WO2011083974A2 - 초고용량 커패시터용 전해질 용액 - Google Patents

초고용량 커패시터용 전해질 용액 Download PDF

Info

Publication number
WO2011083974A2
WO2011083974A2 PCT/KR2011/000064 KR2011000064W WO2011083974A2 WO 2011083974 A2 WO2011083974 A2 WO 2011083974A2 KR 2011000064 W KR2011000064 W KR 2011000064W WO 2011083974 A2 WO2011083974 A2 WO 2011083974A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte solution
spiro
solvent
quaternary ammonium
ammonium salt
Prior art date
Application number
PCT/KR2011/000064
Other languages
English (en)
French (fr)
Other versions
WO2011083974A3 (ko
Inventor
최재훈
박정호
김진호
강주식
장유미
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Publication of WO2011083974A2 publication Critical patent/WO2011083974A2/ko
Publication of WO2011083974A3 publication Critical patent/WO2011083974A3/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrolyte solution for ultracapacitors, and more particularly to an electrolyte solution for ultracapacitors in which spiro quaternary ammonium salt is dissolved in a propionitrile solvent.
  • the supercapacitor is an energy storage device having intermediate characteristics of an electrolytic capacitor and a secondary battery, which has advantages of rapid charge and discharge, high efficiency, a wide operating temperature range, and a semi-permanent life, such as an electric double layer.
  • a capacitor Electric Double-Layer Capacitor, EDLC.
  • the ultracapacitors have characteristics such as output characteristics, high temperature reliability (lifetime characteristics) and maximum operating voltage, which are different from secondary batteries.
  • secondary batteries have relatively low output characteristics and limited high temperature reliability (life characteristics, etc.), which is an important factor as a differentiated characteristic of capacitors.
  • electrolytes used in ultracapacitors are classified into aqueous electrolytes, non-aqueous electrolytes, and solid electrolytes.
  • the aqueous electrolyte has a high conductivity to reduce the internal resistance of the basic cell, but the energy density of the capacitor is low due to the low operating voltage.
  • non-aqueous electrolytes generally have a higher viscosity than aqueous electrolytes and have a conductivity of about 1/10 to 1/100 times lower. Therefore, when the non-aqueous electrolyte is used, the output resistance is worse than that of the aqueous electrolyte due to the increased internal resistance.
  • acetonitrile AN
  • propylene carbonate Propylene Carbonate, PC
  • tetraethylammonium tetrafluoroborate Ammonium salts such as TEABF 4
  • lithium metal salts eg, LiBF 4 , LiPF 6
  • the present inventors have tried to develop an electrolyte for an ultra high capacity capacitor including a solvent having only the advantages of acetonitrile and propylene carbonate. While excellent withstand voltage characteristics, it has been confirmed that less gas is generated inside the capacitor at a high temperature to complete the present invention.
  • an object of the present invention is to provide an electrolyte solution for an ultra-capacitor capacitor having excellent conductivity and withstand voltage characteristics in which spiro quaternary ammonium salt is dissolved in a propionitrile solvent, and low gas generation at high temperature.
  • Another object of the present invention is to provide an ultracapacitor using the electrolyte solution for the high capacitor.
  • the present invention provides an electrolyte solution for an ultra high capacity capacitor in which spiro quaternary ammonium salt is dissolved in a propionitrile solvent.
  • the spiro quaternary ammonium salt of the present invention is dissolved at 0.5 mol / L to 3.0 mol / L.
  • the cation of the spiro quaternary ammonium salt is represented by the following formula (1), wherein n One , n 2 , n 3 And n 4 Are each independently an integer from 0-6, X 11 , X 12 , X 13 And X 14 Are each independently CH, CH 2 Or some or all of the hydrogen (H) is substituted with halogen or an alkyl group having 1 to 6 carbon atoms, or a cyclic group having 3 to 8 carbon atoms or a heterocyclic group containing N, O or S, and X 21 And X 22 Are each independently said X 11 , X 12 , X 13 , X 14 , NH, O or S, X 31 And X 32 Are each independently said X 11 , X 12 , X 13 , X 14 , H, alkoxy having 1 to 6 carbon atoms or alkenyl group having 1 to 6 carbon atoms.
  • the spiro-anion of a quaternary ammonium salt of the invention borate (BF 4 -) tetrafluoroborate, phosphate (PF 6 -) hexafluorophosphate, perchlorate (ClO 4 -), Arsene carbonate hexafluorophosphate ( AsF 6 ⁇ ), bis (trifluoromethylsulfonyl) imide ((CF 3 SO 2 ) 2 N ⁇ ), or trifluoromethylsulfonate (SO 3 CF 3 ⁇ ).
  • the present invention provides an ultracapacitor using the electrolyte solution for the ultracapacitor.
  • the electrolyte solution of the present invention is excellent in conductivity, and when used in an ultracapacitor, the withstand voltage property can be greatly increased.
  • the electrolyte solution of the present invention can be used in a wide range of industrial fields from small electronic devices to large automotive applications due to low gas generation even at high temperatures.
  • the present invention provides an electrolyte solution for an ultra high capacity capacitor in which spiro quaternary ammonium salt is dissolved in a propionitrile solvent.
  • Propionitrile used as a solvent of the electrolyte of the present invention is a material used to supplement the advantages and disadvantages of acetonitrile and propylene carbonate, which is conventionally used in ultracapacitors, and has excellent withstand voltage characteristics and low gas generation at high temperatures.
  • Nitrile-based solvent having a Accordingly, nitrile-based compounds having properties similar to propionitrile of the present invention can be used in part as the solvent of the present invention, so long as it is suitable for the purpose of the present invention.
  • nitrile-based solvents examples include butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile and cyclohexane carbon in addition to propionitrile of the present invention.
  • propionitrile In the case of using only propionitrile as the electrolyte solution for the ultracapacitor of the present invention, propionitrile generally has a poor ability to dissolve an electrolyte salt and thus cannot be used unless other solvents of high dielectric constant are mixed.
  • TEABF 4 tetraethylammonium tetrafluoroborate
  • the present invention is a solution in which a quaternary ammonium salt is dissolved in a propionitrile solvent with a spiro (3-5 times more superior to the tetraethylammonium tetrafluoroborate (TEABF 4 ) and excellent withstand voltage characteristics).
  • a propionitrile solvent with a spiro 3-5 times more superior to the tetraethylammonium tetrafluoroborate (TEABF 4 ) and excellent withstand voltage characteristics.
  • TEABF 4 tetraethylammonium tetrafluoroborate
  • the term 'spiro' used in the meaning of a spiro structure or a spiro compound is a structure in which two cyclic organic compounds having a ring are connected through one atom, that is, a spiro-atom. Or a compound.
  • the spiro structure or spiro compound of the present invention is a quaternary ammonium salt containing nitrogen in the spiro atom, and the cation of the spiro quaternary ammonium salt containing the spiro structure is represented by the following Chemical Formula 1:
  • the cations of the spiro quaternary ammonium salts include, but are not limited to, spiro bipyrrolidinium ions, piperidine spiro pyrrolidinium ions, spiro bipiperidinium ions, pyrrolidine spiro alkyl pyrrolidinium ions, pyrrolidine spiro alkyl Piperidinium ions, alkylpyrrolidine spiro alkylpyrrolidinium ions, morpholine spiro pyrrolidinium, azacyclobutane spiro azacyclobutyl ion, pyrrolidine spiro azacyclobutyl ion, difluoropyrrolidine spiro pyrroli Dinium ions, difluoropyrrolidine spiro difluoropyrrolidinium ions, and the like.
