WO2011083706A1 - 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路 - Google Patents

無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路 Download PDF

Info

Publication number
WO2011083706A1
WO2011083706A1 PCT/JP2010/073409 JP2010073409W WO2011083706A1 WO 2011083706 A1 WO2011083706 A1 WO 2011083706A1 JP 2010073409 W JP2010073409 W JP 2010073409W WO 2011083706 A1 WO2011083706 A1 WO 2011083706A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
reference signal
mobile station
base station
transmission
Prior art date
Application number
PCT/JP2010/073409
Other languages
English (en)
French (fr)
Inventor
翔一 鈴木
渉 大内
中嶋 大一郎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44305443&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011083706(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201080060927.4A priority Critical patent/CN102696264B/zh
Priority to US13/520,960 priority patent/US9100924B2/en
Priority to KR1020127020574A priority patent/KR101346932B1/ko
Priority to EA201290624A priority patent/EA022552B1/ru
Priority to EP10842218.9A priority patent/EP2523510B1/en
Publication of WO2011083706A1 publication Critical patent/WO2011083706A1/ja
Priority to US14/754,385 priority patent/US9264197B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter

Definitions

  • the present invention relates to a radio communication system, a base station apparatus, a mobile station apparatus, and a radio communication in which a mobile station apparatus transmits an uplink channel measurement reference signal (sounding reference signal, sounding reference signal; SRS) to the base station apparatus.
  • the present invention relates to a method and an integrated circuit.
  • LTE Long Term Evolution
  • EUTRA Advanced Universal Terrestrial Radio Access
  • LTE-A Long Term Evolution-Advanced
  • A- EUTRA Advanced Evolved Universal Terrestrial Radio Access-
  • an orthogonal frequency division multiplexing (OFDM) method which is multicarrier transmission, is used as a communication method (downlink) from a base station device to a mobile station device.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • the base station apparatus uses an uplink channel measurement reference signal (sounding reference signal, Sounding Reference Signal; SRS) transmitted from the mobile station apparatus, and is a PUSCH that is a data transmission channel. Radio resource allocation, coding rate, and modulation scheme are determined.
  • SRS Sounding Reference Signal
  • transmission power control Transmit Power Control
  • TPC Transmit Power Control
  • P SRS (i) represents the transmission power value of SRS in the i-th subframe.
  • min ⁇ X, Y ⁇ is a function for selecting the minimum value of X and Y.
  • PO_PUSCH is the transmission power that is the basis of PUSCH, and is a value specified from an upper layer.
  • P SRS_OFFSET is an offset indicating a difference between transmission powers that is the basis of PUSCH and SRS, and is a value specified by an upper layer.
  • M SRS indicates the number of physical resource blocks (PRB) that are units of radio resource allocation used for SRS transmission, and the transmission power increases as the number of physical resource blocks used for SRS transmission increases. Indicates that it will grow.
  • PRB physical resource blocks
  • PL indicates a path loss
  • is a coefficient by which the path loss is multiplied, and is specified by an upper layer
  • f is an offset value (transmission power control value by closed loop or open loop) calculated from a TPC command transmitted by downlink control information (DCI).
  • DCI downlink control information
  • PCMAX is a maximum transmission power value, which may be a physical maximum transmission power or may be specified from an upper layer.
  • LTE-A has backward compatibility with LTE, that is, an LTE-A base station apparatus performs radio communication simultaneously with both LTE-A and LTE mobile station apparatuses, and LTE.
  • -A mobile station apparatus is required to be able to perform radio communication with both LTE-A and LTE base station apparatuses, and LTE-A is considered to use the same channel structure as LTE. ing.
  • Non-Patent Document 1 in order to improve the accuracy of SRS in LTE-A, in addition to periodic SRS transmission, the mobile station device transmits SRS only once when the base station device is requested to transmit SRS. It is proposed to introduce technology to do.
  • periodic SRS periodic SRS
  • aperiodic SRS aperiodic SRS or one shot
  • the base station apparatus sets the radio resource for the aperiodic SRS separately from the period and radio resource (frequency band and cyclic shift) settings for the periodic SRS in the mobile station apparatus, and transmits the PDCCH.
  • An indicator requesting SRS is included in the downlink control information and transmitted to the mobile station apparatus. When an SRS is requested by the indicator, the mobile station device transmits the SRS only once according to the setting related to the aperiodic SRS.
  • the transmission power for one physical resource block of periodic SRS and aperiodic SRS is the same. Become.
  • the bandwidth used for aperiodic SRS transmission is 10 times the bandwidth used for periodic SRS transmission. Therefore, the transmission power of the aperiodic SRS is 10 times that of the transmission power of the periodic SRS.
  • the present invention has been made in view of such circumstances, and a radio communication system, a mobile station apparatus, and a base that can perform optimum transmission power control for each of the periodic SRS and the aperiodic SRS.
  • An object is to provide a station apparatus, a wireless communication method, and an integrated circuit.
  • the radio communication system of the present invention includes a base station device and a mobile station device, and the mobile station device transmits a first reference signal or a second reference signal among a plurality of reference signals to the base station device.
  • the base station apparatus sets a first parameter used for transmission power control of the first reference signal and a second parameter used for transmission power control of the second reference signal.
  • the first parameter and the second parameter are notified to the mobile station apparatus, the mobile station apparatus receives the first parameter and the second parameter, and transmits the first reference signal using the first parameter.
  • transmission power control of the second reference signal is performed using the second parameter, and the first reference signal and / or the transmission power control subjected to the transmission power control are performed. It is characterized by transmitting a second reference signal to the base station apparatus.
  • the base station apparatus can control the first parameter for each of the first reference signal and the second reference signal according to the bandwidth (number of physical resource blocks) of the first reference signal and the second reference signal.
  • the second parameter can be set, and optimal transmission power control can be performed for each of the first reference signal and the second reference signal transmitted by the mobile station apparatus.
  • the said mobile station apparatus is equipped with several transmission antenna port,
  • the said base station apparatus is with respect to each of the several transmission antenna port with which the said mobile station apparatus is equipped.
  • the first parameter and the second parameter are set, and the mobile station apparatus transmits the first reference signal using the first parameter for each transmission antenna port when transmitting the first reference signal.
  • transmission power control of the second reference signal is performed using the second parameter for each transmission antenna port.
  • the transmission power of a high-priority transmission antenna port of the mobile station device for example, a transmission antenna port transmitting a signal is increased, while the transmission antenna port of a low priority, for example, an antenna that does not transmit a signal. It is possible to reduce the transmission power of the port. Thereby, it is possible to perform flexible transmission power control according to the priority of the transmission antenna port.
  • the first reference signal is transmitted from the mobile station apparatus at a timing set by the base station apparatus so that the base station apparatus performs uplink channel measurement.
  • the second reference signal is transmitted when the base station apparatus requests the mobile station apparatus to transmit the mobile station apparatus a specific number of times so that the base station apparatus performs uplink channel measurement. It is transmitted from a station apparatus.
  • This configuration makes it possible to apply to LTE-A (Long Term Evolution-Advanced) radio communication systems.
  • LTE-A Long Term Evolution-Advanced
  • the mobile station apparatus of the present invention includes a base station apparatus and a mobile station apparatus, and the mobile station apparatus sends a first reference signal or a second reference signal to the base station apparatus among a plurality of reference signals.
  • a mobile station apparatus applied to a radio communication system for transmission to the first parameter used by the base station apparatus and used for transmission power control of the first reference signal and transmission power control of the second reference signal A mobile station side receiving unit that receives the second parameter used for the transmission, and performing transmission power control of the first reference signal using the first parameter, while transmitting power of the second reference signal using the second parameter
  • the base station apparatus can control the first parameter for each of the first reference signal and the second reference signal according to the bandwidth (number of physical resource blocks) of the first reference signal and the second reference signal. And the second parameter are set, and optimal transmission power control can be performed for each of the first reference signal and the second reference signal transmitted by the mobile station apparatus.
  • the mobile station apparatus of this invention is provided with the some transmission antenna port,
  • the said mobile station side receiving part is the 1st parameter with respect to each of the said some transmission antenna port which the said base station apparatus transmitted, and 1st
  • the mobile station side upper layer processing unit performs transmission power control of the first reference signal using the first parameter for each transmission antenna port.
  • transmission power control of the second reference signal is performed using the second parameter for each transmission antenna port.
  • the transmission power of a high-priority transmission antenna port of the mobile station device for example, a transmission antenna port transmitting a signal is increased, while the transmission antenna port of a low priority, for example, an antenna that does not transmit a signal. It is possible to reduce the transmission power of the port. Thereby, it is possible to perform flexible transmission power control according to the priority of the transmission antenna port.
  • the first reference signal is transmitted at a timing set by the base station apparatus so that the base station apparatus performs uplink channel measurement
  • the 2 reference signal is transmitted a specific number of times when the base station apparatus requests transmission from the base station apparatus in order to perform uplink channel measurement.
  • This configuration makes it possible to apply to LTE-A (Long Term Evolution-Advanced) radio communication systems.
  • LTE-A Long Term Evolution-Advanced
  • the base station apparatus of the present invention includes a base station apparatus and a mobile station apparatus, and the mobile station apparatus sends a first reference signal or a second reference signal to the base station apparatus among a plurality of reference signals.
  • the base station apparatus can control the first parameter for each of the first reference signal and the second reference signal according to the bandwidth (number of physical resource blocks) of the first reference signal and the second reference signal.
  • the second parameter can be set, and optimal transmission power control can be performed for each of the first reference signal and the second reference signal transmitted by the mobile station apparatus.
  • the base station side upper layer processing unit sets the first parameter and the second parameter for each of a plurality of transmission antenna ports provided in the mobile station apparatus. It is characterized by setting.
  • the transmission power of a high-priority transmission antenna port of the mobile station device for example, a transmission antenna port transmitting a signal is increased, while the transmission antenna port of a low priority, for example, an antenna that does not transmit a signal. It is possible to reduce the transmission power of the port. Thereby, it is possible to perform flexible transmission power control according to the priority of the transmission antenna port.
  • the first reference signal is transmitted from the mobile station apparatus at a set timing so that the own apparatus performs uplink channel measurement
  • the second reference signal Is transmitted from the mobile station device a specific number of times when the mobile device requests transmission to the mobile station device in order to perform uplink channel measurement.
  • This configuration makes it possible to apply to LTE-A (Long Term Evolution-Advanced) radio communication systems.
  • LTE-A Long Term Evolution-Advanced
  • the wireless communication method of the present invention includes a base station apparatus and a mobile station apparatus, and the mobile station apparatus sends a first reference signal or a second reference signal to the base station apparatus among a plurality of reference signals.
  • a wireless communication method of a wireless communication system for transmitting to a first parameter used for transmission power control of the first reference signal and a second parameter used for transmission power control of the second reference signal in the base station apparatus A step of notifying the mobile station device of the set first parameter and the second parameter, receiving the first parameter and the second parameter in the mobile station device, The first parameter is used to control the transmission power of the first reference signal, while the second parameter is used to transmit the second reference signal.
  • Performing a control characterized in that it comprises the steps of transmitting at least a first reference signal and / or the second reference signal subjected to the transmission power control to said base station apparatus.
  • the base station apparatus can control the first parameter for each of the first reference signal and the second reference signal according to the bandwidth (number of physical resource blocks) of the first reference signal and the second reference signal.
  • the second parameter can be set, and optimal transmission power control can be performed for each of the first reference signal and the second reference signal transmitted by the mobile station apparatus.
  • the first parameter and the second parameter are set for each of a plurality of transmission antenna ports included in the mobile station apparatus;
  • transmission power control of the first reference signal is performed using the first parameter for each transmission antenna port, and the second reference signal is transmitted.
  • the method further includes the step of performing transmission power control of the second reference signal using the second parameter for each transmission antenna port.
  • the transmission power of a high-priority transmission antenna port of the mobile station device for example, a transmission antenna port transmitting a signal is increased, while the transmission antenna port of a low priority, for example, an antenna that does not transmit a signal. It is possible to reduce the transmission power of the port. Thereby, it is possible to perform flexible transmission power control according to the priority of the transmission antenna port.
  • the first reference signal is transmitted from the mobile station apparatus at a timing set by the base station apparatus so that the base station apparatus performs uplink channel measurement.
  • the second reference signal is transmitted when the base station apparatus requests the mobile station apparatus to transmit the mobile station apparatus a specific number of times so that the base station apparatus performs uplink channel measurement. It is transmitted from a station apparatus.
  • This configuration makes it possible to apply to LTE-A (Long Term Evolution-Advanced) radio communication systems.
  • LTE-A Long Term Evolution-Advanced
  • the integrated circuit of the present invention is an integrated circuit that is mounted on a mobile station device to cause the mobile station device to perform a plurality of functions, and the base station device performs uplink channel measurement.
  • the first reference signal transmitted at the timing set by the base station apparatus or when the base station apparatus is requested to transmit in order to perform uplink channel measurement A function of transmitting a second reference signal to be transmitted a specific number of times, a first parameter set in the base station apparatus and used for transmission power control of the first reference signal, and transmission power control of the second reference signal A function for receiving a second parameter used for the first parameter, and a transmission power control for the first reference signal using the first parameter, while the second parameter is used for the second parameter.
  • a series of functions including a function of performing transmission power control of the reference signal and a function of transmitting the first reference signal and / or the second reference signal subjected to the transmission power control to the base station apparatus, It is characterized in that it is exhibited for a mobile station device.
  • the base station apparatus can control the first parameter for each of the first reference signal and the second reference signal according to the bandwidth (number of physical resource blocks) of the first reference signal and the second reference signal. And the second parameter are set, and optimal transmission power control can be performed for each of the first reference signal and the second reference signal transmitted by the mobile station apparatus. Further, the present invention can be applied to a LTE-A (Long Term Evolution-Advanced) radio communication system.
  • LTE-A Long Term Evolution-Advanced
  • the integrated circuit of the present invention is mounted on a mobile station apparatus having a plurality of transmission antenna ports, and the first parameter and the second parameter for each of the plurality of transmission antenna ports transmitted by the base station apparatus are set.
  • the first reference signal when transmitting the second reference signal by performing transmission power control of the first reference signal using the first parameter for each transmission antenna port when transmitting the first reference signal And a function of performing transmission power control of the second reference signal using the second parameter for each of the transmission antenna ports.
  • the transmission power of a high-priority transmission antenna port of the mobile station device for example, a transmission antenna port transmitting a signal is increased, while the transmission antenna port of a low priority, for example, an antenna that does not transmit a signal. It is possible to reduce the transmission power of the port. Thereby, it is possible to perform flexible transmission power control according to the priority of the transmission antenna port.
  • An integrated circuit according to the present invention is an integrated circuit that is mounted on a base station device to cause the base station device to perform a plurality of functions, and the device itself performs uplink channel measurement.
  • the mobile station apparatus A function of setting a second parameter used for transmission power control of the second reference signal transmitted from the mobile station apparatus a specific number of times when transmission is requested, and the set first parameter and second parameter
  • the base station apparatus is caused to exhibit a series of functions including a function of notifying the mobile station apparatus.
  • the base station apparatus can control the first parameter for each of the first reference signal and the second reference signal according to the bandwidth (number of physical resource blocks) of the first reference signal and the second reference signal.
  • the second parameter can be set, and optimal transmission power control can be performed for each of the first reference signal and the second reference signal transmitted by the mobile station apparatus.
  • the present invention can be applied to a LTE-A (Long Term Evolution-Advanced) radio communication system.
  • the integrated circuit of the present invention further includes a function of setting the first parameter and the second parameter for each of a plurality of transmission antenna ports provided in the mobile station apparatus. .
  • the transmission power of a high-priority transmission antenna port of the mobile station device for example, a transmission antenna port transmitting a signal is increased, while the transmission antenna port of a low priority, for example, an antenna that does not transmit a signal. It is possible to reduce the transmission power of the port. Thereby, it is possible to perform flexible transmission power control according to the priority of the transmission antenna port.
