WO2011085619A1 - 大模场有源光纤及其制造方法 - Google Patents
大模场有源光纤及其制造方法 Download PDFInfo
- Publication number
- WO2011085619A1 WO2011085619A1 PCT/CN2010/079051 CN2010079051W WO2011085619A1 WO 2011085619 A1 WO2011085619 A1 WO 2011085619A1 CN 2010079051 W CN2010079051 W CN 2010079051W WO 2011085619 A1 WO2011085619 A1 WO 2011085619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quartz glass
- core
- mode field
- refractive index
- large mode
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
- G02B6/0365—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/01228—Removal of preform material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
- C03B37/01815—Reactant deposition burners or deposition heating means
- C03B37/01823—Plasma deposition burners or heating means
- C03B37/0183—Plasma deposition burners or heating means for plasma within a tube substrate
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/027—Fibres composed of different sorts of glass, e.g. glass optical fibres
- C03B37/02754—Solid fibres drawn from hollow preforms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0281—Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/31—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/34—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/12—Non-circular or non-elliptical cross-section, e.g. planar core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- the present invention relates to an optical fiber and a method of fabricating the same, and, in particular, to a large mode field active optical fiber and a method of fabricating the same.
- Deposition a process in which a raw material of a fiber is chemically reacted under certain circumstances and a doped quartz glass is formed; Melt: the deposited hollow glass tube is gradually formed under a certain heat source.
- Relative refractive index difference ( ⁇ 2 , where ni is the refractive index of the ith layer of fiber material, n is the refractive index of pure quartz glass.
- Refractive index profile parameter n(r) n 1 [l - 2A(r/arr , where n ( r ) is The radius is the refractive index at r, a is the radius of the fiber (or mandrel), and ⁇ is the maximum refractive index in the core of the fiber (or mandrel), "that is, the refractive index profile parameter;
- Effective area .
- E is the electric field associated with propagation and r is the radius of the fiber;
- PCVD Plasma chemical vapor deposition.
- a fiber laser is a laser that uses an optical fiber as a laser medium. By doping different kinds of rare earth ions in the fiber matrix material, the laser output of the corresponding band is obtained. Its application field has rapidly expanded from other mature optical fiber communication networks to other broader laser applications, such as processing and processing of metal and non-metal materials, laser engraving
- Conventional single-mode fiber lasers require that the pump light injected into the core must also be single-mode, which limits the efficiency of the pumping of the pump light, resulting in lower output power and efficiency of the fiber laser.
- Double-clad fiber provides an effective technical way to improve the output power and conversion efficiency of fiber lasers, and changes the history that fiber lasers can only be used as a small power photonic device. Considering factors such as quantum conversion efficiency, laser damage threshold and substrate loss, rare earth doped quartz double-clad fiber is the best choice for high power fiber lasers or amplifiers.
- multimode pumping technology has evolved from the initial end pump technology to the current side pump technology, from a single pump.
- the technology has evolved from multi-pump combination technology, from non-coherent development to laser coherent technology. Therefore, the power of fiber lasers has also grown from the initial milliwatt level to kilowatt level or even 10,000 watts.
- Various new high-power fiber lasers such as erbium-doped, antimony-doped, antimony-doped, antimony-doped, antimony-doped, antimony-doped, antimony-doped, antimony-doped, or antimony-doped, have been widely used.
- the output power of single double-clad fiber lasers Gradually, at present, the continuous laser output power of a single erbium-doped high-power fiber laser has reached 9.6 kW, while the domestic single continuous laser output laser power is only 1. 64 kW; the foreign single erbium-doped high-power fiber laser continuous output laser The power reaches 1000W, while the domestic is only 100W.
- These new fiber lasers have beam quality close to the diffraction limit, long life (average trouble-free working time of more than 100,000 hours), high electro-optical conversion efficiency, compact size, low operating cost, and easy maintenance and use.
- High-power fiber lasers mostly use conventional large-mode active fibers, but there are some technical problems that are difficult to solve, such as: Expanding the mode field diameter is one of the main ways to increase the power of the fiber laser, but increasing the mode field diameter. It will bring some negative effects such as decreased beam quality and increased bending loss.
- Conventional large mode field active fiber increases the mode field diameter on the one hand to increase the power carrying capacity of the fiber.
- it has to Reducing the numerical aperture of the fiber core not only makes the process more difficult, but it also makes it possible to increase the mode field much.
- the bending loss is sharply increased, resulting in optical power leakage or even fiber damage, which does not work properly.
- the current large-mode active fiber the outer cladding is made of low-refractive-index organic resin material, and its temperature resistance is low.
- the surface temperature of the fiber exceeds 10 CTC. Damage or carbonization of the outer cladding material causes failure of the active fiber.
- Chinese invention patent CN1667439 (application number 200410011158. 5, publication date is 2005-09-14) discloses a large mode field fiber, which adopts an asymmetric multi-clad ring core fiber structure, and the fiber ring core is composed of The arc is composed and defines the radius of the arc and the concave arc. The structure is complicated and the process is difficult. At the same time, the large mode field fiber expands the mode field, and the bending loss is large, so the beam quality is poor.
- U.S. Patent No. 2006/0103919 A1 describes a high-order large mode field active fiber that uses a channel structure to filter high-order modes in a diffused large mode field through a leak path, which is expanded on the one hand.
- the mode field improves the output beam quality, but these are at the expense of optical power, the light utilization efficiency is low, and the fiber is easily damaged; in addition, the fiber core described in this patent has a deep refractive index due to its existence.
- the depression is a key defect that causes the laser hollow ring to deteriorate the beam quality of the output laser.
- the technical problem to be solved by the present invention is to solve the problem of poor quality of the large mode field active fiber beam.
- the technical solution adopted by the present invention is to provide a large mode field active optical fiber, which is composed of a core and a quartz glass inner cladding which is sequentially coated on the outer surface of the core, an outer cladding of quartz glass, and a coating.
- Layer composition the core is doped with rare earth ions and tetrachloride Silicon is deposited and melted in a quartz glass tube, and its refractive index is a graded refractive index and the core refractive index profile parameter has a variation range of 1 "3.
- the outer shape of the quartz glass inner cladding is positively polygonal.
- the outer shape of the quartz glass inner cladding is a regular hexagonal prism or a regular octagonal prism.
- the outer cladding of the quartz glass is composed of pure quartz glass doped with fluorine, and the relative refractive index difference formed by fluorine doping is ⁇ % - 0.1% ⁇ - 1. 5 %.
- the rare earth ions in the core are cerium ions or cerium ions, and the molar percentage thereof is
- the rare earth ions in the core are a mixture of cerium ions and cerium ions, and the molar percentage of the mixture is from 0.02% to 0.36%, wherein the molar ratio of cerium ions to cerium ions is 1:1-8.
- the invention also provides a method for manufacturing a large mode field active optical fiber, comprising the following steps:
- the hollow quartz glass tube obtained in step ⁇ 20 is melted into a solid preform at a temperature of 2200 ° C; A40. Processing the solid preform described above into a regular polygonal prism shape;
- step A50 inserting a positive polygonal prism into the inner wall obtained in step A10 to form a large mode field active optical fiber preform in a quartz glass sleeve with a fluorine-doped layer;
- the large mode field active optical fiber preform is drawn on the drawing tower to form a large mode field active fiber.