  • the anion that is used with a cation of the spiro quaternary ammonium salts are, for example, borates (BF 4 -) tetrafluoroborate, phosphate (PF 6 -) hexafluorophosphate, perchlorate (ClO 4 -), hexafluorophosphate Arsene carbonate (AsF 6 -), bis (methylsulfonyl trifluoromethanesulfonyl) imide ((CF 3 SO 2) 2 N -), or methyl sulfonate trifluoroacetate (SO 3 CF 3 -) are used and, more Preferably tetrafluoroborate (BF 4 ⁇ ) is used.
  • the spiro quaternary ammonium salt of the present invention is formed by combining the cations and anions, and the electrolyte solution of the present invention can be prepared by mixing only one or two or more of the electrolyte salts with the propionitrile solvent and, if necessary, lithium metal salts. (Eg LiBF 4 , LiPF 6 ) may be further mixed and used.
  • the electrolyte solution of the present invention by using a high purity propionitrile solvent, an electrolyte solution having excellent withstand voltage characteristics and low gas generation at high temperatures can be obtained.
  • the purity of the proionitrile solvent of the present invention is 99.9% (GC) to 99.999% (GC).
  • the spiro quaternary ammonium salt of the present invention is quaternized by reacting at least one cyclic amine with an alkylating agent in the presence of a base, followed by cooling and filtering the reactant metal compound (eg, metal tetrafluoroborate) , phosphate, metal perchlorate (ClO 4 -) of a metal-hexafluoro was stirred vigorously, methyl sulfonate) to (methylsulfonyl trifluoromethanesulfonyl) imide, or a metal trifluoroacetate Arsene carbonate, metal bis metal hexafluoro-filtered And dry.
  • the reactant metal compound eg, metal tetrafluoroborate
  • phosphate phosphate
  • Preferred examples of the base used in the present invention include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal oxides, alkaline earth metal oxides, alkali metal hydrates, alkaline earth metal hydrates, alkali metal amides, alkali metal carbonates, alkali metal hydrogen carbonates and alkali metal alkyls. And alkali metal alcoholates.
  • various solvents such as nitrile series such as acetonitrile, ketone series such as acetone, and carbonate series such as dimethyl carbonate can be used, and if necessary, after the reaction in water instead of the organic solvent, It may be prepared by separate purification and drying.
  • Cyclic amines that can be used to prepare spiro quaternary ammonium salts include pyrrolidine, piperidine, piperazine, morpholine, pyrrole, imidazole, pyrazole, pyrroline, pyrazine, pyrimidine, pyridazine ( pyridazine, quinoline, beta-carboline, ⁇ -carboline, phenoxazine, phenothiazine, oxazole, thiazole, furazan, indoline ), Imidazole, imidazolidine, quinuclidine, pyrazolidine and the like.
  • Suitable alkylating agents are also compounds in which halogen atoms which are sufficiently reactive to alkylate the nitrogen of the cyclic amine, such as chlorine or bromine, are located at the ends of 3 to 6 carbon atom chains, for example dihalo-alkanes and dihalohetero. Alkanes (dihalo-heteroalkane).
  • the spiro quaternary ammonium salt used in the present invention is dissolved in 0.5 mol / L to 3.0 mol / L, more preferably 0.8 mol / L to 2.0 mol / L.
  • concentration of the spiro quaternary ammonium salt is less than 0.5 mol / L, the conductivity of the electrolyte solution may be lowered, and the resistance of the capacitor may be increased. And the conductivity of the electrolyte solution may rather decrease.
  • an ultracapacitor using the electrolyte solution of the present invention there is provided an ultracapacitor using the electrolyte solution of the present invention.
  • the form of the supercapacitor using the electrolytic solution of the present invention is not particularly limited, and examples thereof include pouches, films, coins, cylinders, boxes, and the like.
  • a separator is sandwiched between two polarizable electrodes for a capacitor, and the electrolyte of the present invention is impregnated into the polarizable electrode as a driving electrolyte, which is then placed in an outer case. It is produced by receiving.
  • porous carbon materials such as activated carbon powder and carbon fiber; Precious metal oxide materials such as ruthenium oxide; Conductive polymer materials, such as polypyrrole and polythiophene, are preferable, and a porous carbon material is more preferable among these.
  • Propionitrile solvent was purified using a 50-stage distillation apparatus (BR Instrument, 9600) to be a high purity solvent for electrolytes of 99.95% (G.C.) or more.
  • 1M electrolyte solution was prepared using the solvent and the electrolyte salt, and the conductivity of the prepared electrolyte solution was measured by using a conductivity meter (Thermo, Orion 136S) at 25 ° C., and the results are shown in Table 1 below.
  • the propionitrile solvent was purified using a 50-stage distillation apparatus to be at least 99.95% (G.C.) high purity solvent for electrolytes, respectively.
  • the propionitrile solvent was purified using a 50-stage distillation apparatus to be at least 99.95% (G.C.) high purity solvent for electrolytes, respectively.
  • 1M electrolyte solution was prepared using the solvent and the electrolyte salt, and the conductivity of the prepared electrolyte solution was measured by using a conductivity meter (Thermo, Orion 136S) at 25 ° C., and the results are shown in Table 1 below.
  • the propionitrile solvent was purified using a 50-stage distillation apparatus to be at least 99.95% (G.C.) high purity solvent for electrolytes, respectively.
  • electrolyte solution 0.4 M electrolyte solution was prepared using the solvent and tetraethylammonium tetrafluoroborate (SK Chemicals, SkyLyte-TEABF4, 99.9%), and the conductivity of the prepared electrolyte solution was measured at 25 ° C. (Thermo, Orion 136S), the results are shown in Table 1.
  • the electrolyte salt is difficult to dissolve more than 0.4M ?? Since the electrolyte solution of 1M concentration could not be prepared.
  • the propylene carbonate (PC) solvent was purified to a high purity solvent of 99.95% (G.C.) or more using a 50-stage distillation apparatus, thereby preparing a solvent for an electrolyte.
  • 1M electrolyte solution was prepared using the solvent and tetraethylammonium tetrafluoroborate (SK Chemicals, SkyLyte-TEABF4, 99.9%), and the conductivity of the prepared electrolyte solution was measured at 25 ° C. (Thermo, Orion 136S), and the results are shown in Table 1.
  • the acetonitrile solvent was purified to a high purity solvent of 99.95% (G.C.) or more using a 50-stage distillation apparatus, thereby preparing a solvent for an electrolyte.
  • 1M electrolyte solution was prepared using the solvent and tetraethylammonium tetrafluoroborate (SK Chemicals, SkyLyte-TEABF4, 99.9%), and the conductivity of the prepared electrolyte solution was measured at 25 ° C. (Thermo, Orion 136S), and the results are shown in Table 1.
  • Activated carbon (BP-20): binder (PVDF): conductor (SPB) 90: 7: 3
  • BP-20 binder
  • PVDF binder
  • SPB conductor
  • PN propionitrile
  • PC propylene carbonate
  • AN acetonitrile
  • TEABF 4 tetraethylammonium tetrafluoroborate.
  • Comparative Example 1-3 is a case where an electrolyte solution is prepared by dissolving tetraethylammonium tetrafluoroborate (TEABF 4 ), which is a representative electrolyte salt, in propionitrile solvent or PC and AN, which are representative solvents.
  • TEABF 4 tetraethylammonium tetrafluoroborate
  • PC and AN which are representative solvents.
  • Comparative Example 3 is not suitable for use at high temperature because the conductivity is excellent, but the pouch swells a lot due to the amount of gas generated at high temperature, the maximum operating voltage is also limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