  • the base station apparatus performs optimal transmission power control on each of the first reference signal (periodic SRS) and the second reference signal (aperiodic SRS) transmitted by the mobile station apparatus. be able to.
  • FIG. 1 is a conceptual diagram of a wireless communication system of the present invention.
  • the radio communication system includes mobile station apparatuses 1 A to 1 C and a base station apparatus 3.
  • FIG. 1 illustrates a synchronization channel (SCH), a downlink pilot channel (or “Downlink Reference Signal” in wireless communication (downlink) from the base station apparatus 3 to the mobile station apparatuses 1A to 1C.
  • SCH synchronization channel
  • Downlink Downlink Reference Signal
  • DL RS Physical Broadcast Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PMCH Multicast Channel
  • PCFICH Physical Control Format Indicator Channel
  • HARQ indicator channel Physical Hybrid ARQ Indicator Channel
  • FIG. 1 is also referred to as an uplink pilot channel (or “uplink reference signal (Uplink Reference Signal; UL reference RS)” in radio communication (uplink) from the mobile station apparatuses 1A to 1C to the base station apparatus 3. )), Uplink control channel (Physical Uplink Control Channel; PUCCH), uplink shared channel (Physical Uplink Shared Channel; PUSCH), and random access channel (Physical Random Access Channel; PRACH) are allocated.
  • Uplink reference signals include PUSCH and PUCCH demodulation reference signals (demodulation reference signal, Demodulation Reference signal; DMRS) and uplink channel estimation reference signals (sounding reference signal, Sounding Reference Signal; SRS).
  • the mobile station apparatuses 1A to 1C are referred to as the mobile station apparatus 1.
  • FIG. 2 is a schematic diagram illustrating an example of a configuration of an uplink radio frame according to the present invention.
  • FIG. 2 shows a configuration of a radio frame in a certain uplink.
  • the horizontal axis is the time domain
  • the vertical axis is the frequency domain.
  • the uplink radio frame is composed of a plurality of uplink physical resource block pairs (for example, an area surrounded by a broken line in FIG. 2).
  • One uplink physical resource block pair is composed of two uplink physical resource blocks (PRB bandwidth ⁇ slot) that are continuous in the time domain.
  • One uplink physical resource block (a unit surrounded by a thick line in FIG. 2) is composed of 12 subcarriers (15 kHz) in the frequency domain, and 7 SC-FDMA symbols ( 71 ⁇ s).
  • a slot (0.5 ms) composed of seven SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbols (71 ⁇ s), a subframe (1 ms) composed of two slots, 10
  • a radio frame (10 ms) composed of subframes.
  • a plurality of uplink physical resource blocks are arranged according to the uplink bandwidth.
  • a unit composed of one subcarrier and one SC-FDMA symbol is referred to as an uplink resource element.
  • each uplink subframe for example, PUCCH, PUSCH, DMRS, and SRS are allocated.
  • the PUCCH is allocated to uplink physical resource block pairs (regions hatched with left diagonal lines) at both ends of the uplink bandwidth.
  • the PUCCH includes channel quality information (Channel Quality Information; CQI) indicating downlink channel quality, a scheduling request (Scheduling Request; SR) indicating a request for uplink radio resource allocation, and ACK / A signal of uplink control information (Uplink Control Information; UCI) that is information used for communication control such as NACK is arranged.
  • CQI Channel Quality Information
  • SR scheduling request
  • UCI Uplink Control Information
  • the PUSCH is assigned to an uplink physical resource block pair (an area that is not hatched) other than the uplink physical resource block in which the PUCCH is arranged.
  • signals of uplink control information and data information (transport block; Transport Block) that is information other than the uplink control information are arranged.
  • the PUSCH radio resource is allocated using an uplink grant, and is allocated to an uplink subframe of a subframe after a predetermined time from a subframe that has received the PDCCH including the uplink grant.
  • FIG. 3 is a diagram illustrating radio resources for transmitting the SRS of the present invention.
  • the horizontal axis is the time domain.
  • the base station apparatus 3 sets a sounding subframe that is a subframe in which the mobile station apparatus 1 reserves radio resources for transmitting SRS. Specifically, the sounding subframe is given an offset and period from the reference subframe. The sounding subframe is common to all mobile station apparatuses 1. Moreover, the base station apparatus 3 sets the sounding subframe and radio
  • FIG. 4 is a diagram showing a detailed configuration of the sounding subframe of the present invention.
  • FIG. 4 shows only a band that can be used as PUSCH, and a frequency band for transmitting PUCCH and PRACH is omitted.
  • the horizontal axis is the time domain
  • the vertical axis is the frequency domain.
  • one block represents a subcarrier.
  • each SC-FDMA symbol can be used for different applications, and the third SC-FDMA symbol in each slot is used for DMRS transmission.
  • the sixth SC-FDMA symbol in the first slot is used for transmission of SRS.
  • the bandwidth of the radio resource reserved for SRS transmission is set by the base station apparatus 3 separately from the bandwidth that can be used as PUSCH, and SRS transmission is performed in the sixth SC-FDMA symbol in the first slot. Therefore, the radio resources that are not reserved can be used as PUSCH.
  • the SC-FDMA symbols other than the sixth in the first slot are used for PUSCH transmission.
  • orthogonal codes are used for multiplexing with other mobile station apparatuses 1 and antenna identification, and a CAZAC (Constant-Amplitude-and-zero-autocorrelation) sequence is cyclically shifted on the time axis.
  • Use (cyclic (shift) sequence When DMRS is time-multiplexed with PUCCH, DMRS is multiplexed with a different SC-FDMA symbol from PUSCH, but detailed description is omitted for the sake of simplicity.
  • FIG. 5 is a diagram for explaining the SRS transmission method of the present invention.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • the base station apparatus 3 performs settings related to SRS transmission common to the mobile station apparatus 1. In this setting, the position of a sounding subframe, which is a subframe in which radio resources for SRS transmission are reserved, and the bandwidth of radio resources reserved for SRS transmission are set.
  • the base station apparatus 3 sets the amount of cyclic shift used for the CAZAC sequence of the sub-frame that periodically transmits SRS to each mobile station apparatus 1 and the frequency band and periodic SRS.
  • the periodically transmitted SRS is referred to as a periodic SRS (periodic SRS).
  • the subframe for transmitting periodic SRS is a part of the sounding subframe, and the frequency band for transmitting periodic SRS is a part of the frequency band reserved for SRS transmission.
  • the base station apparatus 3 transmits an aperiodic SRS (only when requested by an indicator that requests an SRS included in downlink control information (Downlink Control Information; DCI) transmitted on the PDCCH).
  • aperiodic SRS, or one shot SRS, scheduled SRS is set in each mobile station apparatus 1.
  • the frequency band for transmitting the aperiodic SRS and the amount of cyclic shift used for the CAZAC sequence of the aperiodic SRS are set.
  • the periodic SRS constitutes a first reference signal
  • the aperiodic SRS constitutes a second reference signal
  • even-numbered subframes are sounding subframes
  • band C is a bandwidth of a radio resource reserved for SRS transmission.
  • the mobile station apparatus 1 is set to transmit a periodic SRS in the ⁇ 4, 8, 12, 16, 20, 24 ⁇ th subframe of the sounding subframes, and the mobile station apparatus 1
  • the band for transmitting the dick SRS is the band A that is a part of the band C, and any one of the band A1, the band A2, and the band A3 of the bandwidth of the band A by one transmission of the periodic SRS.
  • the periodic SRS is transmitted in one band.
  • the order of transmitting periodic SRS in the band A1, the band A2, and the band A3 is determined in advance.
  • a band B that is a part of the band C is a frequency band set for aperiodic SRS transmission, and the mobile station apparatus 1 is the ⁇ 2, 6, 18 ⁇ th of the sounding subframes.
  • the base station apparatus 3 is requested to transmit an aperiodic SRS in a subframe.
  • the band A may be the same frequency band as the band B and / or the band C, the number of the band A may be divided other than 3, the band A may not be divided, and the band B is the same as the band C
  • the frequency band may not be included, and the band B may not include the band A.
  • the periodic SRS may be set to transmit the SRS only once.
  • TPC ⁇ About Transmit Power Control
  • periodic SRS and aperiodic transmission power control is performed for the purpose of suppressing power consumption of the mobile station apparatus 1 and reducing interference with other cells.
  • the formula used in order to determine the transmission power value of periodic SRS and aperiodic SRS of this invention is shown.
  • P SRS (i) indicates the transmission power value of the SRS in the i-th subframe.
  • min ⁇ X, Y ⁇ is a function for selecting the minimum value of X and Y.
  • PO_PUSCH is the transmission power that is the basis of PUSCH, and is a value specified from an upper layer.
  • M SRS indicates the number of physical resource blocks (PRB) that are units of radio resource allocation used for SRS transmission, and the transmission power increases as the number of physical resource blocks used for SRS transmission increases. Indicates that it will grow.
  • PRB physical resource blocks
  • PL indicates a path loss
  • is a coefficient by which the path loss is multiplied, and is specified by an upper layer.
  • f is an offset value (transmission power control value by closed loop or open loop) calculated from a TPC command transmitted by downlink control information arranged on the PDCCH, and is a parameter common to PUSCH and SRS.
  • PCMAX is a maximum transmission power value, which may be a physical maximum transmission power or may be specified from an upper layer.
  • P SRS_OFFSET (0) of periodic SRS and P SRS_OFFSET (1) of aperiodic SRS are each specified by an upper layer.
  • P SRS_OFFSET is common to periodic SRS and aperiodic SRS
  • P CMAX 23 [dBm]
  • P SRS of periodic SRS 20 [dBm]
  • M SRS of periodic SRS 4
  • the base station apparatus 3 since the base station apparatus 3 does not know the parameter of the PL, the calculated transmission power of the aperiodic SRS exceeds P CMAX and it is not known that the aperiodic SRS is transmitted with the power of P CMAX. Although channel measurement is not possible, by using the present invention, the base station apparatus 3 has a value calculated as the transmission power of the periodic SRS and aperiodic SRS according to the M SRS of the periodic SRS and aperiodic SRS. separately so as not to exceed P CMAX can be set P SRS_OFFSET.
  • FIG. 6 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present invention.
  • the base station apparatus 3 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, a channel measuring unit 109, and a transmission / reception antenna 111.
  • the upper layer processing unit 101 includes a radio resource control unit 1011, an SRS setting unit 1013, and a transmission power setting unit 1015.
  • the reception unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, and a wireless reception unit 1057.
  • the transmission unit 107 includes an encoding unit 1071, a modulation unit 1073, a multiplexing unit 1075, a radio transmission unit 1077, and a downlink reference signal generation unit 1079.
  • the upper layer processing unit 101 performs processing of a packet data integration protocol (Packet Data Convergence Protocol; PDCP) layer, a radio link control (Radio Link Control; RLC) layer, and a radio resource control (Radio Resource Control; RRC) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the radio resource control unit 1011 included in the upper layer processing unit 101 generates information acquired in each downlink channel or acquires it from the upper node and outputs the information to the transmission unit 107. Also, the radio resource control unit 1011 allocates radio resources in which the mobile station apparatus 1 arranges PUSCH (data information) from among uplink radio resources. Also, the radio resource control unit 1011 determines a radio resource in which PDSCH (data information) is arranged from downlink radio resources. The radio resource control unit 1011 generates downlink control information indicating the radio resource allocation, and transmits the downlink control information to the mobile station apparatus 1 via the transmission unit 107. The radio resource control unit 1011 preferentially allocates radio resources with good channel quality based on the uplink channel measurement result input from the channel measurement unit 109 when allocating radio resources for arranging the PUSCH.
  • Uplink control information (ACK / NACK, channel quality information, scheduling request) notified from mobile station apparatus 1 by PUCCH, buffer status notified from mobile station apparatus 1, and mobile station set by radio resource control unit 1011 Based on various setting information of each device 1, control information is generated to control the receiving unit 105 and the transmitting unit 107, and is output to the control unit 103.
  • the SRS setting unit 1013 sets the bandwidth of the radio resource reserved for transmitting the SRS within the sounding subframe and the sounding subframe in which the mobile station apparatus 1 reserves the radio resource for transmitting the SRS.
  • the setting is generated, and the setting is generated as system information (System Information), and is broadcasted and transmitted on the PDSCH via the transmission unit 107. Further, the SRS setting unit 1013 sets the amount of cyclic shift used for the CAZAC sequence of the periodic SRS, the subframe in which the periodic SRS is periodically transmitted to each mobile station device 1, the frequency band, and the setting. It is generated as a radio resource control signal (Radio Resource Control Signal) and notified to each mobile station device 1 via PDSCH via the transmitter 107.
  • Radio Resource Control Signal Radio Resource Control Signal
  • the SRS setting section 1013 sets the frequency band for transmitting the aperiodic SRS to each mobile station apparatus 1 and the amount of cyclic shift used for the CAZAC sequence of the aperiodic SRS, and sets the setting to the radio resource control signal. And notified to each mobile station device 1 via PDSCH via the transmitter 107.
  • the SRS setting unit 1013 when requesting an aperiodic SRS from the mobile station device 1, the SRS setting unit 1013 generates an SRS indicator indicating that the mobile station device 1 is requesting an aperiodic SRS, and transmits the SRS indicator via the transmission unit 107. Then, the mobile station apparatus 1 is notified by PDCCH.
  • the transmission power setting unit 1015 sets the transmission power of PUCCH, PUSCH, periodic SRS, and aperiodic SRS. Specifically, the transmission power setting unit 1015 indicates information indicating the amount of interference from the adjacent base station device 3, and indicates the amount of interference given to the adjacent base station device 3 notified from the adjacent base station device 3. Depending on the information and the quality of the channel input from the channel measurement unit 109, the PUSCH etc. satisfies a predetermined channel quality, considers interference with the adjacent base station apparatus 3, and power consumption of the mobile station apparatus 1. Then, the transmission power is set, and information indicating the setting is transmitted to the mobile station apparatus 1 via the transmission unit 107.
  • the transmission power setting unit 1015, (2) of P O _ PUSCH, ⁇ , P SRS_OFFSET (0) for the periodic SRS (first parameter), P SRS_OFFSET (1 for aperiodic SRS ) (Second parameter) is set, the setting is generated as a radio resource control signal, and notified to each mobile station apparatus 1 via PDSCH via the transmitter 107.
  • the transmission power setting unit 1015 sets a TPC command for calculating f in equation (2), generates a TPC command, and notifies each mobile station apparatus 1 via the transmission unit 107 using PDCCH.
  • the control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the higher layer processing unit 101. Control unit 103 outputs the generated control signal to receiving unit 105 and transmitting unit 107 to control receiving unit 105 and transmitting unit 107.
  • the receiving unit 105 separates, demodulates, and decodes the received signal received from the mobile station apparatus 1 via the transmission / reception antenna 111 according to the control signal input from the control unit 103, and outputs the decoded information to the upper layer processing unit 101.
  • the radio reception unit 1057 converts an uplink signal received via the transmission / reception antenna 111 into an intermediate frequency (down-conversion), removes unnecessary frequency components, and an amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
  • Radio receiving section 1057 removes a portion corresponding to a guard interval (Guard Interval; GI) from the converted digital signal. Radio receiving section 1057 performs fast Fourier transform (FFT Fourier Transform; FFT) on the signal from which the guard interval is removed, extracts a frequency domain signal, and outputs the signal to demultiplexing section 1055.
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 separates the signal input from the wireless receiving unit 1057 into signals such as PUCCH, PUSCH, DMRS, SRS, and the like. This separation is performed based on radio resource allocation information that is determined in advance by the base station device 3 and notified to each mobile station device 1. In addition, demultiplexing section 1055 compensates for the propagation paths of PUCCH and PUSCH based on the propagation path estimation value input from channel measurement section 109. The demultiplexing unit 1055 outputs the separated DMRS and SRS to the channel measuring unit 109.
  • the demodulation unit 1053 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform; formIDFT) on the PUSCH, acquires modulation symbols, and performs binary phase shift keying (Binary Phase Shift Keying; BPSK on each of the modulation symbols of the PUCCH and PUSCH. )
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 16QAM 16-value quadrature amplitude modulation
  • 64QAM 64-value quadrature amplitude modulation
  • the base station apparatus 3 demodulates the received signal using the modulation scheme notified in advance to each mobile station apparatus 1 using downlink control information.
  • the decoding unit 1051 encodes the demodulated PUCCH and PUSCH encoded bits in a predetermined encoding scheme, or the base station apparatus 3 notifies the mobile station apparatus 1 in advance with an uplink grant. And the decoded data information and the uplink control information are output to the higher layer processing unit 101.
  • the channel measurement unit 109 measures the channel estimation value, channel quality, and the like from the DMRS and SRS input from the demultiplexing unit 1055 and outputs them to the demultiplexing unit 1055 and the upper layer processing unit 101.
  • the transmission unit 107 generates a downlink reference signal according to the control signal input from the control unit 103, encodes and modulates data information and downlink control information input from the higher layer processing unit 101, PDCCH, The PDSCH and the downlink reference signal are multiplexed, and the signal is transmitted to the mobile station apparatus 1 via the transmission / reception antenna.
  • the encoding unit 1071 performs encoding such as turbo encoding, convolutional encoding, and block encoding on the downlink control information and data information input from the higher layer processing unit 101.
  • the encoding unit 1071 modulates the encoded bits with a modulation scheme such as QPSK, 16QAM, or 64QAM.
  • the downlink reference signal generation unit 1079 uses, as a downlink reference signal, a sequence known by the mobile station device 1 that is obtained by a predetermined rule based on a cell identifier (Cell ID) for identifying the base station device 3 or the like. Generate.
  • the multiplexing unit 1075 multiplexes each modulated channel and the generated downlink reference signal.
  • the radio transmission unit 1077 performs inverse fast Fourier transform (Inverse Fast Fourier Transform; IFFT) on the multiplexed modulation symbols, modulates the OFDM scheme, adds a guard interval to the OFDM symbol that has been OFDM-modulated, and performs baseband digital Generate a signal, convert the baseband digital signal to an analog signal, generate in-phase and quadrature components of the intermediate frequency from the analog signal, remove excess frequency components for the intermediate frequency band, and increase the signal of the intermediate frequency The signal is converted (up-converted) into a frequency signal, an extra frequency component is removed, the power is amplified, and output to the transmission / reception antenna 111 for transmission.
  • IFFT inverse Fast Fourier Transform
