WO2018230138A1 - 端末及び通信方法 - Google Patents

端末及び通信方法 Download PDF

Info

Publication number
WO2018230138A1
WO2018230138A1 PCT/JP2018/015792 JP2018015792W WO2018230138A1 WO 2018230138 A1 WO2018230138 A1 WO 2018230138A1 JP 2018015792 W JP2018015792 W JP 2018015792W WO 2018230138 A1 WO2018230138 A1 WO 2018230138A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
generation method
terminal
generation
reference signal
Prior art date
Application number
PCT/JP2018/015792
Other languages
English (en)
French (fr)
Inventor
岩井 敬
鈴木 秀俊
智史 高田
哲矢 山本
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2019525152A priority Critical patent/JPWO2018230138A1/ja
Priority to US16/606,395 priority patent/US11641628B2/en
Publication of WO2018230138A1 publication Critical patent/WO2018230138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/14Generation of codes with a zero correlation zone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting

Definitions

  • This disclosure relates to a terminal and a communication method.
  • NR New Radio
  • a terminal In LTE, a terminal (also referred to as “UE (User Equipment)”) is a radio resource allocated from a base station (also referred to as “eNB” or “gNB”), and a Sounding Reference Signal (hereinafter “A reference signal called “SRS” is transmitted.
  • the base station can estimate the uplink quality in the SRS transmission band by measuring the reception quality of the SRS.
  • the base station performs terminal frequency scheduling or link adaptation (adaptive modulation coding) using the estimated value of uplink quality.
  • NR is also studying SRS transmission, similar to LTE. It is agreed that the NR SRS uses the Zadoff-Chu (ZC) sequence, which has the advantages of low CM / PAPR (Cubic Metric / Peak to Average Power Ratio) and good cross-correlation characteristics, similar to LTE. (For example, refer nonpatent literature 1).
  • ZC Zadoff-Chu
  • 3GPP RAN1 # 89 chairman's note R1-1708171, Huawei, HiSilicon, "UL SRS sequence design in NR", RAN1 # 89, May 2017 R1-1708085, Panasonic, “Discussion on SRS transmission for NR”, RAN1 # 89, May 2017
  • One aspect of the present disclosure contributes to provision of a terminal and a communication method that can appropriately generate an SRS.
  • a terminal includes a circuit that selects one generation method from among a plurality of generation methods related to a reference signal, and transmission that transmits the reference signal generated based on the selected generation method A machine.
  • the communication method selects one generation method from a plurality of generation methods related to a reference signal, and transmits the reference signal generated based on the selected generation method.
  • the SRS can be appropriately generated.
  • FIG. 1 shows an example of a method 1 for generating SRS.
  • FIG. 2 shows an example of a method 2 for generating SRS.
  • FIG. 3 shows an example of multiplexing of partial bands between SRSs in SRS generation method 1.
  • FIG. 4 shows an example of partial band multiplexing between SRSs in SRS generation method 2.
  • FIG. 5 shows a partial configuration of the terminal.
  • FIG. 6 shows the configuration of the terminal.
  • FIG. 7 shows the configuration of the base station.
  • FIG. 8 shows an operation example of the terminal.
  • FIG. 9 shows an operation example of the base station.
  • FIG. 10 shows an example of the association between the SRS generation method and the bandwidth of the Partial band.
  • FIG. 11 shows an example of the association between the SRS generation method and Comb.
  • the PRB Physical Resource Block
  • Generation method 1 (may be expressed as “Alt-1”): SRS sequence generation is not a function of assigned PRB positions.
  • Generation method 2 (may be expressed as “Alt-2”): SRS sequence generation is a function of the assigned PRB position.
  • FIG. 1 shows an example of an SRS generated by the generation method 1 (Alt-1) (for example, see Non-Patent Document 2).
  • the SRS is generated using one ZC sequence, similar to the LTE SRS.
  • a ZC sequence is generated from a predetermined sequence number (Seq # 0 in FIG. 1) and a cyclic shift (CS) number (CS # 0 in FIG. 1), and the sequence length of the ZC sequence corresponds to the SRS transmission bandwidth.
  • the SRS sequence is generated not depending on the allocated PRB position but depending on the SRS transmission bandwidth.
  • FIG. 2 shows an example of an SRS generated by the generation method 2 (Alt-2) (see, for example, Non-Patent Document 3).
  • the SRS is generated using one or more ZC sequences.
  • an SRS is allocated in units of frequency blocks of a predetermined bandwidth X [PRB] defined in NR carrier (NR system band). That is, the SRS transmission bandwidth is an integral multiple of X [PRB].
  • the sequence number and CS number of the ZC sequence used for each frequency block are set according to a predetermined rule, and a ZC sequence is generated for each frequency block.
  • the SRS sequence is generated not depending on the SRS transmission bandwidth but depending on the allocated PRB position (frequency block).
  • CM / PAPR Cubic Metric / Peak to Average Average Power Ratio
  • the generation method 1 has an advantage of low CM / PAPR because an SRS is generated by one ZC sequence.
  • the generation method 1 when the SRS transmission bands of a plurality of terminals (UE1, UE2) do not match, the SRS transmitted by the plurality of terminals is different CS numbers among the plurality of terminals. Even if is set, the orthogonality is lost, and the uplink quality estimation accuracy at the base station deteriorates due to interference. Therefore, in the generation method 1, in order to maintain the orthogonality between the SRSs, it is necessary to match the SRS transmission bandwidths and transmission band positions of a plurality of terminals. For this reason, the frequency scheduling freedom degree of SRS by a base station will fall. Compared to LTE, NR needs to support a larger number of more diverse terminals (terminals having various Capability / Category with different terminal capabilities and functions such as a transmittable band), so the frequency scheduling described above. This limitation is a drawback.
  • a ZC sequence is generated by setting a sequence number and a CS number in units of frequency blocks common to a plurality of terminals (UE # 1, UE # 2). .
  • the SRS of the plurality of terminals can be orthogonalized in units of frequency blocks. That is, by using the SRS generated by the generation method 2, the base station can freely set the SRS transmission bandwidth or transmission band position of each terminal. Therefore, the generation method 2 has an advantage of high frequency scheduling freedom.
  • the terminal Since the terminal operates the power amplifier of the transmitter in the linear region, it is necessary to reduce the maximum transmission power according to CM / PAPR. That is, the higher the SRS CM / PAPR, the lower the maximum transmission power that can be transmitted by the terminal. Therefore, when using the SRS generated by the generation method 2, there is a concern that many terminals (also referred to as “Power-limited terminals”) that cannot be transmitted with the transmission power requested (instructed) by the base station occur near the cell edge. Is done. Since the reduction amount of the maximum transmission power according to the CM / PAPR of the terminal depends on the implementation of the transmitter of the terminal, the base station cannot grasp the actual maximum transmission power of the Power limited terminal.
  • the base station cannot accurately estimate the uplink quality using the SRS transmitted by the Power-limited terminal.
  • the terminal that does not reduce the maximum transmission power according to CM / PAPR the higher the CM / PAPR, the higher the power consumption used for signal transmission, so the battery life of the terminal will decrease .
  • the generation method 1 has an advantage of high CM / PAPR and a problem with low frequency scheduling freedom
  • the generation method 2 has an advantage of high frequency scheduling freedom and a problem with high CM / PAPR. To do.
  • a communication system includes a terminal 100 and a base station 200.
  • FIG. 5 is a block diagram illustrating a partial configuration of the terminal 100 according to the embodiment of the present disclosure.
  • selection section 105 selects one generation method from among a plurality of generation methods related to a reference signal (SRS).
  • the wireless transmission unit 108 transmits a reference signal (SRS) generated based on the selected generation method.
  • SRS reference signal
  • FIG. 6 is a block diagram showing a configuration of terminal 100 according to the present embodiment.
  • a terminal 100 includes an antenna 101, a radio reception unit 102, a demodulation / decoding unit 103, a control information holding unit 104, a selection unit 105, an SRS generation unit 106, a resource allocation unit 107, a radio And a transmission unit 108.
  • the radio reception unit 102 performs reception processing such as down-conversion and A / D conversion on the reception signal received via the antenna 101, and outputs the reception signal to the demodulation / decoding unit 103.
  • Demodulation / decoding section 103 demodulates and decodes the received signal input from radio receiving section 102, and from the decoding result, SRS resource information addressed to terminal 100 transmitted from base station 200, and SRS generation method The control information for determining is extracted.
  • the demodulation / decoding unit 103 outputs the extracted information to the control information holding unit 104 and other components (not shown).
  • the SRS resource information includes, for example, frequency resource information (for example, SRS transmission bandwidth, transmission band position (PRB number or block number)), time resource information (for example, a slot for transmitting SRS), in which the terminal 100 transmits SRS. Number, OFDM (Orthogonal Frequency Division ⁇ Multiplexing) symbol number, etc.), code sequence information (for example, the sequence length, sequence number, CS number of a predetermined number of ZC sequences), etc. All SRS resource information is included in the terminal 100. For example, some information of the SRS resource information may be notified to the terminal 100 as cell common information or quasi-static notification information. For example, a part of the information is defined in the specification as system common information, and may not be notified to the terminal 100.
  • frequency resource information for example, SRS transmission bandwidth, transmission band position (PRB number or block number
  • time resource information for example, a slot for transmitting SRS
  • code sequence information for example, the sequence length, sequence number, CS number of a predetermined number of ZC
  • the control information holding unit 104 holds information input from the demodulation / decoding unit 103.
  • the control information held by the control information holding unit 104 includes quasi-static control information and dynamic control.
  • the control information holding unit 104 outputs the held control information to the selection unit 105, the SRS generation unit 106, or the resource allocation unit 107 as necessary.
  • the selection unit 105 selects one SRS generation method to be applied from the generation method 1 (Alt-1) and the generation method 2 (Alt-2) described above based on the control information input from the control information holding unit 104. Select.
  • the selection unit 105 outputs information indicating the selected generation method to the SRS generation unit 106. Details of the selection method of the SRS generation method in the selection unit 105 will be described later.
  • the SRS generation unit 106 generates an SRS code sequence based on the SRS generation method (generation method 1 or generation method 2) input from the selection unit 105 and information necessary for SRS generation input from the control information holding unit 104. (For example, a ZC sequence) is generated.
  • the SRS generation unit 106 outputs the generated code sequence to the resource allocation unit 107 as SRS.
  • the resource allocation unit 107 maps the SRS (code sequence) input from the SRS generation unit 106 to the time / frequency resource included in the SRS resource information input from the control information holding unit 104, and wirelessly transmits the mapped signal.
  • the data is output to the transmission unit 108.
  • IFFT Inverse Fourier Transform
  • IFFT Inverse Fourier Transform
  • Radio transmission section 108 performs D / A conversion and up-conversion on the signal input from resource allocation section 107, and transmits the obtained radio signal from antenna 101 to base station 200.