프로피오니트릴 용매에 스피로 4급 암모늄염이 용해되어 있는 초고용량 커패시터용 전해질 용액 및 이를 이용한 초고용량 커패시터가 개시되어 있다. 본 발명의 초고용량 커패시터용 전해질 용액은 전도도 및 내전압 특성이 우수하면서도 고온에서도 가스 발생이 적어 소형 전자기기로부터 대형 자동차 용도까지 광범위한 산업 분야에 사용이 가능하다.

Description

초고용량 커패시터용 전해질 용액
본 발명은 초고용량 커패시터용 전해질 용액에 관한 것이며, 보다 상세하게는 프로피오니트릴 용매에 스피로 4급 암모늄염이 용해되어 있는 초고용량 커패시터용 전해질 용액에 관한 것이다.
최근 산업의 고도화 및 정보통신의 발달로 에너지 저장장치에 대한 개발이 2차 전지, 커패시터분야를 중심으로 활발히 진행중에 있다. 이 중 초고용량 커패시터(supercapacitor)는 급속 충방전 가능성, 고효율, 넓은 작동온도범위 및 반영구적 수명 등의 장점을 가지는, 전해콘덴서 및 이차전지의 중간적 특성을 갖는 에너지 저장장치로, 그 대표적인 예로 전기이중층 커패시터(Electric Double-Layer Capacitor, EDLC)를 들 수 있다.
초고용량 커패시터는 2차 전지와 차별되게 출력특성, 고온 신뢰성(수명 특성 등) 및 최대 작동전압 등의 특성이 매우 중요하다. 일반적으로 2차전지의 경우 상대적으로 출력특성이 저조하며 고온 신뢰성(수명특성 등)이 제한적이기 때문에 해당 특성은 커패시터의 차별화된 특성으로 중요한 요소이다. 또 최대 작동전압은 커패시터의 저장 가능한 최대 에너지량에 직접적으로 영향을 미치므로 역시 중요한 요소이다 (E = 1/2 × C × V2 (E=에너지량, C=정전용량, V=전압)).
초고용량 커패시터에서는 전해질의 전도도가 클수록 셀 내부저항이 줄어들어 출력특성이 향상되며, 전해질의 내전압 특성은 커패시터의 최대작동전압에 직접 영향을 미치며, 전해질의 신뢰성(고온특성 등)은 커패시터 전체의 신뢰성에 크게 영향을 미친다. 따라서 초고용량 커패시터에서 사용되는 전해질의 선택은 매우 중요하다.
일반적으로 초고용량 커패시터에서 사용되는 전해질은 수계 전해질, 비수계 전해질 및 고체전해질로 분류가 된다. 이 중 수계 전해질은 전도도가 커 기본 셀의 내부저항을 줄일 수 있으나 사용전압이 낮아 커패시터의 에너지 밀도가 낮다. 한편 비수계 전해질은 일반적으로 수계 전해질 보다 점도가 높고, 1/10~ 1/100 배 정도 낮은 전도도를 갖는다. 따라서 비수계 전해질을 사용하는 경우 내부저항이 커져서 출력 특성이 수계 전해질보다 좋지 못한 단점이 있다. 그러나 비수계 전해질의 경우, 적용 가능한 전위차가 높아 사용전압의 제곱에 비례하는 커패시터의 에너지 밀도를 크게 높일 수 있고 사용가능한 온도 범위가 넓으며, 고내압화, 소형화 등이 가능하다는 장점이 있어 최근 이에 대한 연구가 활발히 진행되고 있다.
일반적으로 기존의 초고용량 커패시터용 비수계 전해질 용액의 경우 용매로 주로 아세토니트릴(Acetonitrile, AN) 또는 프로필렌 카보네이트(Propylene Carbonate, PC) 등을 사용하고, 전해질염으로는 테트라에틸암모늄 테트라플루오로보레이트(TEABF4) 등의 암모늄염 또는 리튬금속염(예: LiBF4, LiPF6)을 많이 사용하고 있다.
그러나, 용매로 아세토니트릴을 사용하는 경우 용매 자체의 끊는점 (81~82℃)이 낮아 상대적으로 고온에서 가스 발생량이 많으며, 프로필렌 카보네이트를 사용하는 경우에는 용매자체의 끊는점(240℃)이 높아 기본적으로는 고온특성에 유리한 면이 있으나 아세토니트릴 대비 상대적으로 부반응이 많아서 고전압 작동에 반드시 유리한 것은 아니며, 높은 점도 및 낮은 전도도로 인하여 출력특성이 상대적으로 저조하다는 문제점이 있다.
이에 본 발명자들은 아세토니트릴 및 프로필렌 카보네이트의 장점만을 갖는 용매를 포함하는 초고용량 커패시터용 전해질을 개발하고자 노력한 결과, 고순도의 프로피오니트릴 용매에, 스피로(spiro) 4급 암모늄염을 용해한 전해질 용액은 전도도 및 내전압 특성이 우수하면서도, 고온에서 커패시터 내부에 가스가 적게 발생하는 점을 확인하고 본 발명을 완성하기에 이르렀다.
따라서 본 발명의 목적은 프로피오니트릴 용매에 스피로 4급 암모늄염이 용해되어 있는, 전도도 및 내전압 특성이 우수하고, 고온에서 가스 발생이 적은 초고용량 커패시터용 전해질 용액을 제공하는데 있다.
본 발명의 다른 목적은 상기 고용량 커패시터용 전해질 용액을 이용한 초고용량 커패시터를 제공하는데 있다.
일 양태에 따르면, 본 발명은 프로피오니트릴 용매에 스피로 4급 암모늄염이 용해되어 있는 초고용량 커패시터용 전해질 용액을 제공한다.
다른 바람직한 일 구현예에 따르면, 본 발명의 스피로 4급 암모늄염은 0.5mol/L 내지 3.0mol/L로 용해되어 있다.
또 다른 바람직한 일 구현예에 따르면, 스피로 4급 암모늄염의 양이온은 다음의 화학식 1로 표현되는 것으로, 여기서 n1, n2, n3 및 n4는 각각 독립적으로 0-6의 정수이고, X11, X12, X13 및 X14는 각각 독립적으로 CH, CH2, 또는 그 수소(H)의 일부 또는 전부가 할로겐 또는 탄소수 1-6의 알킬기로 치환된 것, 또는 탄소수 3-8의 사이클릭 또는 N, O 또는 S를 포함하는 헤테로사이클릭이며, X21 X22는 각각 독립적으로 상기 X11, X12, X13, X14, NH, O 또는 S이고, X31 X32는 각각 독립적으로 상기 X11, X12, X13, X14, H, 탄소수 1-6의 알콕시 또는 탄소수 1-6의 알케닐기이다.
