WO2011083614A1 - 調光装置および画像表示装置 - Google Patents

調光装置および画像表示装置 Download PDF

Info

Publication number
WO2011083614A1
WO2011083614A1 PCT/JP2010/069176 JP2010069176W WO2011083614A1 WO 2011083614 A1 WO2011083614 A1 WO 2011083614A1 JP 2010069176 W JP2010069176 W JP 2010069176W WO 2011083614 A1 WO2011083614 A1 WO 2011083614A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
voltage
guide plate
control device
Prior art date
Application number
PCT/JP2010/069176
Other languages
English (en)
French (fr)
Inventor
内田 秀樹
豪 鎌田
吉田 秀史
柴田 諭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/518,950 priority Critical patent/US20120293566A1/en
Priority to CN2010800607283A priority patent/CN102695982A/zh
Priority to JP2011548915A priority patent/JPWO2011083614A1/ja
Publication of WO2011083614A1 publication Critical patent/WO2011083614A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0237Switching ON and OFF the backlight within one frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/024Scrolling of light from the illumination source over the display in combination with the scanning of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0633Adjustment of display parameters for control of overall brightness by amplitude modulation of the brightness of the illumination source

Definitions

  • the present invention relates to a light control device and an image display device including the light control device.
  • a backlight that emits light from the back of the display panel is used to display an image.
  • This backlight is roughly classified into, for example, a direct type backlight or a side edge type backlight, depending on the irradiation method.
  • the direct type backlight has a plurality of light sources arranged in a matrix, and the light sources are partially irradiated by individually controlling the light sources.
  • FIG. 15 is a diagram showing a configuration of a conventional direct type backlight.
  • LED chips 31 as light sources are arranged in a matrix.
  • light is irradiated from an arbitrary region by individually controlling ON / OFF of the LED chip 31.
  • the LED chip 31 is disposed on the back surface of the display panel, the shadow of the LED chip 31 is reflected on the display panel. Therefore, in the backlight 30, as shown in FIG. 15B, the distance between the LED chip 31 and the diffusion plate 32 (indicated by an arrow in FIG. 15B) must be sufficiently secured. As a result, the thickness of the backlight 30 itself is increased, which prevents the display device from being thinned.
  • FIG. 16 is a diagram showing a configuration of a conventional side edge type backlight.
  • the side edge type backlight 40 shown in FIG. 16 the light emitted from the light source 42 provided on the side surface of the light guide plate 41 is guided inside the light guide plate 41 and totally reflected.
  • a structure that intentionally breaks the total reflection is formed on the light output surface side of the light guide plate 41, thereby outputting light to the outside.
  • FIG. 17 is a diagram showing a side-edge type backlight provided with a liquid crystal element.
  • a liquid crystal element 55 in which a liquid crystal layer 53 is sandwiched between two electrodes 52 and 54 is disposed below a light guide plate 51.
  • FIG. The voltage OFF state is shown, and FIG. 17B shows the voltage ON state.
  • the liquid crystal element 55 shown in this figure displays white when the voltage is in the OFF state.
  • the s wave 57 is guided in the light guide plate 51, and the p wave 58 is the liquid crystal.
  • the light is reflected at the lower part of the element 55 and output from the light guide plate 51 to the outside.
  • the orientation of the liquid crystal is changed, and both the s wave 57 and the p wave 58 are guided through the light guide plate 51. As a result, light is not taken out of the light guide plate 51, and black display is obtained.
  • Techniques using the anisotropy of the liquid crystal are also disclosed in Patent Documents 2 to 5.
  • Patent Document 6 discloses a scan backlight that controls lighting for each region.
  • FIG. 18 is a diagram showing the configuration of this scan backlight.
  • the backlight 116 installed on the back surface of the display panel includes a light guide plate 114 composed of a plurality of blocks (114a to 114e).
  • White or R, G, B LEDs 111 are arranged at the end of the light guide plate 114 and are lit individually or as a set. The lighting position is scanned in synchronization with the image writing position on the display panel. Thereafter, each pixel row of the display panel is rewritten, and an image is displayed by turning on the LED 111 located in the pixel row after a predetermined time has elapsed. Techniques relating to such a scan backlight are also disclosed in Patent Documents 7 and 8.
  • Patent Document 9 discloses a technique of performing line modulation by changing the light emission intensity of each line in a plurality of line-shaped backlights.
  • liquid crystal when liquid crystal is used as a switching element in a side edge type backlight, light may be extracted from a region other than the region where light emission is desired. That is, when a current is applied to the liquid crystal element in order to drive the liquid crystal element in an arbitrary region, crosstalk may occur in which the current leaks around the target liquid crystal element and is driven.
  • FIG. 19 is a diagram illustrating a target luminance distribution in a side-edge type backlight including a liquid crystal element.
  • FIG. 20 is a diagram illustrating an actual luminance distribution in a side edge type backlight including a liquid crystal element.
  • FIG. 20B A graph showing the actual light extraction amount shown in FIG. 20A is shown in FIG.
  • an arrow 62 indicates the light extraction amount in the region C in a state where crosstalk occurs
  • an arrow 63 indicates the light extraction amount in the region B.
  • the cross luminance causes the peak luminance in the region B to decrease.
  • Patent Documents 1 to 5 do not describe how the liquid crystal is specifically driven, and do not mention the problem of crosstalk. Therefore, crosstalk cannot be sufficiently suppressed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a light control device that emits light from an arbitrary region on a plane and suppresses crosstalk.
  • the light control device is A light guide plate that guides light introduced into the inside from the end, and A light source disposed at the end of the light guide plate and emitting light toward the inside of the light guide plate; A plurality of strip-shaped scan electrodes arranged in parallel to each other in a direction parallel to the arrangement direction of the light source, a plurality of strip-shaped signal electrodes arranged in parallel to each other in a direction perpendicular to the plurality of scan electrodes, and an arbitrary And an element that can change the light extraction rate from the light guide plate, which is formed for each region where the scanning electrode and any of the signal electrodes intersect, on the light output surface side of the light guide plate.
  • Arranged light extraction means Arranged light extraction means; Dividing means for dividing one frame period into a plurality of subframe periods; Light source control means for emitting the light from the light source by controlling the light source to be lit at a time equal to or shorter than the sub frame period for each sub frame period; For each subframe period, a voltage is applied by selecting any one of the plurality of scan electrodes, and at least one of the plurality of signal electrodes corresponds to the selected scan electrode and the signal electrode. And a voltage applying means for applying a voltage corresponding to the light extraction rate of the element.
  • an image display device includes: A light control device of the present invention; And a display panel disposed on the light output surface side of the light control device.
  • the light guide plate having the light source disposed at the end thereof, and the plurality of scanning electrodes and the plurality of signal electrodes are disposed in directions perpendicular to each other, Since light extraction means in which an element capable of changing light extraction is provided for each region intersecting with the signal electrode, light can be irradiated from an arbitrary region on a plane.
  • the light extraction means is disposed on the light output surface side of the light guide plate, the plurality of scanning electrodes are disposed in parallel in a direction parallel to the light source arranging direction, and are perpendicular to the plurality of scanning electrodes.
  • a plurality of signal electrodes are arranged in parallel in the direction.