- the rare earth ion doped in the step A20 is a cerium ion or a cerium ion, and the molar percentage thereof is 0.02% ⁇ 0. 36%.
- the 5% of the rare earth ions doped in the step A20 are a mixture of cerium ions and cerium ions, and the molar percentage of the mixture is 0.5 to 6%, wherein the molar ratio of cerium ions to cerium ions is 10% to 80%.
- the pressure in the quartz glass base pipe is 900 pa ⁇ 1600 Pa, and the microwave power of the heated quartz glass base pipe is 3.0 kW ⁇ 15.
- the deposition temperature is 1100 ⁇ 1300 ° C
- step A30 when the diameter of the central hole of the quartz tube is reduced to 1. 2 ⁇ 1. 8mm, a C 2 F 6 gas having a concentration of 100% is introduced, and the etching time is 10 to 20 minutes. After the corrosion is completed, the melting is performed. 5 ⁇
- the quartz core inner cladding is relatively low in fluorine doping, and the core diameter of the quartz core rod is 3. 2 ⁇ 4mm, and the numerical aperture of the core is 0. 03 ⁇ 0. 2% ⁇ 1. 16% ⁇
- the large mode field active fiber provided by the invention has the advantages of large mode field and approximate single mode output, improves the laser power capability and energy storage density of the active fiber, improves the beam quality of the output laser, and avoids the output.
- the technical problem of the laser hollow ring; the double quartz cladding structure enhances the high-power transmission capability and temperature resistance of the active fiber, greatly improves the reliability of the high-power fiber laser device; and uses the plasma chemical vapor deposition process technology to significantly improve the fluorine
- the deposition efficiency can reduce the refractive index of the quartz glass to less than 1.0%, which improves the utilization efficiency of raw materials and reduces the manufacturing cost.
- FIG. 1 is a schematic cross-sectional view of a large mode field active fiber of the present invention
- FIG. 2 is a refractive index distribution diagram of a cross section of a large mode field active fiber according to the present invention
- the large mode field active fiber of the present invention is drawn by a core 1 and a quartz glass inner cladding 2, a quartz glass outer cladding 3 and a coating 4 which are sequentially coated on the outer surface of the core 1.
- the coating 4 is a protective layer, which is the same as the protective layer of the existing optical fiber product.
- the core 1 is formed by depositing and melting a rare earth ion doped silicon tetrachloride in a quartz glass tube.
- the rare earth ions are cerium ions, cerium ions or a combination of the two, and the compound used may be a rare earth ion.
- a halide solution such as a ruthenium chloride solution, a ruthenium chloride solution or the like.
- the refractive index of the core 1 is a graded refractive index and the core refractive index profile parameter has a variation range of 13 .
- the outer shape of the quartz glass inner cladding 2 has a positive polygonal prism shape, and may be, for example, a regular hexagonal prism or a regular octagonal prism, and an outer cladding of quartz glass. 3, the fluorine is deposited on the inner wall of the pure quartz glass tube, and the relative refractive index difference ⁇ % with the inner cladding layer 2 is between 0.1% and 1.5%.
- the rare earth ions in the core are strontium ions or strontium ions or The molar percentage of the mixture is 0.02% ⁇ 0. 36%. When a mixture of cerium ions and cerium ions is used, the molar percentage of cerium ions and cerium ions in the mixture is 1:1 to 8. 2 is a refractive index profile of the large mode field active fiber.
- the present invention also provides a method of fabricating the above-described large mode field active fiber, which is described below in five embodiments.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- a PCVD process is used to prepare a fluorine-doped low-refractive-index, high-purity quartz glass sleeve. Fluorine is deposited on the inner wall of a hollow quartz glass base pipe to obtain a quartz glass sleeve whose inner wall is a fluorine-doped layer;
- a preform for drawing a core is formed by depositing silicon tetrachloride and hafnium tetrachloride on the inner wall of another hollow quartz glass based tube by a PCVD plasma chemical vapor deposition process.
- the pressure in the quartz glass base tube is 1000 pa ⁇ 1200 Pa
- the microwave power of the heated quartz glass base tube is 5.0 kW ⁇ 7. 0 kW
- the deposition temperature is 1200 ° C to 1250 ° C, during the core deposition process.
- the ratio is passed into a mixture of silicon tetrachloride and hafnium tetrachloride;
- the deposited quartz-based tube doped with cerium ions is placed on a pre-formed melting lathe to be melted into a solid preform, that is, under the high temperature of 2200 ° C of the oxyhydrogen flame, the quartz tube slowly shrinks when When the diameter of the center hole of the quartz tube is reduced to 1.8 , a C 2 F 6 gas having a concentration of 100% is introduced, and the etching time is 20 minutes. After the etching is completed, it is melted into a solid quartz glass core rod.
- the quartz core rod has a core diameter of 4 ⁇ , a numerical aperture of 0.05, a core refractive index profile parameter of 1.92, and a relative refractive index difference of the quartz glass inner cladding relative to the fluorine-doped low refractive index sleeve of 1.06%.
- the above-mentioned solid preform is precision machined and ground into an inner cladding having a square octagonal shape
- step A50 inserting the above positive polygonal prism into step A10 to obtain a fluorine-doped low refractive index high-purity quartz glass sleeve to form a large mode field active optical fiber preform.
- the large-mode active optical fiber preform is drawn on the drawing tower to form a large mode field active optical fiber at a high temperature of about 2200 ° C, and the core diameter is ⁇ , and the inner cladding is circumscribed by a circle. The diameter is 420 ⁇ m and the outer cladding is 550 ⁇ m.
- the absorption spectrum of the large-mode active fiber produced in this embodiment is shown in Fig. 3. After testing, the absorption coefficient of the fiber at 915 nm is 6.82 dB/m, and the absorption coefficient at 975 nm is 7.56 dB/m.
- the core has a numerical aperture of 0.05 and the inner cladding has a numerical aperture of 0.212.
- step A10 the relative refractive index difference of the sleeve material relative to the pure quartz glass is 1.50%.
- step A30 when the diameter of the center hole of the quartz tube is reduced to 1.2 mm, a C 2 F 6 gas having a concentration of 100% is introduced, and the etching time is 10 minutes. After the corrosion is completed, it is melted into a solid quartz glass mandrel.
- the quartz core rod has a core diameter of 3 mm and a core numerical aperture of 0.05.
- the relative refractive index difference of the quartz glass inner cladding relative to the fluorine-doped low refractive index sleeve is 1.5%.
- the drawn large-mode active fiber has a core diameter of ⁇ , an inner cladding diameter of 350 ⁇ m, and an outer cladding diameter of 450 ⁇ m.
- the absorption spectrum of the large mode field active fiber of this embodiment is shown in FIG. 3. After testing, the absorption coefficient of the fiber at a wavelength of 915 nm is 4.82 dB/m, and the absorption coefficient at a wavelength of 975 nm is 5.21 dB/m.