화학식 1
Figure PCTKR2011000064-appb-I000001
바람직한 일 구현예에 따르면, 본 발명의 스피로 4급 암모늄염의 음이온은 테트라플루오로보레이트(BF4 -), 헥사플루오로포스페이트(PF6 -), 퍼클로레이트(ClO4 -), 헥사플루오로아르센네이트(AsF6 -), 비스(트리플루오로메틸설포닐)이미드((CF3SO2)2N-), 또는 트리플루오로메틸설포네이트(SO3CF3 -)이다.
다른 양태에 따르면, 본 발명은 상기 초고용량 커패시터용 전해질 용액을 이용한 초고용량 커패시터를 제공한다.
본 발명의 전해질 용액은 전도도가 우수하고, 초고용량 커패시터에 사용시 내전압 특성이 크게 증가될 수 있다. 또 본 발명의 전해질 용액은 고온에서도 가스 발생이 적어 소형 전자기기로부터 대형 자동차 용도까지 광범위한 산업 분야에 사용이 가능하다.
본 발명의 일 양태에 따르면, 본 발명은 프로피오니트릴 용매에 스피로 4급 암모늄염이 용해되어 있는 초고용량 커패시터용 전해질 용액을 제공한다.
본 발명의 전해질의 용매로 사용된 프로피오니트릴은 종래에 초고용량 캐퍼시터에 대표적으로 사용되고 있는 아세토니트릴, 프로필렌 카보네이트의 장단점을 보완하기 위하여 사용한 물질로 내전압 특성이 우수하며 고온에서 가스가 적게 발생하는 장점을 가지는 니트릴 계열의 용매이다. 따라서 본 발명의 목적에 부합하는 한, 본 발명의 프로피오니트릴과 유사한 특성을 갖는 니트릴 계열의 화합물이 본 발명의 용매로 일부 사용가능하다. 바람직한 니트릴 계열 용매의 예로는 본 발명의 프로피오니트릴 이외에, 부티로니트릴(butyronitrile), 발레로니트릴(valeronitrile), 카프릴로니트릴(caprylonitrile), 헵탄니트릴(heptanenitrile), 사이클로펜탄 카보니트릴, 사이클로헥산 카본니트릴, 2-플루오로벤조니트릴(2-fluorobenzonitrile), 4-플루오로벤조니트릴, 디플루오로벤조니트릴, 트리플루오로벤조니트릴, 2-클로로벤조니트릴, 4-클로로벤조니트릴, 디클로로벤조니트릴, 트리클로로벤조니트릴, 2-클로로-4-플루오로벤조니트릴, 4-클로로-2-플루오로벤조니트릴, 페닐아세토니트릴(phenylacetonitrile), 2-플루오로페닐아세토니트릴 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 하나 이상의 화합물을 들 수 있다.
본 발명의 초고용량 커패시터용 전해질 용액으로서 상기 프로피오니트릴만을 사용하는 경우, 프로피오니트릴은 일반적으로 전해질염을 용해시키는 능력이 저조하여 고유전율의 다른 용매를 혼합하지 않으면 사용이 불가능한 단점이 있다. 예를들어 본 발명의 프로피오니트릴 용매에 대표적인 전해질염인 테트라에틸암모늄 테트라플루오로보레이트(TEABF4)를 용해한 경우 최대 0.4M 이상을 용해시킬 수 없게된다.
따라서 본 발명은 프로피오니트릴 용매에 용해도가 상기 테트라에틸암모늄 테트라플루오로보레이트(TEABF4)에 비해 3-5배 이상 우수하고, 내전압특성도 우수한 스피로(spiro)로 4급 암모늄염을 용해시킨 용액을 초고용량 커패시터의 전해질 용액으로 사용함으로써 프로피오니트릴 용매의 단독 사용이 가능하도록 한 것이다.
본 발명에서 스피로 구조 또는 스피로 화합물 등의 의미로 사용되는 용어 '스피로(spiro)'는 고리를 갖는 2개의 사이클릭 유기 화합물이 하나의 원자, 즉 스피로 원자(spiro-atom)를 통해 연결되어 있는 구조 또는 화합물을 의미한다.
본 발명의 스피로 구조 또는 스피로 화합물은 스피로 원자에 질소를 포함하고 있는 4급 암모늄염이며, 스피로 구조가 포함되어 있는 스피로 4급 암모늄염의 양이온은 다음의 화학식 1로 표현된다:
화학식 1
Figure PCTKR2011000064-appb-I000002
여기서 n1, n2, n3 및 n4는 각각 독립적으로 0-6의 정수이고, X11, X12, X13 및 X14는 각각 독립적으로 CH, CH2, 또는 그 수소(H)의 일부 또는 전부가 할로겐(바람직하게는 플루오르(F)) 또는 탄소수 1-6의 알킬기로 치환된 것, 또는 탄소수 3-8의 사이클릭 또는 N, O 또는 S를 포함하는 헤테로사이클릭이며,X21 X22는 각각 독립적으로 상기 X11, X12, X13, X14, NH, O 또는 S이고,X31 X32는 각각 독립적으로 상기 X11, X12, X13, X14, H, 탄소수 1-6의 알콕시 또는 탄소수 1-6의 알케닐기이다.
상기 스피로 4급 암모늄염의 양이온으로는 이에 한정하는 것은 아니지만 스피로 비피롤리디늄 이온, 피페리딘 스피로 피롤리디늄 이온, 스피로 비피페리디늄 이온, 피롤리딘 스피로 알킬 피롤리디늄 이온, 피롤리딘 스피로 알킬 피페리디늄 이온, 알킬피롤리딘 스피로 알킬피롤리디늄 이온, 모르폴린 스피로 피롤리디늄, 아자시클로부탄 스피로 아자시클로부틸 이온, 피롤리딘 스피로 아자시클로부틸 이온, 디플루오로피롤리딘 스피로 피롤리디늄 이온, 또는 디플루오로피롤리딘 스피로 디플루오로피롤리디늄 이온 등을 예시할 수 있다.