  • FIG. 7 is a schematic block diagram showing the configuration of the mobile station apparatus 1 according to this embodiment.
  • the mobile station apparatus 1 includes an upper layer processing unit 201, a control unit 203, a receiving unit 205, a transmitting unit 207, a channel measuring unit 209, and a transmission / reception antenna 211.
  • the upper layer processing unit 201 includes a radio resource control unit 2011, an SRS control unit 2013, and a transmission power control unit 2015.
  • the reception unit 205 includes a decoding unit 2051, a demodulation unit 2053, a demultiplexing unit 2055, and a wireless reception unit 2057.
  • the transmission unit 207 includes an encoding unit 2071, a modulation unit 2073, a multiplexing unit 2075, and a wireless transmission unit 2077.
  • the upper layer processing unit 201 outputs uplink data information generated by a user operation or the like to the transmission unit 207. Further, the upper layer processing unit 201 performs processing of the packet data integration protocol layer, the radio link control layer, and the radio resource control layer.
  • the radio resource control unit 2011 included in the higher layer processing unit 201 manages various setting information of the own device. Also, the radio resource control unit 2011 generates information to be arranged in each uplink channel and outputs the information to the transmission unit 207.
  • the radio resource control unit 2011 has various settings information of the own device managed by the radio resource control unit 2011 set by the downlink control information notified by the PDCCH from the base station device 3 and the radio resource control information notified by the PDSCH. Based on the control information, control information is generated to control the reception unit 205 and the transmission unit 207, and is output to the control unit 203.
  • the SRS control unit 2013 included in the higher layer processing unit 201 transmits a SRS within a sounding subframe that is a subframe for reserving a radio resource for transmitting the SRS broadcasted by the base station apparatus 3, and the sounding subframe.
  • Information indicating the bandwidth of the radio resource to be reserved to be transmitted, and the subframe for transmitting the periodic SRS notified by the base station apparatus 3 to itself, the frequency band, and the cyclic shift used for the CAZAC sequence of the periodic SRS Information indicating the amount of data, the frequency band for transmitting the aperiodic SRS notified to the base station device 3 and the information indicating the amount of cyclic shift used for the CAZAC sequence of the aperiodic SRS, Obtained from 205.
  • the SRS control unit 2013 controls SRS transmission according to the information. Specifically, the SRS control unit 2013 controls the transmission unit 207 to transmit the periodic SRS once or periodically according to the information related to the periodic SRS. In addition, when the SRS control unit 2013 is requested to transmit an aperiodic SRS by the SRS indicator input from the transmission unit 207, the SRS control unit 2013 determines the number of times that the aperiodic SRS is determined in advance according to the information related to the aperiodic SRS (for example, Send once).
  • the transmission power control unit 2015 included in the higher layer processing unit 201 instructs the control unit 203 to control transmission power based on information indicating transmission power settings of the PUCCH, PUSCH, periodic SRS, and aperiodic SRS. Output control information. Specifically, the transmission power control unit 2015 obtains P O_PUSCH , ⁇ , P SRS_OFFSET (0) for periodic SRS (first parameter) acquired from the transmission unit 207, and P SRS_OFFSET (1) for aperiodic SRS. Based on the (second parameter) and the TPC command, the transmission power of the periodic SRS and the transmission power of the aperiodic SRS are controlled from the equation (2). Note that P SRS_OFFSET switches parameters according to whether it is periodic SRS or aperiodic SRS.
  • the control unit 203 generates a control signal for controlling the reception unit 205 and the transmission unit 207 based on the control information from the higher layer processing unit 201.
  • Control unit 203 outputs the generated control signal to receiving unit 205 and transmitting unit 207 to control receiving unit 205 and transmitting unit 207.
  • the receiving unit 205 separates, demodulates, and decodes the received signal received from the base station apparatus 3 via the transmission / reception antenna 211 according to the control signal input from the control unit 203, and sends the decoded information to the upper layer processing unit 201. Output.
  • the radio reception unit 2057 converts a downlink signal received via each reception antenna into an intermediate frequency (down-conversion), removes unnecessary frequency components, and an amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
  • the wireless reception unit 2057 removes a portion corresponding to the guard interval from the converted digital signal, performs fast Fourier transform on the signal from which the guard interval is removed, and extracts a frequency domain signal.
  • the demultiplexing unit 2055 separates the extracted signal into a PDCCH, a PDSCH, and a downlink reference signal. This separation is performed based on radio resource allocation information notified by the downlink control information. Further, demultiplexing section 2055 compensates for the propagation paths of PDCCH and PDSCH from the estimated propagation path values input from channel measurement section 209. Also, the demultiplexing unit 2055 outputs the separated downlink reference signal to the channel measurement unit 209.
  • the demodulation unit 2053 demodulates the PDCCH using the QPSK modulation method and outputs the result to the decoding unit 2051.
  • Demodulation section 2053 demodulates the PDSCH according to the modulation scheme notified by downlink control information such as QPSK, 16QAM, and 64QAM, and outputs the result to decoding section 2051.
  • the decoding unit 2051 tries to decode the PDCCH, and outputs the decoded downlink control information to the higher layer processing unit 201 when the decoding is successful.
  • the decoding unit 2051 performs decoding on the coding rate notified by the downlink control information, and outputs the decoded data information to the higher layer processing unit 201.
  • the channel measurement unit 209 measures the downlink path loss from the downlink reference signal input from the demultiplexing unit 2055, and outputs the measured path loss to the higher layer processing unit 201. Further, channel measurement section 209 calculates an estimated value of the downlink propagation path from the downlink reference signal, and outputs it to demultiplexing section 2055.
  • Transmitting section 207 generates DMRS and / or SRS according to the control signal input from control section 203, encodes and modulates data information input from higher layer processing section 201, generates PUCCH, PUSCH, and DMRS and / or SRS are multiplexed, the transmission power of PUCCH, PUSCH, DMRS, and SRS is adjusted, and it transmits to the base station apparatus 3 via a transmission / reception antenna.
  • the coding unit 2071 performs coding such as turbo coding, convolutional coding, and block coding on the uplink control information and the data information input from the higher layer processing unit 201.
  • the modulation unit 2073 modulates the coded bits input from the coding unit 2071 using a modulation scheme such as BPSK, QPSK, 16QAM, or 64QAM.
  • Uplink reference signal generation section 2079 obtains a CAZAC sequence known by base station apparatus 3 based on a predetermined rule based on a cell identifier for identifying base station apparatus 3, a bandwidth in which DMRS and SRS are arranged, and the like. Is generated. Also, uplink reference signal generation section 2079 gives a cyclic shift to the generated DMRS and SRS CAZAC sequence according to the control signal input from control section 203.
  • the multiplexing unit 2075 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 203, and then performs discrete Fourier transform (Discrete Fourier Transform; DFT) to generate the PUCCH and PUSCH signals and the generated DMRS and SRS. Is multiplexed.
  • DFT discrete Fourier Transform
  • the radio transmission unit 2077 performs inverse fast Fourier transform on the multiplexed signal, performs SC-FDMA modulation, adds a guard interval to the SC-FDMA-modulated SC-FDMA symbol, and generates a baseband digital signal Convert the baseband digital signal to an analog signal, generate in-phase and quadrature components of the intermediate frequency from the analog signal, remove excess frequency components for the intermediate frequency band, and convert the intermediate-frequency signal to a high-frequency signal Is converted (up-converted) to remove excess frequency components, power amplified, and output to a transmission / reception antenna for transmission.
  • FIG. 8 is a sequence chart showing an example of operations of the mobile station apparatus 1 and the base station apparatus 3 of the present invention.
  • the base station apparatus 3 sets P O_PUSCH , ⁇ , P SRS_OFFSET (0) (first parameter) for periodic SRS, and P SRS_OFFSET (1) (second parameter) for aperiodic SRS in equation (2). Then, the mobile station apparatus 1 is notified (step S100).
  • the base station device 3 sets the bandwidth of the radio resource reserved for transmitting the SRS in the sounding subframe and the sounding subframe in which the mobile station device 1 reserves the radio resource for transmitting the SRS. Set and notify the mobile station apparatus 1 (step S101).
  • the base station apparatus 3 sets the subframe for transmitting the periodic SRS, the frequency band, and the amount of cyclic shift used for the CAZAC sequence of the periodic SRS, and notifies the mobile station apparatus 1 (step S102).
  • the base station apparatus 3 sets the frequency band for transmitting the aperiodic SRS and the amount of cyclic shift used for the CAZAC sequence of the aperiodic SRS, and notifies the mobile station apparatus 1 (step S103).
  • the mobile station apparatus 1 sets the parameters notified from step S100 to step S103 (step S104).
  • the mobile station apparatus 1 transmits the periodic SRS once or periodically according to the parameters related to the periodic SRS set in step S104 (step S105).
  • the transmission power of the periodic SRS is calculated using P SRS_OFFSET (0) (first parameter) for periodic SRS notified in step S100.
  • the base station apparatus 3 transmits an SRS indicator indicating that transmission of an aperiodic SRS is requested (step S106).
  • the aperiodic SRS is determined in advance according to the parameters related to the aperiodic SRS set in step S104.
  • the number of times (for example, once) is transmitted (step S108). Note that the transmission power of the aperiodic SRS is calculated using P SRS_OFFSET (1) (second parameter) for the aperiodic SRS notified in step S100.
  • step S108 the mobile station device 1 and the base station device 3 end the processing related to transmission / reception of the aperiodic SRS.
  • the base station apparatus 3 is set to periodically transmit periodic SRS to the mobile station apparatus 1
  • the mobile station apparatus 1 continues to periodically transmit periodic SRS even after step S108 (step S109). ).
  • FIG. 9 is a flowchart showing an example of the operation of the mobile station apparatus 1 of the present invention.
  • the mobile station apparatus 1 uses the parameter P SRS_OFFSET (0) (first parameter) related to the transmission power of the periodic SRS transmitted by the base station apparatus 3 and the parameter P SRS_OFFSET (1) (second parameter) related to the transmission power of the aperiodic SRS. ) Is received (step S200).
  • step S201 aperiodic SRS
  • the transmission power of the aperiodic SRS is calculated using at least P SRS_OFFSET (1)
  • step S201 when the mobile station apparatus 1 transmits a periodic SRS (step S201-periodic SRS), the transmission power of the periodic SRS is calculated using at least P SRS_OFFSET (0) (step S203).
  • the mobile station device 1 transmits the aperiodic SRS and / or the periodic SRS with the transmission power calculated in step S202 and / or step S203 (step S204).
  • the mobile station apparatus 1 complete
  • the base station apparatus 3 uses the P SRS_OFFSET used for transmission power control of the periodic SRS transmitted by the mobile station apparatus 1 according to the settings set by the base station apparatus 3 and notified to the mobile station apparatus 1.
  • P SRS_OFFSET (1) (second parameter) used for the transmission power control of the aperiodic SRS transmitted by the mobile station device 1 when the base station device 3 requests with the SRS indicator Is set in the mobile station apparatus 1, and when transmitting the periodic SRS
  • the mobile station apparatus 1 performs transmission power control of the periodic SRS using at least P SRS_OFFSET (0) (first parameter).
  • using at least P SRS_OFFSET (1) (second parameter) when sending Dick SRS It performs transmission power control of the aperiodic SRS, and transmits the periodic SRS and / or aperiodic SRS.
  • the base station apparatus 3 can set P SRS_OFFSET for each of the periodic SRS and the aperiodic SRS according to the bandwidth (number of physical resource blocks) M SRS of the periodic SRS and the aperiodic SRS.
  • the optimal transmission power control can be performed for each of the periodic SRS and the aperiodic SRS transmitted by the mobile station apparatus 1.
  • P SRS_OFFSET (k, p) is an offset indicating a difference in transmission power that is the basis of PUSCH and SRS, and is a value specified from an upper layer.
  • k indicates a periodic SRS or aperiodic SRS
  • p indicates a transmission antenna port of the mobile station apparatus 1.
  • FIG. 10 is a flowchart showing an example of the operation of the mobile station apparatus 1 according to the modification of the present invention.
  • the mobile station apparatus 1 includes a parameter P SRS_OFFSET (0, p) (first parameter) for each transmission antenna port related to the transmission power of the periodic SRS transmitted by the base station apparatus 3 and a transmission antenna port related to the transmission power of the aperiodic SRS.
  • Each parameter P SRS_OFFSET (1, p) (second parameter) is received (step S300).
  • step S301 aperiodic SRS
  • the transmission power of the aperiodic SRS is calculated for each transmission antenna port using at least P SRS_OFFSET (1, p). (Step S302).
  • step S301 when the mobile station apparatus 1 transmits a periodic SRS (step S301-periodic SRS), the transmission power of the periodic SRS is calculated for each transmission antenna port using at least P SRS_OFFSET (0, p). (Step S303).
  • the mobile station apparatus 1 transmits the aperiodic SRS and / or the periodic SRS with the transmission power for each transmission antenna port calculated in step S302 and / or step S303 (step S304).
  • the base station apparatus 3 sets P SRS_OFFSET (k, p) to each of the plurality of transmission antenna ports included in the mobile station apparatus 1, and the mobile station apparatus 1
  • transmission power control of periodic SRS and aperiodic SRS is performed using at least P SRS_OFFSET (k, p) for each transmission antenna port.
  • the transmission power of the transmission antenna port with high priority for example, the transmission antenna port transmitting the signal
  • the transmission antenna port with low priority for example, transmission without transmitting a signal.
  • the transmission power of the antenna port can be controlled to be low, and the transmission power can be flexibly controlled according to the priority of the transmission antenna port.
  • P SRS_OFFSET (0) (first parameter) for periodic SRS and P SRS_OFFSET (1) (second parameter) for aperiodic SRS are parameters related to transmission power control in step S100 of FIG.
  • P SRS_OFFSET (0) (first parameter) for periodic SRS may be transmitted together with parameters related to periodic SRS in step S103, or P SRS_OFFSET for aperiodic SRS.
  • (1) (the second parameter) may be transmitted with parameters relating aperiodic SRS in step S102, P SRS_OFFSET (0) (first parameter) and P SRS_OFFSET (1) (second parameter There may be sent along with other any parameters.
  • the SRS indicator that requests the aperiodic SRS is transmitted using the PDCCH. Is not limited to this, but may be transmitted by a radio resource control signal (Radio Resource Control signal), MAC (Medium Access Control), CE (Control Element), or the like transmitted by PDSCH.
  • a radio resource control signal Radio Resource Control signal
  • MAC Medium Access Control
  • CE Control Element
  • the base station apparatus 3 can discriminate
  • the characteristic means of the present invention described above can also be realized by mounting and controlling means in an integrated circuit. That is, the integrated circuit of the present invention transmits the first reference signal for uplink channel measurement at the timing set in the base station device 3 and the base station device 3, and the base station device 3 is requested to transmit.
  • the integrated circuit is applied to a radio communication system having a mobile station apparatus 1 that transmits a second reference signal for uplink channel measurement a specific number of times.
  • the first reference signal Means for setting a first parameter used for transmission power control and a second parameter used for transmission power control of the second reference signal, means for notifying the mobile station apparatus 1 of the first parameter and the second parameter, mobile station apparatus 1, when transmitting the first reference signal, transmission power control of the first reference signal is performed using at least the first parameter, and the second reference signal is transmitted. Characterized in that it has the means for transmission power control of the second reference signal, means for transmitting the first reference signal and / or the second reference signal using at least the second parameter in.
  • the base station apparatus 3 determines the periodic SRS according to the bandwidth (number of physical resource blocks) M SRS of the periodic SRS and the aperiodic SRS.
  • P SRS_OFFSET can be set for each of the periodic SRSs and optimal transmission power control can be performed for each of the periodic SRSs and the aperiodic SRSs transmitted by the mobile station apparatus 1.
  • the integrated circuit of the present invention is a means for setting a first parameter and a second parameter for each of a plurality of transmission antenna ports provided in the mobile station device 1 in the base station device 3, and in the mobile station device 1, the first reference When transmitting a signal, transmission power control of the first reference signal is performed using at least the first parameter for each transmission antenna port, and when transmitting the second reference signal, at least the transmission antenna port for each transmission antenna port Means for performing transmission power control of the second reference signal using a second parameter.
  • the base station device 3 transmits a transmission antenna port (for example, a transmission antenna port transmitting a signal) with a high priority of the mobile station device 1.
  • a transmission antenna port for example, a transmission antenna port transmitting a signal
  • Control can be performed to increase the power and reduce the transmission power of low-priority transmission antenna ports (for example, transmission antenna ports that do not transmit signals), and flexible transmission according to the priority of the transmission antenna port Electric power can be controlled.
  • a program that operates in the base station apparatus 3 and the mobile station apparatus 1 related to the present invention is a program (computer functions as a computer) that controls a CPU (Central Processing Unit) so as to realize the functions of the above-described embodiments related to the present invention.
  • Program Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the “computer system” is a computer system built in the mobile station apparatus 1 or the base station apparatus 3 and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In such a case, a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • part or all of the mobile station device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit.
  • Each functional block of the mobile station device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • Base station apparatus 101 Upper layer processing section (base station side upper layer processing section) 103 control unit 105 receiving unit (base station side receiving unit) 107 Transmitter (base station side transmitter) 109 Channel Measurement Unit 111 Transmit / Receive Antenna 201 Upper Layer Processing Unit (Mobile Station Side Upper Layer Processing Unit) 203 Control unit 205 Reception unit (Mobile station side reception unit) 207 Transmitter (mobile station side transmitter) 209 Channel measurement unit 211 Transmission / reception antenna 1011 Radio resource control unit 1013 SRS setting unit 1015 Transmission power setting unit 1051 Decoding unit 1053 Demodulation unit 1055 Demultiplexing unit 1057 Radio receiving unit 1071 Encoding unit 1073 Modulating unit 1075 Multiplexing unit 1077 Radio transmitting unit 1079 Uplink reference signal generator 2011 Radio resource controller 2013 SRS controller 2015 Transmission power controller 2051 Decoder 2053 Demodulator 2055 Demultiplexer 2057 Radio receiver 2071 Encoder 2073 Modulator 2075 Multiplexer 2077 Radio transmitter 2079 Uplink reference signal generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