- the core has a numerical aperture of 0.05 and the inner cladding has a numerical aperture of 0.25.
- Embodiment 3 :
- step A10 the relative refractive index difference of the sleeve material relative to the pure quartz glass is 0.30%.
- Al 10.72
- B1 0.15
- Cl - 11.68
- "i 2.8
- the ytterbium ion (Yb 3 ) molar content is 0.15%
- the core refractive index profile parameter " 2.86.
- step A30 when the diameter of the center hole of the quartz tube is reduced to 1.6 mm, a C 2 F 6 gas having a concentration of 100% is introduced, and the etching time is 15 minutes. After the etching is completed, it is melted into a solid quartz glass core. Rod, the quartz core rod has a core diameter of 3.2 ⁇ and a core numerical aperture of 0.06.
- step A40 the solid preform is ground into a hexagonal column-shaped inner cladding; in step A60, the large mode field active fiber core is drawn to have a diameter of 202 ⁇ , the inner cladding diameter is 655 ⁇ , and the outer cladding diameter is It is 756 ⁇ .
- the absorption spectrum of the large mode field active fiber of this embodiment is shown in Fig. 3. After testing, the fiber has an absorption coefficient of 4.96 dB/m at a wavelength of 915 nm and an absorption coefficient of 5.32 dB/m at a wavelength of 975 nm.
- the fiber has a core numerical aperture of 0.06 and an inner cladding with a numerical aperture of 0.11.
- step A10 the relative refractive index difference of the sleeve material relative to the pure quartz glass is one.
- step A30 when the diameter of the center hole of the quartz tube is reduced to 1.68 mm, the concentration is introduced. For 100% C 2 F 6 gas, the corrosion time is 15 minutes. After the corrosion is completed, it is melted into a solid quartz glass mandrel.
- the quartz core rod has a core diameter of 3.6 ⁇ and a core numerical aperture of 0.06 mm.
- the relative refractive index difference of the quartz glass inner cladding relative to the fluorine-doped low refractive index sleeve is 1.3%.
- the drawn large-mode active fiber core has a diameter of 116 ⁇ m, an inner cladding diameter of 358 ⁇ m, and an outer cladding diameter of 450 ⁇ m.
- the absorption spectrum of the fiber is shown in Figure 4.
- the large mode field active fiber has an absorption coefficient of 4.96 dB/m at a wavelength of 795 nm, an absorption coefficient of 2.16 dB/m at a wavelength of 1180 nm, and an absorption coefficient of 4.06 dB/m at a wavelength of 1210 nm.
- the numerical aperture is 0.06, and the numerical aperture of the inner cladding is 0.
- Embodiment 5 is a diagrammatic representation of Embodiment 5:
- step A10 the relative refractive index difference of the sleeve material relative to the pure quartz glass is 1.20%.
- the core refractive index profile parameter 2.0.
- the quartz core rod has a core diameter of 4.2 mm and a core numerical aperture of 0.06 mm.
- the relative refractive index of the quartz glass inner cladding relative to the fluorine-doped low refractive index sleeve The difference is 1.20%.
- the drawn large-mode active fiber core has a core diameter of 120 ⁇ m, an inner cladding diameter of 350 m, and an outer cladding diameter of 450 m.
- the large mode field active fiber has an absorption coefficient of 3.16 dB/m at a wavelength of 795 nm, an absorption coefficient of 2.06 dB/m at a wavelength of 915 nm, and an absorption coefficient of 2.78 dB/m at a wavelength of 975 nm.
- the numerical aperture is 0.06, and the numerical aperture of the inner cladding is 0.215.
- This embodiment only provides a molar content of cerium ions (Yb 3 +) and cerium ions (Tm 3 +).
- the mixing ratio of the two may be 1: 1 ⁇ 8, for example: ⁇ ion (Yb 3 +) 0.12%, ⁇ ion (Tm 3 +) 0.12%; ⁇ ion (Yb 3 +) 0.03%, ⁇ ion (Tm 3 +) 0.24%; ⁇ ion (Yb 3 +) 0.05%, strontium ion (Tm 3 +) 0.20%.