  • one frame period is time-divided into a plurality of subframe periods, and voltage application to the scan electrodes and signal electrodes and emission of light from the light source are controlled for each subframe period.
  • the light source control unit controls the emission of light from the light source within an arbitrary subframe period
  • the voltage application unit selects any one of the scan electrodes and outputs the voltage during the arbitrary subframe period. Then, a voltage is applied by selecting at least one of the plurality of signal electrodes within the arbitrary subframe period.
  • the light extraction rate in the elements corresponding to the other scan electrodes does not change. That is, a state where no light is extracted is maintained.
  • a voltage is applied to each element corresponding to the selected scan electrode through one of the signal electrodes corresponding to each element, and as a result, the light extraction rate of the element changes. That is, only a plurality of elements arranged in a line along one scan electrode are controlled in a certain subframe period.
  • flash light having a duration equal to or shorter than the subframe period is introduced into the light guide plate by turning on the light source only in the subframe period for each subframe period.
  • This flash light is emitted to the outside only through a plurality of (one line) elements arranged along one scanning electrode which is a control target. Therefore, the flash light irradiated in a certain subframe period is not emitted through another element that is further away from the light source than the element corresponding to the scan electrode to be controlled in the same subframe period. .
  • the image display device of the present invention includes the light control device of the present invention and a display panel arranged on the light output surface side of the light control device.
  • the image display device includes the light control device of the present invention as a backlight. Therefore, it is possible to realize a thin image display device including a backlight that can suppress crosstalk and is thinner than a backlight directly under an LED and can extract light from an arbitrary area on a plane. Can do.
  • the present invention provides a light guide plate that guides light introduced into the inside from an end portion, a light source that is disposed at the end portion of the light guide plate and emits light toward the inside of the light guide plate, and A plurality of strip-shaped scan electrodes arranged in parallel to each other in a direction parallel to the arrangement direction of the light source, a plurality of strip-shaped signal electrodes arranged in parallel to each other in a direction perpendicular to the plurality of scan electrodes, and an arbitrary An element that is formed in each region where the scanning electrode and any of the signal electrodes intersect can change the light extraction rate from the light guide plate, and is disposed on the light output surface side of the light guide plate.
  • Light extraction means dividing means for dividing one frame period into a plurality of subframe periods, and for each subframe period, controlling the light source to be lit at a time equal to or shorter than the subframe period.
  • a light source control means for emitting the light from a source, and applying a voltage by selecting any one of the plurality of scanning electrodes for each subframe period, and at least one of the plurality of signal electrodes, Since it includes voltage application means for applying a voltage corresponding to the light extraction rate in the element corresponding to the selected scan electrode and the signal electrode, light is emitted from an arbitrary region on the plane.
  • a light control device that suppresses crosstalk can be provided.
  • FIG. 3 is a diagram illustrating a light extraction region and a light extraction amount that are set in advance for each frame period in the light control device illustrated in FIG. 2.
  • FIG. 3 is a diagram illustrating a driving pattern in Embodiment 1. It is a figure which shows the light extraction rate in the extraction area
  • FIG. 1 is a block diagram illustrating a configuration of a light control device 1 according to the present embodiment.
  • the light control device 1 includes a light guide plate 2, an LED (light source) 3, a switching unit (light extraction unit) 4, a frame division unit (division unit) 5, and a light source control unit (light source control unit) 6. And a voltage application unit (voltage application means) 7.
  • the light control device 1 is a side edge type light control device capable of controlling the extraction of light propagating through the light guide plate 2 for each region.
  • the LED 3 is disposed at the end portion of the light guide plate 2, and light emitted from the LED 3 is introduced into the light guide plate 2 from the end portion.
  • a switching unit 4 is disposed on the light output surface side of the light guide plate 2.
  • the light output surface of the light guide plate 2 means a surface on the side from which light is extracted by the switching unit 4, and does not mean that the light guide plate 2 outputs light itself.
  • FIG. 2 is a diagram for explaining the arrangement of the scan electrodes 8 and the signal electrodes 10.
  • the voltage is applied to any one of the plurality of scanning electrodes 8 and the voltage is applied to any one of the plurality of signal electrodes 10, whereby the scanning electrode 8 and the signal electrode 10 cross each other. The light can be extracted from the area to be.
  • FIG. 3 is a cross-sectional view showing the configuration of the switching unit 4. Therefore, by selectively applying a voltage to one of the scanning electrodes 8 and the signal electrode 10, it becomes possible to control the light extraction rate in the liquid crystal element 9 formed at the intersection of these electrodes. Light can be extracted from any area above.
  • one frame period is time-divided into a plurality of subframe periods, and voltage application to the scan electrode 8 and the signal electrode 10 and light emission from the LED 3 are controlled for each subframe period.
  • the light source control unit 6 controls the emission of light from the LED 3 in an arbitrary subframe period
  • the voltage application unit 7 selects any one of the scan electrodes 8 in an arbitrary subframe period.
  • a voltage is applied, and at least one of the plurality of signal electrodes 10 is further selected and applied within the arbitrary subframe period.
  • the light extraction rate in the liquid crystal elements 9 corresponding to the other scan electrodes 8 does not change. That is, a state where no light is extracted is maintained.
  • a voltage is applied to each liquid crystal element 9 corresponding to the selected scanning electrode 8 through one of the signal electrodes 10 corresponding to each liquid crystal element 9, and as a result, the light extraction rate of the liquid crystal element 9 changes. To do. That is, only a plurality of liquid crystal elements 9 arranged in a line along one scanning electrode 8 are controlled in a certain subframe period.
  • the light guide plate 2 guides the light introduced from the LED 3 inside.
  • the shape of the light guide plate 2 may be set as appropriate in accordance with the shape of the light control device 1 as long as a plurality of scanning electrodes 8 and signal electrodes 10 can be arranged in parallel in the matrix direction on the surface.
  • Examples of the material of the light guide plate 2 include an acrylic plate, a polyurethane resin, a polycarbonate resin, PMMA (Polymethyl methacrylate), PVA (Polyvinyl alcohol), and the like. In addition, glass can also be used.
  • the LED 3 is a light source that emits light toward the inside of the light guide plate 2.
  • LED3 should just be arrange
  • the number of LEDs 3 is not particularly limited. For example, a plurality of LEDs 3 may be arranged in parallel at the end of the light guide plate 2, or one LED 3 corresponding to the length of the end may be arranged. .
  • a white LED or a three-color LED of R, G, B may be used.
  • the light source of the light control device 1 is not limited to this, and for example, an inorganic EL element or an organic EL element is used. It may be used as a light source. Since these light emitting elements are surface light emitting elements, there is an advantage that a light source can be installed according to the size of each strip-shaped cross section. Thus, the light source of the light control device 1 may be either surface light emission or point light emission.
  • the LED 3 preferably emits light having directivity that travels along a direction perpendicular to the arrangement direction of the LED 3. That is, in the light control device 1, the scanning electrode 8 is arranged in a direction parallel to the arrangement direction of the LEDs 3, and the signal electrode 10 is arranged in a direction perpendicular to the scanning electrode 8.
  • the emission of light from the LED 3 is controlled every subframe period, the light emitted from the LED 3 travels in a direction perpendicular to the arrangement direction of the LED 3, that is, along the long side direction of the signal electrode 10. Ike can concentrate the light on the target area.