  • FIG. 7 is a block diagram showing a configuration of base station 200 according to the present embodiment.
  • the base station 200 includes a control information generation unit 201, a control information holding unit 202, a modulation / coding unit 203, a radio transmission unit 204, an antenna 205, a radio reception unit 206, a demodulation / decoding unit.
  • Unit 207, selection unit 208, replica generation unit 209, quality estimation unit 210, and scheduling unit 211 is a control information generation unit 201, a control information holding unit 202, a modulation / coding unit 203, a radio transmission unit 204, an antenna 205, a radio reception unit 206, a demodulation / decoding unit.
  • Unit 207, selection unit 208, replica generation unit 209, quality estimation unit 210, and scheduling unit 211 are examples of the base station 200.
  • the control information generation unit 201 controls SRS resource information and control information for determining an SRS generation method based on an instruction from the scheduling unit 211 described later (information similar to the control information received by the terminal 100 described above). Is transmitted to the control information holding unit 202 and the modulation / coding unit 203.
  • the base station 200 does not have to notify the terminal 100 of all SRS resource information at the same time.
  • a part of quasi-static notification information (for example, frequency hopping pattern of SRS, frequency block size in generation method 2, etc.) common to a plurality of terminals 100 is stored in the base station 200 as cell-specific information.
  • the terminal 100 may be notified.
  • the control information may be notified of any information of DCI (Downlink Control Information), MAC (Medium Access Control), RRC (Radio Resource Control), or a combination of these.
  • the control information holding unit 202 holds the control information input from the control information generation unit 201, and outputs the held control information to the selection unit 208 and the replica generation unit 209 as necessary.
  • Modulation / encoding section 203 modulates and encodes the control signal input from control information generating section 201 and outputs the encoded signal to radio transmitting section 204.
  • the wireless transmission unit 204 performs transmission processing such as D / A conversion, up-conversion, and amplification on the signal input from the modulation / coding unit 203, and transmits the wireless signal obtained by the transmission processing from the antenna 205 to the terminal 100. Send to.
  • Radio reception section 206 performs reception processing such as down-conversion and A / D conversion on the signal from terminal 100 received via antenna 205 and outputs the received signal to demodulation / decoding section 207.
  • the demodulation / decoding unit 207 demodulates and decodes the reception signal input from the wireless reception unit 206 and outputs the decoded signal to the quality estimation unit 210.
  • the selection unit 208 performs the same processing as the selection unit 105 (FIG. 6) of the terminal 100. That is, the selection unit 208 generates the SRS to be applied from the generation method 1 (Alt-1) and the generation method 2 (Alt-2) described above based on the control information input from the control information holding unit 202. A method is selected, and information indicating the selected generation method is output to the replica generation unit 209.
  • the replica generation unit 209 is generated as SRS by the terminal 100 based on the SRS generation method input from the selection unit 208 and the information necessary for generating the SRS (code sequence) input from the control information holding unit 202.
  • the same sequence as the SRS code sequence (for example, ZC sequence) is generated as a replica signal.
  • the replica generation unit 209 outputs the generated replica signal to the quality estimation unit 210.
  • the quality estimation unit 210 extracts the SRS reception signal from the decoded signal input from the demodulation / decoding unit 207 based on the SRS resource information notified to the terminal 100. Then, the quality estimation unit 210 calculates a quality estimation value from the correlation calculation result between the extracted SRS reception signal and the replica signal input from the replica generation unit 209. The quality estimation unit 210 outputs the calculated quality estimation result to the scheduling unit 211.
  • the scheduling unit 211 performs data scheduling (MCS (Modulation and Coding Scheme) setting, frequency resource allocation, transmission power control, etc.) based on the quality estimation result input from the quality estimation unit 210. In addition, the scheduling unit 211 determines the SRS resource information of each terminal 100 in consideration of the data allocation frequency, and outputs it to the control information generation unit 201.
  • MCS Modulation and Coding Scheme
  • FIG. 8 is a flowchart showing the operation of the terminal 100 (FIG. 6)
  • FIG. 9 is a flowchart showing the operation of the base station 200 (FIG. 7).
  • Terminal 100 selects an SRS generation method to be transmitted to base station 200 (ST101).
  • Terminal 100 generates an SRS based on the selected generation method (ST102), and transmits the generated SRS to base station 200 (ST103).
  • base station 200 selects an SRS generation method used in terminal 100 (ST201). Then, base station 200 generates a replica signal based on the selected generation method (ST202). Base station 200 receives the SRS transmitted from terminal 100 (ST203), and estimates the uplink quality using the received SRS and the generated replica signal (ST204).
  • the terminal 100 and the base station 200 can select the generation method 1 (Alt-1) and the generation method 2 (Alt-2) in the NR carrier, and 1 from the middle of the generation method 1 and the generation method 2 for each NR carrier.
  • One generation method is selected, and the SRS is transmitted based on the selected generation method.
  • the terminal 100 and the base station 200 select the SRS generation method suitable for the status or setting conditions of the terminal 100, thereby performing sounding performance (high accuracy, low delay, and wider band quality estimation by SRS). Performance).
  • the base station 200 determines an SRS generation method in the terminal 100 and notifies the terminal 100 of the determined generation method.
  • selection methods # 1 and # 2 of the SRS generation method (generation method 1 and generation method 2) by the base station 200 will be described.
  • Base station 200 selects an SRS generation method based on the power headroom (PHR: remaining power of transmission power) of terminal 100 or the path loss level. For example, the PHR or Path loss level is periodically reported from the terminal 100 to the base station 200.
  • PHR power headroom
  • the base station 200 determines that the terminal 100 is a terminal with insufficient transmission power (Power limited terminal). Then, the base station 200 selects the generation method 1 (see FIG. 1) having an advantage of low CM / PAPR for the Power-limited terminal.
  • the base station 200 when the PHR of the terminal 100 is greater than or equal to a predetermined threshold, or when the Path loss level is less than the predetermined threshold, that is, the base station 200 is configured to A generation method 2 (see FIG. 2) having an advantage of high scheduling freedom is selected.
  • Non-power limited terminals have sufficient transmission power, so even if CM / PAPR is increased by applying generation method 2, there is no need to limit the maximum transmission power, and problems caused by generation method 2 (maximum transmission The decrease in power and the increase in power consumption are small.
  • the selection method # 1 according to the PHR or Path ⁇ loss level of the terminal 100 (that is, according to the resistance to high CM / PAPR), by selecting an appropriate SRS generation method, the SRS Sounding performance can be improved.
  • Base station 200 selects an SRS generation method based on category / capability information of terminal 100. For example, the category / capability information of the terminal 100 is notified from the terminal 100 to the base station 200 when the terminal 200 is connected.
  • the terminal 100 transmits an SRS having a wide transmission bandwidth, and therefore, between the SRS transmitted by the terminal 100 and the SRS transmitted by another terminal. Therefore, it is assumed that there are many situations where some bands are frequency-multiplexed.
  • the terminal 100 is assumed to be a terminal (low-cost terminal) that performs processing at low cost and low power consumption.
  • the base station 200 places importance on the frequency scheduling freedom and selects the generation method 2 (see FIG. 2).
  • the base station 200 places importance on low power consumption and battery life, and selects generation method 1 (see FIG. 1).
  • the SRS sounding performance can be improved by selecting a suitable SRS generation method according to the category / capability (for example, transmission bandwidth) of the terminal 100.
  • the category / capability information of the terminal 100 is not limited to the transmission bandwidth that can be transmitted by the terminal 200, and may be other parameters.
  • the base station 200 includes the SRS generation method type selected from the generation method 1 (Alt-1) or the generation method 2 (Alt-2) in any one of DCI, MAC, and RRC, and explicitly indicates to the terminal 100. Notice.
  • the terminal 100 extracts the SRS generation method type from the control information notified from the base station 200, and generates an SRS based on the instructed SRS generation method.
  • the SRS generation method type including generation method 1 (Alt-1) and generation method 2 (Alt-2) and other setting information or control information different from the SRS generation method type are uniquely associated by a predetermined rule. And shared between the terminal 100 and the base station 200.
  • base station 200 notifies terminal 100 of the selected SRS generation method type by notifying terminal 100 of setting information or control information associated with the selected SRS generation method type in generation method 1 or generation method 2. Notify implicitly.
  • the terminal 100 identifies an SRS generation method type associated with a predetermined rule based on the setting information or control information notified from the base station 200, and generates an SRS based on the identified SRS generation method.
  • the base station 200 implicitly notifies the terminal 100 of the SRS generation method type, thereby reducing the amount of signaling for notifying the SRS generation method type.
  • Solution 1 the frequency resource information for transmitting the SRS is uniquely associated with the SRS generation method type.
  • NR is studying to support a wider system bandwidth than LTE / LTE-Advanced as NR carrier. For this reason, there is a possibility that SRS transmission may be controlled for each unit called “Partial band or Bandwidth part (partial band)” obtained by dividing the system band of NR carrier.
  • the frequency resource including Partial band is associated with the SRS generation method type.
  • the partial band number is associated with the SRS generation method type.
  • Partial bands suitable for SRS transmission differ depending on the communication status or category / capability of the terminal. For this reason, it is assumed that the number of terminals that transmit SRS is different for each partial band. Moreover, the frequency scheduling freedom of SRS becomes more important as the number of terminals increases.
  • the base station 200 determines a method for generating an SRS transmitted in the relevant Partial-band based on the number of terminals 100 allocated to each Partial-band.
  • Partial band (Partial band number) whose number of terminals transmitting SRS is equal to or greater than a predetermined threshold is associated with generation method 2 (Alt-2), and the number of terminals transmitting SRS is less than a predetermined threshold value.
  • the partial ⁇ band (Partial band number) is associated with generation method 1 (Alt-1).
  • terminal 100 and the base station 200 share the correspondence between the SRS generation method type and the Partial band number.
  • the generation method 1 is associated with the Partial band that should place importance on CM / PAPR characteristics, and the Partial band that should emphasize the degree of freedom of frequency scheduling.