한편, 상기 스피로 4급 암모늄염의 양이온과 함께 사용되는 음이온으로는 예를들어, 테트라플루오로보레이트(BF4 -), 헥사플루오로포스페이트(PF6 -), 퍼클로레이트(ClO4 -), 헥사플루오로아르센네이트(AsF6 -), 비스(트리플루오로메틸설포닐)이미드((CF3SO2)2N-), 또는 트리플루오로메틸설포네이트(SO3CF3 -)이 사용되며, 보다 바람직하게는 테트라플루오로보레이트(BF4 -)이 사용된다.
본 발명의 스피로 4급 암모뮴염은 상기 양이온 및 음이온을 조합함으로써 형성되며, 본 발명의 전해질 용액은 상기 전해질 염의 단독 또는 2종 이상을 상기 프로피오니트릴 용매와 혼합함으로써 제조될 수 있으며 필요시 리튬금속염(예: LiBF4, LiPF6)을 더 혼합하여 사용할 수도 있다. 바람직한 구현예에 따르면, 본 발명은 고순도의 프로피오니트릴 용매를 사용함으로써 내전압 특성이 우수하면서, 고온에서 가스 발생이 적은 전해질 용액을 얻을 수 있다. 본 발명의 프로리오니트릴 용매의 순도는 99.9%(G.C.) 내지 99.999%(G.C.)이다.
또 본 발명의 스피로 4급 암모늄염은 염기 존재하에서 적어도 하나의 사이클릭 아민을 알킬화제와 반응시켜 4차화한 후, 냉각 및 여과한 반응물과 최종 조합하고자 하는 음이온의 금속화합물(예: 금속 테트라플루오로보레이트, 금속헥사플루오로포스페이트, 금속 퍼클로레이트(ClO4 -), 금속 헥사플루오로아르센네이트, 금속 비스(트리플루오로메틸설포닐)이미드, 또는 금속 트리플루오로메틸설포네이트)을 격렬히 교반한 다음 여과 및 건조하여 제조가능하다. 본 발명에서 사용되는 염기의 바람직한 예에는 알칼리 금속 수산화물, 알칼리 토금속 수산화물, 알칼리 금속 산화물, 알칼리 토금속 산화물, 알칼리 금속 수화물, 알칼리 토금속 수화물, 알칼리 금속 아미드, 알칼리 금속 카보네이트, 알칼리 금속 수소 카보네이트, 알칼리 금속 알킬, 알칼리 금속 알코올레이트 등을 들 수 있다. 또한 상기 반응을 유기 용매에서 실시할 경우에는 아세토니트릴 등의 니트릴계, 아세톤 등의 케톤계, 디메틸카보네이트 등의 카보네이트계 등 다양한 용매의 사용이 가능하며 필요에 따라서는 유기용매 대신에 물에서 반응 후 분리정제 및 건조하여 제조할 수도 있다.
또 스피로 4급 암모늄염을 제조하는데 사용가능한 사이클릭 아민에는 피롤리딘, 피페리딘, 피페라진, 모르폴린(morpholine), 피롤, 이미다졸, 피라졸, 피롤린, 피라진, 피리미딘, 피리다진(pyridazine), 퀴놀린(quinoline), 베타-카보린(β-carboline), 페녹사진(phenoxazine), 페노티아진(phenothiazine), 옥사졸, 티아졸(thiazole), 퓨라잔(furazan), 인돌린(indoline), 이미다졸, 이미다졸리딘, 퀴누클리딘(quinuclidine), 피라졸리딘 등을 포함한다. 또 적절한 알킬화제는 염소 또는 브롬처럼 상기 사이클릭 아민의 질소를 알킬화시키기에 충분히 반응성이 있는 할로겐 원자가 3 내지 6개의 탄소원자 사슬의 말단에 위치하고 있는 화합물로, 그 예로는 디할로-알칸 및 디할로헤테로알칸(dihalo-heteroalkane)을 들 수 있다.
본 발명의 바람직한 일 구현예에 따르면, 본 발명에서 사용하는 스피로 4급 암모늄염은 0.5mol/L 내지 3.0mol/L, 보다 바람직하게는 0.8mol/L 내지 2.0mol/L 용해되어 있다. 상기 스피로 4급 암모늄염의 농도가 0.5mol/L 미만이면 전해질 용액의 전도도가 낮아져 커패시터의 저항이 증가될 수 있고, 3.0mol/L을 초과하면 전해질염이 완전히 용해되지 않거나, 저온에서 일부 석출될 수 있고, 전해질 용액의 전도도가 오히려 감소할 수 있다.
본 발명의 일 양태에 따르면 본 발명의 전해질 용액을 이용한 초고용량 커패시터가 제공된다. 본 발명의 전해액을 이용되는 초고용량 커패시터의 형태는 특히 한정되는 것은 아니나, 예를들어, 파우치형, 필름형, 코인형, 원통형, 상자형 등을 들 수 있다. 본 발명의 초고용량 커패시터, 예컨대 전기 이중층 커패시터는 커패시터용의 분극성 전극 2매 사이에 세퍼레이터를 끼워 넣고, 구동용 전해액으로서 본 발명의 전해액을 상기 분극성 전극에 함침시킨 후, 이를 다시 외장 케이스에 수용시킴으로서 제작된다. 상기 분극성 전극은 특히 한정되는 것은 아니나, 활성탄 분말, 탄소섬유 등의 다공성 탄소 재료; 산화 루테늄 등의 귀금속 산화물 재료; 폴리피롤, 폴리티오펜 등의 도전성 고분자 재료 등이 바람직하고, 그 중에서도 다공성 탄소 재료가 보다 바람직하다.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
실시예 1
프로피오니트릴 용매를 이론단수 50단의 증류장치(BR Instrument, 9600)를 사용하여 각각 99.95% (G.C.) 이상의 전해질용 고순도 용매가 되도록 정제 제조하였다.
71.1g의 피롤리딘, 215.9g의 1,4-디브로모부탄 및 138g의 포타슘카보네이트를 1 리터의 아세토니트릴에 첨가하고 교반 및 가열하면서 8시간 동안 환류하고 냉각 및 여과하여 얻은 반응물과 125.9g의 포타슘 테트라플루오로보레이트를 1리터의 아세토니트릴에서 다시 격렬히 교반한 다음에 여과 및 건조하여 표 1의 전해질염을 얻었다.
상기 용매와 전해질염을 사용하여 1M의 전해질 용액을 제조하고, 제조된 전해질 용액의 전도도를 25℃에서 전도도계(Thermo, Orion 136S)로 측정하여, 그 결과를 표 1에 나타내었다.
실시예 2
