux, and an excitation inrush current corresponding to the magnetic flux difference flows. .
  • the maximum amplitude of the AC voltage on the power source side and the maximum amplitude of the steady magnetic flux are set according to the maximum value of the AC voltage so that the maximum magnetic flux level generated when the rated voltage is applied is 1.0 PU. If the closing command obtained by normalizing is output to the switch 2, it is possible to perform control at an optimum closing point.
  • a steady magnetic flux having an AC voltage maximum value of 1.1 PU which occurs when the AC voltage maximum value of the reference phase (R phase) is 1.1 PU
  • a closing command for closing the switch 2 at time t2 is output to the switch 2 so that the obtained residual magnetic flux matches, and the switch 2 is turned on at a point 102 in FIG.
  • the point 105 where the steady magnetic flux and the residual magnetic flux coincide with each other is the input point.
  • FIG. 4 is a diagram showing the voltage behavior, magnetic flux behavior, and excitation inrush current of each phase for explaining the inrush current suppression effect in the reference phase (R phase). More specifically, FIG. 4A shows that although the maximum value of the AC voltage in the reference phase (R phase) is 1.1 PU, the maximum amplitude of the steady magnetic flux is 1.0 PU, and the steady magnetic flux FIG. 4B is a diagram showing an AC voltage waveform, a magnetic flux waveform, and a reference phase (R phase) current waveform when a closing command for turning on the switch 2 is output at a timing when the residual magnetic flux coincides, FIG.
  • the maximum magnetic flux level generated when the rated voltage is applied is 1.0 PU, the stationary magnetic flux of the reference phase (R phase) is obtained, and the AC voltage maximum value generated when the AC voltage maximum value of the reference phase is 1.1 PU is 1 .1 AC voltage waveform, magnetic flux waveform, and reference phase (R phase) current waveform when a closing command for turning on the switch 2 is output at the timing when the steady magnetic flux of 1 PU matches the previously obtained residual magnetic flux FIG. 4 (a) and 4 (b), with respect to the magnetic flux waveform, the residual magnetic flux of each phase shown in FIG. 2 (b-1) is indicated by a solid line and the AC voltage waveform of three phases is time-differentiated. The obtained steady magnetic flux of each phase is indicated by a broken line.
  • FIG. 4A a closing command obtained with the maximum amplitude of the steady magnetic flux as 1.0 PU is sent to the switch 2 even though the maximum value of the AC voltage of the reference phase (R phase) is 1.1 PU.
  • the switch 2 is turned on at a time coincident with the point 103 shown in FIG.
  • the steady magnetic flux of the reference phase (R phase) and the residual magnetic flux do not coincide with each other at the closing point, and the residual magnetic flux waveform (solid line) becomes a waveform shifted to the upper side of the steady magnetic flux (dotted line). Will occur.
  • an R-phase current as shown in the lower part of FIG. 4A flows, and the generation of the magnetizing inrush current cannot be suppressed.
  • FIG. 4B when the maximum magnetic flux level generated when the rated voltage is applied is 1.0 PU, the steady magnetic flux in the reference phase (R phase) is obtained, and the maximum value of the R phase AC voltage is 1.1 PU. If a closing command for turning on the switch 2 is output to the switch 2 at a timing when the generated steady magnetic flux having a maximum value of 1.1 PU and the residual magnetic flux obtained with the AC voltage maximum value of 1.1 PU match. Since the switch 2 is turned on at the time coincident with the point 102 shown in FIG. 3A, the steady magnetic flux and the residual magnetic flux in the reference phase (R phase) can be matched, and the magnetizing inrush current Can be suppressed.
  • inrush current suppression device 50 of the first embodiment performs control to match the steady magnetic flux and the residual magnetic flux in the reference phase (R phase) without being affected by the maximum value of the AC voltage. Therefore, even when the AC voltage changes when the circuit breaker is opened and when the voltage is applied, the magnetizing inrush current can be suppressed.
  • the residual magnetic flux in the reference phase of the three-phase transformer 30 is obtained with the level as 1 PU, and the maximum magnetic flux level obtained as 1 PU is based on the measurement result of the power supply voltage measuring unit 61 in response to the closing command for the three-phase circuit breaker.
  • the steady-state magnetic flux in the reference phase of the three-phase transformer 30 is obtained, and the switch corresponding to the reference phase of the three-phase circuit breaker 1 is turned on at the timing when the steady-state magnetic flux and the residual magnetic flux in the reference phase match in response to the closing command. Therefore, even if the magnitude of the AC voltage changes when the circuit breaker is opened and when the voltage is applied, the inrush current can be suppressed.
  • the voltage applied to the three-phase transformer 30 is measured in the first voltage measurement step, and the three-phase circuit breaker 1 is opened in the residual magnetic flux calculation step.