  • the terminal 100 can select an SRS generation method in consideration of the number of terminals that transmit SRS in the Partial band in the Partial band that transmits the SRS in the NR carrier, and can transmit the SRS. Sounding performance can be improved.
  • the bandwidth of the partial band may be associated with the SRS generation method type.
  • FIG. 10 shows an example of the correspondence between the bandwidth of the partial band and the SRS generation method type.
  • the SRS transmission bandwidth set in the Partial Band is also increased. In this case, it is assumed that many situations occur in which some bands are frequency-multiplexed between SRS transmitted by terminal 100 and SRS transmitted by other terminals.
  • the generation method 2 (Alt-2) is associated with the Partial band (partial band # 2 in FIG. 10) whose bandwidth is wider than the threshold, with an emphasis on the degree of freedom of frequency scheduling.
  • the Partial / band whose bandwidth is less than the threshold value is associated with generation method 1 (Alt-1) with emphasis on CM / PAPR characteristics.
  • the terminal 100 can select an SRS generation method suitable for the bandwidth of the Partial-band that transmits the SRS and transmit the SRS, the sounding performance of the SRS can be improved.
  • the Comb number (when the subcarrier interval is 4, the Comb number is 1 to 4) may be associated with the SRS generation method type.
  • the generation method 2 (Alt-2) is suitable for a terminal capable of SRS transmission with a wide transmission bandwidth or a non-power-limited terminal, and a terminal that performs SRS transmission with a narrow transmission bandwidth or Power-limited.
  • Generation method 1 (Alt-1) is suitable for the terminal.
  • the base station 200 uses the comb associated with the generation method 1 and the generation method 2 in accordance with the ratio between the number of terminals suitable for the generation method 1 and the number of terminals suitable for the generation method 2 in Partial band. You may determine Comb matched.
  • FIG. 11 shows an example of the correspondence between the Comb number and the SRS generation method type.
  • the subcarrier interval is 4, and comb numbers 1 to 4 are set.
  • the ratio between the number of terminals suitable for the generation method 1 (Alt-1) and the number of terminals suitable for the generation method 2 (Alt-2) is 1: 3, as shown in FIG.
  • the Comb number associated with each of the generation method 1 and the generation method 2 is not limited to the example illustrated in FIG.
  • the terminal 100 and the base station 200 share the association (rule) between each Comb number and the SRS generation method type.
  • the base station 200 may notify the terminal 100 accommodated in the cell of the base station 200 of the association (rule) between each Comb number and the SRS generation method type as cell common information.
  • Solution 1 can improve the SRS sounding performance by applying an SRS generation method suitable for the communication status or category / capability of the terminal transmitting the SRS within the Partial band.
  • Solution 2 In Solution 2, the SRS type or usage is uniquely associated with the SRS generation method type.
  • Solution 2-1 (Solution 2-1) In Solution 2-1, the SRS type and the SRS generation method type are uniquely associated.
  • Period SRS that is periodically transmitted according to a rule that is notified or stipulated as SRS, and SRS that is transmitted a predetermined number of times (for example, once) by a trigger from the base station “ Two SRS types “Aperiodic SRS” are assumed.
  • SRS types are associated with the SRS generation method type as follows.
  • Aperiodic® SRS is required to instantaneously estimate the quality of a desired transmission band, frequency scheduling freedom is important. Therefore, generation method 2 (Alt-2) is associated with Aperiodic SRS.
  • Periodic SRS frequency scheduling freedom is not important because long-term frequency resources are secured. Therefore, the Periodic SRS is associated with generation method 1 (Alt-1) with emphasis on CM / PAPR characteristics.
  • the terminal 100 can select an appropriate SRS generation method according to the SRS type and generate an SRS, so that the SRS sounding performance can be improved.
  • Solution 2-2 the SRS usage and the SRS generation method type may be uniquely associated.
  • CSI measurement SRS that is used to estimate the uplink quality (Channel State Information (CSI)) for each predetermined band
  • beam control SRS that is used to control the transmission beam of the terminal. It is being considered.
  • generation method 2 (Alt-2) is associated with the SRS for CSI measurement.
  • the SRS for beam control is used for control in which the base station selects an optimum beam from a plurality of beams transmitted by the terminal in a predetermined band. Therefore, since the terminal does not need to transmit the beam control SRS in a wide band, the frequency scheduling freedom is not important. Therefore, the S / R for beam control is associated with generation method 1 (Alt-1) with emphasis on CM / PAPR characteristics.
  • the terminal 100 can select an SRS generation method suitable for the SRS application and generate an SRS, so that the SRS sounding performance can be improved.
  • Solution 3 the service type is uniquely associated with the SRS generation method type.
  • NR supports multiple services with different required specifications (eMBB (enhancedbandMobile Broadband), URLLC (Ultra-Reliable and Low Latency Communications)), and mmTC (Massive Machine Type Communications)).
  • eMBB enhancedbandMobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communications
  • mmTC Massive Machine Type Communications
  • URLLC is a service that requires wireless communication with improved reliability as well as low latency. Therefore, the SRS (URLLC service SRS) used in URLLC is required to instantaneously estimate the quality of a desired transmission band with high accuracy. Therefore, generation method 2 (Alt-2) is associated with the URLLC service SRS with an emphasis on the degree of freedom of frequency scheduling.
  • SRS URLLC service SRS
  • eMBB and mmTC do not require low latency compared to URLLC. Therefore, SRS used in eMBB and mmTC is associated with generation method 1 (Alt-1) with emphasis on CM / PAPR characteristics.
  • the generation method 2 (Alt-2) having a high frequency scheduling freedom may be associated with the eMBB SRS.
  • the terminal 100 can select an appropriate SRS generation method according to the service type and generate an SRS, so that the SRS sounding performance can be improved.
  • SCS and the SRS generation method type may be uniquely associated instead of the service type described above.
  • NR assumes that SCS is set for each service type, for example, 60 kHz for URLLC, 15 kHz for eMBB, and 15 kHz for mmTC.
  • the terminal 100 and the base station 200 select the generation method 2 (Alt-2) when the SCS set in the terminal 100 is equal to or higher than a predetermined threshold (for example, 60 kHz), and the SCS is lower than the predetermined threshold.
  • generation method 1 (Alt-1) may be selected.
  • an SRS suitable for the service type can be applied, and the SRS sounding performance can be improved.
  • the frame format type and the SRS generation method type may be uniquely associated.
  • a frame format that realizes a low delay of URLLC has a fixed time interval including “downlink transmission area”, “guard area (no transmission section or gap section)” and “uplink transmission area”.
  • a “Self-contained frame” that is a time unit (for example, one slot or a fixed time length (1 ms)) is being studied.
  • the terminal 100 and the base station 200 select the generation method 2 (Alt-2) when the frame format in which the terminal 100 transmits the SRS is Self-contained frame, and when the frame-format is not Self-contained frame.
  • the generation method 1 (Alt-1) may be selected.
  • SRS suitable for the service type can be applied, and the SRS sounding performance can be improved.
  • parameters used according to each service type are not limited to the SCS and the frame format type, but may be other parameters (for example, a terminal category).
  • terminal 100 selects one generation method from among a plurality of generation methods related to SRS, and transmits the SRS generated based on the selected generation method.
  • terminal 100 appropriately selects an SRS generation method in consideration of the communication status or setting information of terminal 100 and the characteristics of CM / PAPR and frequency scheduling freedom in a plurality of SRS generation methods. Can do. Therefore, according to the present embodiment, terminal 100 can appropriately generate and transmit SRS.
  • generation method 1 Alt-1 and the generation method 2 (Alt-2) described above may be defined as follows, and in this case, the same effect as in the above embodiment can be obtained.
  • the following “one ZC sequence” indicates a ZC sequence calculated by one sequence length / sequence number / CS number.
  • Generation method 1 An SRS is generated from one ZC sequence.
  • Generation method 2 One or more ZC sequences are combined to generate an SRS.
  • Generation method 2 An SRS is generated from a partial sequence of one ZC sequence obtained from a sequence length equal to or greater than the SRS transmission band.
  • Generation method 1 The sequence length of the SRS ZC sequence corresponds to the SRS transmission bandwidth.
  • Generation method 2 The sequence length of the SRS ZC sequence does not correspond to the SRS transmission bandwidth.
  • the terminal 100 may determine (select) the SRS generation method. In this case, the terminal 100 may notify the base station 200 of the determined SRS generation method explicitly or implicitly.
  • SRS has been described as an example.
  • a reference signal using a code sequence such as DM-RS (demodulation reference signal), CSI-RS (Channel state information reference signal), etc. Applicable to.
  • the above embodiment is not limited to SRS, and may be applied to another channel using a code sequence such as a ZC sequence.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI that is an integrated circuit, and each process described in the above embodiment may be partially or entirely performed. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of the functional blocks.
  • the LSI may include data input and output.
  • An LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor.
  • an FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital processing or analog processing.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied.
  • a terminal includes a circuit that selects one generation method from among a plurality of generation methods related to a reference signal, and a transmitter that transmits the reference signal generated based on the selected generation method. It has.
  • the circuit selects the one generation method according to the power headroom of the terminal or the path loss level of the terminal.
  • the circuit selects the one generation method according to the transmission bandwidth of the terminal.
  • the circuit selects the one generation method that is uniquely associated with a parameter related to a frequency resource used for transmitting the reference signal.
  • the parameter is the number of terminals that transmit the reference signal in a partial band obtained by dividing a system band, a bandwidth of the partial band, or a Comb that configures the partial band.
  • the circuit selects the one generation method according to the type of the reference signal.
  • the circuit selects the one generation method according to a service type executed by the terminal.
  • the circuit selects the one generation method according to the subcarrier interval set in the terminal.
  • the circuit selects the one generation method according to the frame format type set in the terminal.
  • the plurality of generation methods include: a first generation method for generating the reference signal using one code sequence; and a first generation method for generating the reference signal by combining one or more code sequences. 2 generation methods.
  • the communication method of the present disclosure selects one generation method from a plurality of generation methods related to the reference signal, and transmits the reference signal generated based on the selected generation method.
  • One embodiment of the present disclosure is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末において、選択部は、参照信号(SRS:Sounding Reference Signal)に関する複数の生成方法の中から、1つの生成方法を選択する。無線送信部は、選択された生成方法に基づいて生成された参照信号(SRS)を送信する。