 ピリオディックSRSとアピリオディックSRSの各々に対して最適な送信電力制御をする。移動局装置1が第1参照信号または第2参照信号を基地局装置3へ送信する無線通信システムであって、基地局装置3は、第1参照信号の送信に対する送信電力の設定に用いられる第1パラメータおよび第2参照信号の送信に対する送信電力の設定に用いられる第2パラメータを移動局装置1へ通知し、移動局装置1は、第1パラメータを用いて第1参照信号の送信に対する送信電力を設定する一方、第2パラメータを用いて第2参照信号の送信に対する送信電力を設定する。

Description

無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
 本発明は、移動局装置が、上りリンクのチャネル測定用の参照信号(サウンディング参照信号、Sounding Reference Signal; SRS)を基地局装置に送信する無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路に関する。
 従来から、セルラー移動通信の無線アクセス方式および無線ネットワークの進化(以下、「Long Term Evolution (LTE)」、または、「Evolved Universal Terrestrial Radio Access (EUTRA)」と称する。)、および、LTEより広帯域な周波数帯域を利用して、さらに高速なデータの通信を実現する無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution-Advanced (LTE-A)」、または、「Advanced Evolved Universal Terrestrial Radio Access (A-EUTRA)」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project; 3GPP)において検討されている。
 LTEでは、基地局装置から移動局装置への無線通信(下りリンク)の通信方式として、マルチキャリア送信である直交周波数分割多重(Orthogonal Frequency Division Multiplexing; OFDM)方式が用いられる。また、移動局装置から基地局装置への無線通信(上りリンク)の通信方式として、シングルキャリア送信であるSC-FDMA(Single-Carrier Frequency Division Multiple Access)方式が用いられる。
 LTEの上りリンクでは、基地局装置は、移動局装置が送信する上りリンクのチャネル測定用の参照信号(サウンディング参照信号、Sounding Reference Signal; SRS)を利用して、データ送信用のチャネルであるPUSCHの無線リソース割当、符号化率、変調方式を決定する。
 LTEの上りリンクでは、移動局装置の消費電力を抑えることや、他セルへの与干渉を低減することを目的として、送信電力制御(Transmit Power Control; TPC)を行なう。LTEにおいて規定されているSRSの送信電力値を決定するために用いられる式を示す。
Figure JPOXMLDOC01-appb-M000002
 (1)式において、PSRS(i)は、第iサブフレームにおけるSRSの送信電力値を示す。min{X,Y}はX、Yのうち最小値を選択するための関数である。PO_PUSCHは、PUSCHの基本となる送信電力であり、上位層から指定される値である。PSRS_OFFSETは、PUSCHとSRSの基本となる送信電力の差を示すオフセットであり、上位層から指定される値である。MSRSはSRSの送信に使用される無線リソース割り当てなどの単位である物理リソースブロック(Physical Resource Block; PRB)数を示し、SRSの送信に使用される物理リソースブロック数が多くなるに従って、送信電力が大きくなることを示している。
 また、PLはパスロスを示し、αはパスロスに乗算する係数であり、上位層により指定される。fは下りリンク制御情報(Downlink Control Information; DCI)で送信されるTPCコマンドから算出されるオフセット値(閉ループまたは開ループによる送信電力制御値)である。また、PCMAXは最大送信電力値であり、物理的な最大送信電力である場合や、上位層から指定される場合がある。
 LTE-Aでは、LTEとの後方互換性(backward compatibility)を持つこと、つまり、LTE-Aの基地局装置が、LTE-AおよびLTE両方の移動局装置と同時に無線通信を行ない、また、LTE-Aの移動局装置が、LTE-AおよびLTE両方の基地局装置と無線通信を行なえるようにすることが求められており、LTE-AはLTEと同一のチャネル構造を用いることが検討されている。
 非特許文献1では、LTE-AにおいてSRSの精度を向上させるために、周期的なSRS送信に加え、移動局装置が基地局装置にSRSの送信を要求された場合に1回だけSRSを送信する技術を導入することを提案している。以下、従来の移動局装置が周期的に送信するSRSをピリオディックSRS(periodic SRS)、基地局装置に要求された場合に1回だけ送信するSRSをアピリオディックSRS(aperiodic SRS、またはone shot SRS、scheduled SRS)と称する。具体的には、基地局装置は移動局装置にピリオディックSRSに関する周期、無線リソース(周波数帯域やサイクリックシフト)の設定とは別に、アピリオディックSRSに関する無線リソース設定をし、PDCCHで送信する下りリンク制御情報にSRSを要求するインディケータを含め、移動局装置に送信する。移動局装置は当該インディケータでSRSを要求されるとアピリオディックSRSに関する設定に従って1回のみSRSを送信する。
" Channel sounding enhancements for LTE-Advanced", 3GPP TSG RAN WG1 Meeting #59, R1-094653, November 9-13, 2009.
 しかしながら、ピリオディックSRSとアピリオディックSRSの送信電力制御を従来と同じように(1)式を用いて行なった場合、ピリオディックSRSとアピリオディックSRSの1つの物理リソースブロックに対する送信電力が同じになってしまう。また、SRSの送信に用いる物理リソースブロックの数に応じて送信電力が高くなるため、アピリオディックSRSの送信に用いる帯域幅がピリオディックSRSの送信に用いる帯域幅と比較して10倍の場合、ピリオディックSRSの送信電力と比較してアピリオディックSRSの送信電力が10倍になってしまう。
 このように、従来の(1)式を用いてSRSの送信電力制御を行なうと、ピリオディックSRSとアピリオディックSRSの送信電力を個別に制御することができないという問題があった。
 本発明は、このような事情に鑑みてなされたものであり、ピリオディックSRSとアピリオディックSRSの各々に対して、最適な送信電力制御をすることができる無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の無線通信システムは、基地局装置および移動局装置で構成され、前記移動局装置が複数の参照信号のうち第1参照信号または第2参照信号を前記基地局装置に対して送信する無線通信システムであって、前記基地局装置は、前記第1参照信号の送信電力制御に用いる第1パラメータおよび前記第2参照信号の送信電力制御に用いる第2パラメータを設定し、前記設定した第1パラメータおよび第2パラメータを前記移動局装置に対して通知し、前記移動局装置は、前記第1パラメータおよび第2パラメータを受信し、前記第1パラメータを用いて前記第1参照信号の送信電力制御を行なう一方、前記第2パラメータを用いて前記第2参照信号の送信電力制御を行ない、前記送信電力制御を行なった第1参照信号および/または第2参照信号を前記基地局装置に対して送信することを特徴とする。
 この構成により、基地局装置は、第1参照信号と第2参照信号の帯域幅(物理リソースブロック数)などに応じて、第1参照信号と第2参照信号の各々に対して、第1パラメータと第2パラメータを設定することが可能となり、移動局装置が送信する第1参照信号または第2参照信号の各々に対して、最適な送信電力制御を行なうことが可能となる。
 (2)また、本発明の無線通信システムにおいて、前記移動局装置は、複数の送信アンテナポートを備え、前記基地局装置は、前記移動局装置が備える複数の送信アンテナポートの各々に対して、前記第1パラメータおよび第2パラメータを設定し、前記移動局装置は、前記第1参照信号を送信する際に、前記送信アンテナポート毎に前記第1パラメータを用いて前記第1参照信号の送信電力制御を行ない、前記第2参照信号を送信する際に、前記送信アンテナポート毎に前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なうことを特徴とする。
 この構成により、移動局装置の優先度の高い送信アンテナポート、例えば、信号を送信している送信アンテナポートの送信電力を高くする一方、優先度の低い送信アンテナポート、例えば、信号を送信しないアンテナポートの送信電力を低くすることが可能となる。これにより、送信アンテナポートの優先度に応じて、柔軟な送信電力制御を行なうことが可能となる。
 (3)また、本発明の無線通信システムにおいて、前記第1参照信号は、前記基地局装置が上りリンクのチャネル測定を行なうために、前記基地局装置によって設定されたタイミングで前記移動局装置から送信され、前記第2参照信号は、前記基地局装置が上りリンクのチャネル測定を行なうために、前記基地局装置が前記移動局装置に対して送信を要求した場合に、特定の回数だけ前記移動局装置から送信されるものであることを特徴とする。
 この構成により、LTE-A(Long Term Evolution-Advanced)の無線通信システムに適用することが可能となる。
 (4)また、本発明の移動局装置は、基地局装置および移動局装置で構成され、前記移動局装置が複数の参照信号のうち第1参照信号または第2参照信号を前記基地局装置に対して送信する無線通信システムに適用される移動局装置であって、前記基地局装置で設定され、前記第1参照信号の送信電力制御に用いる第1パラメータおよび前記第2参照信号の送信電力制御に用いる第2パラメータを受信する移動局側受信部と、前記第1パラメータを用いて前記第1参照信号の送信電力制御を行なう一方、前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なう移動局側上位層処理部と、前記送信電力制御を行なった第1参照信号および/または第2参照信号を前記基地局装置に対して送信する移動局側送信部と、を備えることを特徴とする。
 この構成により、基地局装置は、第1参照信号と第2参照信号の帯域幅(物理リソースブロック数)などに応じて、第1参照信号と第2参照信号の各々に対して、第1パラメータと第2パラメータを設定し、移動局装置が送信する第1参照信号または第2参照信号の各々に対して、最適な送信電力制御を行なうことが可能となる。
 (5)また、本発明の移動局装置は、複数の送信アンテナポートを備え、前記移動局側受信部は、前記基地局装置が送信した前記複数の送信アンテナポートの各々に対する第1パラメータおよび第2パラメータを受信し、前記移動局側上位層処理部は、前記第1参照信号を送信する際に、前記送信アンテナポート毎に前記第1パラメータを用いて前記第1参照信号の送信電力制御を行ない、前記第2参照信号を送信する際に、前記送信アンテナポート毎に前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なうことを特徴とする。
 この構成により、移動局装置の優先度の高い送信アンテナポート、例えば、信号を送信している送信アンテナポートの送信電力を高くする一方、優先度の低い送信アンテナポート、例えば、信号を送信しないアンテナポートの送信電力を低くすることが可能となる。これにより、送信アンテナポートの優先度に応じて、柔軟な送信電力制御を行なうことが可能となる。
 (6)また、本発明の移動局装置において、前記第1参照信号は、前記基地局装置が上りリンクのチャネル測定を行なうために、前記基地局装置によって設定されたタイミングで送信し、前記第2参照信号は、前記基地局装置が上りリンクのチャネル測定を行なうために、前記基地局装置から送信を要求された場合に、特定の回数だけ送信するものであることを特徴とする。
 この構成により、LTE-A(Long Term Evolution-Advanced)の無線通信システムに適用することが可能となる。
 (7)また、本発明の基地局装置は、基地局装置および移動局装置で構成され、前記移動局装置が複数の参照信号のうち第1参照信号または第2参照信号を前記基地局装置に対して送信する無線通信システムに適用される基地局装置であって、前記第1参照信号の送信電力制御に用いる第1パラメータおよび前記第2参照信号の送信電力制御に用いる第2パラメータを設定する基地局側上位層処理部と、前記設定した第1パラメータおよび第2パラメータを前記移動局装置に対して通知する基地局側送信部と、を備えることを特徴とする。
 この構成により、基地局装置は、第1参照信号と第2参照信号の帯域幅(物理リソースブロック数)などに応じて、第1参照信号と第2参照信号の各々に対して、第1パラメータと第2パラメータを設定することが可能となり、移動局装置が送信する第1参照信号または第2参照信号の各々に対して、最適な送信電力制御を行なうことが可能となる。
 (8)また、本発明の基地局装置において、前記基地局側上位層処理部は、前記移動局装置が備える複数の送信アンテナポートの各々に対して、前記第1パラメータおよび前記第2パラメータを設定することを特徴とする。
 この構成により、移動局装置の優先度の高い送信アンテナポート、例えば、信号を送信している送信アンテナポートの送信電力を高くする一方、優先度の低い送信アンテナポート、例えば、信号を送信しないアンテナポートの送信電力を低くすることが可能となる。これにより、送信アンテナポートの優先度に応じて、柔軟な送信電力制御を行なうことが可能となる。
 (9)また、本発明の基地局装置において、前記第1参照信号は、自装置が上りリンクのチャネル測定を行なうために、設定したタイミングで前記移動局装置から送信され、前記第2参照信号は、自装置が上りリンクのチャネル測定を行なうために、前記移動局装置に対して送信を要求した場合に、特定の回数だけ前記移動局装置から送信されるものであることを特徴とする。
 この構成により、LTE-A(Long Term Evolution-Advanced)の無線通信システムに適用することが可能となる。
 (10)また、本発明の無線通信方法は、基地局装置および移動局装置で構成され、前記移動局装置が複数の参照信号のうち第1参照信号または第2参照信号を前記基地局装置に対して送信する無線通信システムの無線通信方法であって、前記基地局装置において、前記第1参照信号の送信電力制御に用いる第1パラメータおよび前記第2参照信号の送信電力制御に用いる第2パラメータを設定するステップと、前記設定した第1パラメータおよび第2パラメータを前記移動局装置に対して通知するステップと、前記移動局装置において、前記第1パラメータおよび第2パラメータを受信するステップと、前記第1パラメータを用いて前記第1参照信号の送信電力制御を行なう一方、前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なうステップと、前記送信電力制御を行なった第1参照信号および/または第2参照信号を前記基地局装置に対して送信するステップと、を少なくとも含むことを特徴とする。
 この構成により、基地局装置は、第1参照信号と第2参照信号の帯域幅(物理リソースブロック数)などに応じて、第1参照信号と第2参照信号の各々に対して、第1パラメータと第2パラメータを設定することが可能となり、移動局装置が送信する第1参照信号または第2参照信号の各々に対して、最適な送信電力制御を行なうことが可能となる。
 (11)また、本発明の無線通信方法は、前記基地局装置において、前記移動局装置が備える複数の送信アンテナポートの各々に対して、前記第1パラメータおよび第2パラメータを設定するステップと、前記移動局装置において、前記第1参照信号を送信する際に、前記送信アンテナポート毎に前記第1パラメータを用いて前記第1参照信号の送信電力制御を行ない、前記第2参照信号を送信する際に、前記送信アンテナポート毎に前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なうステップと、を更に含むことを特徴とする。
 この構成により、移動局装置の優先度の高い送信アンテナポート、例えば、信号を送信している送信アンテナポートの送信電力を高くする一方、優先度の低い送信アンテナポート、例えば、信号を送信しないアンテナポートの送信電力を低くすることが可能となる。これにより、送信アンテナポートの優先度に応じて、柔軟な送信電力制御を行なうことが可能となる。
 (12)また、本発明の無線通信方法において、前記第1参照信号は、前記基地局装置が上りリンクのチャネル測定を行なうために、前記基地局装置によって設定されたタイミングで前記移動局装置から送信され、前記第2参照信号は、前記基地局装置が上りリンクのチャネル測定を行なうために、前記基地局装置が前記移動局装置に対して送信を要求した場合に、特定の回数だけ前記移動局装置から送信されるものであることを特徴とする。
 この構成により、LTE-A(Long Term Evolution-Advanced)の無線通信システムに適用することが可能となる。
 (13)また、本発明の集積回路は、移動局装置に実装されることにより、前記移動局装置に対して複数の機能を発揮させる集積回路であって、基地局装置が上りリンクのチャネル測定を行なうために、前記基地局装置によって設定されたタイミングで送信する第1参照信号、または、前記基地局装置が上りリンクのチャネル測定を行なうために、前記基地局装置から送信を要求された場合に、特定の回数だけ送信する第2参照信号を送信する機能と、前記基地局装置で設定され、前記第1参照信号の送信電力制御に用いる第1パラメータおよび前記第2参照信号の送信電力制御に用いる第2パラメータを受信する機能と、前記第1パラメータを用いて前記第1参照信号の送信電力制御を行なう一方、前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なう機能と、前記送信電力制御を行なった第1参照信号および/または第2参照信号を前記基地局装置に対して送信する機能と、を含む一連の機能を、前記移動局装置に対して発揮させることを特徴とする。
 この構成により、基地局装置は、第1参照信号と第2参照信号の帯域幅(物理リソースブロック数)などに応じて、第1参照信号と第2参照信号の各々に対して、第1パラメータと第2パラメータを設定し、移動局装置が送信する第1参照信号または第2参照信号の各々に対して、最適な送信電力制御を行なうことが可能となる。また、LTE-A(Long Term Evolution-Advanced)の無線通信システムに適用することが可能となる。
 (14)また、本発明の集積回路は、複数の送信アンテナポートを備える移動局装置に実装され、前記基地局装置が送信した前記複数の送信アンテナポートの各々に対する第1パラメータおよび第2パラメータを受信する機能と、前記第1参照信号を送信する際に、前記送信アンテナポート毎に前記第1パラメータを用いて前記第1参照信号の送信電力制御を行ない、前記第2参照信号を送信する際に、前記送信アンテナポート毎に前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なう機能と、を更に備えることを特徴とする。
 この構成により、移動局装置の優先度の高い送信アンテナポート、例えば、信号を送信している送信アンテナポートの送信電力を高くする一方、優先度の低い送信アンテナポート、例えば、信号を送信しないアンテナポートの送信電力を低くすることが可能となる。これにより、送信アンテナポートの優先度に応じて、柔軟な送信電力制御を行なうことが可能となる。
 (15)また、本発明の集積回路は、基地局装置に実装されることにより、前記基地局装置に対して複数の機能を発揮させる集積回路であって、自装置が上りリンクのチャネル測定を行なうために、設定したタイミングで前記移動局装置から送信される第1参照信号の送信電力制御に用いる第1パラメータ、または、自装置が上りリンクのチャネル測定を行なうために、前記移動局装置に対して送信を要求した場合に、特定の回数だけ前記移動局装置から送信される第2参照信号の送信電力制御に用いる第2パラメータを設定する機能と、前記設定した第1パラメータおよび第2パラメータを前記移動局装置に対して通知する機能と、を含む一連の機能を、前記基地局装置に対して発揮させることを特徴とする。
 この構成により、基地局装置は、第1参照信号と第2参照信号の帯域幅(物理リソースブロック数)などに応じて、第1参照信号と第2参照信号の各々に対して、第1パラメータと第2パラメータを設定することが可能となり、移動局装置が送信する第1参照信号または第2参照信号の各々に対して、最適な送信電力制御を行なうことが可能となる。また、LTE-A(Long Term Evolution-Advanced)の無線通信システムに適用することが可能となる。
 (16)また、本発明の集積回路は、前記移動局装置が備える複数の送信アンテナポートの各々に対して、前記第1パラメータおよび前記第2パラメータを設定する機能を更に備えることを特徴とする。
 この構成により、移動局装置の優先度の高い送信アンテナポート、例えば、信号を送信している送信アンテナポートの送信電力を高くする一方、優先度の低い送信アンテナポート、例えば、信号を送信しないアンテナポートの送信電力を低くすることが可能となる。これにより、送信アンテナポートの優先度に応じて、柔軟な送信電力制御を行なうことが可能となる。
 本発明によれば、基地局装置は、移動局装置が送信する第1参照信号(ピリオディックSRS)と第2参照信号(アピリオディックSRS)の各々に対して、最適な送信電力制御をすることができる。
本発明の無線通信システムの概念図である。 本発明の上りリンクの無線フレームの構成の一例を示す概略図である。 本発明のSRSを送信するための無線リソースについて説明する図である。 本発明のサウンディングサブフレームの詳細な構成を示す図である。 本発明のSRSの送信方法について説明する図である。 本発明の基地局装置3の構成を示す概略ブロック図である。 本発明の移動局装置1の構成を示す概略ブロック図である。 本発明の移動局装置1と基地局装置3の動作の一例を示すシーケンスチャートである。 本発明の移動局装置1の動作の一例を示すフローチャートである。 本発明の変形例の移動局装置1の動作の一例を示すフローチャートである。
 (第1の実施形態)
 以下、図面を参照しながら本発明の第1の実施形態について詳しく説明する。