  • the switching unit 4 controls the amount of light extracted outside through the liquid crystal element 9 by changing the light extraction rate. Specifically, a voltage is applied to any one of the plurality of scanning electrodes 8 and a voltage is applied to any one of the plurality of signal electrodes 10, thereby forming a liquid crystal element formed in a region where these intersect. 9 is driven.
  • polymer dispersed liquid crystal may be used as the liquid crystal element 9, for example.
  • the polymer-dispersed liquid crystal is composed of a material prepared by uniformly dispersing a liquid crystal material in a polymer material. Depending on whether a voltage is applied to the polymer-dispersed liquid crystal, two types of light scattering and transparent are provided. It becomes a state. In the light scattering state, the orientation vector of the dispersed liquid crystal faces in different directions, so that an opaque white state is created by scattering light at the interface. That is, light is extracted.
  • the orientation vector of the liquid crystal is oriented in a certain direction, the refractive index of the polymer material and the liquid crystal with respect to the light is substantially equal, and the light becomes non-scattering and transmits light. In this case, no light is extracted.
  • examples of the polymer dispersed liquid crystal include PDLC (Polymer Dispersed Liquid Crystal), PNLC (Polymer Network-Liquid Crystal), and the like.
  • PDLC Polymer Dispersed Liquid Crystal
  • PNLC Polymer Network-Liquid Crystal
  • PDLC is a liquid crystal in which droplet-like liquid crystals are dispersed in a polymer cured from a uniform solution of liquid crystal molecules and a polymerizable resin.
  • PNLC is a high polymer cured from a uniform solution of liquid crystal molecules and a polymerizable resin. In this configuration, the molecules are formed in a three-dimensional network in the liquid crystal layer, and the liquid crystal molecules are irregularly arranged therein.
  • the polymer dispersion type liquid crystal in reverse mode mixes several% of polymerizable polymer into the nematic liquid crystal. It is obtained by injecting into a rubbing-treated liquid crystal cell and aligning and then irradiating with UV. Further, a polymer dispersed liquid crystal in a reverse mode (UV curable liquid crystal / nematic liquid crystal composite element) can be obtained by mixing and aligning PDLC and PNLC and then irradiating with UV.
  • liquid crystal material a material having a higher birefringence ⁇ n than the component of the polymer material may be used.
  • the polymer material for example, an acrylate material can be used.
  • ITO Indium ⁇ ⁇ ⁇ Tin Oxide
  • IZO transparent electrode material made of indium oxide and zinc oxide
  • FTO fluorine-doped tin oxide
  • organic material for example, PEDOT-PSS (Poly (3,4-ethylenedioxythiophene)) poly (styrenesulfonate) or the like can be used.
  • the element used as the optical shutter in the light control device 1 is not limited to this.
  • the orientation is changed depending on whether or not a voltage is applied, and light is transmitted.
  • light may be transmitted and extracted, or light may be extracted using an element manufactured by a MEMS (Micro Electro Mechanical System) system.
  • MEMS Micro Electro Mechanical System
  • the frame dividing unit 5 divides one frame period into a plurality of subframe periods. That is, the time in one frame period is divided and assigned to each subframe period. For example, when one frame period is 60 milliseconds and divided into five subframe periods, one subframe period is 12 milliseconds.
  • the number of divisions in one frame period by the frame dividing unit 5 is not particularly limited, but it is preferable to divide into the same number of subframe periods as the plurality of scan electrodes 8. As described above, since the scanning electrode 8 is controlled for each subframe period, the extraction of light can be easily controlled by adjusting the number of subframe periods to the number of scanning electrodes 8.
  • the light source control unit 6 emits light from the LED 3 by controlling the LED 3 to be lit only within the sub-frame period for each sub-frame period. That is, in this embodiment, when there are a plurality of light extraction regions in the row direction of the light guide plate 2, light is emitted from the LEDs 3 so that the light is lit only during the subframe period corresponding to the light extraction region.
  • control by the light source control unit 6 may include control of the intensity of light emitted from the LED 3 and the emission time of light from the LED 3.
  • the voltage application unit 7 controls the application of voltage to the scan electrode 8 and the signal electrode 10.
  • the voltage application unit 7 may select one of the plurality of scan electrodes 8 and apply a voltage for each subframe period, and apply a voltage to at least one of the plurality of signal electrodes 10.
  • the scanning electrode 8 may be sequentially controlled from the end to apply a voltage, and the voltage may be applied to the signal electrode 10 in accordance with this.
  • FIG. 4 is a cross-sectional view illustrating a further configuration of the light control device 1.
  • the scattering plate 15 on the surface of the light guide plate 2 opposite to the light output surface, the light scattered in the switching unit 4 in the downward direction, that is, in the direction opposite to the light output surface side is also extracted upward. be able to.
  • the light diffusing plate 16 on the light output surface side, the light extracted from the switching unit 4 can be diffused by the diffusing plate 16 to irradiate light in a wider range.
  • the material of the counter substrate 11 may be the same material as that of the light guide plate 2, for example.
  • the light control device 1 has scanning electrodes 8 and signal electrodes 10 arranged in a 5 ⁇ 5 matrix as shown in FIG. 2, and a light extraction area is set in advance for each frame period. Is intended.
  • the frame dividing unit 5 divides one frame period into a plurality of subframe periods. At this time, it is preferable to divide one frame period into the same number of subframe periods as the plurality of scan electrodes 8. That is, since the scan electrode 8 is controlled for each subframe period, the light extraction can be easily controlled by adjusting the number of subframe periods to the number of the scan electrodes 8.
  • the light source controller 6 causes the LED 3 to emit light by controlling the timing of lighting the LED 3 for each divided subframe period. For example, in FIG. 2, when it is desired to extract light from only the B column and D column of the scan electrode 8 in the b row of the signal electrode 10, the subframe corresponding to the B column and D column of the scan electrode 8. The LED 3 is lit only during the period. That is, in the b-th row of the signal electrode 10, the LED 3 is not turned on in the subframe period corresponding to the A-th column, the C-th column, and the E-th column of the scanning electrode 8. Therefore, no light remains in a subsequent region in the traveling direction of light adjacent to the region in the subframe period.
  • the voltage application unit 7 applies a voltage by selecting any one of the plurality of scan electrodes 8 for each subframe period, and the selected scan electrode 8 is connected to any one of the plurality of signal electrodes 10.
  • a voltage corresponding to the light extraction rate in the liquid crystal element 9 corresponding to the signal electrode 10 is applied.
  • the selection of the scan electrode 8 to which the voltage is applied may be sequentially driven so as to sequentially apply the voltage one by one in one direction of the scan electrodes 8 arranged in parallel, for example.
  • the voltage application to the signal electrode 10 may be performed on the signal electrode 10 corresponding to the light extraction region on the column of the selected scan electrode 8.
  • the amount of light extracted through the liquid crystal element 9 depends on the signal electrode 10.
  • the voltage may be controlled according to the value of the voltage applied to the signal electrode or the time during which the voltage is applied to the signal electrode 10.
  • the voltage application unit 7 is extracted to the signal electrode 10 through the liquid crystal element 9 corresponding to the scanning electrode 8 and the signal electrode 10 selected in an arbitrary subframe period. It can be controlled to apply a voltage having an amplitude corresponding to the amount of light.