Description

端末及び通信方法
 本開示は、端末及び通信方法に関する。
 5Gの標準化において、LTE/LTE-Advancedとは必ずしも後方互換性を持たない新しい無線アクセス技術(NR:New Radio)が3GPPで議論されている。
 LTEでは、端末(「UE(User Equipment)」と呼ぶこともある)が基地局(「eNB」又は「gNB」と呼ぶこともある)から割り当てられた無線リソースで、Sounding Reference Signal(以下、「SRS」と呼ぶ)と呼ばれる参照信号を送信する。基地局は、SRSの受信品質を測定することで、SRSの送信帯域における上り品質を推定することができる。基地局は、上り品質の推定値を用いて、端末の周波数スケジューリング又はリンクアダプテーション(適応変調符号化)を行う。
 NRでも、LTEと同様、SRSの送信が検討されている。NRのSRSには、LTEと同様、CM/PAPR(Cubic Metric/Peak to Average Power Ratio)が低く、相互相関特性が良いという利点を持つZadoff-Chu(ZC)系列が使用されることが合意されている(例えば、非特許文献1を参照)。
3GPP RAN1#89 chairman's note R1-1708171, Huawei, HiSilicon, "UL SRS sequence design in NR", RAN1#89, May 2017 R1-1708085, Panasonic, "Discussion on SRS transmission for NR", RAN1#89, May 2017
 しかしながら、NRにおいてSRSの生成方法については十分に検討がなされていない。
 本開示の一態様は、SRSを適切に生成することができる端末及び通信方法の提供に資する。
 本開示の一態様に係る端末は、参照信号に関する複数の生成方法の中から、1つの生成方法を選択する回路と、前記選択された生成方法に基づいて生成された前記参照信号を送信する送信機と、を具備する。
 本開示の一態様に係る通信方法は、参照信号に関する複数の生成方法の中から、1つの生成方法を選択し、前記選択された生成方法に基づいて生成された前記参照信号を送信する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様によれば、SRSを適切に生成することができる。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
図1は、SRSの生成方法1の一例を示す。 図2は、SRSの生成方法2の一例を示す。 図3は、SRSの生成方法1におけるSRS間の部分帯域の多重の一例を示す。 図4は、SRSの生成方法2におけるSRS間の部分帯域の多重の一例を示す。 図5は、端末の一部の構成を示す。 図6は、端末の構成を示す。 図7は、基地局の構成を示す。 図8は、端末の動作例を示す。 図9は、基地局の動作例を示す。 図10は、SRSの生成方法と、Partial bandの帯域幅との対応付けの一例を示す。 図11は、SRSの生成方法と、Combとの対応付けの一例を示す。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 NRでは、SRS系列生成について以下の2つの方法が検討されている(例えば、非特許文献1を参照)。なお、PRB(Physical Resource Block)は、時間・周波数のリソースの割当単位を示す。
 (1)生成方法1(「Alt-1」と表すこともある):
 SRS系列生成は、割り当てられたPRB位置の関数ではない。
 (2)生成方法2(「Alt-2」と表すこともある):
 SRS系列生成は、割り当てられたPRB位置の関数である。
 図1は、生成方法1(Alt-1)で生成されるSRSの一例を示す(例えば、非特許文献2を参照)。生成方法1では、SRSは、LTEのSRSと同様、1つのZC系列を用いて生成される。ZC系列は、所定の系列番号(図1ではSeq#0)とCyclic shift(CS)番号(図1ではCS#0)とから生成され、ZC系列の系列長はSRSの送信帯域幅に相当する。このように、生成方法1では、割り当てられたPRB位置に依存せず、SRS送信帯域幅に依存してSRS系列生成が行われる。
 図2は、生成方法2(Alt-2)で生成されるSRSの一例を示す(例えば、非特許文献3を参照)。生成方法2では、SRSは、1つ以上のZC系列を用いて生成される。具体的には、NR carrier(NRのシステム帯域)内に定義した、所定帯域幅X[PRB]の周波数ブロック単位でSRSが割り当てられる。すなわち、SRS送信帯域幅はX[PRB]の整数倍となる。周波数ブロック毎に用いるZC系列の系列番号とCS番号とは所定のルールで設定され、周波数ブロック毎にZC系列が生成される。このように、生成方法2では、SRS送信帯域幅に依存せず、割り当てられたPRB位置(周波数ブロック)に依存してSRS系列生成が行われる。
 上述したNRで検討されているSRSの生成方法1,2には、CM/PAPR(Cubic Metric/Peak to Average Power Ratio)特性と周波数スケジューリング自由度との間でトレードオフの関係がある。
 具体的には、生成方法1は、1つのZC系列によってSRSを生成するため、CM/PAPRが低い利点がある。
 一方で、生成方法1では、図3に示すように、複数の端末(UE1、UE2)のSRS送信帯域が一致しない場合、当該複数の端末が送信するSRSは、複数の端末間で異なるCS番号が設定されている場合でも直交性が崩れ、干渉によって基地局での上り品質推定精度が劣化してしまう。よって、生成方法1では、SRS間の直交性を維持するためには、複数の端末のSRS送信帯域幅及び送信帯域位置を一致させる必要がある。このため、基地局によるSRSの周波数スケジューリング自由度が低下してしまう。NRでは、LTEと比較して、より多数の、より多様な端末(送信可能帯域等の端末能力・機能が異なる多種のCapability/Categoryを有する端末)をサポートする必要があるため、上述した周波数スケジューリングの制約は欠点となる。
 一方、生成方法2は、図4に示すように、複数の端末(UE#1、UE#2)間で共通の周波数ブロック単位で、系列番号とCS番号とを設定しZC系列をそれぞれ生成する。このため、生成方法2では、複数の端末のSRS送信帯域が一致しない場合でも周波数ブロック単位で複数の端末のSRSを直交化できる。つまり、生成方法2によって生成されるSRSを用いることで、基地局は、各端末のSRS送信帯域幅又は送信帯域位置を自由に設定できる。よって、生成方法2には、周波数スケジューリング自由度が高い利点がある。
 一方で、生成方法2では、SRS送信帯域幅が周波数ブロック単位(ZC系列長)のX[PRB]より広い場合、複数のZC系列を結合してSRSが生成されるため、CM/PAPRが高い欠点がある。
 端末は送信機のパワーアンプを線形領域で動作させるため、最大送信電力をCM/PAPRに応じて下げる必要がある。つまり、SRSのCM/PAPRが高いほど、端末の送信可能な最大送信電力が低下する。よって、生成方法2で生成されるSRSを用いる場合、セルエッジ付近等では、基地局が要求する(指示する)送信電力で送信できない端末(「Power limited端末」とも呼ばれる)が多く発生することが懸念される。端末のCM/PAPRに応じた最大送信電力の削減量は、端末の送信機の実装に依存するため、基地局はPower limited端末の実際の最大送信電力を把握できない。よって、基地局は、Power limited端末が送信するSRSでは上り品質を精度良く推定することができない。または、上述したように最大送信電力をCM/PAPRに応じて下げない端末は、CM/PAPRが高いほど信号の送信に使用する電力消費量が高くなるため、端末のバッテリ寿命が低下してしまう。
 このように、生成方法1には、CM/PAPRが高い利点及び周波数スケジューリング自由度が低い課題が存在し、生成方法2には、周波数スケジューリング自由度が高い利点及びCM/PAPRが高い課題が存在する。
 本開示の一態様では、SRSの効率的な生成方法について説明する。
 [通信システムの概要]
 本開示の一実施の形態に係る通信システムは、端末100及び基地局200を備える。
 図5は本開示の実施の形態に係る端末100の一部の構成を示すブロック図である。図5に示す端末100において、選択部105は、参照信号(SRS)に関する複数の生成方法の中から、1つの生成方法を選択する。無線送信部108は、選択された生成方法に基づいて生成された参照信号(SRS)を送信する。
 [端末の構成]
 図6は、本実施の形態に係る端末100の構成を示すブロック図である。図6において、端末100は、アンテナ101と、無線受信部102と、復調・復号部103と、制御情報保持部104と、選択部105と、SRS生成部106と、リソース割当部107と、無線送信部108と、を有する。
 無線受信部102は、アンテナ101を介して受信した受信信号に対して、ダウンコンバート、A/D変換等の受信処理を施し、受信信号を復調・復号部103へ出力する。
 復調・復号部103は、無線受信部102から入力される受信信号に対して復調及び復号を行い、復号結果から、基地局200から送信された端末100宛てのSRSリソース情報、及び、SRS生成方法を決定するための制御情報を抽出する。復調・復号部103は、抽出した情報を制御情報保持部104、及び、他の構成部(図示せず)に出力する。