 <無線通信システムについて>
 図1は、本発明の無線通信システムの概念図である。図1において、無線通信システムは、移動局装置1A~1C、および基地局装置3を具備する。図1は、基地局装置3から移動局装置1A~1Cへの無線通信(下りリンク)では、同期チャネル(Synchronization Channel; SCH)、下りリンクパイロットチャネル(または、「下りリンク参照信号(Downlink Reference Signal; DL RS)」とも称する。)、報知チャネル(Physical Broadcast Channel; PBCH)、下りリンク制御チャネル(Physical Downlink Control Channel; PDCCH)、下りリンク共用チャネル(Physical Downlink Shared Channel; PDSCH)、マルチキャストチャネル(Physical Multicast Channel; PMCH)、制御フォーマットインディケータチャネル(Physical Control Format Indicator Channel; PCFICH)、HARQインディケータチャネル(Physical Hybrid ARQ Indicator Channel; PHICH)が割り当てられることを示す。
 また、図1は、移動局装置1A~1Cから基地局装置3への無線通信(上りリンク)では、上りリンクパイロットチャネル(または、「上りリンク参照信号(Uplink Reference Signal; UL RS)」とも称する。)、上りリンク制御チャネル(Physical Uplink Control Channel; PUCCH)、上りリンク共用チャネル(Physical Uplink Shared Channel; PUSCH)、ランダムアクセスチャネル(Physical Random Access Channel; PRACH)が割り当てられることを示す。上りリンク参照信号は、PUSCHとPUCCHの復調用の参照信号(復調参照信号、Demodulation Reference signal; DMRS)と上りリンクのチャネル推定用の参照信号(サウンディング参照信号、Sounding Reference Signal; SRS)がある。以下、移動局装置1A~1Cを移動局装置1という。
 <上りリンク無線フレームについて>
 図2は、本発明の上りリンクの無線フレームの構成の一例を示す概略図である。図2は、ある上りにおける無線フレームの構成を示す。図2において、横軸は時間領域、縦軸は周波数領域である。図2に示すように、上りリンクの無線フレームは、複数の上りリンクの物理リソースブロックペア(例えば、図2の破線で囲まれた領域)から構成されている。この上りリンクの物理リソースブロックペアは、無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(PRB帯域幅;180kHz)および時間帯(2個のスロット=1個のサブフレーム;1ms)からなる。
 1個の上りリンクの物理リソースブロックペアは、時間領域で連続する2個の上りリンクの物理リソースブロック(PRB帯域幅×スロット)から構成される。1個の上りリンクの物理リソースブロック(図2において、太線で囲まれている単位)は、周波数領域において12個のサブキャリア(15kHz)から構成され、時間領域において7個のSC-FDMAシンボル(71μs)から構成される。
 時間領域においては、7個のSC-FDMA(Single-Carrier Frequency Division Multiple Access)シンボル(71μs)から構成されるスロット(0.5ms)、2個のスロットから構成されるサブフレーム(1ms)、10個のサブフレームから構成される無線フレーム(10ms)がある。周波数領域においては、上りリンクの帯域幅に応じて複数の上りリンクの物理リソースブロックが配置される。なお、1個のサブキャリアと1個のSC-FDMAシンボルから構成されるユニットを上りリンクのリソースエレメントと称する。
 以下、上りリンクの無線フレーム内に割り当てられるチャネルについて説明をする。上りリンクの各サブフレームでは、例えば、PUCCH、PUSCH、DMRS、およびSRSが割り当てられる。
 まず、PUCCHについて説明をする。PUCCHは、上りリンクの帯域幅の両端の上りリンクの物理リソースブロックペア(左斜線でハッチングされた領域)に割り当てられる。PUCCHには、下りリンクのチャネル品質を示すチャネル品質情報(Channel Quality Information; CQI)、上りリンクの無線リソースの割り当ての要求を示すスケジューリング要求(Scheduling Request; SR)、PDSCHに対する受信応答であるACK/NACKなど、通信の制御に用いられる情報である上りリンク制御情報(Uplink Control Information; UCI)の信号が配置される。
 次に、PUSCHについて説明をする。PUSCHは、PUCCHが配置される上りリンクの物理リソースブロック以外の上りリンクの物理リソースブロックペア(ハッチングされない領域)に割り当てられる。PUSCHには、上りリンク制御情報、および上りリンク制御情報以外の情報であるデータ情報(トランスポートブロック; Transport Block)の信号が配置される。PUSCHの無線リソースは、上りリンクグラントを用いて割り当てられ、この上りリンクグラントを含むPDCCHを受信したサブフレームから所定の時間後のサブフレームの上りリンクのサブフレームに配置される。
 次に、SRSとDMRSについて説明をする。図3は、本発明のSRSを送信するための無線リソースについて説明する図である。図3において、横軸は時間領域である。基地局装置3は、移動局装置1がSRSを送信するための無線リソースを予約するサブフレームであるサウンディングサブフレームを設定する。具体的にはサウンディングサブフレームは基準となるサブフレームからのオフセットと周期が与えられる。また、サウンディングサブフレームは全移動局装置1に対して共通である。また、基地局装置3は、移動局装置1が実際にSRSを送信するサウンディングサブフレームと無線リソースを設定し、移動局装置1は当該設定に従ってSRSを周期的に送信する。
 図4は、本発明のサウンディングサブフレームの詳細な構成を示す図である。ただし、図4にはPUSCHとして利用できる帯域のみ記載しており、PUCCHとPRACHを送信する周波数帯域については省略している。図4において、横軸は時間領域、縦軸は周波数領域である。周波数領域において、1つのブロックはサブキャリアを表す。図4に示すように、SC-FDMAシンボル各々は異なる用途に利用することができ、各スロットにおける3番のSC-FDMAシンボルはDMRSの送信のために利用される。1番のスロットにおける6番目のSC-FDMAシンボルはSRSの送信のために利用される。SRSの送信のために予約される無線リソースの帯域幅は、PUSCHとして利用できる帯域幅とは別に基地局装置3が設定し、1番のスロットにおける6番目のSC-FDMAシンボルにおいてSRSの送信のために予約されなかった無線リソースはPUSCHとして利用することができる。
 1番目のスロットにおける6番目以外のSC-FDMAシンボルはPUSCH送信用に利用される。ここで、DMRSおよびSRSは、他の移動局装置1との多重や、アンテナ識別のために直交符号が利用されており、CAZAC(Constant Amplitude and zero-autocorrelation)系列を時間軸上でサイクリックシフト(cyclic shift)させた系列を利用する。DMRSは、PUCCHと時間多重される場合、PUSCHとは異なるSC-FDMAシンボルに多重されるが、説明の簡略化のため詳細な説明は省略する。
 図5は、本発明のSRSの送信方法について説明する図である。図5において、横軸は時間領域、縦軸は周波数領域である。基地局装置3は、移動局装置1に共通のSRSの送信に関する設定を行なう。この設定では、SRS送信用の無線リソースが予約されたサブフレームであるサウンディングサブフレームの位置、SRS送信用に予約された無線リソースの帯域幅を設定する。
 また、基地局装置3は、移動局装置1各々に周期的にSRSを送信するサブフレームと、周波数帯域とピリオディックSRSのCAZAC系列に用いるサイクリックシフトの量を設定する。以下、周期的に送信されるSRSのことをピリオディックSRS(periodic SRS)と称する。ピリオディックSRSを送信するサブフレームはサウンディングサブフレームの一部であり、ピリオディックSRSを送信する周波数帯域は、SRS送信用に予約した周波数帯域の一部である。
 また、基地局装置3は、PDCCHで送信する下りリンク制御情報(Downlink Control Information; DCI)に含まれるSRSを要求するインディケータで要求した場合のみ移動局装置1がSRSを送信するアピリオディックSRS(aperiodic SRS、またはone shot SRS、scheduled SRS)の設定を移動局装置1各々に設定する。この設定では、アピリオディックSRSを送信する周波数帯域とアピリオディックSRSのCAZAC系列に用いるサイクリックシフトの量を設定する。
 なお、本明細書において、ピリオディックSRSは、第1参照信号を構成し、アピリオディックSRSは、第2参照信号を構成するものとする。
 図5において、偶数番号のサブフレームがサウンディングサブフレームであり、帯域CがSRS送信用に予約された無線リソースの帯域幅である。また、移動局装置1は、サウンディングサブフレームのうち{4、8、12、16、20、24}番目のサブフレームでピリオディックSRSを送信するよう設定されており、当該移動局装置1がピリオディックSRSを送信する帯域は、帯域Cの一部である帯域Aであり、1回のピリオディックSRSの送信で帯域Aの帯域幅の3分の1の帯域A1、帯域A2、帯域A3のいずれか1つの帯域でピリオディックSRSを送信する。帯域A1、帯域A2、帯域A3でピリオディックSRSを送信する順序は予め決められている。
 また、図5において、帯域Cの一部である帯域BがアピリオディックSRS送信用に設定された周波数帯域であり、移動局装置1はサウンディングサブフレームのうち{2、6、18}番目のサブフレームでアピリオディックSRSを送信するよう基地局装置3に要求されている。なお、帯域Aは帯域Bおよび/または帯域Cと同じ周波数帯域でもよく、帯域Aを分割する数は3以外の数でもよく、帯域Aを分割しなくてもよく、帯域Bは帯域Cと同じ周波数帯域でなくてもよく、帯域Bは帯域Aを含まなくてもよい。なお、ピリオディックSRSは1回だけSRSを送信するように設定してもよい。
 <送信電力制御(Transmit Power Control; TPC)について>
 本発明の上りリンクでは、移動局装置1の消費電力を抑えることや、他セルへの与干渉を低減することを目的として、ピリオディックSRSとアピリオディックの送信電力制御を行なう。本発明のピリオディックSRSおよびアピリオディックSRSの送信電力値を決定するために用いられる式を示す。
Figure JPOXMLDOC01-appb-M000003
 (2)式において、PSRS(i)は、第iサブフレームにおけるSRSの送信電力値を示す。min{X,Y}はX、Yのうち最小値を選択するための関数である。PO_PUSCHは、PUSCHの基本となる送信電力であり、上位層から指定される値である。MSRSはSRSの送信に使用される無線リソース割り当てなどの単位である物理リソースブロック(Physical Resource Block; PRB)数を示し、SRSの送信に使用される物理リソースブロック数が多くなるに従って、送信電力が大きくなることを示している。また、PLはパスロスを示し、αはパスロスに乗算する係数であり、上位層により指定される。fはPDCCHに配置される下りリンク制御情報で送信されるTPCコマンドから算出されるオフセット値(閉ループまたは開ループによる送信電力制御値)であり、PUSCHとSRSで共通のパラメータである。また、PCMAXは最大送信電力値であり、物理的な最大送信電力である場合や、上位層から指定される場合がある。
 PSRS_OFFSET(k)は、PUSCHとSRSの基本となる送信電力の差を示すオフセットであり、上位層から指定される値である。kはピリオディックSRSかアピリオディックSRSかを示しており、例えば、ピリオディックSRSの場合にはk=0、アピリオディックSRSの場合にはk=1とする。ピリオディックSRSのPSRS_OFFSET (0)とアピリオディックSRSのPSRS_OFFSET(1)各々は上位層により指定される。このように、PSRS_OFFSETをピリオディックSRSとアピリオディックSRSで別々に設定することで、ピリオディックSRSとアピリオディックSRSの用途や、帯域幅(物理リソースブロック数)MSRS、最大送信電力値PCMAXを考慮して柔軟に送信電力制御をすることができる。
 例えば、PSRS_OFFSETがピリオディックSRSとアピリオディックSRSで共通、PCMAX=23[dBm]、ピリオディックSRSのPSRS=20[dBm]、ピリオディックSRSのMSRS=4、アピリオディックSRSのMSRS=16だとすると、アピリオディックSRSの送信電力として移動局装置1が算出する電力は26[dBm]となってしまいPCMAXを超えてしまい、移動局装置1はPCMAX=23[dBm]でアピリオディックSRSを送信する。しかし、基地局装置3はPLのパラメータを知らないため、算出したアピリオディックSRSの送信電力がPCMAXを超え、PCMAXの電力でアピリオディックSRSを送信していることがわからないため、正しいチャネル測定ができないが、本発明を用いることで、基地局装置3は、ピリオディックSRSとアピリオディックSRSのMSRSに応じて、ピリオディックSRSとアピリオディックSRSの送信電力として算出する値がPCMAXを超えないよう別々にPSRS_OFFSETを設定できる。
 <基地局装置3の構成について>
 図6は、本発明の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部101、制御部103、受信部105、送信部107、チャネル測定部109、および、送受信アンテナ111、を含んで構成される。また、上位層処理部101は、無線リソース制御部1011、SRS設定部1013と送信電力設定部1015を含んで構成される。また、受信部105は、復号化部1051、復調部1053、多重分離部1055と無線受信部1057を含んで構成される。また、送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077と下りリンク参照信号生成部1079を含んで構成される。
 上位層処理部101は、パケットデータ統合プロトコル(Packet Data Convergence Protocol; PDCP)層、無線リンク制御(Radio Link Control; RLC)層、無線リソース制御(Radio Resource Control; RRC)層の処理を行なう。
 上位層処理部101が備える無線リソース制御部1011は、下りリンクの各チャネルに配置する情報を生成、又は上位ノードから取得し、送信部107に出力する。また、無線リソース制御部1011は、上りリンクの無線リソースの中から、移動局装置1がPUSCH(データ情報)を配置する無線リソースを割り当てる。また、無線リソース制御部1011は、下りリンクの無線リソースの中から、PDSCH(データ情報)を配置する無線リソースを決定する。無線リソース制御部1011は、当該無線リソースの割り当てを示す下りリンク制御情報を生成し、送信部107を介して移動局装置1に送信する。無線リソース制御部1011は、PUSCHを配置する無線リソースを割り当てる際に、チャネル測定部109から入力された上りリンクのチャネル測定結果を基に、チャネル品質の良い無線リソースを優先的に割り当てる。
 移動局装置1からPUCCHで通知された上りリンク制御情報(ACK/NACK、チャネル品質情報、スケジューリング要求)、および移動局装置1から通知されたバッファの状況や無線リソース制御部1011が設定した移動局装置1各々の各種設定情報に基づき、受信部105および送信部107の制御を行なうために制御情報を生成し、制御部103に出力する。
 SRS設定部1013は、移動局装置1がSRSを送信するための無線リソースを予約するサブフレームであるサウンディングサブフレーム、およびサウンディングサブフレーム内でSRSを送信するために予約する無線リソースの帯域幅を設定し、前記設定をシステム情報(System Information)として生成し、送信部107を介して、PDSCHで報知送信する。また、SRS設定部1013は、移動局装置1各々に周期的にピリオディックSRSを送信するサブフレーム、周波数帯域、およびピリオディックSRSのCAZAC系列に用いるサイクリックシフトの量を設定し、前記設定を無線リソース制御信号(Radio Resource Control Signal)として生成し、送信部107を介して、移動局装置1各々にPDSCHで通知する。
 また、SRS設定部1013は、移動局装置1各々にアピリオディックSRSを送信する周波数帯域、およびアピリオディックSRSのCAZAC系列に用いるサイクリックシフトの量を設定し、前記設定を無線リソース制御信号として生成し、送信部107を介して、移動局装置1各々にPDSCHで通知する。また、SRS設定部1013は、移動局装置1にアピリオディックSRSを要求する場合、移動局装置1にアピリオディックSRSを要求していることを示すSRSインディケータを生成し、送信部107を介して、移動局装置1にPDCCHで通知する。
 送信電力設定部1015は、PUCCH、PUSCH、ピリオディックSRS、およびアピリオディックSRSの送信電力を設定する。具体的には、送信電力設定部1015は、隣接する基地局装置3からの干渉量を示す情報、隣接する基地局装置3から通知された隣接する基地局装置3に与えている干渉量を示す情報、またチャネル測定部109から入力されたチャネルの品質などに応じて、PUSCHなどが所定のチャネル品質を満たすよう、また隣接する基地局装置3への干渉、移動局装置1の消費電力を考慮し、送信電力を設定し、前記設定を示す情報を、送信部107を介して、移動局装置1に送信する。
 具体的には、送信電力設定部1015は、(2)式のP_PUSCH、α、ピリオディックSRS用のPSRS_OFFSET(0)(第1パラメータ)、アピリオディックSRS用のPSRS_OFFSET(1)(第2パラメータ)を設定し、前記設定を無線リソース制御信号として生成し、送信部107を介して、移動局装置1各々にPDSCHで通知する。また、送信電力設定部1015は、(2)式のfを算出するためのTPCコマンドを設定し、TPCコマンドを生成し、送信部107を介して、移動局装置1各々にPDCCHで通知する。
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105、および送信部107の制御を行なう制御信号を生成する。制御部103は、生成した制御信号を受信部105、および送信部107に出力して受信部105、および送信部107の制御を行なう。
 受信部105は、制御部103から入力された制御信号に従って、送受信アンテナ111を介して移動局装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。無線受信部1057は、送受信アンテナ111を介して受信した上りリンクの信号を、中間周波数に変換し(ダウンコンバート)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、変換したディジタル信号からガードインターバル(Guard Interval; GI)に相当する部分を除去する。無線受信部1057は、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform; FFT)を行ない、周波数領域の信号を抽出し多重分離部1055に出力する。
 多重分離部1055は、無線受信部1057から入力された信号をPUCCH、PUSCH、DMRS、SRSなどの信号に、それぞれ分離する。なお、この分離は、予め基地局装置3が決定して各移動局装置1に通知した無線リソースの割当情報に基づいて行なわれる。また、多重分離部1055は、チャネル測定部109から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1055は、分離したDMRSおよびSRSをチャネル測定部109に出力する。
 復調部1053は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform; IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、2位相偏移変調(Binary Phase Shift Keying; BPSK)、4相位相偏移変調(Quadrature Phase Shift Keying; QPSK)、16値直交振幅変調(16Quadrature Amplitude Modulation; 16QAM)、64値直交振幅変調(64Quadrature Amplitude Modulation; 64QAM)等の予め定められた、または基地局装置3が移動局装置1各々に下りリンク制御情報で予め通知した変調方式を用いて受信信号の復調を行なう。
 復号化部1051は、復調したPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の予め定められた又は基地局装置3が移動局装置1に上りリンクグラントで予め通知した符号化率で復号を行ない、復号したデータ情報と、上りリンク制御情報を上位層処理部101へ出力する。
 チャネル測定部109は、多重分離部1055から入力されたDMRSとSRSから伝搬路の推定値、チャネルの品質などを測定し、多重分離部1055および上位層処理部101に出力する。
 送信部107は、制御部103から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたデータ情報、下りリンク制御情報を符号化、および変調し、PDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナを介して移動局装置1に信号を送信する。
 符号化部1071は、上位層処理部101から入力された下りリンク制御情報、およびデータ情報を、ターボ符号化、畳込み符号化、ブロック符号化等の符号化を行なう。符号化部1071は、符号化ビットをQPSK、16QAM、64QAM等の変調方式で変調する。下りリンク参照信号生成部1079は、基地局装置3を識別するためのセル識別子(Cell ID)などを基に予め定められた規則で求まる、移動局装置1が既知の系列を下りリンク参照信号として生成する。多重部1075は、変調した各チャネルと生成した下りリンク参照信号を多重する。