  • the residual magnetic flux in the reference phase of the transformer is obtained with the maximum magnetic flux level generated when the rated voltage is applied as 1 PU, and in the second voltage measurement step, three phases are obtained.
  • the voltage applied to the three-phase circuit breaker 1 by the AC power source is measured, and the measurement result of the second voltage measurement step is used in the steady magnetic flux calculation step, and the maximum magnetic flux level obtained as 1 PU in the residual magnetic flux calculation step is used as a reference
  • the steady-state magnetic flux in the reference phase of the three-phase transformer 30 is obtained as follows. In the breaker control step, the steady-state magnetic flux in the reference phase obtained by the steady-state magnetic flux computation unit 52 and the residual magnetic flux computation are calculated.
  • the control for turning on the switch corresponding to the reference phase of the three-phase circuit breaker 1 is performed at the timing when the residual magnetic flux of the reference phase determined by the step coincides, the circuit breaker is opened and the voltage is applied Even when the magnitude of the AC voltage at is changed, the excitation inrush current can be suppressed.
  • FIG. FIG. 5 is a diagram illustrating a configuration of the inrush current suppressing device according to the second embodiment.
  • the inrush current suppressing device according to the second embodiment is applied to a configuration in which the secondary output of the three-phase transformer 30 to which the three-phase AC power is supplied is supplied and cut off via the three-phase circuit breaker 1. It is.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof will be omitted, and only different parts will be described here.
  • the transformer voltage measurement unit 60 continuously measures the instantaneous voltage value at the output terminal of the three-phase secondary winding 32 of the three-phase transformer 30. This measurement value by the transformer voltage measurement unit 60 is given to the residual magnetic flux calculation unit 51 and the control unit 53.
  • the power supply voltage measuring unit 61 continuously measures the output side voltage of the three-phase circuit breaker 1 by the secondary side output of the three-phase transformer 30. This measurement value by the power supply voltage measurement unit 61 is given to the steady magnetic flux calculation unit 52 and the control unit 53.
  • the measurement result of the transformer measurement unit 60 that measures the voltage at the output terminal of the three-phase secondary winding 32 of the three-phase transformer 30 and Three-phase transformer based on the maximum magnetic flux level obtained as 1 PU based on the measurement result of the power supply voltage measuring unit 61 that measures the output side voltage of the three-phase circuit breaker 1 by the secondary side output of the three-phase transformer 30 Since the stationary magnetic flux in the 30 reference phases is obtained, the magnetizing inrush current can be obtained even when the AC voltage changes when the circuit breaker is opened and when the voltage is applied, as in the first embodiment. Can be suppressed.
  • FIG. FIG. 6 is a diagram illustrating a configuration of the inrush current suppressing device according to the third embodiment.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof will be omitted, and only different parts will be described here.
  • the transformer voltage measurement unit 60 continuously measures the instantaneous voltage value at the output terminal of the three-phase secondary winding 32 of the three-phase transformer 30. This measurement value by the transformer voltage measurement unit 60 is given to the residual magnetic flux calculation unit 51 and the control unit 53.
  • the power supply voltage measuring unit 61 is an instantaneous value of each voltage in the R phase, S phase, and T phase of the three-phase AC power supply, that is, the voltage applied to the three-phase circuit breaker 1 by the three-phase AC power supply. Are measured continuously. This measurement value by the power supply voltage measurement unit 61 is given to the steady magnetic flux calculation unit 52 and the control unit 53.
  • the measurement result of the transformer measurement unit 60 that measures the voltage at the output terminal of the three-phase secondary winding 32 of the three-phase transformer 30 and Based on the measurement result of the power supply voltage measuring unit 61 connected to the other end of the three-phase circuit breaker 1, the steady magnetic flux in the reference phase of the three-phase transformer is obtained based on the maximum magnetic flux level obtained as 1PU. Therefore, similarly to the first embodiment, it is possible to suppress the magnetizing inrush current even when the AC voltage changes when the circuit breaker is opened and when the voltage is applied.
  • the inrush current suppression device and the inrush current suppression method according to the present invention are useful as an invention that can suppress the excitation inrush current without being affected by the maximum value of the AC voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Protection Of Transformers (AREA)
  • Keying Circuit Devices (AREA)