 SRSリソース情報には、例えば、端末100がSRSを送信する、周波数リソース情報(例えば、SRS送信帯域幅、送信帯域位置(PRB番号又はブロック番号等)、時間リソース情報(例えば、SRSを送信するslot番号、OFDM(Orthogonal Frequency Division Multiplexing)シンボル番号等)、符号系列情報(例えば、所定数のZC系列の系列長、系列番号、CS番号)等が含まれる。なお、全てのSRSリソース情報が端末100に対して同時に通知される必要はない。例えば、SRSリソース情報の一部の情報はセル共通情報として、又は、準静的な通知情報として端末100に通知されてもよい。また、SRSリソース情報の一部の情報は、例えば、システム共通情報としてスペックで規定され、端末100に通知されなくてもよい。
 制御情報保持部104は、復調・復号部103から入力される情報を保持する。制御情報保持部104が保持する制御情報には準静的な制御情報、及び、動的な制御が含まれる。制御情報保持部104は、保持した制御情報を、必要に応じて選択部105、SRS生成部106、又は、リソース割当部107に出力する。
 選択部105は、制御情報保持部104から入力される制御情報に基づいて、上述した生成方法1(Alt-1)及び生成方法2(Alt-2)の中から、適用する1つのSRS生成方法を選択する。選択部105は、選択した生成方法を示す情報をSRS生成部106に出力する。なお、選択部105におけるSRS生成方法の選択方法の詳細については後述する。
 SRS生成部106は、選択部105から入力されるSRS生成方法(生成方法1又は生成方法2)と、制御情報保持部104から入力されるSRS生成に必要な情報に基づいて、SRS用符号系列(例えば、ZC系列)を生成する。SRS生成部106は、生成した符号系列をSRSとして、リソース割当部107に出力する。
 リソース割当部107は、制御情報保持部104から入力されるSRSリソース情報に含まれる時間・周波数リソースに、SRS生成部106から入力されるSRS(符号系列)をマッピングし、マッピング後の信号を無線送信部108へ出力する。なお、SRSがマッピングされた信号に対してIFFT(Inverse Fast Fourier Transform)が施されてもよい(図示せず)。
 無線送信部108は、リソース割当部107から入力される信号に対してD/A変換、アップコンバートを施し、得られた無線信号をアンテナ101から基地局200へ送信する。
 [基地局の構成]
 図7は、本実施の形態に係る基地局200の構成を示すブロック図である。図7において、基地局200は、制御情報生成部201と、制御情報保持部202と、変調・符号化部203と、無線送信部204と、アンテナ205と、無線受信部206と、復調・復号部207と、選択部208と、レプリカ生成部209と、品質推定部210と、スケジューリング部211と、を有する。
 制御情報生成部201は、後述するスケジューリング部211からの指示に基づいて、SRSリソース情報、及び、SRS生成方法を決定するための制御情報(上述した端末100が受信した制御情報と同様の情報)を端末100に通知するための制御信号を生成し、制御情報保持部202及び変調・符号化部203へ出力する。
 なお、前述したように、基地局200は、全てのSRSリソース情報を端末100へ同時に通知する必要はない。複数の端末100で共通で、準静的な通知情報(例えば、SRSの周波数ホッピングパターン、生成方法2における周波数ブロックサイズ等)の一部は、セル固有の情報として基地局200が収容する複数の端末100に通知してもよい。また、制御情報は、DCI(Downlink Control Information)、MAC(Medium Access Control)、RRC(Radio Resource Control)の何れかの情報、又は、これらを複数組み合わせて通知されてもよい。
 制御情報保持部202は、制御情報生成部201から入力される制御情報を保持し、保持した制御情報を、必要に応じて選択部208及びレプリカ生成部209に出力する。
 変調・符号化部203は、制御情報生成部201から入力される制御信号を変調及び符号化し、符号化後の信号を無線送信部204へ出力する。
 無線送信部204は、変調・符号化部203から入力される信号に対してD/A変換、アップコンバート、増幅等の送信処理を施し、送信処理により得られた無線信号をアンテナ205から端末100へ送信する。
 無線受信部206は、アンテナ205を介して受信した端末100からの信号に対してダウンコンバート、A/D変換等の受信処理を施し、受信信号を復調・復号部207へ出力する。
 復調・復号部207は、無線受信部206から入力される受信信号を復調及び復号し、復号した信号を品質推定部210へ出力する。
 選択部208は、端末100の選択部105(図6)と同様の処理を行う。すなわち、選択部208は、制御情報保持部202から入力される制御情報に基づいて、上述した生成方法1(Alt-1)及び生成方法2(Alt-2)の中から、適用するSRSの生成方法を選択し、選択した生成方法を示す情報をレプリカ生成部209に出力する。
 レプリカ生成部209は、選択部208から入力されるSRSの生成方法と、制御情報保持部202から入力されるSRS(符号系列)の生成に必要な情報に基づいて、端末100でSRSとして生成されるSRS用符号系列と同一系列(例えば、ZC系列)をレプリカ信号として生成する。レプリカ生成部209は、生成したレプリカ信号を品質推定部210へ出力する。
 品質推定部210は、端末100に通知したSRSリソース情報に基づいて、復調・復号部207から入力される復号信号から、SRS受信信号を抽出する。そして、品質推定部210は、抽出したSRS受信信号と、レプリカ生成部209から入力されるレプリカ信号との相関演算結果から品質推定値を算出する。品質推定部210は、算出した品質推定結果をスケジューリング部211へ出力する。
 スケジューリング部211は、品質推定部210から入力される品質推定結果に基づいてデータのスケジューリング(MCS(Modulation and Coding Scheme)設定、周波数リソース割当、送信電力制御等)を行う。また、スケジューリング部211は、データの割当周波数を考慮して、各端末100のSRSリソース情報を決定し、制御情報生成部201に出力する。
 [端末100及び基地局200の動作]
 以上の構成を有する端末100及び基地局200における動作について詳細に説明する。
 図8は端末100(図6)の動作を示すフローチャートであり、図9は基地局200(図7)の動作を示すフローチャートである。
 端末100は、基地局200へ送信するSRSの生成方法を選択する(ST101)。そして、端末100は、選択した生成方法に基づいてSRSを生成し(ST102)、生成したSRSを基地局200へ送信する(ST103)。
 一方、基地局200は、端末100において使用されるSRSの生成方法を選択する(ST201)。そして、基地局200は、選択した生成方法に基づいてレプリカ信号を生成する(ST202)。そして、基地局200は、端末100から送信されるSRSを受信し(ST203)、受信したSRSと生成したレプリカ信号とを用いて上り品質を推定する(ST204)。
 [SRS生成方法の選択方法]
 次に、端末100(選択部105)及び基地局200(選択部208)において、SRS(レプリカ信号)の生成方法を選択する方法(つまり、ST101及びST201の処理)について詳細に説明する。
 端末100及び基地局200は、NR carrier内において、生成方法1(Alt-1)及び生成方法2(Alt-2)を選択可能とし、NR carrier毎に生成方法1及び生成方法2の仲から1つの生成方法を選択して、選択した生成方法に基づいてSRSを送信する。
 例えば、端末100及び基地局200は、端末100の状況又は設定条件等に適したSRSの生成方法を選択することにより、SRSによるSounding性能(高精度、低遅延でより広い帯域の品質推定が実施できる性能)を向上させることができる。
 以下では、一例として、基地局200が端末100におけるSRS生成方法を決定し、決定した生成方法を端末100へ通知する場合について説明する。以下、基地局200によるSRS生成方法(生成方法1及び生成方法2)の選択方法#1、#2についてそれぞれ説明する。
 <選択方法#1>
 基地局200は、端末100のPower headroom(PHR:送信電力の余力)、又は、Path lossレベルに基づいてSRS生成方法を選択する。PHR又はPath lossレベルは、例えば、端末100から基地局200へ定期的に報告される。
 具体的には、基地局200は、端末100のPHRが所定閾値未満の場合、又は、Path lossレベルが所定閾値以上の場合、端末100を送信電力不足の端末(Power limited 端末)と判断する。そして、基地局200は、Power limited端末に対して、CM/PAPRが低い利点を有する生成方法1(図1を参照)を選択する。
 一方、基地局200は、端末100のPHRが所定閾値以上の場合、又は、Path lossレベルが所定閾値未満の場合、つまり、Power limited端末ではない端末(Non-Power limited端末)に対して、周波数スケジューリング自由度が高い利点を有する生成方法2(図2を参照)を選択する。Non-power limited端末は、送信電力に余力があるため、生成方法2を適用してCM/PAPRが高くなる場合でも、最大送信電力を制限する必要がなく、生成方法2により生じる課題(最大送信電力の低下、消費電力の増加)は小さい。
 このように、選択方法#1によれば、端末100のPHR又はPath lossレベルに応じて(つまり、高いCM/PAPRに対する耐性に応じて)、適したSRS生成方法を選択することにより、SRSによるSounding性能を向上させることができる。
 <選択方法#2>
 基地局200は、端末100のカテゴリ・能力(UE category/capability)情報に基づいてSRS生成方法を選択する。例えば、端末100のカテゴリ・能力情報は、端末100から基地局200に対して、端末200の接続時に通知される。