  • a voltage pattern applied to the signal electrode 10 at this time is shown in FIG. In FIG. 5, the width indicated by a dotted line indicates one subframe period, and the height indicated by a solid line indicates the amplitude of the voltage.
  • the voltage applying unit 7 applies a voltage having a constant amplitude to the signal electrode 10 and the liquid crystal element corresponding to the scanning electrode 8 and the signal electrode 10 selected in an arbitrary subframe period. 9 can be controlled to be applied only for a time corresponding to the amount of light extracted through 9. The pattern of the voltage applied to the signal electrode 10 at this time is shown in FIG. As described above, when the intensity of light emitted from the LED 3 is constant, by controlling the amplitude of the voltage applied to the signal electrode 10 or the application time, light having an arbitrary luminance can be obtained from an arbitrary region on the plane. Can be irradiated.
  • the intensity of light emitted from the LED 3 or the light emission time may be controlled.
  • the voltage application unit 7 sets the light extraction rate of the liquid crystal element 9 corresponding to the selected scanning electrode 8 and signal electrode 10 to only one of the plurality of signal electrodes 10 to 100%.
  • the light source control unit 6 can control the LED 3 to emit light having an intensity corresponding to the amount of light extracted through the liquid crystal element 9. Moreover, it can also be controlled to emit light from the LED 3 for a time corresponding to the amount of the extracted light.
  • FIG. 6 is a cross-sectional view showing a configuration of an image display apparatus according to an embodiment of the present invention.
  • the light control device 1 according to the first embodiment may be combined with the display panel 17 disposed on the light output surface side of the light control device 1 to form the image display device 20. That is, the light control device 1 can function as a backlight of the image display device 20.
  • the light control device 1 is also referred to as a backlight 1.
  • FIG. 7 is a diagram showing a display example of an image on the display panel 17.
  • the backlight 1 of the present embodiment since the lighting / non-lighting of the LED 3 can be controlled for each region, it is possible not to emit light from the LED 3 to the dark region of the lower portion 13 of the screen. Therefore, no light leakage occurs, so that the black sink can be deepened, and the contrast of the display image can be improved.
  • the display panel 17 is not particularly limited, and for example, a liquid crystal display panel may be used. Thus, by using the light control device 1 in combination with the liquid crystal display panel, a thin active backlight can be obtained.
  • the LED 3 is disposed at one end of the light guide plate 2, whereas the present embodiment is different in that the LED 3 is disposed at both ends of the light guide plate 2. It is. Therefore, the same components as those in the first embodiment will be described using the same member numbers.
  • FIG. 8 is a top view showing the configuration of the light control device 1 according to the second embodiment
  • FIG. 9 is a cross-sectional view showing the configuration of the light control device 1 according to the second embodiment.
  • the LEDs 3 are respectively disposed at two end portions of the light guide plate 2 facing each other. That is, in the light control device 1 of this embodiment, the light from the LED 3 is introduced into the light guide plate 2 from two opposing directions.
  • the light emission from the LED 3 is emitted from the direction of the A column of the scanning electrode 8. If it does, the light which guides the inside of the light-guide plate 2 may leak in the part of the A column from the A column of the scanning electrode 8.
  • FIG. 1 a decrease in luminance or crosstalk may occur in the target D-row or E-row. This phenomenon becomes more frequent as the size of the element for extracting light increases.
  • the light source control unit 6 controls the two LEDs 3 so that light is emitted from the two LEDs 3 simultaneously. Thereby, since light can be simultaneously introduced from two directions in the light guide plate 2, crosstalk can be further suppressed.
  • the light source control unit 6 emits light only from the LEDs 3 arranged closer to the scanning electrode 8 to which the voltage is applied among the LEDs 3 arranged at the two ends of the light guide plate 2 in the subframe period. It is preferable to emit light. For example, if only one LED 3 is always lit, the temperature of the LED 3 may increase. In this case, the heat of the LED 3 may affect the characteristics of the liquid crystal element 9 and it may be difficult to control the light extraction rate. Therefore, by switching the timing of emitting light from each LED 3 provided at the opposite end of the light guide plate 2 for each subframe period, the temperature rise of the LED 3 can be symmetrized and the reliability of the apparatus can be maintained.
  • the light source controller 6 controls the two LEDs 3 so that light is alternately emitted from one of the two LEDs 3 every frame period or every subframe period. Thereby, the temperature rise of LED3 can be suppressed and the reliability of an apparatus can be maintained.
  • FIG. 10 is a diagram for explaining a light extraction region and a light extraction amount that are set in advance for each frame period in the light control device 1.
  • the amount of light extracted through the liquid crystal element 9 is 50% in the B-th column of the scanning electrode 8, and 100% in the E-th column.
  • the crosstalk can be reduced by applying light to the scan electrode 8 and the signal electrode 10 to extract light for each subframe period and controlling the lighting of the LED 3.
  • the voltage applied to the signal electrode 10 if the amount of light extracted is 50% as in the B row, all the light emitted from the LED 3 is extracted from this region. Therefore, there is a risk of crosstalk.
  • the intensity of light emitted from the LED 3 in the B-th column is changed according to the amount of light extracted, and a voltage may be applied so that the light extraction rate in the liquid crystal element 9 is 100%.
  • the light extraction amount is 50% in the c-th line and 100% in the e-th line.
  • the frame dividing unit 5 further divides a subframe period in which there are regions having different light extraction amounts into a plurality of sub-subframe periods.
  • the voltage application unit 7 applies a voltage to the signal electrode 10 so that the light extraction rate in the liquid crystal element 9 is 100%.
  • the light source controller 6 emits light having an intensity corresponding to a preset extraction amount from the LED 3 for each sub-subframe period.
  • the subframe corresponding to the E column of the scan electrode 8 is further divided into two sub-subframe periods, and the light extraction rate of the signal electrode 10 is set to 100% in these two sub-subframe periods. Apply voltage.
  • the intensity of light emitted from the LED 3 is set to 100% in one of the two sub-subframe periods, and is set to 200% in the other sub-subframe period.
  • the time for which 100% intensity light is emitted is half of the subframe period, so the amount of light that is substantially extracted is 50%.
  • the time when the light having the intensity of 200% is emitted is also half of the subframe period, the amount of the extracted light is substantially 100%.
  • the light extraction rate in the liquid crystal element 9 can always be set to 100% even when there are regions with different amounts of light extraction on the scan electrodes 8. it can. Therefore, crosstalk can be further suppressed.
  • the light source control means controls the light source so that the light of the same intensity is emitted from the light source for each subframe period
  • the voltage applying means is a voltage having an amplitude corresponding to the amount of light extracted through the element corresponding to the selected scan electrode and the signal electrode for each of the plurality of signal electrodes for each subframe period. Is preferably applied continuously for a certain period of time.
  • the amount of light extracted through the element is controlled by the value of the voltage applied to the signal electrode. That is, the light source emits light having a constant intensity every subframe period, and the voltage applied to the signal electrode selected in the subframe period has an amplitude corresponding to the amount of light extracted through the element. To control. Thereby, light of arbitrary luminance can be irradiated from an arbitrary area on the plane.