Abstract

 3相遮断器1の開極時前後における変圧器電圧測定部60の測定結果に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして3相変圧器30の基準相における残留磁束を求める残留磁束演算部51と、3相遮断器1に対する閉極指令に応答し、電源電圧測定部61の測定結果に基づき、1PUとした求めた最大磁束レベルを基準として3相変圧器30の基準相における定常磁束を求める定常磁束演算部52と、基準相における定常磁束と残留磁束とが一致するタイミングで3相遮断器1の基準相に対応するスイッチを投入させる制御部53と、を備える。

Description

突入電流抑制装置および突入電流抑制方法
 本発明は、電力用開閉機器を介して電力系統に接続された変圧器における過渡的な励磁突入電流を抑制する突入電流抑制装置および突入電流抑制方法に関する。
 変圧器における過渡的な励磁突入電流を抑制するためには、変圧器に電流を投入するときの電力用開閉機器に対するタイミング制御が重要となる。例えば、下記特許文献1には、3相変圧器の各相の残留磁束を検出し、基準相の定常磁束と残留磁束とが一致するタイミングで基準相の交流電圧を投入した後、基準相の交流電圧が0になるタイミングで残りの2相の交流電圧を投入することにより、励磁突入電流を抑制する技術が開示されている。
特開2006-040566号公報(実施の形態1、図4、「0017」等)
 上記特許文献1に開示されるような従来の励磁突入電流抑制手法では、基準相の定常磁束と残留磁束とが一致するタイミングで基準相の交流電圧が投入されるように、3相遮断器のプレアーク特性を考慮して残留磁束に対応する目標閉極位相を求めると共に、定格電圧印加時における三相変圧器磁束の振幅を定格値で規格化して1PU(Per Unit)とし、電源側電圧は、電圧の最大振幅を1PUとし、定常磁束値は、電源側電圧より90度位相が遅れている定常磁束の最大振幅を1PUとして求めている。
 しかしながら、この手法では、遮断器開極時、および電圧印加時における交流電圧の大きさの影響が考慮されていないため、基準相の定常磁束と残留磁束とが一致するタイミングで交流電圧が投入されるように遮断器の閉極タイミングを制御したとしても、遮断器開極時、および電圧印加時における交流電圧の大きさが定格電圧と異なる場合には、プレアーク発生瞬時の投入が行われるタイミングが変化するので、励磁突入電流を抑制できない場合があるという課題があった。
 本発明は、上記に鑑みてなされたものであって、遮断器開極時、および電圧印加時における交流電圧の大きさが変化しても、励磁突入電流を抑制することが可能な突入電流抑制装置および突入電流抑制方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる突入電流抑制装置は、3相変圧器に対する3相交流電源の供給および遮断を3相遮断器を介して行う構成に適用され、前記3相遮断器の投入時に前記3相変圧器に発生する可能性のある励磁突入電流を抑制する突入電流抑制装置であって、前記3相遮断器の開極時前後における前記3相変圧器に印加される電圧に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして前記3相変圧器の基準相における残留磁束を求める残留磁束演算部と、前記3相遮断器に対する閉極指令に応答し、前記3相交流電源による前記3相遮断器への印加電圧に基づき、前記1PUとして求めた前記最大磁束レベルを基準として前記3相変圧器の基準相における定常磁束を求める定常磁束演算部と、前記閉極指令に応答し、前記定常磁束演算部によって求められた前記基準相の定常磁束と、前記残留磁束演算部によって求められた前記基準相の残留磁束とが一致するタイミングで前記3相遮断器の前記基準相に対応するスイッチを投入させる制御部と、を備えたことを特徴とする。
 本発明にかかる突入電流抑制装置によれば、遮断器開極時、および電圧印加時における交流電圧の大きさが変化しても、励磁突入電流を抑制することができるという効果を奏する。
図1は、実施の形態1にかかる突入電流抑制装置の構成を示す図である。 図2は、実施の形態1の突入電流抑制装置における残留磁束の導出手法を説明するための図である。 図3は、基準相(R相)のスイッチ投入による突入電流抑制手法を説明するためのタイムチャートである。 図4は、基準相(R相)における突入電流抑制効果を説明するための各相の電圧挙動、磁束挙動、および励磁突入電流を示す図である。 図5は、本実施の形態2にかかる突入電流抑制装置の構成を示す図である。 図6は、本実施の形態3にかかる突入電流抑制装置の構成を示す図である。
 以下に添付図面を参照し、本発明の実施の形態にかかる突入電流抑制装置および突入電流抑制方法について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかる突入電流抑制装置50の構成を示す図である。同図に示すように、実施の形態1にかかる突入電流抑制装置50は、残留磁束演算部51、定常磁束演算部52、制御部53ならびに、電圧測定機能を有する変圧器電圧測定部60および電源電圧測定部61を備え、これら変圧器電圧測定部60および電源電圧測定部61が電力系統ライン(R相,S相,T相)の電圧をモニタするように構成されている。なお、残留磁束演算部51、定常磁束演算部52および制御部53は、例えば制御プロセッサ、メモリ、入出力装置等を有するコンピュータなどにより構成可能である。また、電力系統ライン(R相,S相,T相)には、3相遮断器1および3相変圧器30が設けられており、3相変圧器30は、3相遮断器1を介し、図示を省略した3相交流電源からの交流電力が供給される。