 例えば、端末100のカテゴリ・能力の一例として、端末100の送信可能な送信帯域幅を用いる場合について説明する。
 具体的には、端末100の送信可能な送信帯域幅が広い場合、端末100は広い送信帯域幅のSRSを送信するため、端末100が送信するSRSと、他の端末が送信するSRSとの間で一部の帯域を周波数多重させる状況が多く発生することが想定される。一方で、端末100の送信可能な送信帯域幅が狭い場合、当該端末100は低コストかつ低消費電力で処理する端末(低コスト端末)であることが想定される。
 そこで、基地局200は、端末100の送信可能な送信帯域幅が所定閾値以上の場合、周波数スケジューリング自由度を重視し、生成方法2(図2を参照)を選択する。一方、基地局200は、端末100の送信可能な送信帯域幅が所定閾値より狭い場合、低消費電力化・バッテリ寿命を重視し、生成方法1(図1を参照)を選択する。
 このように、選択方法#2によれば、端末100のカテゴリ・能力(例えば、送信帯域幅)に応じて適したSRS生成方法を選択することにより、SRSによるSounding性能を向上させることができる。なお、端末100のカテゴリ・能力情報としては、端末200の送信可能な送信帯域幅に限定されず、他のパラメータでもよい。
 以上、基地局200によるSRS生成方法の選択方法#1,#2について説明した。
 [SRS生成方法の通知方法]
 次に、基地局200が決定したSRS生成方法を端末100に通知する方法について説明する。
 <SRS生成方法の明示的な通知>
 基地局200は、生成方法1(Alt-1)又は生成方法2(Alt-2)のうち選択したSRS生成方法種別を、DCI、MAC、RRCの何れかに含めて、端末100に明示的に通知する。
 端末100は、基地局200から通知される制御情報からSRS生成方法種別を抽出し、指示されたSRS生成方法に基づいてSRSを生成する。
 <SRS生成方法の暗黙的な通知>
 生成方法1(Alt-1)及び生成方法2(Alt-2)を含むSRS生成方法種別と、当該SRS生成方法種別とは異なる他の設定情報又は制御情報とが所定のルールで一意に対応付けられ、端末100と基地局200との間で共有される。
 そして、基地局200は、生成方法1又は生成方法2のうち選択したSRS生成方法種別と対応付けられた設定情報又は制御情報を端末100へ通知することにより、選択したSRS生成方法種別を端末に暗黙的に通知する。
 端末100は、基地局200から通知される設定情報又は制御情報に基づいて、所定のルールで対応付けられたSRS生成方法種別を特定し、特定したSRS生成方法に基づいてSRSを生成する。
 このように、基地局200がSRS生成方法種別を端末100へ暗黙的に通知することで、SRS生成方法種別を通知するためのシグナリング量が低減できる。
 以下、SRS生成方法種別と設定情報又は制御情報との対応付けルールの一例について説明する。
 (Solution 1)
 Solution 1では、SRSを送信する周波数リソース情報と、SRS生成方法種別とを一意に対応付ける。
 NRでは、NR carrierとして、LTE/LTE-Advancedより広いシステム帯域幅をサポートすることが検討されている。このため、NR carrierのシステム帯域を分割した「Partial bandあるいはBandwidth part(部分帯域)」と呼ばれる単位毎にSRSの送信が制御される可能性がある。
 そこで、Solution 1-1では、Partial bandを含む周波数リソースと、SRS生成方法種別とを対応付ける。
 (Solution 1-1)
 例えば、Partial band番号とSRS生成方法種別とを対応付ける。
 端末の通信状況又はカテゴリ・能力に応じて、SRSの送信に適するPartial bandが異なる。このため、Partial band毎にSRSを送信する端末数が異なることが想定される。また、端末数が多いほどSRSの周波数スケジューリング自由度は重要となる。
 そこで、例えば、基地局200は、各Partial bandに割り当てる端末100の数に基づいて、当該Partial bandで送信されるSRSの生成方法を決定する。具体的には、SRSを送信する端末数が所定閾値以上のPartial band(Partial band番号)と、生成方法2(Alt-2)とが対応付けられ、SRSを送信する端末数が所定閾値値未満のPartial band(Partial band番号)と、生成方法1(Alt-1)とが対応付けられる。
 そして、端末100と基地局200とは、SRS生成方法種別と、Partial band番号との対応付けを共有する。
 このように、NR carrier内の各Partial bandに割り当てられる端末数に応じて、CM/PAPR特性を重視すべきPartial bandには生成方法1を対応付け、周波数スケジューリング自由度を重視すべきPartial bandには生成方法2を対応付ける。これにより、端末100は、NR carrier内のSRSを送信するPartial bandにおいて、当該Partial bandでSRSを送信する端末数が考慮されたSRS生成方法を選択し、SRSを送信することができるので、SRSのSounding性能を向上させることができる。
 (Solution 1-2)
 また、例えば、Partial bandの帯域幅とSRS生成方法種別を対応付けてもよい。図10は、Partial bandの帯域幅とSRS生成方法種別との対応付けの一例を示す。
 Partial bandの帯域幅が広い場合、当該Partial bandで設定されたSRSの送信帯域幅も大きくなる。この場合、端末100が送信するSRSと他の端末が送信するSRSとの間で一部の帯域を周波数多重させる状況が多く発生することが想定される。
 そこで、帯域幅が閾値より広いPartial band(図10ではPartial band#2)には、周波数スケジューリング自由度を重視して、生成方法2(Alt-2)が対応付けられる。一方、帯域幅が閾値未満のPartial bandには、CM/PAPR特性を重視し、生成方法1(Alt-1)が対応付けられる。
 これにより、端末100は、SRSを送信するPartial bandの帯域幅に応じて適したSRS生成方法を選択し、SRSを送信することができるので、SRSのSounding性能を向上させることができる。
 (Solution 1-3)
 NRでは、LTEと同様に「Comb」と呼ばれる所定のサブキャリア間隔でSRSを割り当てることが検討されている。そこで、Comb番号(サブキャリア間隔が4の場合、Comb番号は1~4)とSRS生成方法種別を対応付けてもよい。
 同一のPartial band内に、端末の通信状況又はカテゴリ・能力が異なる複数の端末を割り当てる場合がある。上述したように、広い送信帯域幅でSRS送信可能な端末、又は、Non-power limited端末には生成方法2(Alt-2)が適しており、狭い送信帯域幅でSRS送信する端末又はPower limited端末には生成方法1(Alt-1)が適している。
 そこで、基地局200は、Partial bandにおいて、生成方法1が適した端末数と、生成方法2が適した端末数との割合に応じて、生成方法1に対応付けられるCombと、生成方法2に対応付けられるCombとを決定してもよい。
 図11は、Comb番号とSRS生成方法種別との対応付けの一例を示す。図11では、サブキャリア間隔が4であり、Comb番号1~4が設定される。例えば、生成方法1(Alt-1)が適した端末数と、生成方法2(Alt-2)が適した端末数との割合が1:3の場合、図11に示すように、Comb番号1が生成方法1に対応付けられ、Comb番号2~4が生成方法2に対応付けられる。なお、生成方法1及び生成方法2がそれぞれ対応付けられるComb番号は、図11に示す例に限定されない。
 端末100及び基地局200は、各Comb番号とSRS生成方法種別との対応付け(ルール)を共有する。例えば、基地局200は、各Comb番号とSRS生成方法種別との対応付け(ルール)をセル共通情報として、基地局200のセルに収容されている端末100に通知してもよい。
 これにより、基地局100に接続される複数の端末100に対して、同一Partial band内でも、使用するCombに応じて異なるSRS生成方法を選択することが可能となる。
 このように、Solution 1では、Partial band内でSRSを送信する端末の通信状況又はカテゴリ・能力に応じて適したSRS生成方法を適用することで、SRSのSounding性能を向上させることができる。
 (Solution 2)
 Solution 2では、SRSの種別又は用途と、SRS生成方法種別とを一意に対応付ける。
 (Solution 2-1)
 Solution 2-1では、SRS種別と、SRS生成方法種別とを一意に対応付ける。
 NRでは、SRSとして、通知又は規定されているルールに従って周期的に送信されるSRSである「Periodic SRS」、及び、基地局からのトリガにより所定回数(例えば1回)送信されるSRSである「Aperiodic SRS」の2つのSRS種別が想定される。
 これらのSRS種別(Aperiodic SRS及びPeriodic SRS)とSRS生成方法種別とは以下のように対応付けられる。
 Aperiodic SRSは、瞬時に所望の送信帯域の品質を推定することが要求されるため、周波数スケジューリング自由度が重要となる。そこで、Aperiodic SRSには生成方法2(Alt-2)が対応付けられる。
 一方、Periodic SRSは、長期間の周波数リソースが確保されているため周波数スケジューリング自由度は重要ではない。よって、Periodic SRSには、CM/PAPR特性を重視し、生成方法1(Alt-1)が対応付けられる。