  • the light source control means controls the light source so that the light of the same intensity is emitted from the light source for each subframe period
  • the voltage applying means is continuously applied to each of the plurality of signal electrodes for each subframe period for a time corresponding to the amount of light extracted through the element corresponding to the selected scanning electrode and the signal electrode. It is preferable to apply a voltage having a constant amplitude.
  • the amount of light extracted through the element is controlled by the time during which the voltage is applied to the signal electrode. That is, the light source emits light having a constant intensity every subframe period, and a voltage having a constant amplitude is applied to the signal electrode selected in the subframe period. At this time, by applying a voltage to the signal electrode for a time corresponding to the amount of light extracted through the element, light having an arbitrary luminance can be irradiated from an arbitrary region on the plane.
  • the voltage application means sets the light extraction rate of the element corresponding to the selected scan electrode and the signal electrode to only 100% of any of the plurality of signal electrodes in any subframe period. Apply a voltage to The light source control means emits light having an intensity corresponding to the amount of light extracted through the element corresponding to the scan electrode and the signal electrode to which the voltage is applied in the arbitrary subframe period. It is preferable to control the light source so that the light source emits light only during the subframe period.
  • the amount of light extracted through the element is controlled by the intensity of light emitted from the light source. That is, in the signal electrode selected in an arbitrary subframe period, a voltage is applied so that the light extraction rate in the element is 100%, and the intensity of light emitted from the light source in the subframe period is Control according to the amount of light extracted.
  • a voltage is applied so that the light extraction rate in the element is 100%, and the intensity of light emitted from the light source in the subframe period is Control according to the amount of light extracted.
  • the dividing means divides an arbitrary subframe period into a plurality of sub-subframe periods
  • the voltage application means sets the light extraction rate at the element corresponding to the selected scan electrode and the signal electrode to only one of the plurality of signal electrodes for each sub-subframe period. % Is applied,
  • the light source control means adjusts the amount of light extracted through the element corresponding to the scan electrode and the signal electrode to which the voltage is applied in the sub-subframe period. It is preferable to control the light source so that light having a corresponding intensity is emitted from the light source only during the sub-subframe period.
  • the arbitrary subframe period Is further divided into a plurality of sub-subframe periods, whereby a voltage can be applied to only one of the plurality of signal electrodes.
  • the subframe period is further divided into sub-subframe periods, whereby light extraction is performed for each element.
  • the rate can be controlled to 100%.
  • the subframe period is divided into a plurality of sub-subframe periods, and the signal is applied to only one signal electrode for each sub-subframe period.
  • a voltage is applied to make the light extraction rate at the element corresponding to the electrode and the selected scan electrode 100%.
  • the voltage applied to the signal electrode is controlled so that the light extraction rate at the element is always 100%.
  • the light source emits light having an intensity corresponding to the amount of light extracted through the element corresponding to the signal electrode to which the voltage is applied and the scanning electrode. That is, the amount of light extracted through the element in the sub-subframe period is controlled by the intensity of light emitted from the light source.
  • the light extraction rate in the element is always kept at 100% by further dividing the subframe period. Is possible. Accordingly, since 100% of the light emitted from the light source is extracted through the element, crosstalk can be further suppressed.
  • the dividing means preferably divides the one frame period into the same number of subframe periods as the plurality of scan electrodes.
  • the subframe period corresponds to the number of scan electrodes.
  • the number of sub-frame periods is adjusted to the number of scan electrodes, so that all the scan electrodes within one frame period can be controlled according to the present invention.
  • a driving method can be applied. Therefore, occurrence of crosstalk can be suppressed on the entire light emission surface.
  • the light source emits light having directivity that travels along a direction perpendicular to the arrangement direction of the light source.
  • the light emitted from the light source travels along a direction perpendicular to the arrangement direction of the light source. That is, the scanning electrode is arranged in a direction parallel to the arrangement direction of the light source, and the signal electrode is arranged in a direction perpendicular to the scanning electrode.
  • the scanning electrode and the signal electrode are controlled for each subframe period, and the emission of light from the light source is also controlled for each subframe period. Therefore, the light emitted from the light source travels along the direction perpendicular to the light source arrangement direction, that is, the long side direction of the signal electrode, so that the light can be concentrated on the target region.
  • the light sources are respectively disposed at two end portions facing each other in the light guide plate.
  • the light source control means controls the two light sources so that the light is emitted from the two light sources simultaneously.
  • the light source control means outputs the light from the light source arranged closer to the scan electrode selected by the voltage application means in the sub-frame period of the two light sources for each sub-frame period. It is preferable to control the two light sources so as to emit light.
  • the light When light is introduced from one end of the light guide plate, the light may leak slightly (take out) until it reaches the target region as it moves away from the introduced position. In this case, the light corresponding to the target extraction amount may not remain up to the target area. Therefore, in the subframe period, light is emitted only from the light sources arranged closer to the scanning electrode to which the voltage is applied among the light sources arranged at the two end portions of the light guide plate in the subframe period. Let Thereby, the light corresponding to the target extraction amount can reach the target region.
  • the light source control means controls the two light sources so that the light is alternately emitted from one of the two light sources every one frame period.
  • the light source control unit controls the two light sources so that the light is alternately emitted from one of the two light sources for each subframe period.
  • light is emitted alternately from one of the light sources arranged at two ends of the light guide plate every frame period or every subframe period.
  • the temperature of the light source may increase.
  • the characteristics of the element may be affected by the heat of the light source, making it difficult to control the light extraction rate. Therefore, by switching the timing of emitting light from each light source provided at the opposite end of the light guide plate every frame period or subframe period, the temperature rise of the light source is suppressed, and the reliability of the apparatus is maintained. Can do.
  • Example 1 a 30 cm ⁇ 40 cm 5 ⁇ 5 matrix controlled light control device having the configuration shown in FIG. 10 was manufactured by the following method.
  • Light guide plate As the light guide plate, an acrylic plate having a width of 450 cm and a height of 4 mm was used. On this acrylic plate, 5 patterns of ITO (indium tin oxide) having a width of 8 cm were formed in parallel at intervals of 0.1 mm to form electrodes.
  • ITO indium tin oxide
  • an acrylic plate having a width of 450 cm and a height of 4 mm was used as the counter substrate, and ITO having a width of 6 cm was patterned in a direction perpendicular to the electrode formed on the light guide plate to form an electrode.
  • switching element As the switching element (element), polymer dispersion type liquid crystal was used.
  • the polymer-dispersed liquid crystal is composed of a liquid crystal material whose alignment state is changed by an electric field and a polymer material mixed so as to surround the liquid crystal material.
  • This polymer-dispersed liquid crystal is in a transparent state and a scattering state by matching the refractive index at the interface between the liquid crystal material and the polymer material. Refractive index matching was controlled by the alignment state of liquid crystal molecules by an electric field.
  • the polymer material is designed to be in a transparent state when no electric field is applied, and in a scattering state when an electric field is applied, so that the refractive index of the polymer material is substantially the same as the refractive index of the light guide plate. That is, in this example, the reverse type polymer dispersion type liquid crystal shown in the above embodiment was used to control to take out light in a scattering state when a voltage was applied.
  • Such a liquid crystal was disposed with a film thickness of 10 ⁇ m between the acrylic plate, that is, the light guide plate and the counter substrate. Thereby, a switching element using a polymer dispersed liquid crystal was obtained.