- the present invention is not limited to the above-described preferred embodiments, and any one skilled in the art should understand that the structural changes made in the light of the present invention are the same or similar to the present invention, and fall within the protection scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Lasers (AREA)
- Glass Compositions (AREA)
Description
说 明 书 发明名称: 大模场有源光纤及其制造方法
技术领域 本发明涉及一种光纤及其制造方法,特别是涉及一种大模场有源 光纤及其制造方法。
背景技术 本发明涉及的技术术语解释如下: 沉积:光纤原材料在一定的环境下发生化学反应并生成掺杂的石 英玻璃的工艺过程; 熔缩:将沉积后的空心玻璃管在一定的热源下逐渐烧成实心玻璃 棒的工艺过程; 套管: 满足一定截面积和尺寸均匀性的高纯石英玻璃管; 基管: 用于沉积的高纯石英玻璃管; 折射率剖面 (RIP) : 光纤或光纤预制棒(包括光纤芯棒) 的折射 率与其半径之间的关系曲线; 绝对折射率差( δ η) : 光纤预制棒中各个部分的折射率与纯石英 玻璃折射率的差;
2 _ 2
Δ = ^ — η。 χ100
相对折射率差 ( Δ 2 , 其中 ni为第 i层光 纤材料的折射率, n。为纯石英玻璃的折射率。 折射率剖面分布参数 n(r) = n1 [l - 2A(r/arr , 其中 n (r)为
半径为 r处的折射率, a为光纤(或芯棒)半径, ηι为光纤(或芯棒) 芯区中的最大折射率, "即为折射率剖面分布参数;
{\ E2rdr)2 [ E4rdr
有效面积: 。 , 其中 E为与传播有关的电场, r 为光纤半径;
PCVD: 等离子化学气相沉积。
光纤激光器是一种采用光纤作为激光介质的激光器,通过在光纤 基质材料中掺杂不同的稀土离子, 获得对应波段的激光输出。其应用 领域已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔 的激光应用领域扩展, 诸如金属和非金属材料的加工与处理, 激光雕 亥 |J, 激光产品打标, 激光焊接, 焊缝清理, 精密打孔, 激光检测和测 量, 激光图形艺术成像, 激光雷达系统, 污染控制, 传感技术和空间 技术以及激光医学等等。常规的单模光纤激光器要求注入到纤芯的泵 浦光也必须为单模, 这限制了泵浦光的入纤效率, 导致光纤激光器的 输出功率和效率较低。双包层光纤为提高光纤激光器的输出功率和转 换效率提供了有效的技术途径,改变了光纤激光器只能作为一种小功 率光子器件的历史。考虑到量子转换效率、抗激光损伤阈值和基底损 耗等因素,掺稀土石英双包层光纤是实现高功率光纤激光器或放大器 的最佳选择。
随着半导体激光器泵浦与激光耦合等能量光电子技术的飞速发 展, 多模泵浦技术从最初的端泵技术发展到现在的侧泵技术, 从单泵
技术发展到多泵组合技术, 从非相干发展到激光相干技术, 因此, 光 纤激光器的功率也从最初的毫瓦级发展到千瓦级,甚至万瓦级。掺镱、 掺铒、 铒镱共掺、 掺铥、 掺钬、 掺钕、 掺镨、 掺钐等各种新型的高功 率光纤激光器得到了广泛的应用,单根双包层光纤激光器的输出功率 逐步提高, 目前, 国外单根掺镱高功率光纤激光器连续激光输出功率 已经达到 9. 6kW, 而国内单根连续激光输出激光功率只有 1. 64kW; 国 外单根掺铥高功率光纤激光器连续输出激光功率达到 1000W, 而国内 仅为 100W。 这些新型光纤激光器具备接近衍射极限的光束质量、 寿 命长(平均无故障工作时间在 10万小时以上)、 电光转换效率高、 外 形紧凑小巧、 运行成本低、 维护与使用方便等优点。
目前的高功率光纤激光器多采用常规大模场有源光纤,但是存在 如下一些难以解决的技术难题, 如: 扩大模场直径是提高光纤激光器 承载功率的主要途径之一, 但是增大模场直径会带来光束质量下降、 弯曲损耗增大等一些负面效应,常规的大模场有源光纤一方面为了提 高光纤的承载功率而增大模场直径, 另一方面为了保证光束质量, 又 不得不降低光纤纤芯的数值孔径, 这不仅给工艺造成较大的难度, 而 且也不可能将模场提高得很大。 此外, 增大模场直径的同时, 弯曲损 耗急剧增大, 导致光功率泄漏甚至光纤损坏, 无法正常工作。 又如: 目前的大模场有源光纤, 外包层采用低折射率有机树脂材料, 其耐温 性能较低, 而高功率光纤激光器在长期大功率工作时, 光纤表面温度 超过 10CTC以上, 这样有机外包层材料发生损伤或碳化, 造成有源光 纤的失效。这些问题是关系到高功率光纤激光器的实用化可靠性的关
键问题, 急需得到解决。
中国发明专利 CN1667439 (申请号为 200410011158. 5, 公开日为 2005-09-14 )公开了一种大模场光纤, 采用非对称多包层环形纤芯的 光纤结构, 该光纤环形纤芯由多个弧形组成, 并规定了圆弧与凹弧的 半径, 其结构复杂、 实现工艺难度大, 同时该大模场光纤在模场扩大 的同时, 弯曲损耗较大, 因此光束质量较差。
美国专利 US2006/0103919A1描述了一种高阶大模场有源光纤, 该光纤采用沟道结构,将扩散的大模场中的高阶模式通过泄露通道进 行滤模,这种结构一方面扩大了模场,另一方面改善了输出光束质量, 但是这些都是以牺牲光功率为代价的,光利用效率低,光纤容易损坏; 此外, 该专利描述的光纤纤芯中由于存在较深的折射率凹陷, 是导致 激光空心环的关键缺陷, 从而造成输出激光的光束质量变差。
综上所述,上述专利都没有很好地解决大模场有源光纤在提高传 输功率的同时又保持优良的光束质量的技术问题, 同时, 也没有提及 解决高功率下外包层损坏的技术问题。 发明内容
本发明所要解决的技术问题是解决大模场有源光纤光束质量较 差的问题。
为了解决上述技术问题,本发明所采用的技术方案是提供一种大 模场有源光纤,由纤芯和依次包覆在该纤芯外表面上的石英玻璃内包 层、 石英玻璃外包层、 涂层组成, 所述纤芯由掺杂稀土离子的四氯化
硅在石英玻璃管中沉积、熔缩而成, 其折射率为渐变折射率且纤芯折 射率剖面参数"的变化范围为 1 《 3,石英玻璃内包层的外形呈正 多棱柱状。
上述方案中, 所述石英玻璃内包层的外形呈正六棱柱或正八棱 柱。
所述石英玻璃外包层由纯石英玻璃掺氟组成,掺氟形成的相对折 射率差 Δ % — 0. 1%〜― 1. 5 %之间。
所述纤芯中的稀土离子为镱离子或铥离子,其摩尔百分比含量为
0. 02 %〜0. 36 %。
所述纤芯中的稀土离子为镱离子和铥离子的混合物,该混合物的 摩尔百分比含量为 0. 02%〜0. 36 % , 其中镱离子和铥离子的摩尔百分 比为 1 : 1〜8。
本发明还提供了一种大模场有源光纤的制造方法, 包括以下步 骤:
Α10、用 PCVD等离子化学气相沉积工艺制备出内壁为氟掺杂层的 石英玻璃套管, 该套管与纯石英玻璃的相对折射率差为一 0. 3%〜一
1. 5%;
Α20、 用等离子体化学气相沉积工艺技术在另一个空心石英玻璃 基管的内壁上沉积四氯化硅和四氯化锗制成用于拉制折射率渐变纤 芯的预制件, 并采用全气相的方式掺杂稀土离子;
Α30、 在 2200°C的温度下将步骤 Α20得到的空心石英玻璃管熔缩 成实心的预制件;
A40、 将上述实心的预制件加工成正多棱柱形;
A50、 将正多棱柱插入到步骤 A10得到的内壁为掺氟层的石英玻 璃套管内形成大模场有源光纤预制棒;
A60、 将上述大模场有源光纤预制棒在拉丝塔上拉制成大模场有 源光纤。
上述方法中, 步骤 A20中掺杂的稀土离子为镱离子或铥离子, 其 摩尔百分比含量为 0. 02 %〜0. 36%。
步骤 A20中掺杂的稀土离子为镱离子和铥离子的混合物,该混合 物的摩尔百分比含量为 0. 5〜0. 6%, 其中镱离子和铥离子的摩尔百 分比为 10%〜80%。
步骤 A20中, 石英玻璃基管内压力为 900 pa〜1600pa,加热石英 玻璃基管的微波功率为 3. 0 kW〜15. OkW, 沉积温度为 1100〜1300°C, 四氯化硅气体的流量为 800ml/min〜1600ml/min, 四氯化锗流量按照