 3相遮断器1は、保守点検あるいは、何らかの事故が発生した場合に電力供給を遮断させるものであり、各々が独立に制御可能である3つのスイッチ2~4を含んでいる。スイッチ2~4の各一方側の端子は、図示を省略した3相交流電源からR相、S相、およびT相の交流電圧が印加される。なお、通常動作時は、スイッチ2~4が閉極されて電力供給が行われるが、保守点検あるいは、何らかの事故が発生した場合の制御時においては、スイッチ2~4が開極されて電力供給が遮断される。
 3相変圧器30は、Y-Δ結線で接続された3相変圧器である。具体的には、星形結線され、中性点が接地された3相一次巻線31および、三角結線された3相二次巻線32を含んでいる。3相一次巻線31による3つの入力端子は、スイッチ2~4の各他方側の端子に接続され、3相二次巻線32による3つの出力端子は、図示を省略した負荷に接続される。なお、3相遮断器1の閉極時には3相変圧器30の各相に定常磁束が発生し、3相遮断器1の開極時には3相変圧器30の各相に残留磁束が発生する。
 つぎに、実施の形態1にかかる突入電流抑制装置50の各部機能について図1を参照して説明する。
 変圧器電圧測定部60は、スイッチ2~4の他方側の端子、すなわち3相変圧器30の3相一次巻線31の3つの入力端子における電圧瞬時値を連続的に測定する。変圧器電圧測定部60による、この測定値は、残留磁束演算部51および制御部53に付与される。
 残留磁束演算部51は、3相遮断器1が開極される前後における変圧器電圧測定部60の測定値を積分して、定格電圧印加時に発生する最大磁束レベルを1PU(Per Unit)として3相変圧器30の基準相における残留磁束を求め、求めた残留磁束を制御部53に通知する。
 電源電圧測定部61は、スイッチ2~4の一方側の端子、すなわち3相交流電源のR相、S相、およびT相における各電圧瞬時値を連続的に測定する。電源電圧測定部61による、この測定値は、定常磁束演算部52、および制御部53に付与される。
 定常磁束演算部52は、閉極指令信号25に応答して、電源電圧測定部61の測定値を積分して、定格電圧印加時に発生する最大磁束レベルを1PUとして基準相の定常磁束を求め、求めた定常磁束を制御部53に通知する。
 制御部53は、開極指令信号20が入力されると、3相のうちの基準相(実施の形態1ではR相とする)の交流電圧がマイナス側からプラス側に変化する零点で3つのスイッチ2~4を同時に開極させる。これにより、3相変圧器30のR相における残留磁束の直流成分を、例えば負の所定値である“-K”(Kは正の実数)の値に制御し、S相およびT相の残留磁束の直流成分を、基準相(R相)における残留磁束の概略-1/2(すなわちK/2)の値に制御することができる。
 また、制御部53は、閉極指令信号25が入力されると、残留磁束演算部51によって求められた残留磁束と、定常磁束演算部52によって求められた定常磁束とが一致するタイミングでR相(基準相)に対応するスイッチ2を投入させる一方で、S相およびT相については、R相に対応するスイッチ2を投入させた後、R相の交流電圧が0になるタイミングで残りの2つのスイッチ3,4を投入させる。
 また、制御部53は、3相遮断器1の閉極時における電源電圧測定部61の測定値に基づいて、各相における零点のタイミング、残留磁束、定常磁束、定常磁束と残留磁束とが一致するタイミングなどを求める。
 上記の説明において、スイッチ2~4が閉極するとは、スイッチ2~4の接触子が機械的に接触することをいう。なお、制御部53がスイッチ2~4に閉極の指令を出力してからスイッチ2~4が実際に閉極するまでには所定の閉極時間が必要となる。
 また、スイッチ2~4を投入させるとは、スイッチ2~4にプレアーク(スイッチ2~4が閉極する前に接触子間で電流が流れ始める現象)による電流を流すことをいう。なお、制御部53がスイッチ2~4に閉極を指令してから実際にスイッチ2~4が投入されるまでには所定の投入時間が必要となる。
 また、制御部53がスイッチ2~4の開極の指令を出力してからスイッチ2~4が実際に開極するまでには所定の開極時間が必要となる。制御部53は、上記の閉極時間、投入時間、開極時間を考慮して、上記のタイミングでスイッチ2~4を制御する。
 つぎに、実施の形態1の突入電流抑制装置50における残留磁束の導出手法について図1および図2を参照して説明する。なお、図2は、実施の形態1の突入電流抑制装置50における残留磁束の導出手法を説明するための図であり、遮断器開極時における各相の電圧挙動および磁束挙動を従来手法と比較して示した図である。
 図2(a-1),(b-1),(c-1)は、3相遮断器1の開極時における交流電圧レベルを0.9PU、1.0PUおよび、1.1PUと変化させた場合の波形を示している。より具体的に説明すると、各々上部側の波形は、変圧器電圧測定部60がスイッチ2~4の他方側の端子(すなわち3相変圧器30の3相一次巻線31の3つの入力端子)における電圧瞬時値を連続的に測定した波形であり、各々下部側の波形は、実施の形態1による手法であり、3相遮断器1が開極される前後における変圧器電圧測定部60の測定値を残留磁束演算部51が積分して、定格電圧印加時に発生する最大磁束レベルを1.0PUとして求めた(正規化した)3相変圧器30の残留磁束波形である。
 一方、図2(a-2),(b-2),(c-2)は、図2(a-1),(b-1),(c-1)と同様に、3相遮断器1の開極時の交流電圧レベルを0.9PU、1.0PU、1.1PUと変化させた場合の波形を示すものである。ここで、各々上部側の波形は、変圧器電圧測定部60がスイッチ2~4の他方端子(すなわち、3相変圧器30の3相一次巻線31の3つの入力端子)における電圧瞬時値を連続的に測定した波形であり、図2(a-1),(b-1),(c-1)と同様であるが、各々下部側の波形は、3相遮断器1が開極される前後における変圧器電圧測定部60の測定値を残留磁束演算部51が積分して、三相変圧器磁束の振幅の最大値を1.0PUとして残留磁束を求めた(正規化した)ものである。