 無線送信部1077は、多重した変調シンボルを逆高速フーリエ変換(Inverse Fast Fourier Transform; IFFT)して、OFDM方式の変調を行ない、OFDM変調されたOFDMシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ111に出力して送信する。
 <移動局装置1の構成について>
 図7は、本実施形態に係る移動局装置1の構成を示す概略ブロック図である。図示するように、移動局装置1は、上位層処理部201、制御部203、受信部205、送信部207、チャネル測定部209、および、送受信アンテナ211を含んで構成される。また、上位層処理部201は、無線リソース制御部2011、SRS制御部2013と送信電力制御部2015を含んで構成される。また、受信部205は、復号化部2051、復調部2053、多重分離部2055と無線受信部2057を含んで構成される。また、送信部207は、符号化部2071、変調部2073、多重部2075と無線送信部2077を含んで構成される。
 上位層処理部201は、ユーザの操作等により生成された上りリンクのデータ情報を、送信部207に出力する。また、上位層処理部201は、パケットデータ統合プロトコル層、無線リンク制御層、無線リソース制御層の処理を行なう。
 上位層処理部201が備える無線リソース制御部2011は、自装置の各種設定情報の管理を行なう。また、無線リソース制御部2011は、上りリンクの各チャネルに配置する情報を生成し送信部207に出力する。無線リソース制御部2011は、基地局装置3からPDCCHで通知された下りリンク制御情報、およびPDSCHで通知された無線リソース制御情報で設定された無線リソース制御部2011が管理する自装置の各種設定情報に基づき、受信部205、および送信部207の制御を行なうために制御情報を生成し、制御部203に出力する。
 上位層処理部201が備えるSRS制御部2013は、基地局装置3が報知しているSRSを送信するための無線リソースを予約するサブフレームであるサウンディングサブフレーム、およびサウンディングサブフレーム内でSRSを送信するために予約する無線リソースの帯域幅を示す情報、および、基地局装置3が自装置に通知したピリオディックSRSを送信するサブフレーム、周波数帯域、およびピリオディックSRSのCAZAC系列に用いるサイクリックシフトの量を示す情報、および、基地局装置3が自装置に通知したアピリオディックSRSを送信する周波数帯域、およびアピリオディックSRSのCAZAC系列に用いるサイクリックシフトの量を示す情報を、受信部205から取得する。
 SRS制御部2013は、前記情報に従ってSRS送信の制御を行なう。具体的には、SRS制御部2013は、前記ピリオディックSRSに関する情報に従ってピリオディックSRSを1回または周期的に送信するよう送信部207を制御する。また、SRS制御部2013は、送信部207から入力されたSRSインディケータでアピリオディックSRSの送信を要求された場合、前記アピリオディックSRSに関する情報に従ってアピリオディックSRSを予め定められた回数(例えば、1回)だけ送信する。
 上位層処理部201が備える送信電力制御部2015は、PUCCH、PUSCH、ピリオディックSRS、およびアピリオディックSRSの送信電力の設定を示す情報を基に、送信電力の制御を行なうよう制御部203に制御情報を出力する。具体的には、送信電力制御部2015は、送信部207から取得したPO_PUSCH、α、ピリオディックSRS用のPSRS_OFFSET(0)(第1パラメータ)、アピリオディックSRS用のPSRS_OFFSET(1)(第2パラメータ)、およびTPCコマンドを基に、(2)式からピリオディックSRSの送信電力とアピリオディックSRSの送信電力各々を制御する。なお、PSRS_OFFSETはピリオディックSRSかアピリオディックSRSかに応じてパラメータを切り替える。
 制御部203は、上位層処理部201からの制御情報に基づいて、受信部205、および送信部207の制御を行なう制御信号を生成する。制御部203は、生成した制御信号を受信部205、および送信部207に出力して受信部205、および送信部207の制御を行なう。
 受信部205は、制御部203から入力された制御信号に従って、送受信アンテナ211を介して基地局装置3から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。
 無線受信部2057は、各受信アンテナを介して受信した下りリンクの信号を、中間周波数に変換し(ダウンコンバート)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部2057は、変換したディジタル信号からガードインターバルに相当する部分を除去し、ガードインターバルを除去した信号に対して高速フーリエ変換を行ない、周波数領域の信号を抽出する。
 多重分離部2055は、抽出した信号をPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。なお、この分離は、下りリンク制御情報で通知された無線リソースの割り当て情報などに基づいて行なわれる。また、多重分離部2055は、チャネル測定部209から入力された伝搬路の推定値から、PDCCHとPDSCHの伝搬路の補償を行なう。また、多重分離部2055は、分離した下りリンク参照信号をチャネル測定部209に出力する。
 復調部2053は、PDCCHに対して、QPSK変調方式の復調を行ない、復号化部2051へ出力する。復調部2053は、PDSCHに対して、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式の復調を行ない、復号化部2051へ出力する。復号化部2051は、PDCCHの復号を試み、復号に成功した場合、復号した下りリンク制御情報を上位層処理部201に出力する。復号化部2051は、下りリンク制御情報で通知された符号化率に対する復号を行ない、復号したデータ情報を上位層処理部201へ出力する。
 チャネル測定部209は、多重分離部2055から入力された下りリンク参照信号から下りリンクのパスロスを測定し、測定したパスロスを上位層処理部201へ出力する。また、チャネル測定部209は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部2055へ出力する。
 送信部207は、制御部203から入力された制御信号に従って、DMRSおよび/またはSRSを生成し、上位層処理部201から入力されたデータ情報を符号化および変調し、PUCCH、PUSCH、および生成したDMRSおよび/またはSRSを多重し、PUCCH、PUSCH、DMRS、およびSRSの送信電力を調整し、送受信アンテナを介して基地局装置3に送信する。
 符号化部2071は、上位層処理部201から入力された上りリンク制御情報、およびデータ情報を、ターボ符号化、畳込み符号化、ブロック符号化等の符号化を行なう。変調部2073は、符号化部2071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の変調方式で変調する。
 上りリンク参照信号生成部2079は、基地局装置3を識別するためのセル識別子、DMRSおよびSRSを配置する帯域幅などを基に予め定められた規則で求まる、基地局装置3が既知のCAZAC系列を生成する。また、上りリンク参照信号生成部2079は、制御部203から入力された制御信号に従って、生成したDMRSおよびSRSのCAZAC系列にサイクリックシフトを与える。
 多重部2075は、制御部203から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform; DFT)し、PUCCHとPUSCHの信号と生成したDMRSおよびSRSを多重する。
 無線送信部2077は、多重した信号を逆高速フーリエ変換して、SC-FDMA方式の変調を行ない、SC-FDMA変調されたSC-FDMAシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナに出力して送信する。
 <無線通信システムの動作について>
 図8は、本発明の移動局装置1と基地局装置3の動作の一例を示すシーケンスチャートである。基地局装置3は、(2)式のPO_PUSCH、α、ピリオディックSRS用のPSRS_OFFSET(0)(第1パラメータ)、アピリオディックSRS用のPSRS_OFFSET(1)(第2パラメータ)を設定し、移動局装置1に通知する(ステップS100)。基地局装置3は、移動局装置1がSRSを送信するための無線リソースを予約するサブフレームであるサウンディングサブフレーム、およびサウンディングサブフレーム内でSRSを送信するために予約する無線リソースの帯域幅を設定し、移動局装置1に通知する(ステップS101)。
 基地局装置3は、ピリオディックSRSを送信するサブフレーム、周波数帯域、およびピリオディックSRSのCAZAC系列に用いるサイクリックシフトの量を設定し、移動局装置1に通知する(ステップS102)。基地局装置3は、アピリオディックSRSを送信する周波数帯域、およびアピリオディックSRSのCAZAC系列に用いるサイクリックシフトの量を設定し、移動局装置1に通知する(ステップS103)。移動局装置1は、ステップS100からステップS103で通知されたパラメータをセットする(ステップS104)。
 移動局装置1は、ステップS104でセットしたピリオディックSRSに関するパラメータに従って、ピリオディックSRSを1回、または周期的に送信する(ステップS105)。なお、ピリオディックSRSの送信電力は、ステップS100で通知されたピリオディックSRS用のPSRS_OFFSET(0)(第1パラメータ)を用いて算出する。
 基地局装置3は、アピリオディックSRSの送信を要求することを示すSRSインディケータを送信し(ステップS106)。移動局装置1は、SRSインディケータでアピリオディックSRSの送信を要求されていると判定すると(ステップS107)、ステップS104でセットしたアピリオディックSRSに関するパラメータに従って、アピリオディックSRSを予め定められた回数(例えば、1回)送信する(ステップS108)。なお、アピリオディックSRSの送信電力は、ステップS100で通知されたアピリオディックSRS用のPSRS_OFFSET(1)(第2パラメータ)を用いて算出する。
 移動局装置1と基地局装置3はステップS108の後、アピリオディックSRSの送受信に関する処理を終了する。なお、基地局装置3が、移動局装置1にピリオディックSRSを周期的に送信するよう設定した場合、移動局装置1はステップS108の後にも周期的にピリオディックSRSを送信し続ける(ステップS109)。
 図9は、本発明の移動局装置1の動作の一例を示すフローチャートである。移動局装置1は、基地局装置3が送信したピリオディックSRSの送信電力に関するパラメータPSRS_OFFSET(0)(第1パラメータ)とアピリオディックSRSの送信電力に関するパラメータPSRS_OFFSET(1)(第2パラメータ)を受信する(ステップS200)。移動局装置1が、アピリオディックSRSを送信する場合(ステップS201-アピリオディックSRS)、少なくともPSRS_OFFSET(1)を用いてアピリオディックSRSの送信電力を算出する(ステップS202)。ステップS201において、移動局装置1が、ピリオディックSRSを送信する場合(ステップS201-ピリオディックSRS)、少なくともPSRS_OFFSET(0)を用いてピリオディックSRSの送信電力を算出する(ステップS203)。
 移動局装置1は、ステップS202および/またはステップS203で算出した送信電力でアピリオディックSRSおよび/またはピリオディックSRSを送信する(ステップS204)。移動局装置1はステップS204の後、アピリオディックSRSおよび/またはピリオディックSRSの送信電力制御に関する処理を終了する。
 このように、本発明によれば、基地局装置3は、基地局装置3が設定し移動局装置1に通知した設定に従って移動局装置1が送信するピリオディックSRSの送信電力制御に用いるPSRS_OFFSET(0)(第1パラメータ)と、基地局装置3がSRSインディケータで要求した場合に、移動局装置1が送信するアピリオディックSRSの送信電力制御に用いるPSRS_OFFSET(1)(第2パラメータ)を移動局装置1に設定し、移動局装置1は、ピリオディックSRSを送信する際には少なくともPSRS_OFFSET(0)(第1パラメータ)を用いてピリオディックSRSの送信電力制御を行ない、アピリオディックSRSを送信する際には少なくともPSRS_OFFSET(1)(第2パラメータ)を用いてアピリオディックSRSの送信電力制御を行ない、ピリオディックSRSおよび/またはアピリオディックSRSを送信する。
 これにより、基地局装置3は、ピリオディックSRSとアピリオディックSRSの帯域幅(物理リソースブロック数)MSRSなどに応じて、ピリオディックSRSとアピリオディックSRS各々に対してPSRS_OFFSETを設定でき、移動局装置1が送信するピリオディックSRSとアピリオディックSRS各々に対して最適な送信電力制御をすることができる。
 (変形例)
 以下、本発明の変形例について説明する。本発明の変形例では、移動局装置1が複数の送信アンテナポートを備え、基地局装置3が移動局装置1の送信アンテナポート毎にPSRS_OFFSETを設定する場合について説明する。本発明の変形例の上りリンクでは、ピリオディックSRSとアピリオディックSRSの送信電力制御を送信アンテナポート毎に行なう。本発明の送信アンテナポート毎のピリオディックSRSおよびアピリオディックSRSの送信電力値を決定するために用いられる式を示す。
Figure JPOXMLDOC01-appb-M000004
 (3)式において、PSRS_OFFSET(k,p)は、PUSCHとSRSの基本となる送信電力の差を示すオフセットであり、上位層から指定される値である。kはピリオディックSRSかアピリオディックSRSかを示しており、pは移動局装置1の送信アンテナポートを示している。例えば、移動局装置1がp=0とp=1の2つの送信アンテナポートを備え、ピリオディックSRSの場合にはk=0、アピリオディックSRSの場合にはk=1とすると、基地局装置3は、移動局装置1に、ピリオディックSRSを送信する際の送信アンテナポートp=0に対するPSRS_OFFSET(0,0)と送信アンテナポートp=1に対するPSRS_OFFSET(0,1)、アピリオディックSRSを送信する際の送信アンテナポートp=0に対するPSRS_OFFSET(1,0)と送信アンテナポートp=1に対するPSRS_OFFSET(1,1)の4つの値を通知する。(3)式の他の変数は(2)式と同じであるので、同じ変数についての説明は省略する。
 図10は、本発明の変形例の移動局装置1の動作の一例を示すフローチャートである。移動局装置1は、基地局装置3が送信したピリオディックSRSの送信電力に関する送信アンテナポート毎のパラメータPSRS_OFFSET(0,p)(第1パラメータ)とアピリオディックSRSの送信電力に関する送信アンテナポート毎のパラメータPSRS_OFFSET(1,p)(第2パラメータ)を受信する(ステップS300)。移動局装置1が、アピリオディックSRSを送信する場合(ステップS301-アピリオディックSRS)、少なくともPSRS_OFFSET(1,p)を用いてアピリオディックSRSの送信電力を送信アンテナポート毎に算出する(ステップS302)。ステップS301において、移動局装置1が、ピリオディックSRSを送信する場合(ステップS301-ピリオディックSRS)、少なくともPSRS_OFFSET(0,p)を用いてピリオディックSRSの送信電力を送信アンテナポート毎に算出する(ステップS303)。
 移動局装置1は、ステップS302および/またはステップS303で算出した送信アンテナポート毎の送信電力でアピリオディックSRSおよび/またはピリオディックSRSを送信する(ステップS304)。移動局装置1はステップS304の後、アピリオディックSRSおよび/またはピリオディックSRSの送信電力制御に関する処理を終了する。
 このように本発明の変形例によれば、基地局装置3は、移動局装置1が備える複数の送信アンテナポート各々にPSRS_OFFSET(k,p)を設定し、移動局装置1は、ピリオディックSRSおよび/またはアピリオディックSRSを送信する際に、送信アンテナポート毎に少なくともPSRS_OFFSET(k,p)を用いてピリオディックSRSおよびアピリオディックSRSの送信電力制御を行なう。これにより、移動局装置1の優先度の高い送信アンテナポート(例えば、信号を送信している送信アンテナポート)の送信電力を高くし、優先度の低い送信アンテナポート(例えば、信号を送信しない送信アンテナポート)の送信電力を低くするような制御をすることができ、送信アンテナポートの優先度に応じて柔軟な送信電力の制御をすることができる。
 なお、本発明では、図8のステップS100においてピリオディックSRS用のPSRS_OFFSET(0)(第1パラメータ)、アピリオディックSRS用のPSRS_OFFSET(1)(第2パラメータ)が送信電力制御に関するパラメータとして送受信されたが、ピリオディックSRS用のPSRS_OFFSET(0)(第1パラメータ)を、ステップS103でピリオディックSRSに関するパラメータと一緒に送信してもよく、また、アピリオディックSRS用のPSRS_OFFSET(1)(第2パラメータ)をステップS102でアピリオディックSRSに関するパラメータと一緒に送信してもよく、PSRS_OFFSET(0)(第1パラメータ)およびPSRS_OFFSET(1)(第2パラメータ)が他のどのようなパラメータと一緒に送信されてもよい。
 また、本発明では、基地局装置3が移動局装置1にアピリオディックSRS送信を要求する場合に、PDCCHを用いてアピリオディックSRSを要求するSRSインディケータを送信したが、SRSインディケータの送信方法はこれに限定されず、PDSCHで送信される無線リソース制御信号(Radio Resource Control signal)、MAC(Medium Access Control)、CE(Control Element)などで送信されてもよい。
 また、本発明の変形例では、移動局装置1が基地局装置3に、自装置の送信アンテナポート数を通知することで、基地局装置3が移動局装置1の送信アンテナポート数を判別できるようにしてもよい。
 以上説明した本発明の特徴的な手段は、集積回路に手段を実装し、制御することによっても実現することができる。すなわち、本発明の集積回路は、基地局装置3と、基地局装置3に設定されたタイミングで上りリンクのチャネル測定用の第1参照信号を送信し、基地局装置3に送信を要求された場合に特定の回数だけ上りリンクのチャネル測定用の第2参照信号を送信する移動局装置1を有する無線通信システムに適用される集積回路であって、基地局装置3において、前記第1参照信号の送信電力制御に用いる第1パラメータと前記第2参照信号の送信電力制御に用いる第2パラメータを設定する手段、前記第1パラメータおよび第2パラメータを移動局装置1に通知する手段、移動局装置1において、前記第1参照信号を送信する際には少なくとも前記第1パラメータを用いて前記第1参照信号の送信電力制御を行ない、前記第2参照信号を送信する際には少なくとも前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なう手段、前記第1参照信号および/または前記第2参照信号を送信する手段を有することを特徴とする。
 このように、本発明の集積回路を用いた無線通信システムにおいて、基地局装置3は、ピリオディックSRSとアピリオディックSRSの帯域幅(物理リソースブロック数)MSRSなどに応じて、ピリオディックSRSとアピリオディックSRS各々に対してPSRS_OFFSETを設定でき、移動局装置1が送信するピリオディックSRSとアピリオディックSRS各々に対して最適な送信電力制御をすることができる。
 また、本発明の集積回路は、基地局装置3において、移動局装置1が備える複数の送信アンテナポート各々に第1パラメータおよび第2パラメータを設定する手段、移動局装置1において、前記第1参照信号を送信する際には送信アンテナポート毎に少なくとも前記第1パラメータを用いて前記第1参照信号の送信電力制御を行ない、前記第2参照信号を送信する際には送信アンテナポート毎に少なくとも前記第2パラメータを用いて前記第2参照信号の送信電力制御を行なう手段を有することを特徴とする。
 このように、本発明の集積回路を用いた無線通信システムにおいて、基地局装置3は、移動局装置1の優先度の高い送信アンテナポート(例えば、信号を送信している送信アンテナポート)の送信電力を高くし、優先度の低い送信アンテナポート(例えば、信号を送信しない送信アンテナポート)の送信電力を低くするような制御をすることができ、送信アンテナポートの優先度に応じて柔軟な送信電力の制御をすることができる。
 本発明に関わる基地局装置3、および移動局装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
 なお、上述した実施形態における移動局装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、移動局装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における移動局装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよい。移動局装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
1、1A~1C 移動局装置
3 基地局装置
101 上位層処理部(基地局側上位層処理部)
103 制御部
105 受信部(基地局側受信部)
107 送信部(基地局側送信部)
109 チャネル測定部
111 送受信アンテナ
201 上位層処理部(移動局側上位層処理部)
203 制御部
205 受信部(移動局側受信部)
207 送信部(移動局側送信部)
209 チャネル測定部
211 送受信アンテナ
1011 無線リソース制御部
1013 SRS設定部
1015 送信電力設定部
1051 復号化部
1053 復調部
1055 多重分離部
1057 無線受信部
1071 符号化部
1073 変調部
1075 多重部
1077 無線送信部
1079 上りリンク参照信号生成部
2011 無線リソース制御部
2013 SRS制御部
2015 送信電力制御部
2051 復号化部
2053 復調部
2055 多重分離部
2057 無線受信部
2071 符号化部
2073 変調部
2075 多重部
2077 無線送信部
2079 上りリンク参照信号生成部