曲线进行控制, 其中 AI=IO. 52〜 11. 69, B1=0. 1326〜0. 16, Cl =— 12. 02〜一 11. 32, "ι = 1. 98〜2. 8, 同时含 稀土离子的气体按照摩尔百分比 0. 02 %〜0. 36%的比例通入到四氯 化硅和四氯化锗混合气体中, 纤芯折射率剖面分布参数《 = 1. 92〜 2. 86。
步骤 A30中, 当石英管的中心孔直径缩小到 1. 2〜1. 8mm时, 通 入浓度为 100 %的 C2F6气体, 腐蚀时间为 10〜20分钟, 腐蚀完毕后, 将其熔缩为实心的石英玻璃芯棒, 该石英芯棒的纤芯直径为 3. 2〜 4mm, 纤芯数值孔径为 0. 03〜0. 10, 石英玻璃内包层相对氟掺杂低折
射率套管的相对折射率差为 0. 2%〜1. 16 %。
本发明提供的大模场有源光纤,兼具大模场与近似单模输出的优 点, 提高了有源光纤的承受激光功率能力与储能密度, 提高了输出激 光的光束质量, 避免了输出激光空心环的技术问题; 双石英包层结构 提升了有源光纤高功率传输能力与耐温性能,大大地提高了高功率光 纤激光器件的可靠性; 采用等离子化学气相沉积工艺技术, 显著提升 氟的沉积效率, 能够将石英玻璃的折射率降低到一 1. 0 %以下, 提高 了原材料的利用效率, 降低了制造成本。 附图说明
图 1为本发明大模场有源光纤的横截面示意图;
图 2为本发明大模场有源光纤横截面上折射率分布图;
图 3为实施例一制成大模场有源光纤吸收谱图;
图 4为实施例四制成大模场有源光纤吸收谱图。 具体实施方式
下面结合附图对本发明作出详细的说明。
如图 1所示,本发明的大模场有源光纤由纤芯 1和依次包覆在该 纤芯 1外表面上的石英玻璃内包层 2、 石英玻璃外包层 3和涂层 4拉 制而成, 涂层 4为保护层, 与现有光纤产品的保护层相同。 纤芯 1由 掺杂稀土离子的四氯化硅在石英玻璃管中沉积、熔缩而成, 上述稀土 离子为镱离子、铥离子或二者的组合, 使用的化合物可以是稀土离子
的卤化物溶液, 如氯化镱溶液、 氯化铥溶液等。 纤芯 1的折射率为渐 变折射率且纤芯折射率剖面参数"的变化范围为 1 3,石英玻璃 内包层 2的外形呈正多棱柱状, 例如可以为正六棱柱或正八棱柱, 石 英玻璃外包层 3由纯石英玻璃管内壁沉积氟而成,与内包层 2相对折 射率差 Δ %在一 0. 1%〜一 1. 5%之间。 纤芯中的稀土离子为镱离子或 铥离子或为二者的混合物, 其摩尔百分比含量为 0. 02 %〜0. 36%, 当采用镱离子和铥离子的混合物时,该混合物中镱离子和铥离子的摩 尔百分比为 1 : 1〜8。 图 2为该大模场有源光纤折射率分布图。
本发明还提供了上述大模场有源光纤的制造方法,下面以五种实 施例对该方法加以说明。
实施例一:
该实施例包括以下步骤:
Α10、用 PCVD等离子化学气相沉积工艺制备出氟掺杂的低折射率 高纯石英玻璃套管,该套管材料相对纯石英玻璃的相对折射率差为一 1. 06%, 即用 PCVD工艺在一个空心石英玻璃基管的内壁上沉积氟, 得 到内壁为掺氟层的石英玻璃套管;
Α20、用 PCVD等离子体化学气相沉积工艺在另一个空心石英玻璃 基管的内壁上沉积四氯化硅和四氯化锗制成用于拉制纤芯的预制件。 该步骤中, 石英玻璃基管内压力为 1000 pa〜1200pa,加热石英玻璃 基管的微波功率为 5. 0 kW〜7. 0kW, 沉积温度为 1200°C〜1250°C, 在 纤芯沉积过程中, 四氯化硅气体流量为 1500 ml/min〜1600ml/min , 芯层不同半径位置的四氯化锗流量按照 (r) = A1 + B1 X r + C1 x 1曲线
进行控制, 其中 Al=11.69, B1=0.1326, Cl =— 12.02, "ι=2.0, r 为时间; 同时采用全气相的方式将镱离子 (Yb3+) 气体按照摩尔含量 为 0.02%〜0.36%的比例通入到四氯化硅和四氯化锗混合气体中;
A30、 将沉积完毕的掺杂有镱离子的石英基管安置在预制件熔缩 车床上熔缩成实心的预制件, 即在氢氧焰 2200°C的高温作用下, 石 英管缓慢收缩, 当石英管的中心孔直径缩小到 1.8匪时, 通入浓度为 100%的 C2F6气体, 腐蚀时间为 20分钟, 腐蚀完毕后, 将其熔缩为实 心的石英玻璃芯棒。该石英芯棒的纤芯直径为 4匪,数值孔径为 0.05, 纤芯折射率剖面分布参数 =1.92, 石英玻璃内包层相对氟掺杂低折 射率套管的相对折射率差为 1.06%。
A40、 将上述实心的预制件进行精密机械加工, 磨制成外形为正 八棱柱状的内包层;
A50、 将上述正多棱柱插入到步骤 A10得到氟掺杂的低折射率高 纯石英玻璃套管中, 形成大模场有源光纤预制棒。
A60、 在拉丝塔上, 于 2200°C左右的高温下, 将上述大模场有源 光纤预制棒在拉丝塔上拉制成大模场有源光纤, 纤芯直径为 ΙΟΟμπι, 内包层外接圆直径为 420 μ m, 外包层直径为 550 μ m。
本实施例制成大模场有源光纤吸收谱见图 3所示, 经过测试, 该 光纤在 915nm波长的吸收系数为 6.82dB/m, 在 975nm波长的吸收系 数为 7.56dB/m, 光纤的纤芯数值孔径为 0.05, 内包层的数值孔径为 0.212。
实施例二:
本实施例与实施例一的区别在于,
步骤 A10 中, 套管材料相对纯石英玻璃的相对折射率差为一 1.50%
步骤 A20中镱离子(Yb3+) 的摩尔含量为 0.12%, 纤芯的折射率 剖面分布参数 "=2.03。
步骤 A30中当石英管的中心孔直径缩小到 1.2mm时,通入浓度为 100%的 C2F6气体, 腐蚀时间为 10分钟。 腐蚀完毕后, 将其熔缩为实 心的石英玻璃芯棒。 该石英芯棒的纤芯直径为 3mm, 纤芯数值孔径为 0.05。 石英玻璃内包层相对氟掺杂低折射率套管的相对折射率差为 1.5%。
步骤 A60中, 拉制成的大模场有源光纤的纤芯直径为 ΙΙΟμπι, 内包层直径为 350μπι, 外包层直径为 450μπι。
本实施例的大模场有源光纤的吸收谱如图 3所示, 经过测试, 该 光纤在 915nm波长的吸收系数为 4.82dB/m, 在 975nm波长的吸收系 数为 5.21dB/m, 光纤的纤芯数值孔径为 0.05, 内包层的数值孔径为 0.25。 实施例三:
本实施例与实施例一的区别在于,
步骤 A10 中, 套管材料相对纯石英玻璃的相对折射率差为一 0.30%
步骤 A20中, Al=10.72, B1=0.15, Cl =— 11.68, "i=2.8, 镱 离子 (Yb3)摩尔含量为 0.15%, 纤芯折射率剖面分布参数《=2.86。
步骤 A30中, 当石英管的中心孔直径缩小到 1.6mm时, 通入浓度 为 100%的 C2F6气体, 腐蚀时间为 15分钟, 腐蚀完毕后, 将其熔缩为 实心的石英玻璃芯棒, 该石英芯棒的纤芯直径为 3.2匪, 纤芯数值孔 径为 0.06。
步骤 A40中, 实心的预制件磨制成外形为正六棱柱状的内包层; 步骤 A60中, 拉制成的大模场有源光纤纤芯直径为 202 μπι, 内 包层直径为 655μπι, 外包层直径为 756μπι。
本实施例的大模场有源光纤的吸收谱如图 3所示, 经过测试, 该 光纤在 915nm波长的吸收系数为 4.96dB/m, 在 975nm波长的吸收系 数为 5.32dB/m。 该光纤的纤芯数值孔径为 0.06, 内包层的数值孔径 为 0.11。 实施例四:
本实施例与实施例一的区别在于,
步骤 A10 中, 套管材料相对纯石英玻璃的相对折射率差为一
1.30%
步骤 A20中, Al=10.52, B1=0.16, Cl =— 11.32, "ι = 1.98, 铥 离子(Tm3+) 的摩尔含量为 0.18%, 纤芯的折射率剖面分布参数《 =
2.02。
步骤 A30中当石英管的中心孔直径缩小到 1.68mm时, 通入浓度
为 100%的 C2F6气体, 腐蚀时间为 15分钟。腐蚀完毕后, 将其熔缩为 实心的石英玻璃芯棒。 该石英芯棒的纤芯直径为 3.6匪, 纤芯数值孔 径为 0.06mm, 石英玻璃内包层相对氟掺杂低折射率套管的相对折射 率差为 1.3%。
步骤 A60中, 拉制成的大模场有源光纤纤芯直径为 116μπι, 内 包层直径为 358μπι, 外包层直径为 450μπι。 经过测试, 该光纤的吸 收谱如图 4所示。
本实施例制成大模场有源光纤在 795nm 波长的吸收系数为 4.96dB/m, 1180nm波长的吸收系数为 2.16 dB/m, 1210nm波长的吸 收系数为 4.06 dB/m, 该光纤的纤芯数值孔径为 0.06, 内包层的数值 孔径为 0.