 図2(a-1),(b-1),(c-1)と、図2(a-2),(b-2),(c-2)とを比較すると、3相遮断器1の開極時の交流電圧レベルが1.0PUの場合は、同じ残留磁束が得られるが(図2(b-1),(b-2)を参照)、3相遮断器1の開極時の交流電圧レベルを0.9PUまたは1.1PUと変化させた場合には、(a-1)と(a-2)の各下部波形同士、および(c-1)と(c-2)の各下部波形同士をそれぞれ比較すれば明らかなように、各々の残留磁束に最大0.05PUの誤差が生じている。これらの残留磁束差は、遮断器投入のタイミングを変化させる原因になり、遮断器投入時に発生する励磁投入電流の大きさに影響を及ぼすことになる。すなわち、従来手法では、基準相の定常磁束と残留磁束とが一致するタイミングで交流電圧を投入するように遮断器の閉極タイミングを制御したとしても、投入時の励磁突入電流を抑制できない場合があるという課題を生じさせることになる。
 図3は、基準相(R相)のスイッチ投入による突入電流抑制手法を説明するためのタイムチャートである。詳細には、同図(a)の破線で示す曲線は、R相に印加される交流電圧の最大値が1.0PUの場合の交流電圧波形であり、実線で示す曲線は、R相に印加される交流電圧の最大値が1.1PUの場合の交流電圧波形を示している。また、図3(b)の破線で示す曲線は、R相に印加される交流電圧の最大値が1.0PUの場合に発生する最大値が1.0PUの定常磁束波形であり、図3(b)の実線で示す曲線は、R相に印加される交流電圧の最大値が1.1PUの場合に発生する最大値が1.1PUの定常磁束波形である。なお、図3(b)には、残留磁束波形を併せて図示しているが、説明の容易性から、残留磁束の値を一定値として示している。
 また、図3(a)には、交流電圧の最大値が1.0PUの場合に点101を通るRDDS(Rate of Decay of Dielectric Strength:絶縁耐力減少率)曲線107と、交流電圧の最大値が1.1PUの場合に点102を通るRDDS曲線108とが書き込まれている。なお、RDDS曲線107とRDDS曲線108とは、傾きが同一である。ここで、RDDS曲線107,108が時間軸と交差する時刻t1,t2は、それぞれスイッチ2が機械的に閉極する時刻を示している。換言すると、時刻t1,t2よりもスイッチ2の閉極時間だけ前の時刻に、制御部53がスイッチ2を閉極させる指令を出せば、それぞれ点101および点102でプレアークが発生して、定常磁束と残留磁束とが一致する点104および点105でスイッチ2が投入されることになる。
 ところが、交流電圧の最大値が1.1PUであるにもかかわらず、従来手法のように、電源側の交流電圧の最大振幅を1.0PUとし、電源側電圧より90度位相が遅れている定常磁束の最大振幅を1.0PUとして求めた閉極指令をスイッチ2に対して出力してしまうと、点103においてスイッチ2が投入されてしまう。スイッチ2の投入点が点103である場合、R相の定常磁束は点106の位置にあるため、定常磁束と残留磁束とは一致せず、これらの磁束差に応ずる励磁突入電流が流れてしまう。
 一方、実施の形態1のように、定格電圧印加時に発生する最大磁束レベルを1.0PUとすべく、交流電圧の最大値に応じて、電源側の交流電圧の最大振幅および定常磁束の最大振幅を正規化して求めた閉極指令をスイッチ2に対して出力すれば、最適な投入点での制御が可能となる。
 例えば、交流電圧の最大値が1.1PUの場合、基準相(R相)の交流電圧最大値が1.1PUの場合に発生する、交流電圧最大値が1.1PUの定常磁束と、先に求めた残留磁束とが一致するように時刻t2にてスイッチ2が閉極される閉極指令がスイッチ2に対して出力され、図3(a)の点102にてスイッチ2が投入される。このとき、図3(b)の磁束曲線上では、定常磁束と残留磁束とが一致している点105が投入点となる。
 なお、交流電圧の最大値が1.0PUの場合には、基準相(R相)の交流電圧最大値が1.0PUの場合に発生する、交流電圧最大値が1.0PUの定常磁束と、先に求めた残留磁束とが一致するように時刻t1にてスイッチ2が閉極される閉極指令がスイッチ2に対して出力されるので、定常磁束と残留磁束とが一致する点104が投入点となることは無論である。
 図4は、基準相(R相)における突入電流抑制効果を説明するための各相の電圧挙動、磁束挙動、および励磁突入電流を示す図である。より詳細に説明すると、図4(a)は、基準相(R相)における交流電圧の最大値が1.1PUであるにもかかわらず、定常磁束の最大振幅を1.0PUとし、定常磁束と残留磁束とが一致するタイミングでスイッチ2を投入させる閉極指令を出力した場合の交流電圧波形、磁束波形および、基準相(R相)の電流波形を示す図であり、図4(b)は、定格電圧印加時に発生する最大磁束レベルを1.0PUとして基準相(R相)の定常磁束を求め、基準相の交流電圧最大値が1.1PUの場合に発生する、交流電圧最大値が1.1PUの定常磁束と、先に求めた残留磁束とが一致するタイミングでスイッチ2を投入させる閉極指令を出力した場合の交流電圧波形、磁束波形および、基準相(R相)の電流波形を示す図である。なお、図4(a),(b)共に、磁束波形については、図2(b-1)で示した各相の残留磁束を実線で示すとともに、3相の交流電圧波形を時間微分して得られる各相の定常磁束を破線で示している。
 図4(a)において、基準相(R相)の交流電圧の最大値が1.1PUであるにもかかわらず、定常磁束の最大振幅を1.0PUとして求めた閉極指令をスイッチ2に対して出力してしまうと、図3(a)で示した点103と一致する時刻でスイッチ2が投入されることになる。そうすると、投入点での基準相(R相)の定常磁束と残留磁束が一致せず、残留磁束の波形(実線)は、定常磁束(点線)の上側にシフトした波形になり、磁束による過渡現象が発生する。その結果、図4(a)の下段部に示すようなR相電流が流れ、励磁突入電流の発生を抑制することができない。