Claims (28)

  1.  移動局装置が第1参照信号または第2参照信号を基地局装置へ送信する無線通信システムであって、
     前記基地局装置は、
     前記第1参照信号の送信に対する送信電力の設定に用いられる第1パラメータおよび前記第2参照信号の送信に対する送信電力の設定に用いられる第2パラメータを前記移動局装置へ通知し、
     前記移動局装置は、
     前記第1パラメータを用いて前記第1参照信号の送信に対する送信電力を設定する一方、前記第2パラメータを用いて前記第2参照信号の送信に対する送信電力を設定することを特徴とする無線通信システム。
  2.  前記第1パラメータおよび前記第2パラメータは、無線リソース制御信号を用いて前記基地局装置によって通知されることを特徴とする請求項1に記載の無線通信システム。
  3.  前記基地局装置は、
     前記移動局装置が前記第1参照信号を送信する第1無線リソースを前記移動局装置へ無線リソース制御信号を用いて通知し、
     前記移動局装置が前記第2参照信号を送信可能な第2無線リソースを前記移動局装置へ通知し、
     前記第2参照信号の送信を要求する下りリンク制御情報を物理下りリンク制御チャネルで前記移動局装置へ通知し、
     前記移動局装置は、
     前記第1無線リソースを用いて前記設定した送信電力で前記第1参照信号を前記基地局装置へ送信し、
     前記下りリンク制御情報を受信した際に前記第2無線リソースを用いて前記設定した送信電力で前記第2参照信号を前記基地局装置へ送信することを特徴とする請求項1または請求項2に記載の無線通信システム。
  4.  前記第2無線リソースは、システム情報を用いて前記基地局装置によって通知されることを特徴とする請求項3に記載の無線通信システム。
  5.  前記移動局装置は、複数の送信アンテナポートを備え、
     前記基地局装置は、前記移動局装置が備える複数の送信アンテナポートの各々に対して、前記第1パラメータおよび前記第2パラメータを前記移動局装置へ通知し、
     前記移動局装置は、前記送信アンテナポート毎に前記第1パラメータを用いて前記第1参照信号の送信に対する送信電力を設定する一方、前記送信アンテナポート毎に前記第2パラメータを用いて前記第2参照信号の送信に対する送信電力を設定することを特徴とする請求項1に記載の無線通信システム。
  6.  基地局装置へ第1参照信号または第2参照信号を送信する移動局装置であって、
     前記基地局装置から通知された第1パラメータを用いて前記第1参照信号の送信に対する送信電力を設定する一方、前記基地局装置から通知された第2パラメータを用いて前記第2参照信号の送信に対する送信電力を設定する移動局側上位層処理部を備えることを特徴とする移動局装置。
  7.  無線リソース制御信号を用いて前記基地局装置によって通知される前記第1パラメータおよび前記第2パラメータを受信する移動局側受信部を備えることを特徴とする請求項6に記載の移動局装置。
  8.  無線リソース制御信号を用いて前記基地局装置によって通知された第1無線リソースを用いて前記設定した送信電力で前記第1参照信号を前記基地局装置へ送信し、前記第2参照信号の送信を要求する下りリンク制御情報を物理下りリンク制御チャネルで受信した際に前記基地局装置によって通知された、前記第2参照信号を送信可能な第2無線リソースを用いて前記設定した送信電力で前記第2参照信号を前記基地局装置へ送信する移動局側送信部を備えることを特徴とする請求項6または請求項7に記載の移動局装置。
  9.  前記第2無線リソースは、システム情報を用いて前記基地局装置によって通知されることを特徴とする請求項8に記載の移動局装置。
  10.  複数の送信アンテナポートを備え、
     前記移動局側上位層処理部は、前記送信アンテナポート毎に前記第1パラメータを用いて前記第1参照信号の送信に対する送信電力を設定する一方、前記送信アンテナポート毎に前記第2パラメータを用いて前記第2参照信号の送信に対する送信電力を設定することを特徴とする請求項6に記載の移動局装置。
  11.  移動局装置が送信する第1参照信号または第2参照信号を受信する基地局装置であって、
     前記第1参照信号の送信に対する送信電力の設定に用いられる第1パラメータおよび前記第2参照信号の送信に対する送信電力の設定に用いられる第2パラメータを前記移動局装置に設定する基地局側上位層処理部を備えることを特徴とする基地局装置。
  12.  無線リソース制御信号を用いて前記第1パラメータおよび前記第2パラメータを前記移動局装置へ通知する基地局側送信部を備えることを特徴とする請求項11に記載の基地局装置。
  13.  前記基地局側上位層処理部は、前記移動局装置が前記第1参照信号を送信する第1無線リソースを設定し、前記移動局装置が前記第2参照信号を送信可能な第2無線リソースを前記移動局装置へ設定し、
     前記基地局側送信部は、前記第2参照信号の送信を要求する下りリンク制御情報を物理下りリンク制御チャネルで前記移動局装置へ送信することを特徴とする請求項11または請求項12に記載の基地局装置。
  14.  前記基地局側送信部は、前記第1無線リソースを示す情報と前記第2無線リソースを示す情報を前記移動局装置に送信することを特徴とする請求項13に記載の基地局装置。
  15.  前記基地局側上位層処理部は、前記移動局装置が備える複数の送信アンテナポートの各々に対して前記第1パラメータおよび前記第2パラメータを設定することを特徴とする請求項11に記載の基地局装置。
  16.  基地局装置へ第1参照信号または第2参照信号を送信する移動局装置に用いられる無線通信方法であって、
     前記基地局装置から通知された第1パラメータを用いて前記第1参照信号の送信に対する送信電力を設定する一方、前記基地局装置から通知された第2パラメータを用いて前記第2参照信号の送信に対する送信電力を設定するステップを、少なくとも含むことを特徴とする無線通信方法。
  17.  無線リソース制御信号を用いて前記基地局装置によって通知される前記第1パラメータおよび前記第2パラメータを受信するステップを更に含むことを特徴とする請求項16に記載の無線通信方法。
  18.  無線リソース制御信号を用いて前記基地局装置によって通知された第1無線リソースを用いて前記設定した送信電力で前記第1参照信号を前記基地局装置へ送信するステップと、
     前記第2参照信号の送信を要求する下りリンク制御情報を物理下りリンク制御チャネルで受信した際に前記基地局装置によって通知された、前記第2参照信号を送信可能な第2無線リソースを用いて前記設定した送信電力で前記第2参照信号を前記基地局装置へ送信するステップと、を更に含むことを特徴とする請求項16または請求項17に記載の無線通信方法。
  19.  前記第2無線リソースは、システム情報を用いて前記基地局装置によって通知されることを特徴とする請求項18に記載の無線通信方法。
  20.  前記移動局装置が備える複数の送信アンテナポート毎に前記第1パラメータを用いて前記第1参照信号の送信に対する送信電力を設定する一方、前記送信アンテナポート毎に前記第2パラメータを用いて前記第2参照信号の送信に対する送信電力を設定するステップを更に含むことを特徴とする請求項16に記載の無線通信方法。
  21.  移動局装置が送信する第1参照信号または第2参照信号を受信する基地局装置に用いられる無線通信方法であって、
     前記第1参照信号の送信に対する送信電力の設定に用いられる第1パラメータおよび前記第2参照信号の送信に対する送信電力の設定に用いられる第2パラメータを前記移動局装置に設定するステップを少なくとも含むことを特徴とする無線通信方法。
  22.  無線リソース制御信号を用いて前記第1パラメータおよび前記第2パラメータを前記移動局装置へ通知するステップを更に備えることを特徴とする請求項21に記載の無線通信方法。
  23.  前記移動局装置が前記第1参照信号を送信する第1無線リソースを設定し、前記移動局装置が前記第2参照信号を送信可能な第2無線リソースを前記移動局装置へ設定するステップと、
     前記第2参照信号の送信を要求する下りリンク制御情報を物理下りリンク制御チャネルで前記移動局装置へ送信するステップを更に含むことを特徴とする請求項21または請求項22に記載の無線通信方法。
  24.  前記第1無線リソースを示す情報と前記第2無線リソースを示す情報を前記移動局装置に送信するステップを更に含むことを特徴とする請求項23に記載の無線通信方法。
  25.  前記移動局装置が備える複数の送信アンテナポートの各々に対して前記第1パラメータおよび前記第2パラメータを設定するステップを更に含むことを特徴とする請求項21に記載の無線通信方法。
  26.  基地局装置へ第1参照信号または第2参照信号を送信する移動局装置へ実装されることにより、前記移動局装置に対して複数の機能を発揮させる集積回路であって、
     前記基地局装置から通知された第1パラメータを用いて前記第1参照信号の送信に対する送信電力を設定する一方、前記基地局装置から通知された第2パラメータを用いて前記第2参照信号の送信に対する送信電力を設定する機能と、
     無線リソース制御信号を用いて前記基地局装置によって通知された第1無線リソースを用いて前記設定した送信電力で前記第1参照信号を前記基地局装置へ送信する機能と、
     前記第2参照信号の送信を要求する下りリンク制御情報を物理下りリンク制御チャネルで受信した際に前記基地局装置によって通知された、前記第2参照信号を送信可能な第2無線リソースを用いて前記設定した送信電力で前記第2参照信号を前記基地局装置へ送信する機能と、を含む一連の機能を、前記移動局装置に対して発揮させることを特徴とする集積回路。
  27.  移動局装置が送信する第1参照信号または第2参照信号を受信する基地局装置へ実装されることにより、前記基地局装置に対して複数の機能を発揮させる集積回路であって、
     前記第1参照信号の送信に対する送信電力の設定に用いられる第1パラメータおよび前記第2参照信号の送信に対する送信電力の設定に用いられる第2パラメータを前記移動局装置に設定する機能と、
     前記移動局装置が前記第1参照信号を送信する第1無線リソースを設定し、前記移動局装置が前記第2参照信号を送信可能な第2無線リソースを前記移動局装置へ設定する機能と、
     前記第2参照信号の送信を要求する下りリンク制御情報を物理下りリンク制御チャネルで前記移動局装置へ送信する機能と、を含む一連の機能を、前記基地局装置に対して発揮させることを特徴とする集積回路。
  28.  第1参照信号または第2参照信号を基地局装置へ送信する移動局装置に用いられる無線通信方法であって、
     PSRS_OFFSET(k)を、上位層から指定される値とし、
     PSRS_OFFSET(0)を、無線リソース制御信号を用いて前記基地局装置によって通知された第1無線リソースを用いて前記基地局装置へ送信される第1参照信号に対する値とし、
     PSRS_OFFSET(1)を、前記第2参照信号の送信を要求する下りリンク制御情報を物理下りリンク制御チャネルで受信した際に前記基地局装置によって通知された、前記第2参照信号を送信可能な第2無線リソースを用いて前記基地局装置へ送信される前記第2参照信号に対する値とし、
     min{X,Y}を、X、Yのうち最小値を選択する関数とし、
     PCMAXを、最大送信電力値とし、
     PO_PUSCHを、上位層から指定される値とし、
     MSRSを、SRSの送信に使用される物理リソースブロック数とし、
     PLを、前記移動局装置によって計算される下りリンクのパスロスとし、
     αを、上位層により指定される係数とし、
     fを、前記基地局装置によって物理下りリンク制御チャネルで送信される送信電力制御コマンドから算出される値としたときに、
     次の数式を用いて、前記第1参照信号および前記第2参照信号の送信に対する送信電力PSRSを設定するステップを少なくとも含むことを特徴とする無線通信方法。
    Figure JPOXMLDOC01-appb-M000001
PCT/JP2010/073409 2010-01-08 2010-12-24 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路 WO2011083706A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080060927.4A CN102696264B (zh) 2010-01-08 2010-12-24 无线通信系统、移动站装置、基站装置、无线通信方法及集成电路
US13/520,960 US9100924B2 (en) 2010-01-08 2010-12-24 Radio communication system, mobile station apparatus, base station apparatus, radio communication method, and integrated circuit
KR1020127020574A KR101346932B1 (ko) 2010-01-08 2010-12-24 무선 통신 시스템, 이동국 장치, 기지국 장치, 무선 통신 방법 및 집적 회로
EA201290624A EA022552B1 (ru) 2010-01-08 2010-12-24 Система радиосвязи, устройство мобильной станции, устройство базовой станции, способ радиосвязи и интегральная схема
EP10842218.9A EP2523510B1 (en) 2010-01-08 2010-12-24 Wireless communication system, mobile station device, base station device, wireless communication method, and integrated circuit
US14/754,385 US9264197B2 (en) 2010-01-08 2015-06-29 Radio communication system, mobile station apparatus, base station apparatus, radio communication method, and integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010002760A JP4981929B2 (ja) 2010-01-08 2010-01-08 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
JP2010-002760 2010-01-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/520,960 A-371-Of-International US9100924B2 (en) 2010-01-08 2010-12-24 Radio communication system, mobile station apparatus, base station apparatus, radio communication method, and integrated circuit
US14/754,385 Continuation US9264197B2 (en) 2010-01-08 2015-06-29 Radio communication system, mobile station apparatus, base station apparatus, radio communication method, and integrated circuit