프로피오니트릴 용매를 이론단수 50단의 증류장치를 사용하여 각각 99.95% (G.C.) 이상의 전해질용 고순도 용매가 되도록 정제 제조하였다.
85.2g의 피페리딘, 215.9g의 1,4-디브로모부탄 및 138g의 포타슘카보네이트를 1 리터의 아세토니트릴에 첨가하고 교반 및 가열하면서 8시간 동안 환류하고 냉각 및 여과하여 얻은 반응물과 125.9g의포타슘 테트라플루오로보레이트를 1리터의 아세토니트릴에서 다시 격렬히 교반한 다음에 여과 및 건조하여 표 1의 전해질염을 얻었다.
*상기 용매와 전해질염을 사용하여 1M의 전해질 용액을 제조하고, 제조된 전해질 용액의 전도도를 25℃에서 전도도계(Thermo, Orion 136S)로 측정하여, 그 결과를 표 1에 나타내었다.
실시예 3
프로피오니트릴 용매를 이론단수 50단의 증류장치를 사용하여 각각 99.95% (G.C.) 이상의 전해질용 고순도 용매가 되도록 정제 제조하였다.
113.2g의 디메틸-피페리딘, 215.9g의 1,4-디브로모부탄 및 138g의 포타슘카보네이트를 1 리터의 아세토니트릴에 첨가하고 교반 및 가열하면서 8시간 동안 환류하고 냉각 및 여과하여 얻은 반응물과 125.9g의포타슘 테트라플루오로보레이트를 1리터의 아세토니트릴에서 다시 격렬히 교반한 다음에 여과 및 건조하여 표 1의 전해질염을 얻었다.
상기 용매와 전해질염을 사용하여 1M의 전해질 용액을 제조하고, 제조된 전해질 용액의 전도도를 25℃에서 전도도계(Thermo, Orion 136S)로 측정하여, 그 결과를 표 1에 나타내었다.
비교예 1
프로피오니트릴 용매를 이론단수 50단의 증류장치를 사용하여 각각 99.95% (G.C.) 이상의 전해질용 고순도 용매가 되도록 정제 제조하였다.
상기 용매와 테트라에틸암모늄 테트라플루오로보레이트(SK케미칼, SkyLyte-TEABF4, 99.9%) 전해질염을 사용하여 0.4M의 전해질 용액을 제조하고, 제조된 전해질 용액의 전도도를 25℃에서 전도도계(Thermo, Orion 136S)로 측정하여, 그 결과를 표 1에 나타내었다. 상기 전해질염은 0.4M 이상 용해 되기 어렵기 ??문에 1M 농도의 전해질용액을 제조하지 못하였다.
비교예 2
프로필렌카보네이트(PC) 용매를 이론단수 50단의 증류장치를 사용하여99.95% (G.C.) 이상의 고순도 용매가 되도록 정제하여 전해질용 용매를 정제 제조하였다.
상기 용매와 테트라에틸암모늄 테트라플루오로보레이트(SK케미칼, SkyLyte-TEABF4, 99.9%) 전해질염을 사용하여 1M의 전해질 용액을 제조하고, 제조된 전해질 용액의 전도도를 25℃에서 전도도계(Thermo, Orion 136S)로 측정하여, 그 결과를 표 1에 나타내었다.
비교예 3
아세토니트릴 용매를 이론단수 50단의 증류장치를 사용하여 99.95% (G.C.) 이상의 고순도 용매가 되도록 정제하여 전해질용 용매를 정제 제조하였다.
상기 용매와 테트라에틸암모늄 테트라플루오로보레이트(SK케미칼, SkyLyte-TEABF4, 99.9%) 전해질염을 사용하여 1M의 전해질 용액을 제조하고, 제조된 전해질 용액의 전도도를 25℃에서 전도도계(Thermo, Orion 136S)로 측정하여, 그 결과를 표 1에 나타내었다.
전기 이중층 커패시터의 제조
활성탄(BP-20):바인더(PVDF):도전재(SPB)=90:7:3으로 혼합하여 제조한 슬러리액을 알루미늄 호일(Al Foil)에 코팅 및 롤 프레스(Roll Press)하여 양극 및 음극으로 사용되는 활성탄 전극을 제조하였다. 다음으로 제조된 전극을 5cmㅧ5cm 크기로 절단하고, 양극, 세퍼레이터(Celgard, PP), 음극을 차례로 얹은 다음 파우치에 삽입하고, 상기 실시예 1 내지 3 및 비교예 1 내지 3에서 제조한 전해질 용액을 파우치에 주입하여 파우치 타입의 커패시터를 제조하였다.
전기화학분석기(Electrochemical Analyzer)(CH Instrument, 608B)를 사용하여 제조된 커패시터의 기본적인 특성(내전압 특성)을 평가하였고, 75℃에서 1000시간 동안 고온가속시험을 진행하여 파우치 타입 커패시터의 내부에서 발생한 가스에 따른 파우치 두께 변화를 비교하였다. 그 결과를 하기 표 1에 나타내었다.
표 1
Figure PCTKR2011000064-appb-I000003
PN: 프로피오니트릴, PC: 프로필렌 카보네이트, AN: 아세토니트릴,
TEABF4: 테트라에틸암모늄 테트라플루오로보레이트.
비교예 1-3은 대표적인 전해질염인 테트라에틸암모늄 테트라플루오로보레이트(TEABF4)을 프로피오니트릴 용매 또는 대표적인 용매인 PC 및 AN 에 용해시켜 전해액을 제조한 경우이다. 표 1를 보면 알 수 있 듯이, 비교예 1- 2의 경우는 전해액의 전도도가 상대적으로 저조하며 커패시터 제조시 최대 작동전압도 제한적이다. 비교예 3은 전도도는 우수한 반면에 고온에서 가스 발생량이 많아서 파우치가 많이 부풀어 오르기 때문에, 고온에서 사용하기가 부적합하며, 최대 작동전압도 제한적이다.
그러나, 실시예 1-3 과 같이 고순도 프로피오니트릴(Propionitrile) 용매와 스피로(Spiro) 구조의 암모늄염 화합물을 전해질염으로 사용한 전해액의 경우 전도도가 우수하고, 커패시터 적용시 최대 작동전압을 크게 증가시킬 수 있으며, 고온에서도 가스발생이 적은 것을 알 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (5)