  • LED arrangement In this example, a white LED chip having a height of 3.5 mm, a width of 7 mm, and a depth of 1.5 mm was used as the light source. This white LED chip was mounted on one end of the light guide plate, and was evenly arranged on one light guide plate with an interval of 5 mm. The lower rated voltage was 18 V, and the lower rated current was 100 mA.
  • a diffusion plate was disposed on the upper side of the light guide plate, that is, on the light extraction surface side
  • a scattering plate was disposed on the lower side of the light guide plate, that is, the surface opposite to the light extraction surface.
  • the light control device obtained as described above was driven as follows.
  • the region marked with a circle in FIG. 10 was turned on. That is, in column A, the light extraction amount in the a-th row is 100%, light extraction amount in the d-th row is 80%, in column B, the light extraction amount in the e-th row is 50%, and in column C, b.
  • the light extraction amount in the row is 100%, the light extraction amount in the a row is 20% in the D column, the light extraction amount is 80% in the c row, and the light extraction in the c row is in the E column.
  • the amount was 50%, and the amount of light extracted in the e-th row was 100%.
  • Example 1 since there is a region where all the lights from the A column to the E column are lit, the light emission of the LED in one frame is divided into five to be flashed.
  • FIG. 11 is a diagram illustrating a drive pattern in the first embodiment. The flash lighting period was arbitrarily adjusted according to the switching response time of the switching element or the light emission luminance of the LED.
  • the ON / OFF states of the switching elements in the a to e rows were controlled in accordance with the light emission timing of each column at the assigned switch timings of the A to E columns.
  • the switch states of the a and d rows are controlled so that the light extraction amount in the a row is 100% and the light extraction amount in the d row is 80%.
  • a pulse modulation method was adopted, and the light extraction amount was controlled depending on how long the switching element was turned on during the LED light emission period in accordance with the LED light emission period.
  • the polymer-dispersed liquid crystal used in this example can be switched to the 100% ON / OFF state at high speed, but the control of the intermediate state tends to be slow in response speed, so the pulse modulation method is preferable.
  • the present invention is not limited to this, and may be controlled by, for example, electric field strength.
  • the two-dimensional guided light extraction in the 5 ⁇ 5 matrix was controlled by controlling the light emitting state of the switching element and the LED.
  • the light emitting state of the switching element and the LED since one frame is driven at 60 Hz in this embodiment, it appears to the human eye that a 5 ⁇ 5 matrix emits light with an arbitrary brightness. Further, since the light emission state of only each column in the switching element is controlled, it is difficult for crosstalk to occur.
  • Example 2 the light control device manufactured in Example 1 was driven by another method. Specifically, the LED lighting time was further divided.
  • Example 1 in the e-th row, the light extraction amount was controlled to 50% in the B-th column and to 100% in the E-th column. At this time, crosstalk was reduced by extracting light during the switch selection period of each column.
  • FIG. 12 since 100% light is extracted in the e-th row of the E column, all the light introduced from the LEDs can be extracted to the outside, but only 50% light is emitted in the c-th row of the E column. Therefore, there is a possibility that a part of the light that is not extracted becomes crosstalk.
  • FIG. 12 is a diagram showing the light extraction rate in each light extraction region.
  • the light emission period of the LED is further divided and controlled as shown below.
  • FIG. 12 is a diagram showing the light extraction rate in each light extraction region.
  • the light extraction rate of the switching element is set to 100%, the tail is not drawn in the direction in which light is guided, and crosstalk can be prevented.
  • FIG. 13 is a diagram illustrating how light is extracted in each light extraction region.
  • the target light extraction amount in the c-th row is 50%
  • the light intensity of the LED is set to 100%
  • the light extraction rate of the switching element in the c-th row is set to 100%.
  • the amount of light that is substantially extracted is 50%.
  • the emission intensity of the LED is indicated by “X” in FIG.
  • the light intensity of the LED is set to 200%, which is twice that of the light emission in the c-th row, and the light extraction rate of the switching element. was 100%. Since the time when the light having the intensity of 200% is emitted is also half of the subframe period, the amount of the extracted light is substantially 100%.
  • Example 3 In the third embodiment, the driving method in the second embodiment is changed. Specifically, in Example 2, the amount of light extracted was controlled by changing the intensity of light emitted from the LED, but in Example 3, the intensity of light emitted from the LED was the same, The period during which the switching element is turned on was changed.
  • FIG. 14 is a diagram illustrating how light is extracted in each light extraction region.
  • the emission intensity from the LED is indicated by “X”. Even in this case, since the transmittance of the switching element was always 100%, no crosstalk occurred.
  • an image display device using the light control device manufactured in this example as a backlight was manufactured. More specifically, the light control device of this example was disposed below the general-purpose 20-inch TFT liquid crystal display panel, and the light control device was driven in synchronization with the drive of the liquid crystal display panel. At this time, the light emission pattern of the light control device was adjusted according to the image displayed on the liquid crystal display panel. As a result, it was possible to display an image with high contrast.
  • the light control device of this example has a thickness of 5 mm or less, so that a thin image display device can be realized.
  • the present invention can be optimally used as a backlight of a display device such as a television, a personal computer, a mobile phone, or a portable information terminal.