 一方、図4(b)において、定格電圧印加時に発生する最大磁束レベルを1.0PUとして基準相(R相)における定常磁束を求め、R相の交流電圧の最大値が1.1PUの場合に発生する、最大値が1.1PUの定常磁束と、交流電圧最大値が1.1PUとして求めた残留磁束とが一致するタイミングでスイッチ2を投入させる閉極指令をスイッチ2に対して出力すれば、図3(a)で示した点102と一致する時刻でスイッチ2が投入されることになるので、基準相(R相)における定常磁束と残留磁束とを一致させることができ、励磁突入電流の発生を抑制することができる。
 このように、実施の形態1の突入電流抑制装置50では、交流電圧の最大値の大きさの影響を受けることなく、基準相(R相)における定常磁束と残留磁束とを一致させる制御を行うことができるので、遮断器開極時、および電圧印加時における交流電圧の大きさが変化した場合でも、励磁突入電流の抑制が可能となる。
 以上説明したように、実施の形態1の突入電流抑制装置50によれば、3相遮断器の開極時前後における変圧器電圧測定部60の測定結果に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして3相変圧器30の基準相における残留磁束を求め、3相遮断器に対する閉極指令に応答した電源電圧測定部61の測定結果に基づき、1PUとした求めた最大磁束レベルを基準として3相変圧器30の基準相における定常磁束を求め、閉極指令に応答し、基準相における定常磁束と残留磁束とが一致するタイミングで3相遮断器1の基準相に対応するスイッチを投入させる制御を行うこととしたので、遮断器開極時、および電圧印加時における交流電圧の大きさが変化した場合であっても、励磁突入電流の抑制が可能となる。
 また、実施の形態1の突入電流抑制方法によれば、第1の電圧測定ステップでは、3相変圧器30に印加される電圧を測定し、残留磁束演算ステップでは、3相遮断器1の開極時前後における第1の電圧測定ステップの測定結果を用いて、定格電圧印加時に発生する最大磁束レベルを1PUとして変圧器の基準相における残留磁束を求め、第2の電圧測定ステップでは、3相交流電源による3相遮断器1への印加電圧を測定し、定常磁束演算ステップでは、第2の電圧測定ステップの測定結果を用いると共に、残留磁束演算ステップにて1PUとして求めた最大磁束レベルを基準として3相変圧器30の基準相における定常磁束を求め、遮断器制御ステップでは、定常磁束演算部52によって求められた基準相の定常磁束と、残留磁束演算ステップによって求められた基準相の残留磁束とが一致するタイミングで3相遮断器1の前記基準相に対応するスイッチを投入させる制御を行うこととしたので、遮断器開極時、および電圧印加時における交流電圧の大きさが変化した場合であっても、励磁突入電流の抑制が可能となる。
実施の形態2.
 図5は、本実施の形態2にかかる突入電流抑制装置の構成を示す図である。実施の形態2にかかる突入電流抑制装置は、3相交流電源が供給される3相変圧器30の二次側出力の供給および遮断を3相遮断器1を介して行う構成に適用されるものである。以下、第1の実施の形態と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 変圧器電圧測定部60は、3相変圧器30の3相二次巻線32の出力端子における電圧瞬時値を連続的に測定する。変圧器電圧測定部60による、この測定値は、残留磁束演算部51および制御部53に付与される。
 電源電圧測定部61は、3相変圧器30の二次側出力による3相遮断器1の出力側電圧を連続的に測定する。電源電圧測定部61による、この測定値は、定常磁束演算部52、および制御部53に付与される。
 以上説明したように、実施の形態2の突入電流抑制装置50によれば、3相変圧器30の3相二次巻線32の出力端子における電圧を測定する変圧器測定部60の測定結果と、3相変圧器30の二次側出力による3相遮断器1の出力側電圧を測定する電源電圧測定部61の測定結果とに基づき、1PUとして求めた最大磁束レベルを基準として3相変圧器30の基準相における定常磁束を求めるようにしたので、実施の形態1と同様に、遮断器開極時、および電圧印加時における交流電圧の大きさが変化した場合であっても、励磁突入電流の抑制が可能となる。
実施の形態3.
 図6は、本実施の形態3にかかる突入電流抑制装置の構成を示す図である。以下、第1の実施の形態と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 変圧器電圧測定部60は、3相変圧器30の3相二次巻線32の出力端子における電圧瞬時値を連続的に測定する。変圧器電圧測定部60による、この測定値は、残留磁束演算部51および制御部53に付与される。電源電圧測定部61は、実施の形態1と同様に、3相交流電源のR相、S相、およびT相における各電圧瞬時値、すなわち3相交流電源による3相遮断器1への印加電圧を、連続的に測定する。電源電圧測定部61による、この測定値は、定常磁束演算部52、および制御部53に付与される。
 以上説明したように、実施の形態3の突入電流抑制装置50によれば、3相変圧器30の3相二次巻線32の出力端子における電圧を測定する変圧器測定部60の測定結果と、3相遮断器1の他端に接続された電源電圧測定部61の測定結果とに基づき、1PUとして求めた最大磁束レベルを基準として3相変圧器の基準相における定常磁束を求めるようにしたので、実施の形態1と同様に、遮断器開極時、および電圧印加時における交流電圧の大きさが変化した場合であっても、励磁突入電流の抑制が可能となる。
 以上のように、本発明にかかる突入電流抑制装置および突入電流抑制方法は、交流電圧の最大値の大きさの影響を受けることなく、励磁突入電流の抑制を可能とする発明として有用である。
 1 3相遮断器
 2,3,4 スイッチ
 20 開極指令信号
 25 閉極指令信号
 30 3相変圧器
 31 3相一次巻線
 32 3相二次巻線
 50 突入電流抑制装置
 51 残留磁束演算部
 52 定常磁束演算部
 53 制御部
 60 変圧器電圧測定部
 61 電源電圧測定部