 こうすることで、端末100は、SRS種別に応じて適したSRS生成方法を選択し、SRSを生成することができるので、SRSのSounding性能を向上させることができる。
 (Solution 2-2)
 Solution 2-2では、SRS用途と、SRS生成方法種別とを一意に対応付けてもよい。
 NRでは、所定帯域毎の上り品質(Channel State Information (CSI))を推定する用途である「CSI測定用SRS」と、端末の送信ビームの制御を行う用途である「ビーム制御用SRS」とが検討されている。
 CSI測定用SRSは、瞬時に所望の送信帯域の品質を推定することが要求されるため、周波数スケジューリング自由度が重要となる。そこで、CSI測定用SRSには、生成方法2(Alt-2)が対応付けられる。
 一方、ビーム制御用SRSは、所定の帯域に端末が送信した複数のビームから基地局が最適なビームを選択する制御に用いられる。よって、端末はビーム制御用SRSを広帯域に送信する必要はないため、周波数スケジューリング自由度は重要ではない。よって、ビーム制御用SRSには、CM/PAPR特性を重視し、生成方法1(Alt-1)が対応付けられる。
 こうすることで、端末100は、SRS用途に応じて適したSRS生成方法を選択し、SRSを生成することができるので、SRSのSounding性能が向上できる。
 (Solution 3)
 Solution 3では、サービス種別とSRS生成方法種別とを一意に対応付ける。
 NRでは、要求仕様が異なる複数のサービス(eMBB(enhanced Mobile Broadband)、URLLC(Ultra-Reliable and Low Latency Communications)、mMTC(Massive Machine Type Communications))をサポートするために、サービス毎に異なるサブキャリア間隔(subcarrier spacing、以下、「SCS」と呼ぶ)又はframe formatをサポートする。
 ここで、URLLCは、低遅延だけでなく信頼性を高めた無線通信が要求されるサービスである。よって、URLLCで用いるSRS(URLLCサービス用SRS)は、瞬時に所望の送信帯域の品質を高精度に推定することが要求される。そこで、URLLCサービス用SRSには、周波数スケジューリング自由度を重視し、生成方法2(Alt-2)が対応付けられる。
 一方、eMBB、mMTCは、URLLCと比較すると低遅延が要求されない。よって、eMBB、mMTCで用いるSRSには、CM/PAPR特性を重視し、生成方法1(Alt-1)が対応付けられる。
 なお、eMBBは、高速大容量通信が要求されるため、広い送信帯域幅を用いて通信を行うことが想定される。よって、eMBB用SRSには、周波数スケジューリング自由度が高い生成方法2(Alt-2)が対応付けられてもよい。
 こうすることで、端末100は、サービス種別に応じて適したSRS生成方法を選択し、SRSを生成することができるので、SRSのSounding性能が向上できる。
 なお、上述したサービス種別の代わりに、SCSとSRS生成方法種別とを一意に対応付けてもよい。
 NRでは、例えば、URLLCでは60kHz、eMBBでは15kHz、mMTCでは15kHzのように、サービス種別毎にSCSが設定されることが想定される。
 そこで、端末100及び基地局200は、端末100に設定されるSCSが所定閾値(例えば、60kHz)以上の場合には、生成方法2(Alt-2)を選択し、SCSが所定閾値未満の場合には、生成方法1(Alt-1)を選択してもよい。
 このように、SCSに応じてSRS生成方法を適用することで、サービス種別に応じて適したSRSが適用でき、SRSのSounding性能を向上させることができる。
 また、上述したサービス種別の代わりに、frame format種別とSRS生成方法種別とを一意に対応付けてもよい。
 NRでは、URLLCの低遅延を実現するframe format(時間フレーム構成)として、「下り送信領域」と「ガード領域(無送信区間又はギャップ区間)」と「上り送信領域」とを含む一定時間間隔のタイムユニット(例えば1スロット、あるいは、固定時間長(1ms))である「Self-contained frame」が検討されている。
 そこで、端末100及び基地局200は、端末100がSRSを送信するframe formatがSelf-contained frameの場合には、生成方法2(Alt-2)を選択し、Self-contained frameではない場合には、生成方法1(Alt-1)を選択してもよい。
 このように、frame formatに応じてSRS生成方法を適用することで、サービス種別に適したSRSが適用でき、SRSのSounding性能を向上させることができる。
 また、各サービス種別に応じて使用されるパラメータとしては、SCS及びフレームフォーマット種別に限定されず、他のパラメータ(例えば、端末のカテゴリなど)でもよい。
 以上、SRS生成方法種別と設定情報又は制御情報との対応付けのルールの一例について説明した。なお、上記Solution 1~3に示すSRS生成方法の対応付けのルールは、基地局200毎に決定してもよいし、スペックで規定されてもよい。
 このように、本実施の形態では、端末100は、SRSに関する複数の生成方法の中から、1つの生成方法を選択し、選択された生成方法に基づいて生成されたSRSを送信する。これにより、端末100は、端末100の通信状況又は設定情報等と、複数のSRS生成方法におけるCM/PAPR及び周波数スケジューリング自由度の特性とを考慮して、SRSの生成方法を適切に選択することができる。よって、本実施の形態によれば、端末100は、SRSを適切に生成して、送信することができる。
 以上、本開示の一実施の形態について説明した。
 なお、上述した生成方法1(Alt-1)及び生成方法2(Alt-2)は以下のように定義されてもよく、この場合でも、上記実施の形態と同様の効果が得られる。なお、以下の「1つのZC系列」とは、1つの系列長・系列番号・CS番号で算出されるZC系列を示す。
 生成方法1:1つのZC系列からSRSを生成する。
 生成方法2:1つ以上のZC系列を結合してSRSを生成する。
 生成方法2:SRS送信帯域以上の系列長から求めた1つのZC系列の部分系列からSRSを生成する。
 生成方法1:SRS用ZC系列の系列長はSRSの送信帯域幅に相当する。
 生成方法2:SRS用ZC系列の系列長はSRSの送信帯域幅に相当しない。
 また、上記実施の形態では、基地局200主導でSRS生成方法を決定する場合について説明したが、端末100が主導してSRS生成方法を決定(選択)してもよい。この場合、端末100は、決定したSRS生成方法を基地局200に、明示的又は暗示的に通知すればよい。
 また、上記実施の形態では、SRSを例に挙げて説明したが、これに限らず、DM-RS (demodulation reference signal)、CSI-RS (Channel state information reference signal)などの符号系列を用いる参照信号に適用できる。
 また、上記実施の形態はSRSに限るものでもなく、ZC系列などの符号系列を使用する別のチャネルに適用してもよい。
 また、上記実施の形態では、SRS生成方法として、生成方法1(図1を参照)及び生成方法2(図2を参照)の2つの方法を用いる場合について説明したが、SRS生成方法は他の方法でもよく、3個以上の生成方法を用いてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示の端末は、参照信号に関する複数の生成方法の中から、1つの生成方法を選択する回路と、前記選択された生成方法に基づいて生成された前記参照信号を送信する送信機と、を具備する。
 本開示の端末において、前記回路は、前記端末のパワーヘッドルーム又は前記端末のパスロスレベルに応じて、前記1つの生成方法を選択する。
 本開示の端末において、前記回路は、前記端末の送信帯域幅に応じて、前記1つの生成方法を選択する。
 本開示の端末において、前記回路は、前記参照信号の送信に使用される周波数リソースに関するパラメータに一意に対応付けられた前記1つの生成方法を選択する。
 本開示の端末において、前記パラメータは、システム帯域を分割して得られる部分帯域で前記参照信号を送信する端末数、前記部分帯域の帯域幅、又は、前記部分帯域を構成するCombである。
 本開示の端末において、前記回路は、前記参照信号の種別に応じて、前記1つの生成方法を選択する。
 本開示の端末において、前記回路は、前記端末が実行するサービス種別に応じて、前記1つの生成方法を選択する。
 本開示の端末において、前記回路は、前記端末に設定されるサブキャリア間隔に応じて、前記1つの生成方法を選択する。
 本開示の端末において、前記回路は、前記端末に設定されるフレームフォーマット種別に応じて、前記1つの生成方法を選択する。
 本開示の端末において、前記複数の生成方法は、1つの符号系列を用いて前記参照信号を生成する第1生成方法、及び、1つ以上の符号系列を結合して前記参照信号を生成する第2の生成方法を含む。
 本開示の通信方法は、参照信号に関する複数の生成方法の中から、1つの生成方法を選択し、前記選択された生成方法に基づいて生成された前記参照信号を送信する。
 本開示の一態様は、移動通信システムに有用である。
 100 端末
 101,205 アンテナ
 102,206 無線受信部
 103,207 復調・復号部
 104,202 制御情報保持部
 105,208 選択部
 106 SRS生成部
 107 リソース割当部
 108,204 無線送信部
 200 基地局
 201 制御情報生成部
 203 変調・符号化部
 209 レプリカ生成部
 210 品質推定部
 211 スケジューリング部