  • a display device such as a television, a personal computer, a mobile phone, or a portable information terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Planar Illumination Modules (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 本発明は、平面上の任意の領域から光を照射させると共に、クロストークを抑えた調光装置を提供することを目的とする。 本発明の調光装置(1)は、導光板(2)と、導光板(2)における端部に配置されたLED(3)と、スイッチング部(4)と、1フレーム期間を複数のサブフレーム期間に分割するフレーム分割部(5)と、サブフレーム期間ごとにLED(3)から光を出射させる光源制御部(6)と、電圧印加部(7)とを備えている。 スイッチング部(4)は、LED(3)の配置方向と平行な方向に配置された走査電極(8)、走査電極と直角な方向に配置された複数の信号電極(10)、導光板(2)からの光の取出し率を変更可能な液晶素子(9)、を有する。 電圧印加部(7)は、サブフレーム期間ごとに、複数の走査電極(8)のうちいずれかを選択して電圧を印加すると共に、複数の信号電極(10)のうち少なくともいずれかに、液晶素子(9)における光の取出し率に応じた電圧を印加する。 本発明は、画像表示装置のバックライトとして最適に利用することができる。

Description

調光装置および画像表示装置
 本発明は、調光装置、および当該調光装置を備えた画像表示装置に関する。
 従来、テレビ、モニターまたは携帯電話等の表示装置では、画像を表示するために表示パネルの背面から光を照射するバックライトが用いられている。このバックライトは照射方式の違いにより、例えば直下型バックライトまたはサイドエッジ型バックライトに大別される。
 直下型バックライトは、複数の光源をマトリクス状に配置し、この光源をそれぞれ個別に制御することによって部分的に光を照射させる。図15は、従来の直下型バックライトの構成を示す図である。図15の(a)に示す直下型のバックライト30では、光源としてのLEDチップ31がマトリクス状に配置されている。この構成では、LEDチップ31のON・OFFをそれぞれ個別に制御することにより、任意の領域から光を照射させている。しかし、この構成では、表示パネルの背面にLEDチップ31が配置されているため、LEDチップ31の影が表示パネルに映りこんでしまう。そのため、バックライト30では、図15の(b)に示すようにLEDチップ31と拡散板32との距離(図15の(b)中に矢印で示す)を十分に確保しなければならず、その結果バックライト30自体の厚さが厚くなり、表示装置の薄型化を妨げる。
 サイドエッジ型バックライトは、導光板の側面に設けた光源から導光板の内部へ光を出射させることにより光を照射させる。図16は、従来のサイドエッジ型バックライトの構成を示す図である。図16に示すサイドエッジ型のバックライト40では、導光板41の側面に設けた光源42から出射された光を導光板41の内部で導光させて全反射させている。また、導光板41における光の出力面側にはこの全反射を意図的に破るような構造を形成しており、これにより外部へ光を出力している。この構成では、上記の直下型バックライトよりも薄型にすることが可能であるが、光の全反射を破る構造を実現することは容易ではなく、光の出力をコントロールすることが難しい。よって、この構成では任意の領域から部分的に光を出射させることは困難である。
 一方、これまでに、サイドエッジ型バックライトにおいて任意の領域から部分的に光を出射させるために、液晶をスイッチング素子として用いた技術が考えられており、例えば特許文献1に開示されている。図17は液晶素子を備えたサイドエッジ型バックライトを示す図である。図17に示すサイドエッジ型のバックライト50では、導光板51の下部に、2つの電極52,54に液晶層53が挟まれた液晶素子55が配置されており、図17の(a)は電圧OFF状態を示し、図17の(b)は電圧ON状態を示す。この図に示す液晶素子55は、電圧がOFF状態のときは白表示をしており、LED56から出射された光のうち、s波57は導光板51内を導光し、p波58は液晶素子55の下部において反射され、導光板51から外部へ出力される。一方、電圧がON状態のときは液晶の配向が変化しており、s波57もp波58も導光板51内を導光する。その結果、導光板51の外部へ光が取出されず、黒表示となる。このように液晶の異方性を利用した技術は特許文献2~5においても開示されている。
 また、特許文献6では、領域ごとに点灯を制御するスキャンバックライトについて開示されている。図18は、このスキャンバックライトの構成を示す図である。図18に示すように、特許文献6の照明装置では、表示パネルの背面に設置されたバックライト116が複数のブロック(114a~114e)からなる導光板114から構成されている。この導光板114の端部には白色もしくはR,G,BのLED111が配置されており、単独または複数個を一組として点灯させている。点灯位置は、表示パネルの画像書き込み位置と同期をとって走査される。その後、表示パネルの各画素行を書き換え、所定時間が経過した後に画素行に位置するLED111を点灯することにより画像が表示される。このようなスキャンバックライトに関する技術は、特許文献7,8にも開示されている。
 さらに、特許文献9には、複数のライン状のバックライトであって、その発光強度を各ラインにおいて変更することによりライン変調を行なう技術が開示されている。
国際公開特許公報「WO2006/104159号(2006年10月5日公開)」 国際公開特許公報「WO2006/104160号(2006年10月5日公開)」 日本国公開特許公報「特開昭59-58421号(1984年4月4日公開)」 日本国公開特許公報「特開2000-171813号(2000年6月23日公開)」 日本国公開特許公報「特開昭63-116121号(1988年5月20日公開)」 日本国公開特許公報「特開2001-210122号(2001年8月3日公開)」 日本国公開特許公報「特開2008-53614号(2008年9月4日公開)」 日本国公開特許公報「特開2009-69751号(2009年4月2日公開)」 日本国公開特許公報「特開2004-206044号(2004年7月22日公開)」
 しかしながら、サイドエッジ型バックライトにおけるスイッチング素子として液晶を用いた場合、発光させたい領域以外からも光が取出されることがある。つまり、任意の領域の液晶素子を駆動させるために液晶素子に電流をかけたとき、目的とする液晶素子の周囲にも電流が漏れて駆動させてしまうようなクロストークが生じることがある。
 例えば、図19の(a)に示す2つの領域A,Bのみを発光させたいとき、目的とする光の取出し量は、例えば図19の(b)に示すように領域A,Bでは1,000cd/mであり、これら領域の間に位置する領域C,Dでは0cd/mである。図19は、液晶素子を備えたサイドエッジ型バックライトにおける目的の輝度分布を示す図である。
 ここで、光源61から導光板60に導入される光は図19の(a)中、矢印で示すように左から右方向へと伝播している。このときクロストークが生じると、導光板60の内部を導光する光は図20の(a)に示すように領域Aよりも光の進行方向後ろの領域、すなわち領域Cにも光が漏れてしまうことがある。図20は、液晶素子を備えたサイドエッジ型バックライトにおける実際の輝度分布を示す図である。このように領域Cにも光が漏れてしまうと、光が尾を引いて画像がぼけた状態で表示され、コントラストが低い。
 また、光源61から出射された光は、領域Cにおいて光が漏れてしまった分、領域Bにまで十分に到達せず、領域Bにおける輝度が低下してしまう。図20の(a)に示す実際の光の取出し量を表すグラフを図20の(b)に示す。図20の(b)において矢印62はクロストークが生じている状態の領域Cにおける光の取出し量を示し、矢印63は領域Bにおける光の取出し量を示す。このように、クロストークが生じることによって、領域Bにおけるピーク輝度が低下する。
 しかし、特許文献1~5では、液晶を具体的にどのように駆動させるか記載されておらず、クロストークの問題について言及されていない。したがって、クロストークを十分に抑えることはできない。
 また、特許文献6~8のスキャンバックライト、および特許文献9のバックライトの構成では、2次元のエリア制御、すなわち平面上の任意の領域を制御することはできず、部分的に光を取出すことはできない。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、平面上の任意の領域から光を照射させると共に、クロストークを抑えた調光装置を提供することにある。