实施例五:
本实施例与实施例一的区别在于,
步骤 A10 中, 套管材料相对纯石英玻璃的相对折射率差为一 1.20%
步骤 Α20中, Al=10.52, Β1=0.16, Cl =— 11.32, "ι=2.98, 镱 离子(Yb3+)的摩尔含量为 0.06%,铥离子(Tm3+)的摩尔含量为 0.12 %, 纤芯的折射率剖面分布参数 =2.0。
步骤 A30中当石英管的中心孔直径缩小到 2.0mm时,通入浓度为 100%的 C2F6气体, 腐蚀时间为 10分钟。 腐蚀完毕后, 将其熔缩为实 心的石英玻璃芯棒。 该石英芯棒的纤芯直径为 4.2mm, 纤芯数值孔径 为 0.06mm, 石英玻璃内包层相对氟掺杂低折射率套管的相对折射率
差为 1.20%。
步骤 A60中, 拉制成的大模场有源光纤纤芯直径为 120μπι, 内 包层直径为 350 m, 外包层直径为 450 m。
本实施例制成大模场有源光纤在 795nm波长的吸收系数为 3.16 dB/m, 915nm波长的吸收系数为 2.06dB/m, 975nm波长的吸收系数 为 2.78dB/m, 该光纤的纤芯数值孔径为 0.06, 内包层的数值孔径为 0.215ο 本实施例仅提供了一种镱离子(Yb3+)和铥离子(Tm3+) 的 摩尔含量, 实际上, 二者的混合比例可以为 1: 1〜8, 例如: 镱离子 (Yb3+) 0.12%、 铥离子 (Tm3+) 0.12%; 镱离子 (Yb3+) 0.03%、 铥离子 (Tm3+) 0.24%; 镱离子 (Yb3+) 0.05%、 铥离子 (Tm3+) 0.20%。 本发明不局限于上述最佳实施方式,任何人应该得知在本发明的 启示下作出的结构变化, 凡是与本发明具有相同或相近的技术方案, 均落入本发明的保护范围之内。
Claims
1、 大模场有源光纤, 由纤芯和依次包覆在该纤芯外表面上的石 英玻璃内包层、 石英玻璃外包层、 涂层组成, 其特征在于所述纤芯由 掺杂稀土离子的四氯化硅在石英玻璃管中沉积、熔缩而成, 其折射率 为渐变折射率且纤芯折射率剖面参数"的变化范围为 1 《 3,石英 玻璃内包层的外形呈正多棱柱状。
2、 如权利要求 1所述的大模场有源光纤, 其特征在于所述石英 玻璃内包层的外形呈正六棱柱或正八棱柱。
3、 如权利要求 1或 2所述的大模场有源光纤, 其特征在于所述 石英玻璃外包层由纯石英玻璃掺氟组成,掺氟形成的相对折射率差 A %在一 0. 1%〜一 1. 5 %之间。
4、 如权利要求 3所述的大模场有源光纤, 其特征在于所述纤芯 中的稀土离子为镱离子或铥离子,其摩尔百分比含量为 0. 02 %〜0. 36 %。
5、 如权利要求 3所述的大模场有源光纤, 其特征在于所述纤芯 中的稀土离子为镱离子和铥离子的混合物,该混合物的摩尔百分比含 量为 0. 02%〜0. 36 % , 其中镱离子和铥离子的摩尔百分比为 1 : 1〜8。
6、 大模场有源光纤的制造方法, 其特征在于包括以下步骤: A10、用 PCVD等离子化学气相沉积工艺制备出内壁为氟掺杂层的 石英玻璃套管, 该套管与纯石英玻璃的相对折射率差为一 0. 3%〜一 1. 5%;
A20、 用等离子体化学气相沉积工艺技术在另一个空心石英玻璃 基管的内壁上沉积四氯化硅和四氯化锗制成用于拉制折射率渐变纤 芯的预制件, 并采用全气相的方式掺杂稀土离子;
A30、 在 2200°C的温度下将步骤 A20得到的空心石英玻璃管熔缩 成实心的预制件;
A40、 将上述实心的预制件加工成正多棱柱形;
A50、 将正多棱柱插入到步骤 A10得到的内壁为掺氟层的石英玻 璃套管内形成大模场有源光纤预制棒;
A60、 将上述大模场有源光纤预制棒在拉丝塔上拉制成大模场有 源光纤。
7、 如权利要求 6所述的大模场有源光纤的制造方法, 其特征在 于步骤 A20中掺杂的稀土离子为镱离子或铥离子,其摩尔百分比含量 为 0. 02 %〜0. 36 %。
8、 如权利要求 6所述的大模场有源光纤的制造方法, 其特征在 于步骤 A20中掺杂的稀土离子为镱离子和铥离子的混合物,该混合物 的摩尔百分比含量为 0. 5〜0. 6 %, 其中镱离子和铥离子的摩尔百分 比为 10%〜80 %。
9、 如权利要求 6、 7或 8所述的大模场有源光纤的制造方法, 其特征在于步骤 A20中, 石英玻璃基管内压力为 900 pa〜1600pa,加 热石英玻璃基管的微波功率为 3. 0 kW〜15. 0kW, 沉积温度为 1100〜 1300°C, 四氯化硅气体的流量为 800ml/min〜1600ml/min, 四氯化锗 流量按照 + G x rw曲线进行控制, 其中 A1= 10. 52〜
11. 69, B1=0. 1326〜0. 16, Cl =一 12. 02〜一 11. 32, "ι = 1. 98〜2. 8, 同时含稀土离子的气体按照摩尔百分比 0.02%〜0.36%的比例通入 到四氯化硅和四氯化锗混合气体中, 纤芯折射率剖面分布参数《 = 1.92〜2.86。
10、 如权利要求 9所述的大模场有源光纤的制造方法, 其特征在 于步骤 A30中, 当石英管的中心孔直径缩小到 L 2〜1.8mm时, 通入 浓度为 100%的 C2F6气体, 腐蚀时间为 10〜20分钟, 腐蚀完毕后, 将 其熔缩为实心的石英玻璃芯棒, 该石英芯棒的纤芯直径为 3.2〜4mm, 纤芯数值孔径为 0.03〜0.10, 石英玻璃内包层相对氟掺杂低折射率 套管的相对折射率差为 0.2%〜1.16%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/497,314 US9014523B2 (en) | 2010-01-18 | 2010-11-24 | Large mode field active optical fiber and manufacture method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010100008109A CN101738682B (zh) | 2010-01-18 | 2010-01-18 | 大模场有源光纤及其制造方法 |
CN201010000810.9 | 2010-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011085619A1 true WO2011085619A1 (zh) | 2011-07-21 |
Family
ID=42462389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/079051 WO2011085619A1 (zh) | 2010-01-18 | 2010-11-24 | 大模场有源光纤及其制造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9014523B2 (zh) |
CN (1) | CN101738682B (zh) |
WO (1) | WO2011085619A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102508333A (zh) * | 2011-11-22 | 2012-06-20 | 中国科学院上海光学精密机械研究所 | 双包层全固态光子晶体光纤及其制备方法 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101738682B (zh) * | 2010-01-18 | 2012-01-11 | 烽火通信科技股份有限公司 | 大模场有源光纤及其制造方法 |
CN102531378B (zh) * | 2012-03-12 | 2014-12-10 | 武汉烽火锐光科技有限公司 | 用于制造保偏光纤的掺硼应力棒及其制造方法 |
WO2015116887A1 (en) * | 2014-01-31 | 2015-08-06 | Ofs Fitel, Llc | Design and manufacture of multi-mode optical fibers |
JP2016075792A (ja) * | 2014-10-07 | 2016-05-12 | 矢崎総業株式会社 | マルチモード光ファイバ |
CN104267460A (zh) * | 2014-10-20 | 2015-01-07 | 安徽天龙电器线缆集团有限公司 | 一种低损耗耐弯曲入户光纤 |