Claims (11)

  1.  参照信号に関する複数の生成方法の中から、1つの生成方法を選択する回路と、
     前記選択された生成方法に基づいて生成された前記参照信号を送信する送信機と、
     を具備する端末。
  2.  前記回路は、前記端末のパワーヘッドルーム又は前記端末のパスロスレベルに応じて、前記1つの生成方法を選択する、
     請求項1に記載の端末。
  3.  前記回路は、前記端末の送信帯域幅に応じて、前記1つの生成方法を選択する、
     請求項1に記載の端末。
  4.  前記回路は、前記参照信号の送信に使用される周波数リソースに関するパラメータに一意に対応付けられた前記1つの生成方法を選択する、
     請求項1に記載の端末。
  5.  前記パラメータは、システム帯域を分割して得られる部分帯域で前記参照信号を送信する端末数、前記部分帯域の帯域幅、又は、前記部分帯域を構成するCombである、
     請求項4に記載の端末。
  6.  前記回路は、前記参照信号の種別に応じて、前記1つの生成方法を選択する、
     請求項1に記載の端末。
  7.  前記回路は、前記端末が実行するサービス種別に応じて、前記1つの生成方法を選択する、
     請求項1に記載の端末。
  8.  前記回路は、前記端末に設定されるサブキャリア間隔に応じて、前記1つの生成方法を選択する、
     請求項1に記載の端末。
  9.  前記回路は、前記端末に設定されるフレームフォーマット種別に応じて、前記1つの生成方法を選択する、
     請求項1に記載の端末。
  10.  前記複数の生成方法は、1つの符号系列を用いて前記参照信号を生成する第1生成方法、及び、1つ以上の符号系列を結合して前記参照信号を生成する第2の生成方法を含む、
     請求項1に記載の端末。
  11.  参照信号に関する複数の生成方法の中から、1つの生成方法を選択し、
     前記選択された生成方法に基づいて生成された前記参照信号を送信する、
     通信方法。
PCT/JP2018/015792 2017-06-15 2018-04-17 端末及び通信方法 WO2018230138A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019525152A JPWO2018230138A1 (ja) 2017-06-15 2018-04-17 端末及び通信方法
US16/606,395 US11641628B2 (en) 2017-06-15 2018-04-17 Terminal and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-117639 2017-06-15
JP2017117639 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230138A1 true WO2018230138A1 (ja) 2018-12-20

Family

ID=64658621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015792 WO2018230138A1 (ja) 2017-06-15 2018-04-17 端末及び通信方法

Country Status (3)

Country Link
US (1) US11641628B2 (ja)
JP (2) JPWO2018230138A1 (ja)
WO (1) WO2018230138A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11700093B2 (en) * 2017-10-10 2023-07-11 Lg Electronics Inc. Method for transmitting and receiving SRS and communication device therefor
KR20210103292A (ko) * 2020-02-13 2021-08-23 삼성전자주식회사 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치
BR112023000514A2 (pt) * 2020-07-15 2023-01-31 Panasonic Ip Corp America Terminal, estação base e método de comunicação.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019878A1 (ja) * 2007-08-08 2009-02-12 Panasonic Corporation 無線送信装置及び無線通信方法
WO2016017705A1 (ja) * 2014-07-30 2016-02-04 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2017038406A (ja) * 2011-10-03 2017-02-16 サン パテント トラスト 端末、通信方法および集積回路
WO2017090708A1 (ja) * 2015-11-27 2017-06-01 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970193B1 (en) * 1999-07-14 2005-11-29 Olympus Optical Co., Ltd. Electronic imaging apparatus operable in two modes with a different optical black correction procedure being effected in each mode
EP1882613A4 (en) * 2005-05-11 2010-01-06 Hitachi Ltd VEHICLE AND DEVICE FOR CONTROLLING INTRA-VEHICLE COMMUNICATION
US7753465B2 (en) * 2006-10-13 2010-07-13 Lexmark International, Inc. Method for generating a reference signal for use in an imaging apparatus
JP5069283B2 (ja) * 2007-02-28 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるユーザ装置、基地局装置及び通信制御方法
US8913672B2 (en) * 2008-09-12 2014-12-16 Qualcomm Incorporated Efficiently identifying system waveform in uplink transmission
JP5555325B2 (ja) 2009-10-02 2014-07-23 インターデイジタル パテント ホールディングス インコーポレイテッド 複数のアンテナを有するデバイスのための電力制御
JP4981929B2 (ja) 2010-01-08 2012-07-25 シャープ株式会社 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
JP5866124B2 (ja) * 2010-06-04 2016-02-17 エルジー エレクトロニクス インコーポレイティド 端末の非周期的サウンディング参照信号トリガリングベースのsrs伝送方法及び非周期的srsを伝送するためのアップリンク伝送電力制御方法
CN103004273A (zh) * 2010-07-16 2013-03-27 京瓷株式会社 无线基站及通信控制方法
US20130155992A1 (en) * 2010-08-24 2013-06-20 Pantech Co., Ltd. Method and device for transmitting and receiving reference signals in accordance with mimo operation mode
US9001641B2 (en) * 2010-10-25 2015-04-07 Texas Instruments Incorporated Sounding reference signal processing for LTE
JP5707231B2 (ja) * 2011-05-27 2015-04-22 京セラ株式会社 基地局及び無線リソースの割り当て方法
CN102811107B (zh) * 2011-06-03 2016-03-30 华为技术有限公司 导频序列配置方法和网络设备
KR102066278B1 (ko) * 2011-11-07 2020-01-15 애플 인크. 참조신호 전송 방법과 장치, 및 그를 이용한 채널 추정 방법 및 장치
WO2013117231A1 (en) * 2012-02-10 2013-08-15 Nokia Siemens Networks Oy Method and apparatus for transmitting a reference signal in a communication system
US20190045458A1 (en) * 2016-02-04 2019-02-07 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
US11362778B2 (en) * 2017-03-22 2022-06-14 Lg Electronics Inc. Method for receiving control information for SRS transmission in wireless communication system, and user equipment therefor
US11190320B2 (en) * 2017-06-16 2021-11-30 Lg Electronics Inc. Method for generating SRS sequence and terminal therefor
US10862722B2 (en) * 2018-02-01 2020-12-08 Qualcomm Incorporated Reference signal transmission techniques for non-orthogonal multiple access wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019878A1 (ja) * 2007-08-08 2009-02-12 Panasonic Corporation 無線送信装置及び無線通信方法
JP2017038406A (ja) * 2011-10-03 2017-02-16 サン パテント トラスト 端末、通信方法および集積回路
WO2016017705A1 (ja) * 2014-07-30 2016-02-04 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017090708A1 (ja) * 2015-11-27 2017-06-01 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Discussion on SRS for NR", 3GPP TSG RAN WG1 #88B RL-1704737, March 2017 (2017-03-01), XP051251465, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/R1-1704737.zip> *
HUAWEI ET AL.: "Updated simulation results on ECP", 3GPP TSG RAN WG1 #89 RL-1706897, May 2017 (2017-05-01), XP051261555, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/R1-1706897.zip> *
LG ELECTRONICS: "On SRS design and related operations", 3GPP TSG RAN WG1 #89 R1-1707618, May 2017 (2017-05-01), XP051261960, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/R1-1707618.zip> *
VIVO: "On DL DMRS design for NR", 3GPP TSG RAN WG1 #89 R1-1707274, May 2017 (2017-05-01), XP051261743, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/R1-1707247.zip> *

Also Published As

Publication number Publication date
US20200044805A1 (en) 2020-02-06
JP7288114B2 (ja) 2023-06-06
JP2022084784A (ja) 2022-06-07
JPWO2018230138A1 (ja) 2020-04-16
US11641628B2 (en) 2023-05-02

Similar Documents

Publication Publication Date Title
US11251899B2 (en) Base station, terminal, receiving method, and transmission method
US11503572B2 (en) Integrated circuit for performing resource allocation in radio communication
RU2419988C2 (ru) Способ задания подполос в системе связи с несколькими несущими и устройство - базовая станция радиосвязи
US8483134B2 (en) Radio transmission appratus and radio transmission method that switch between communication methods
JP7288114B2 (ja) 端末及び通信方法
JP6323737B2 (ja) 通信装置、通信方法及び集積回路
WO2017134927A1 (ja) 端末及び送信方法
US11855823B2 (en) Terminal, base station, transmission method, and reception method
KR20190013557A (ko) 통신 시스템에서 동기 신호의 송수신 방법
WO2018203440A1 (ja) 端末及び通信方法
WO2020003682A1 (ja) 基地局、端末、受信方法及び送信方法
CN107006010B (zh) 基站、终端、接收方法及发送方法
JP7083810B2 (ja) 端末及び通信方法
WO2018127955A1 (ja) 基地局装置、端末装置及び送信方法
JP2019071640A (ja) 基地局、端末、受信方法及び送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818300

Country of ref document: EP

Kind code of ref document: A1