  1. 프로피오니트릴 용매에 스피로 4급 암모늄염이 용해되어 있는 초고용량 커패시터용 전해질 용액.
  2. 제 1항에 있어서, 상기 스피로 4급 암모늄염이 0.5mol/L 내지 3.0mol/L로 용해되어 있는 것을 특징으로 하는 초고용량 커패시터용 전해질 용액.
  3. 제 1항에 있어서, 상기 스피로 4급 암모늄염의 양이온은 다음의 화학식 1로 표시되는 것을 특징으로 하는 초고용량 커패시터용 전해질 용액.
    화학식 1
    Figure PCTKR2011000064-appb-I000004
    여기서, n1, n2, n3 및 n4는 각각 독립적으로 0-6의 정수이고,
    X11, X12, X13 및 X14는 각각 독립적으로 CH, CH2, 또는 그 수소(H)의 일부 또는 전부가 할로겐 또는 탄소수 1-6의 알킬기로 치환된 것, 또는 탄소수 3-8의 사이클릭 또는 N, O 또는 S를 포함하는 헤테로사이클릭이며,
    X21 X22는 각각 독립적으로 상기 X11, X12, X13, X14, NH, O 또는 S이고,
    X31 X32는 각각 독립적으로 상기 X11, X12, X13, X14, H, 탄소수 1-6의 알콕시 또는 탄소수 1-6의 알케닐기임.
  4. 제 1항에 있어서, 상기 스피로 4급 암모늄염의 음이온은 테트라플루오로보레이트(BF4-), 헥사플루오로포스페이트(PF6 -), 퍼클로레이트(ClO4 -), 헥사플루오로아르센네이트(AsF6 -), 비스(트리플루오로메틸설포닐)이미드((CF3SO2)2N-), 또는 트리플루오로메틸설포네이트(SO3CF3 -) 중 1종 이상 선택되는 것을 특징으로 하는 초고용량 커패시터용 전해질 용액.
  5. 제 1항 내지 제 4항 중 어느 한 항에 기재된 초고용량 커패시터용 전해질 용액을 이용한 초고용량 커패시터.
PCT/KR2011/000064 2010-01-07 2011-01-06 초고용량 커패시터용 전해질 용액 WO2011083974A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100001355A KR20110080913A (ko) 2010-01-07 2010-01-07 초고용량 커패시터용 전해질 용액
KR10-2010-0001355 2010-01-07