Claims (6)

  1.  3相変圧器に対する3相交流電源の供給および遮断を3相遮断器を介して行う構成に適用され、前記3相遮断器の投入時に前記3相変圧器に発生する可能性のある励磁突入電流を抑制する突入電流抑制装置であって、
     前記3相遮断器の開極時前後における前記3相変圧器に印加される電圧に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして前記3相変圧器の基準相における残留磁束を求める残留磁束演算部と、
     前記3相遮断器に対する閉極指令に応答し、前記3相交流電源による前記3相遮断器への印加電圧に基づき、前記1PUとして求めた前記最大磁束レベルを基準として前記3相変圧器の基準相における定常磁束を求める定常磁束演算部と、
     前記閉極指令に応答し、前記定常磁束演算部によって求められた前記基準相の定常磁束と、前記残留磁束演算部によって求められた前記基準相の残留磁束とが一致するタイミングで前記3相遮断器の前記基準相に対応するスイッチを投入させる制御部と、
     を備えたことを特徴とする突入電流抑制装置。
  2.  3相交流電源が供給される3相変圧器の二次側出力の供給および遮断を3相遮断器を介して行う構成に適用され、前記3相遮断器の投入時に前記3相変圧器に発生する可能性のある励磁突入電流を抑制する突入電流抑制装置であって、
     前記3相遮断器の開極時前後における前記3相変圧器の二次側に生ずる電圧に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして前記3相変圧器の基準相における残留磁束を求める残留磁束演算部と、
     前記3相遮断器に対する閉極指令に応答し、前記3相変圧器の二次側出力による前記3相遮断器の出力側電圧に基づき、前記1PUとして求めた前記最大磁束レベルを基準として前記3相変圧器の基準相における定常磁束を求める定常磁束演算部と、
     前記閉極指令に応答し、前記定常磁束演算部によって求められた前記基準相の定常磁束と、前記残留磁束演算部によって求められた前記基準相の残留磁束とが一致するタイミングで前記3相遮断器の前記基準相に対応するスイッチを投入させる制御部と、
     を備えたことを特徴とする突入電流抑制装置。
  3.  3相変圧器に対する3相交流電源の供給および遮断を3相遮断器を介して行う構成に適用され、前記3相遮断器の投入時に前記3相変圧器に発生する可能性のある励磁突入電流を抑制する突入電流抑制装置であって、
     前記3相遮断器の開極時前後における前記3相変圧器の二次側に生ずる電圧に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして前記3相変圧器の基準相における残留磁束を求める残留磁束演算部と、
     前記3相遮断器に対する閉極指令に応答し、前記3相交流電源による前記3相遮断器への印加電圧に基づき、前記1PUとして求めた前記最大磁束レベルを基準として前記3相変圧器の基準相における定常磁束を求める定常磁束演算部と、
     前記閉極指令に応答し、前記定常磁束演算部によって求められた前記基準相の定常磁束と、前記残留磁束演算部によって求められた前記基準相の残留磁束とが一致するタイミングで前記3相遮断器の前記基準相に対応するスイッチを投入させる制御部と、
     を備えたことを特徴とする突入電流抑制装置。
  4.  3相変圧器に対する3相交流電源の供給および遮断を3相遮断器を介して行う構成に適用され、前記3相遮断器の投入時に前記3相変圧器に発生する可能性のある励磁突入電流を抑制する突入電流抑制方法であって、
     前記3相変圧器に印加される電圧を測定する第1の電圧測定ステップと、
     前記3相遮断器の開極時前後における前記第1の電圧測定ステップの測定結果に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして前記3相変圧器の1次側の基準相における残留磁束を求める残留磁束演算ステップと、
     前記3相交流電源による前記3相遮断器への印加電圧を測定する第2の電圧測定ステップと、
     前記3相遮断器に対する閉極指令に応答し、前記第2の電圧測定ステップの測定結果に基づき、前記1PUとして求めた前記最大磁束レベルを基準として前記3相変圧器の基準相における定常磁束を求める定常磁束演算ステップと、
     前記閉極指令に応答し、前記定常磁束演算ステップによって求められた前記基準相の定常磁束と、前記残留磁束演算ステップによって求められた前記基準相の残留磁束とが一致するタイミングで前記3相遮断器の前記基準相に対応するスイッチを投入させる遮断器制御ステップと、
     を含むことを特徴とする突入電流抑制方法。
  5.  3相交流電源が供給される3相変圧器の二次側出力の供給および遮断を3相遮断器を介して行う構成に適用され、前記3相遮断器の投入時に前記3相変圧器に発生する可能性のある励磁突入電流を抑制する突入電流抑制方法であって、
     前記3相遮断器の開極時前後における前記3相変圧器の二次側に生ずる電圧を測定する第1の電圧測定ステップと、
     前記3相遮断器の開極時前後における前記第1の電圧測定ステップの測定結果に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして前記3相変圧器の2次側の基準相における残留磁束を求める残留磁束演算ステップと、
     前記3相変圧器の二次側出力による前記3相遮断器の出力側電圧を測定する第2の電圧測定ステップと、
     前記3相遮断器に対する閉極指令に応答し、前記第2の電圧測定ステップの測定結果に基づき、前記1PUとして求めた前記最大磁束レベルを基準として前記3相変圧器の基準相における定常磁束を求める定常磁束演算ステップと、
     前記閉極指令に応答し、前記定常磁束演算ステップによって求められた前記基準相の定常磁束と、前記残留磁束演算ステップによって求められた前記基準相の残留磁束とが一致するタイミングで前記3相遮断器の前記基準相に対応するスイッチを投入させる遮断器制御ステップと、
     を含むことを特徴とする突入電流抑制方法。
  6.  3相変圧器に対する3相交流電源の供給および遮断を3相遮断器を介して行う構成に適用され、前記3相遮断器の投入時に前記3相変圧器に発生する可能性のある励磁突入電流を抑制する突入電流抑制方法であって、
     前記3相遮断器の開極時前後における前記3相変圧器の二次側に生ずる電圧を測定する第1の電圧測定ステップと、
     前記3相遮断器の開極時前後における前記第1の電圧測定ステップの測定結果に基づき、定格電圧印加時に発生する最大磁束レベルを1PUとして前記3相変圧器の2次側の基準相における残留磁束を求める残留磁束演算ステップと、
     前記3相交流電源による前記3相遮断器への印加電圧を測定する第2の電圧測定ステップと、
     前記3相遮断器に対する閉極指令に応答し、前記第2の電圧測定ステップの測定結果に基づき、前記1PUとして求めた前記最大磁束レベルを基準として前記3相変圧器の基準相における定常磁束を求める定常磁束演算ステップと、
     前記閉極指令に応答し、前記定常磁束演算ステップによって求められた前記基準相の定常磁束と、前記残留磁束演算ステップによって求められた前記基準相の残留磁束とが一致するタイミングで前記3相遮断器の前記基準相に対応するスイッチを投入させる遮断器制御ステップと、
     を含むことを特徴とする突入電流抑制方法。
PCT/JP2010/050282 2010-01-13 2010-01-13 突入電流抑制装置および突入電流抑制方法 WO2011086671A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/509,806 US9082562B2 (en) 2010-01-13 2010-01-13 Inrush-current suppressing device and inrush-current suppressing method
PCT/JP2010/050282 WO2011086671A1 (ja) 2010-01-13 2010-01-13 突入電流抑制装置および突入電流抑制方法
JP2010513516A JP4549436B1 (ja) 2010-01-13 2010-01-13 突入電流抑制装置および突入電流抑制方法
EP10843030.7A EP2525380A4 (en) 2010-01-13 2010-01-13 CURRENT CURRENT MITIGATION DEVICE, AND CURRENT CURRENT MITIGATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050282 WO2011086671A1 (ja) 2010-01-13 2010-01-13 突入電流抑制装置および突入電流抑制方法