Publications (1)

Publication Number Publication Date
WO2011083706A1 true WO2011083706A1 (ja) 2011-07-14

Family

ID=44305443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073409 WO2011083706A1 (ja) 2010-01-08 2010-12-24 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路

Country Status (8)

Country Link
US (2) US9100924B2 (ja)
EP (1) EP2523510B1 (ja)
JP (1) JP4981929B2 (ja)
KR (1) KR101346932B1 (ja)
CN (1) CN102696264B (ja)
EA (1) EA022552B1 (ja)
TW (1) TWI504295B (ja)
WO (1) WO2011083706A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013050869A1 (en) * 2011-10-03 2013-04-11 Qualcomm Incorporated Srs optimization for coordinated multi-point transmission and reception
WO2013119161A1 (en) * 2012-02-07 2013-08-15 Telefonaktiebolaget L M Ericsson (Publ) Reference signals in wireless communication
EP2741550A1 (en) * 2011-08-02 2014-06-11 Sharp Kabushiki Kaisha Terminal, communication system, and communication method
EP2741552A1 (en) * 2011-08-02 2014-06-11 Sharp Kabushiki Kaisha Terminal, communication system, and communication method
JP2014531824A (ja) * 2011-09-22 2014-11-27 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるアップリンク送信のための装置及び方法
JP2014533899A (ja) * 2012-10-02 2014-12-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated 多地点協調送信および受信のためのsrs最適化
AU2012287626B2 (en) * 2011-07-27 2015-07-23 Lg Electronics Inc. Method for transmitting an uplink reference signal in a multi-node system and terminal using same
EP2824956A4 (en) * 2012-03-09 2015-10-14 Sharp Kk BASIC STATION, TERMINAL, COMMUNICATION PROCESS AND INTEGRATED CIRCUIT
US9729293B2 (en) 2011-08-02 2017-08-08 Sharp Kabushiki Kaisha Terminal, base station, and method for terminal to report received power of reference signals to base station

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728631B2 (ja) * 1995-07-15 2005-12-21 森田産業株式会社 レンタルマット敷設方法
JP4981929B2 (ja) 2010-01-08 2012-07-25 シャープ株式会社 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
KR101781854B1 (ko) 2010-02-04 2017-09-26 엘지전자 주식회사 사운딩 참조 신호를 전송하는 방법 및 장치
JP2011166699A (ja) * 2010-02-15 2011-08-25 Ntt Docomo Inc 無線基地局装置、移動端末装置及び無線通信方法
EP3393047B1 (en) 2010-04-30 2020-11-18 Sun Patent Trust Wireless communication device and method for controlling transmission power
CN102934382B (zh) 2010-06-04 2016-08-10 Lg电子株式会社 控制探测参考信号发送的上行发送功率的方法和用户设备
WO2013008406A1 (ja) * 2011-07-13 2013-01-17 パナソニック株式会社 端末装置、基地局装置、送信方法及び受信方法
CN102958146B (zh) * 2011-08-17 2016-08-10 华为技术有限公司 终端发射上行信号的方法和终端
US9794887B2 (en) 2011-09-30 2017-10-17 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, method for terminal apparatus, and method for base station apparatus which can set appropriate uplink transmission power
JP5813444B2 (ja) * 2011-09-30 2015-11-17 シャープ株式会社 基地局、端末、通信システムおよび通信方法
WO2013051206A1 (ja) 2011-10-03 2013-04-11 パナソニック株式会社 端末、基地局および通信方法
WO2013054536A1 (ja) * 2011-10-13 2013-04-18 パナソニックモバイルコミュニケーションズ株式会社 無線送信装置及び無線送信方法
JP6073073B2 (ja) * 2012-05-10 2017-02-01 シャープ株式会社 端末装置、基地局装置および通信方法
JP6053324B2 (ja) * 2012-05-18 2016-12-27 シャープ株式会社 移動局装置、パスロス算出方法、プログラムおよび集積回路
JP6099329B2 (ja) * 2012-08-02 2017-03-22 シャープ株式会社 端末、基地局、通信方法および集積回路
GB2506749B (en) 2012-08-30 2014-12-17 Zte Wistron Telecom Ab Methods and apparatus for using a geometry indicator in hetnet deployments
WO2014041741A1 (ja) * 2012-09-14 2014-03-20 パナソニック株式会社 基地局装置、移動局装置、通信システム、通信制御方法、および通信制御プログラム
EP2903374A4 (en) * 2012-09-27 2016-06-08 Sharp Kk END DEVICE, COMMUNICATION PROCESS AND INTEGRATED CIRCUIT
JPWO2014069058A1 (ja) * 2012-10-30 2016-09-08 ソニー株式会社 通信制御装置、プログラム、通信制御方法及び端末装置
US9565669B2 (en) * 2013-01-29 2017-02-07 Sun Patent Trust Base station, terminal, transmission method, and reception method
WO2014157867A1 (en) * 2013-03-25 2014-10-02 Lg Electronics Inc. Method for receiving down link signal and apparatus therefor
CN105379380A (zh) 2013-05-08 2016-03-02 Zte维创通讯公司 在异构网络部署中使用几何指示
CN105659671B (zh) 2013-09-25 2019-07-02 Zte维创通讯公司 异构无线网络中的发现信号
US9414319B2 (en) * 2013-10-02 2016-08-09 Qualcomm Incorporated Sounding reference signals and proximity detection in LTE
KR102236020B1 (ko) * 2013-10-08 2021-04-05 삼성전자 주식회사 무선 통신 시스템의 전송 신호 전력 제어 및 발견 신호 자원 다중화 방법 및 장치
EP3300552B1 (en) * 2015-07-02 2019-09-04 Huawei Technologies Co., Ltd. Network node for connection management and method thereof
WO2017007240A1 (ko) * 2015-07-06 2017-01-12 삼성전자 주식회사 이동 통신 시스템에서 채널을 측정하는 방법 및 장치
JP2019091960A (ja) * 2016-03-30 2019-06-13 シャープ株式会社 端末装置および方法
US10484064B2 (en) * 2016-09-01 2019-11-19 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink CSI acquisition
PL3520306T3 (pl) * 2016-09-30 2021-09-20 Telefonaktiebolaget Lm Ericsson (Publ) Efektywne pod względem mocy i zasobów sekwencje DMRS łącza w górę dla IFDMA
JPWO2018117207A1 (ja) * 2016-12-21 2019-10-31 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11323295B2 (en) 2017-03-01 2022-05-03 Lg Electronics Inc. Method for transmitting SRS in wireless communication system and terminal therefor
WO2018230138A1 (ja) 2017-06-15 2018-12-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末及び通信方法
WO2019140671A1 (en) * 2018-01-20 2019-07-25 Qualcomm Incorporated Reference resource indication techniques in wireless communications
CN113630228A (zh) * 2018-06-27 2021-11-09 华为技术有限公司 一种通信方法及装置
US11695528B2 (en) * 2018-08-10 2023-07-04 Qualcomm Incorporated Delay minimization for CSI-RS and SRS transmission
US11438849B1 (en) 2021-05-12 2022-09-06 At&T Intellectual Property I, L.P. Methods, systems, and devices for adjusting an antenna array of a communication device to provide coarse power adjustment
CN114071683B (zh) * 2021-11-04 2023-04-14 中国联合网络通信集团有限公司 一种数据传输方法、装置和电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084700A1 (ja) * 2007-01-09 2008-07-17 Ntt Docomo, Inc. 移動通信システムで使用される基地局装置、ユーザ装置及び方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107987B2 (en) * 2007-02-14 2012-01-31 Qualcomm Incorporated Apparatus and method for uplink power control of wireless communications
JP4981929B2 (ja) 2010-01-08 2012-07-25 シャープ株式会社 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084700A1 (ja) * 2007-01-09 2008-07-17 Ntt Docomo, Inc. 移動通信システムで使用される基地局装置、ユーザ装置及び方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA SIEMENS NETWORKS ET AL.: "Channel sounding enhancements for LTE-Advanced", 3GPP TSG RAN WG1 MEETING #59 R1-094653, 13 November 2009 (2009-11-13), XP050389058, Retrieved from the Internet <URL:http://ftp.3gpp.org/ftp/tsg_ran/WG1RL1/TSGR1_59/Docs/R1-094653.zip> [retrieved on 20110119] *
See also references of EP2523510A4 *
TEXAS INSTRUMENTS: "Sounding Reference Signal In Support of Scheduling Request in E-UTRA", 3GPP TSG RAN WG1 #52 R1-080700, 15 February 2008 (2008-02-15), XP050109194, Retrieved from the Internet <URL:http://ftp.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_52/Docs/R1-080700.zip> [retrieved on 20110119] *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012287626B2 (en) * 2011-07-27 2015-07-23 Lg Electronics Inc. Method for transmitting an uplink reference signal in a multi-node system and terminal using same
US9794918B2 (en) 2011-07-27 2017-10-17 Lg Electronics Inc. Method for transmitting demodulation reference signals in wireless communication system and terminal using same
US9350397B2 (en) 2011-07-27 2016-05-24 Lg Electronics Inc. Method for transmitting an uplink reference signal in a multi-node system and terminal using same
EP2741552A1 (en) * 2011-08-02 2014-06-11 Sharp Kabushiki Kaisha Terminal, communication system, and communication method
US9729293B2 (en) 2011-08-02 2017-08-08 Sharp Kabushiki Kaisha Terminal, base station, and method for terminal to report received power of reference signals to base station
US10321411B2 (en) 2011-08-02 2019-06-11 Sharp Kabushiki Kaisha Terminal apparatus and communication method for setting appropriate uplink transmit power for an uplink signal based on detecing a DCI
US9832737B2 (en) 2011-08-02 2017-11-28 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method of determining appropriate uplink transmit power of sounding reference signal corresponding to a subframe set
EP2741550A4 (en) * 2011-08-02 2015-02-18 Sharp Kk END DEVICE, COMMUNICATION SYSTEM AND COMMUNICATION PROCESS
EP2741552A4 (en) * 2011-08-02 2015-02-18 Sharp Kk TERMINAL, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
EP2741550A1 (en) * 2011-08-02 2014-06-11 Sharp Kabushiki Kaisha Terminal, communication system, and communication method
US9801143B2 (en) 2011-08-02 2017-10-24 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method of determining appropriate uplink transmit power of physical uplink shared channel corresponding to a subframe set
JP2014531824A (ja) * 2011-09-22 2014-11-27 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるアップリンク送信のための装置及び方法
WO2013050869A1 (en) * 2011-10-03 2013-04-11 Qualcomm Incorporated Srs optimization for coordinated multi-point transmission and reception
WO2013070356A1 (en) * 2011-10-03 2013-05-16 Qualcomm Incorporated Srs optimization for coordinated multi-point transmission and reception
US9900849B2 (en) 2011-10-03 2018-02-20 Qualcomm Incorporated SRS optimization for coordinated multi-point transmission and reception
US9265017B2 (en) 2012-02-07 2016-02-16 Telefonaktiebolaget L M Ericsson Reference signals in wireless communication
WO2013119161A1 (en) * 2012-02-07 2013-08-15 Telefonaktiebolaget L M Ericsson (Publ) Reference signals in wireless communication
EP2824956A4 (en) * 2012-03-09 2015-10-14 Sharp Kk BASIC STATION, TERMINAL, COMMUNICATION PROCESS AND INTEGRATED CIRCUIT
JP2014533899A (ja) * 2012-10-02 2014-12-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated 多地点協調送信および受信のためのsrs最適化

Also Published As

Publication number Publication date
KR20120104418A (ko) 2012-09-20
JP2011142550A (ja) 2011-07-21
EA201290624A1 (ru) 2013-02-28
EP2523510A4 (en) 2015-01-14
CN102696264B (zh) 2015-12-16
TW201204120A (en) 2012-01-16
TWI504295B (zh) 2015-10-11
CN102696264A (zh) 2012-09-26
EP2523510A1 (en) 2012-11-14
US20150304084A1 (en) 2015-10-22
US9264197B2 (en) 2016-02-16
US20130012252A1 (en) 2013-01-10
JP4981929B2 (ja) 2012-07-25
EP2523510B1 (en) 2018-03-21
EA022552B1 (ru) 2016-01-29
KR101346932B1 (ko) 2014-01-03
US9100924B2 (en) 2015-08-04

Similar Documents

Publication Publication Date Title
JP4981929B2 (ja) 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
JP5020300B2 (ja) 無線通信システム、移動局装置、基地局装置、無線通信方法および移動局装置の制御プログラム
JP4912478B2 (ja) 移動局装置、無線通信方法および回路装置
JP6131458B2 (ja) 移動局装置、基地局装置、および無線通信方法
WO2011148876A1 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP6439192B2 (ja) 端末装置、基地局装置、集積回路、および、無線通信方法
JP6260031B2 (ja) ユーザ装置、基地局装置、集積回路、および、通信方法
JP6552056B2 (ja) 端末装置、基地局装置、集積回路、および、通信方法
JP6632112B2 (ja) 移動局装置、基地局装置、無線通信方法、および集積回路
WO2017195660A1 (ja) 端末装置、基地局装置、通信方法および集積回路
JP2012065126A (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
WO2017195659A1 (ja) 端末装置、基地局装置、通信方法および集積回路
WO2016125580A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
JP5490173B2 (ja) 移動局装置、基地局装置および集積回路
JP2011166411A (ja) 移動局装置、無線通信方法および集積回路
WO2014024724A1 (ja) 移動局装置、基地局装置、無線通信方法、および集積回路
JP6034940B2 (ja) 移動局装置および無線通信方法
JP5840751B2 (ja) 移動局装置および無線通信方法
JP5654701B2 (ja) 移動局装置
JP5020419B2 (ja) 無線通信システム、無線通信方法、移動局装置および集積回路
WO2016125584A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842218

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010842218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6826/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127020574

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201290624

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 13520960

Country of ref document: US