CN104267476A (zh) * | 2014-10-20 | 2015-01-07 | 安徽天龙电器线缆集团有限公司 | 一种大容量低损耗全干式光缆的制造方法 |
CN104267459A (zh) * | 2014-10-20 | 2015-01-07 | 安徽天龙电器线缆集团有限公司 | 一种低损耗耐弯曲入户光纤的制造方法 |
CN106371168A (zh) * | 2016-08-30 | 2017-02-01 | 武汉睿芯特种光纤有限责任公司 | 一种制备双包层有源光纤的方法 |
CN106772778B (zh) * | 2016-12-14 | 2019-04-16 | 中国人民解放军国防科学技术大学 | 热致超大模场光纤 |
CN108761635B (zh) * | 2018-05-03 | 2019-12-31 | 烽火通信科技股份有限公司 | 一种双包层掺镱光纤 |
US11407671B2 (en) * | 2018-06-08 | 2022-08-09 | Council Of Scientific & Industrial Research | Process of fabrication of Erbium and Ytterbium-co-doped multi-elements silica glass based cladding-pumped fiber |
CN110606657B (zh) * | 2018-06-15 | 2020-10-16 | 华中科技大学 | 一种大芯径稀土掺杂光纤预制棒及其制备方法 |
CN109031516B (zh) * | 2018-07-11 | 2020-12-29 | 烽火通信科技股份有限公司 | 一种大模场双包层掺镱光纤 |
CN109085674B (zh) * | 2018-08-31 | 2020-01-14 | 华南理工大学 | 一种2微米波段单晶衍生的全玻璃光纤及其制备方法 |
CN109143464B (zh) * | 2018-11-29 | 2019-03-12 | 中聚科技股份有限公司 | 一种稀土掺杂玻璃光纤及其制备方法 |
CN109669232B (zh) * | 2019-01-17 | 2021-01-12 | 上海大学 | 单晶半导体芯光纤及其制备方法 |
CN110471139A (zh) * | 2019-08-05 | 2019-11-19 | 上海瑞柯恩激光技术有限公司 | 光纤及其使用方法 |
CN110640308A (zh) * | 2019-09-29 | 2020-01-03 | 光坊激光科技(苏州)有限公司 | 光纤复合光斑激光合束器及其制造方法 |
CN110903029A (zh) * | 2019-10-16 | 2020-03-24 | 江苏法尔胜光通信科技有限公司 | 一种掺镱有源光纤及其制备方法 |
CN111025456B (zh) * | 2019-12-27 | 2020-12-08 | 武汉长盈通光电技术股份有限公司 | 一种微结构异形芯光纤及其制备方法 |
CN111517637B (zh) * | 2020-05-22 | 2021-04-27 | 长飞光纤光缆股份有限公司 | 掺稀土多芯光纤、光纤预制棒及其制备方法和应用 |
CN111897043B (zh) * | 2020-07-20 | 2022-07-05 | 江苏永鼎股份有限公司 | 一种大模场微结构光纤 |
CN111999795B (zh) * | 2020-07-27 | 2023-08-04 | 武汉光谷航天三江激光产业技术研究院有限公司 | 同时抑制模式不稳定和非线性效应的高功率增益光纤及设计方法 |
CN112114397B (zh) * | 2020-08-28 | 2023-01-17 | 武汉光谷航天三江激光产业技术研究院有限公司 | 一种超大模场低数值孔径金属涂覆层增益光纤及制作方法 |
CN112764155A (zh) * | 2021-01-12 | 2021-05-07 | 烽火通信科技股份有限公司 | 一种硬质包层掺稀土光纤及其制备方法 |
CN113359229A (zh) * | 2021-06-01 | 2021-09-07 | 江苏亨通光纤科技有限公司 | 一种径向掺杂浓度渐变的激光光纤及其制备方法 |
CN113461322B (zh) * | 2021-07-30 | 2023-05-09 | 浙江富通光纤技术有限公司 | 光纤及光纤预制棒的制造方法 |
CN114236671A (zh) * | 2021-12-13 | 2022-03-25 | 武汉理工光科股份有限公司 | 一种光纤光栅及其制造方法 |
CN113917600B (zh) * | 2021-12-14 | 2022-03-01 | 武汉长盈通光电技术股份有限公司 | 无源匹配激光光纤的制备方法 |
CN115611508B (zh) * | 2022-10-24 | 2023-05-12 | 中国航天三江集团有限公司 | 用于抑制模式不稳定效应的稀土掺杂光纤及其制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5961682A (en) * | 1995-07-12 | 1999-10-05 | Samsung Electronics Co., Ltd. | Method of fabricating optical fiber doped with rare earth element using volatile complex |
JP2002033536A (ja) * | 2000-07-14 | 2002-01-31 | Furukawa Electric Co Ltd:The | 光増幅用光ファイバ |
CN1412583A (zh) * | 2001-10-10 | 2003-04-23 | 汪业衡 | 尺寸变化色散稳定型非零色散位移单模光纤及其设计方法 |
EP1090887B1 (en) * | 1999-10-08 | 2005-07-27 | Shin-Etsu Chemical Co., Ltd. | Optical fibre, optical fibre preform and method for producing the preform having a deformed first clad |
CN1278149C (zh) * | 2004-03-29 | 2006-10-04 | 烽火通信科技股份有限公司 | 双包层掺稀土光纤及其制造方法 |
CN101182113A (zh) * | 2007-11-20 | 2008-05-21 | 长飞光纤光缆有限公司 | 大直径光纤芯棒的pcvd制作方法 |
CN101201431A (zh) * | 2007-12-20 | 2008-06-18 | 烽火通信科技股份有限公司 | 宽带色散补偿光纤、其制造方法及宽带色散补偿模块 |
CN101458360A (zh) * | 2008-11-28 | 2009-06-17 | 烽火通信科技股份有限公司 | 一种带宽优化的多模光纤及其制造方法 |
CN101485054A (zh) * | 2006-07-05 | 2009-07-15 | 索雷克核研究中心 | 包括泵浦光导向光纤的光学装置 |
WO2010055696A1 (ja) * | 2008-11-14 | 2010-05-20 | 株式会社フジクラ | イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ |
CN101738682A (zh) * | 2010-01-18 | 2010-06-16 | 烽火通信科技股份有限公司 | 大模场有源光纤及其制造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2354783A1 (en) * | 2001-08-07 | 2003-02-07 | Institut National D'optique | Convex polygon-shaped all-glass multi-clad optical fiber and method of fabrication thereof |
DE602004016706D1 (de) * | 2003-07-18 | 2008-11-06 | Fujikura Ltd | Multimode-Gradientenindex-Faser und Herstellungsmethode |