Publications (2)

Publication Number Publication Date
WO2011083974A2 true WO2011083974A2 (ko) 2011-07-14
WO2011083974A3 WO2011083974A3 (ko) 2011-11-24

Family

ID=44305941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000064 WO2011083974A2 (ko) 2010-01-07 2011-01-06 초고용량 커패시터용 전해질 용액

Country Status (2)

Country Link
KR (1) KR20110080913A (ko)
WO (1) WO2011083974A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188203A4 (en) * 2014-10-30 2018-04-25 Daikin Industries, Ltd. Electrolyte solution and electrochemical device
CN115124454A (zh) * 2022-07-14 2022-09-30 山东氟能化工材料有限公司 一种复杂结构的螺环季铵盐的合成方法及其产品和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130131565A (ko) * 2012-05-24 2013-12-04 에스케이케미칼주식회사 이차 전지용 전해액 및 첨가제

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172990A (ja) * 2005-12-21 2007-07-05 Sony Corp 電解質および電池
KR20080002911A (ko) * 2005-04-12 2008-01-04 수미토모 케미칼 컴퍼니 리미티드 전기 이중층 캐패시터
JP2008130690A (ja) * 2006-11-17 2008-06-05 Mitsubishi Chemicals Corp 電気化学キャパシタ及び電気化学キャパシタ用非水系電解液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080002911A (ko) * 2005-04-12 2008-01-04 수미토모 케미칼 컴퍼니 리미티드 전기 이중층 캐패시터
JP2007172990A (ja) * 2005-12-21 2007-07-05 Sony Corp 電解質および電池
JP2008130690A (ja) * 2006-11-17 2008-06-05 Mitsubishi Chemicals Corp 電気化学キャパシタ及び電気化学キャパシタ用非水系電解液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188203A4 (en) * 2014-10-30 2018-04-25 Daikin Industries, Ltd. Electrolyte solution and electrochemical device
US10460882B2 (en) 2014-10-30 2019-10-29 Daikin Industries, Ltd. Electrolyte solution and electrochemical device
CN115124454A (zh) * 2022-07-14 2022-09-30 山东氟能化工材料有限公司 一种复杂结构的螺环季铵盐的合成方法及其产品和应用

Also Published As

Publication number Publication date
KR20110080913A (ko) 2011-07-13
WO2011083974A3 (ko) 2011-11-24

Similar Documents

Publication Publication Date Title
Stettner et al. Protic ionic liquids in energy storage devices: Past, present and future perspective
US7479353B2 (en) Energy storage devices
Xu et al. Synthesis and properties of novel TEMPO-contained polypyrrole derivatives as the cathode material of organic radical battery
US9017881B2 (en) Electrolyte comprising amide compound and electrochemical device containing the same
CN103346021A (zh) 一种混合型电化学电容器
KR20100038400A (ko) 리튬 에너지 저장 장치
KR20070094961A (ko) 제4급 암모늄염, 전해질, 전해액 및 전기 화학 디바이스
Yan et al. 1-Alkyl-2, 3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquids as highly safe electrolyte for Li/LiFePO4 battery
US20090268377A1 (en) Electrolyte solution and super capacitor including the same
Puttaswamy et al. An account on the deep eutectic solvents-based electrolytes for rechargeable batteries and supercapacitors
KR102118480B1 (ko) 축전 디바이스용 전해질염 및 전해액 및 축전 디바이스
Horiuchi et al. Synthesis and evaluation of a novel pyrrolidinium-based zwitterionic additive with an ether side chain for ionic liquid electrolytes in high-voltage lithium-ion batteries
Dong et al. A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO 4 battery
WO2011083974A2 (ko) 초고용량 커패시터용 전해질 용액
CN102532176A (zh) 二氟草酸硼酸铵类电解质及其制备方法与纯化方法
JP2006190618A (ja) イオン性液体組成物及びそれを含む電気化学デバイス
CN109478472B (zh) 电化学设备用电解质、电解液以及电化学设备
Ebina et al. Use of tetraethylammonium bis (oxalato) borate as electrolyte for electrical double-layer capacitors
EP3087631A1 (en) Electrodes for energy storage devices
JP2013053105A (ja) メソイオン化合物、当該メソイオン化合物を含む電池用電解液、及び当該電解液を含む電池
WO2011065780A2 (ko) 전해질 용액 및 이를 포함하는 초고용량 커패시터
JP3723140B2 (ja) キノキサリン系化合物を用いた蓄電素子
Makhlooghiazad et al. Electrolytes for sodium batteries
Tian Ionic Liquids for Supercapacitors
KR20150143225A (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18-10-2012)

122 Ep: pct application non-entry in european phase

Ref document number: 11731912

Country of ref document: EP

Kind code of ref document: A2