Publications (1)

Publication Number Publication Date
WO2011086671A1 true WO2011086671A1 (ja) 2011-07-21

Family

ID=42978711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050282 WO2011086671A1 (ja) 2010-01-13 2010-01-13 突入電流抑制装置および突入電流抑制方法

Country Status (4)

Country Link
US (1) US9082562B2 (ja)
EP (1) EP2525380A4 (ja)
JP (1) JP4549436B1 (ja)
WO (1) WO2011086671A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038919A1 (ja) * 2011-09-14 2013-03-21 株式会社 東芝 励磁突入電流抑制装置
CN103238197A (zh) * 2011-12-07 2013-08-07 株式会社兴电舍 励磁浪涌电流抑制装置
JP2022515632A (ja) * 2018-12-27 2022-02-21 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 制御されたスイッチングアプリケーションのための、スイッチング装置の動作をモニタリングするための方法および装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467164B2 (en) * 2010-01-27 2013-06-18 Cooper Technologies Company Self optimizing electrical switching device
JP4651751B1 (ja) * 2010-04-08 2011-03-16 三菱電機株式会社 突入電流抑制装置および突入電流抑制方法
CN102403694A (zh) * 2011-09-21 2012-04-04 山东大学 带励磁涌流抑制及开关参数检测的变压器保护方法及装置
JP5858871B2 (ja) * 2012-06-11 2016-02-10 株式会社東芝 励磁突入電流抑制装置
JP6045856B2 (ja) * 2012-08-30 2016-12-14 株式会社東芝 過電圧抑制方法およびその装置
WO2015085407A1 (en) * 2013-12-13 2015-06-18 Hydro-Quebec Controlled switching system and method for tap changer power transformers
EP3358588A1 (en) 2017-02-02 2018-08-08 ABB Schweiz AG Three-phase circuit breaker with phase specific switching
US11776778B1 (en) * 2022-05-09 2023-10-03 Rockwell Automation Technologies, Inc. Industrial circuit breaker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204368A (ja) * 2004-01-13 2005-07-28 Tm T & D Kk 位相制御開閉装置
JP2006040566A (ja) 2004-07-22 2006-02-09 Mitsubishi Electric Corp 位相制御開閉装置
WO2007088588A1 (ja) * 2006-01-31 2007-08-09 Mitsubishi Denki Kabushiki Kaisha 残留磁束測定装置
JP2008135246A (ja) * 2006-11-28 2008-06-12 Mitsubishi Electric Corp 開閉器制御装置
JP2008140580A (ja) * 2006-11-30 2008-06-19 Toshiba Corp 3相変圧器の励磁突入電流抑制装置
WO2008136071A1 (ja) * 2007-04-20 2008-11-13 Mitsubishi Electric Corporation 位相制御開閉装置および位相制御開閉装置における開閉極制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804606B2 (ja) * 2002-12-25 2006-08-02 三菱電機株式会社 変圧器励磁突入電流抑制装置
JP5044188B2 (ja) * 2006-10-16 2012-10-10 株式会社東芝 静止誘導電気機器の磁束測定装置、磁束測定方法および遮断器の同期開閉制御装置
JP4835870B2 (ja) * 2007-10-16 2011-12-14 三菱電機株式会社 突入電流抑制装置
JP5055602B2 (ja) * 2007-11-27 2012-10-24 三菱電機株式会社 変圧器の運転制御装置および方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204368A (ja) * 2004-01-13 2005-07-28 Tm T & D Kk 位相制御開閉装置
JP2006040566A (ja) 2004-07-22 2006-02-09 Mitsubishi Electric Corp 位相制御開閉装置
WO2007088588A1 (ja) * 2006-01-31 2007-08-09 Mitsubishi Denki Kabushiki Kaisha 残留磁束測定装置
JP2008135246A (ja) * 2006-11-28 2008-06-12 Mitsubishi Electric Corp 開閉器制御装置
JP2008140580A (ja) * 2006-11-30 2008-06-19 Toshiba Corp 3相変圧器の励磁突入電流抑制装置
WO2008136071A1 (ja) * 2007-04-20 2008-11-13 Mitsubishi Electric Corporation 位相制御開閉装置および位相制御開閉装置における開閉極制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2525380A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038919A1 (ja) * 2011-09-14 2013-03-21 株式会社 東芝 励磁突入電流抑制装置
JP2013062196A (ja) * 2011-09-14 2013-04-04 Toshiba Corp 励磁突入電流抑制装置
CN103620720A (zh) * 2011-09-14 2014-03-05 株式会社东芝 励磁冲击电流抑制装置
US9385525B2 (en) 2011-09-14 2016-07-05 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression device
CN103238197A (zh) * 2011-12-07 2013-08-07 株式会社兴电舍 励磁浪涌电流抑制装置
EP2629314A4 (en) * 2011-12-07 2015-05-06 Kodensya Co Ltd DEVICE FOR SUPPRESSING THE MAGNETIZATION OF AN INCOMING CURRENT
CN103238197B (zh) * 2011-12-07 2016-03-02 株式会社兴电舍 励磁浪涌电流抑制装置
JP2022515632A (ja) * 2018-12-27 2022-02-21 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 制御されたスイッチングアプリケーションのための、スイッチング装置の動作をモニタリングするための方法および装置
JP7222100B2 (ja) 2018-12-27 2023-02-14 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 制御されたスイッチングアプリケーションのための、スイッチング装置の動作をモニタリングするための方法および装置

Also Published As

Publication number Publication date
US9082562B2 (en) 2015-07-14
US20120236443A1 (en) 2012-09-20
JP4549436B1 (ja) 2010-09-22
EP2525380A1 (en) 2012-11-21
JPWO2011086671A1 (ja) 2013-05-16
EP2525380A4 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP4549436B1 (ja) 突入電流抑制装置および突入電流抑制方法
US8310106B2 (en) Magnetizing inrush current suppression device and method for transformer
JP4835870B2 (ja) 突入電流抑制装置
US20100039737A1 (en) Magnetizing inrush current suppression device for transformer and control method of same
WO2012023524A1 (ja) 励磁突入電流抑制装置
US9065268B2 (en) Inrush-current suppressing device and inrush-current suppressing method
US9170597B2 (en) Inrush current suppressing device
US9385525B2 (en) Magnetizing inrush current suppression device
WO2012124474A1 (ja) 突入電流抑制装置
AU2013291046B2 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
JP6054163B2 (ja) 励磁突入電流抑制システム
US9704664B2 (en) Magnetizing inrush current suppression device
JP2012043711A (ja) 励磁突入電流抑制装置
JP5547013B2 (ja) 突入電流抑制装置
US9490627B2 (en) Magnetizing inrush current suppressing device
JP5976444B2 (ja) 励磁突入電流抑制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010513516

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843030

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13509806

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010843030

Country of ref document: EP