US7170909B2 (en) * | 2004-05-25 | 2007-01-30 | Bae Systems Information And Electronic Systems Integration Inc. | Low quantum defect holmium fiber laser |
US7050686B2 (en) * | 2004-08-05 | 2006-05-23 | Nufern | Fiber optic article with inner region |
US7062137B2 (en) * | 2004-08-05 | 2006-06-13 | Nufern | Fiber optic article including fluorine |
US7463805B2 (en) * | 2005-10-20 | 2008-12-09 | Corning Incorporated | High numerical aperture optical fiber |
-
2010
- 2010-01-18 CN CN2010100008109A patent/CN101738682B/zh active Active
- 2010-11-24 US US13/497,314 patent/US9014523B2/en active Active
- 2010-11-24 WO PCT/CN2010/079051 patent/WO2011085619A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5961682A (en) * | 1995-07-12 | 1999-10-05 | Samsung Electronics Co., Ltd. | Method of fabricating optical fiber doped with rare earth element using volatile complex |
EP1090887B1 (en) * | 1999-10-08 | 2005-07-27 | Shin-Etsu Chemical Co., Ltd. | Optical fibre, optical fibre preform and method for producing the preform having a deformed first clad |
JP2002033536A (ja) * | 2000-07-14 | 2002-01-31 | Furukawa Electric Co Ltd:The | 光増幅用光ファイバ |
CN1412583A (zh) * | 2001-10-10 | 2003-04-23 | 汪业衡 | 尺寸变化色散稳定型非零色散位移单模光纤及其设计方法 |
CN1278149C (zh) * | 2004-03-29 | 2006-10-04 | 烽火通信科技股份有限公司 | 双包层掺稀土光纤及其制造方法 |
CN101485054A (zh) * | 2006-07-05 | 2009-07-15 | 索雷克核研究中心 | 包括泵浦光导向光纤的光学装置 |
CN101182113A (zh) * | 2007-11-20 | 2008-05-21 | 长飞光纤光缆有限公司 | 大直径光纤芯棒的pcvd制作方法 |
CN101201431A (zh) * | 2007-12-20 | 2008-06-18 | 烽火通信科技股份有限公司 | 宽带色散补偿光纤、其制造方法及宽带色散补偿模块 |
WO2010055696A1 (ja) * | 2008-11-14 | 2010-05-20 | 株式会社フジクラ | イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ |
CN101458360A (zh) * | 2008-11-28 | 2009-06-17 | 烽火通信科技股份有限公司 | 一种带宽优化的多模光纤及其制造方法 |
CN101738682A (zh) * | 2010-01-18 | 2010-06-16 | 烽火通信科技股份有限公司 | 大模场有源光纤及其制造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102508333A (zh) * | 2011-11-22 | 2012-06-20 | 中国科学院上海光学精密机械研究所 | 双包层全固态光子晶体光纤及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US9014523B2 (en) | 2015-04-21 |
CN101738682A (zh) | 2010-06-16 |
US20120263428A1 (en) | 2012-10-18 |
CN101738682B (zh) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011085619A1 (zh) | 大模场有源光纤及其制造方法 | |
US7203407B2 (en) | Rare earth doped single polarization double clad optical fiber and a method for making such fiber | |
TW552437B (en) | Method of manufacture of an optical waveguide article including a fluorine-containing zone | |
US7502539B2 (en) | Rare earth doped optical fiber | |
JP7332706B2 (ja) | フォトニック結晶ファイバのプリフォーム、その製造方法及びフォトニック結晶ファイバ | |
US7382957B2 (en) | Rare earth doped double clad optical fiber with plurality of air holes and stress rods | |
US7313312B2 (en) | Optical fiber and method for making such fiber | |
WO2019218525A1 (zh) | 一种超低损耗大有效面积单模光纤及其制造方法 | |
CN112456788B (zh) | 一种高功率用保偏型光纤及其制备方法 | |
JP5612654B2 (ja) | ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ | |
WO2006135433A2 (en) | Rare earth doped single polarization double clad optical fiber with plurality of air holes | |
KR20120137299A (ko) | 단일 모드 광 섬유 | |
CN110850522A (zh) | 一种部分掺稀土光纤及其制备方法 | |
JP2007536580A5 (zh) | ||
CN111129938A (zh) | 光纤激光器、光纤激光器用光纤及其制造方法 | |
CN107500524B (zh) | 一种稀土掺杂光纤预制棒及其制备方法 | |
CN114573226B (zh) | 一种有源光纤及其制备方法 | |
CN116282886A (zh) | 增益控制光纤的制备方法 | |
CN117735830A (zh) | 基于mcvd设备的三包层掺稀土光纤预制棒的制备方法 | |
CN112505827A (zh) | 一种高功率激光器用有源光纤及其制备方法 | |
JP2005162512A (ja) | ガラス母材の製造方法 | |
JP2004307301A (ja) | 光ファイバプリフォームの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10842901 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13497314 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10842901 Country of ref document: EP Kind code of ref document: A1 |