 本発明に係る調光装置は、上記の課題を解決するために、
 端部から内部に導入された光を導光させる導光板と、
 上記導光板における上記端部に配置されており、当該導光板の内部に向けて光を出射する光源と、
 上記光源の配置方向と平行な方向に互いに並列に配置された複数の短冊状の走査電極、上記複数の走査電極と直角な方向に互いに並列に配置された複数の短冊状の信号電極、および任意の上記走査電極と任意の上記信号電極とが交差する領域ごとに形成される、上記導光板からの光の取出し率を変更可能な素子とを有し、上記導光板における光の出力面側に配置されている光取出手段と、
 1フレーム期間を複数のサブフレーム期間に分割する分割手段と、
 上記サブフレーム期間ごとに、上記光源を当該サブフレーム期間以下の時間で点灯するように制御することによって、上記光源から上記光を出射させる光源制御手段と、
 上記サブフレーム期間ごとに、上記複数の走査電極のうちいずれかを選択して電圧を印加すると共に、上記複数の信号電極のうち少なくともいずれかに、当該選択した走査電極と当該信号電極とに対応する上記素子における上記光の取出し率に応じた電圧を印加する電圧印加手段とを備えていることを特徴としている。
 また、本発明に係る画像表示装置は、
 本発明の調光装置と、
 当該調光装置における光の出力面側に配置されている表示パネルとを備えていることを特徴としている。
 上記の構成によれば、本発明の調光装置では、端部に光源が配置された導光板、および複数の走査電極と複数の信号電極とが互いに直角な方向に配置され、これら走査電極と信号電極とが交差する領域ごとに、光の取出しを変更可能な素子が形成された光取出手段を備えているため、平面上の任意の領域から光を照射することができる。
 具体的には、光取出手段は導光板における光の出力面側に配置されており、複数の走査電極が光源の配置方向と平行な方向に並列に配置され、当該複数の走査電極と直角な方向に、複数の信号電極が並列に配置されている。この複数の走査電極のうちいずれかに電圧を印加すると共に、複数の信号電極のうちいずれかに電圧を印加することにより、これらの電極が交差する領域に形成された素子を駆動させることができる。これにより、当該素子から光を取出すことができる。
 また、本発明の調光装置では、1フレーム期間を複数のサブフレーム期間に時分割し、サブフレーム期間ごとに、走査電極および信号電極に対する電圧の印加、ならびに光源からの光の出射を制御する。具体的には、光源制御手段は任意のサブフレーム期間内における光源からの光の出射を制御しており、電圧印加手段は、任意のサブフレーム期間にいずれかの走査電極を選択して電圧を印加し、当該任意のサブフレーム期間内においてさらに複数の信号電極のうち少なくとも1つを選択して電圧を印加する。
 あるサブフレーム期間においては、複数の走査電極のうちいずれか一つが選択されるので、その他の走査電極に対応する素子における光の取り出し率は変化しない。つまり、光を全く取出さない状態が維持される。一方、選択された走査電極に対応する各素子には、素子ごとに対応するいずれかの信号電極を通じて電圧が印加され、その結果、素子の光の取り出し率が変化する。つまり、1つの走査電極に沿って一列に配列された複数の素子のみが、あるサブフレーム期間において制御されることになる。
 このとき、サブフレーム期間ごとに、当該サブフレーム期間のみに光源が点灯することによって、当該サブフレーム期間以下の持続時間を有するフラッシュ光が導光板に導入される。このフラッシュ光は、制御対象である1つの走査電極に沿って配置されている複数の(一列の)素子のみを通じて、外部に出射する。したがって、あるサブフレーム期間に照射されたフラッシュ光が、同じサブフレーム期間において、制御対象の走査電極に対応する素子に比べて光源からより離れた位置にある他の素子を通じて出射されることはない。これにより、フラッシュ光の進行方向に対して尾を引くような形で光が漏れてしまうことを抑えられるので、クロストークを防止することができる。
 したがって、光漏れによる尾引きの発生を抑え、クロストークの発生を抑えることができる。
 また、本発明の画像表示装置は、本発明の調光装置と、当該調光装置における光の出力面側に配置されている表示パネルとを備えている。すなわち、本発明の調光装置をバックライトとして備える画像表示装置である。よって、クロストークを抑えると共に、LED直下型のバックライトよりも薄型であり、且つ平面上の任意の領域から光を取出すことが可能なバックライトを備えた、薄型の画像表示装置を実現することができる。
 本発明は、端部から内部に導入された光を導光させる導光板と、上記導光板における上記端部に配置されており、当該導光板の内部に向けて光を出射する光源と、上記光源の配置方向と平行な方向に互いに並列に配置された複数の短冊状の走査電極、上記複数の走査電極と直角な方向に互いに並列に配置された複数の短冊状の信号電極、および任意の上記走査電極と任意の上記信号電極とが交差する領域ごとに形成される、上記導光板からの光の取出し率を変更可能な素子とを有し、上記導光板における光の出力面側に配置されている光取出手段と、1フレーム期間を複数のサブフレーム期間に分割する分割手段と、上記サブフレーム期間ごとに、上記光源を当該サブフレーム期間以下の時間で点灯するように制御することによって、上記光源から上記光を出射させる光源制御手段と、上記サブフレーム期間ごとに、上記複数の走査電極のうちいずれかを選択して電圧を印加すると共に、上記複数の信号電極のうち少なくともいずれかに、当該選択した走査電極と当該信号電極とに対応する上記素子における上記光の取出し率に応じた電圧を印加する電圧印加手段とを備えているので、平面上の任意の領域から光を照射させると共に、クロストークを抑えた調光装置を提供することができる。
第1の実施形態に係る調光装置の構成を示すブロック図である。 第1の実施形態に係る調光装置の構成を示す上面図である。 第1の実施形態に係る調光装置の構成を示す断面図である。 第1の実施形態に係る調光装置におけるさらなる構成を示す断面図である。 信号電極に印加する電圧のパターンを示す図である。 第1の実施形態に係る調光装置を備えた画像表示装置の構成を示す断面図である。 図6に示す画像表示装置の表示パネルにおける画像の表示例を示す図である。 第2の実施形態に係る調光装置の構成を示す上面図である。 第2の実施形態に係る調光装置の構成を示す断面図である。 図2に示す調光装置において予め1フレーム期間ごとに設定された光の取出し領域および光の取出し量を説明する図である。 実施例1における駆動パターンを示す図である。 各光の取出し領域における光取出し率を示す図である。 各光の取出し領域における光取出し方を示す図である。 各光の取出し領域における光取出し方を示す図である。 従来の直下型バックライトの構成を示す図である。 従来のサイドエッジ型バックライトの構成を示す図である。 液晶素子を備えたサイドエッジ型バックライトを示す図である。 従来のスキャンバックライトの構成を示す図である。 液晶素子を備えたサイドエッジ型バックライトにおける目的の輝度分布を示す図である。 液晶素子を備えたサイドエッジ型バックライトにおける実際の輝度分布を示す図である。
 以下、本発明の実施の形態について、図1~10を参照して詳細に説明する。なお、以下の実施形態では、光の取出し率を変更可能な素子として液晶を用いた例を示すが、本発明はこれに限定されるものではなく種々の公知の素子を用いることができる。
 〔第1の実施形態〕
 (調光装置1の構成)
 図1は、本実施形態に係る調光装置1の構成を示すブロック図である。
 図1に示すように、調光装置1は、導光板2、LED(光源)3、スイッチング部(光取出手段)4、フレーム分割部(分割手段)5、光源制御部(光源制御手段)6、および電圧印加部(電圧印加手段)7を備えている。
 調光装置1は、導光板2の内部を伝播している光の取出しを領域ごとに制御可能なサイドエッジ方式の調光装置である。
 具体的には、導光板2の端部にLED3が配置されており、LED3から出射される光は当該端部から導光板2の内部に導入されるようになっている。また、導光板2の光の出力面側にはスイッチング部4が配置されている。本明細書において導光板2の光の出力面とは、あくまでスイッチング部4によって光が取出される側の面であることを指し、導光板2が自ら光を出力する面という意味ではない。
 スイッチング部4には、図2に示すように複数の短冊状の走査電極8がLED3の配置方向と平行な方向(図2における列方向)に並列に配置され、当該複数の走査電極8と直角な方向(図2における行方向)に、複数の信号電極10が配置されている。図2は、走査電極8および信号電極10の配置を説明する図である。調光装置1では、この複数の走査電極8のうちいずれかに電圧を印加すると共に、複数の信号電極10のうちいずれかに電圧を印加することにより、走査電極8と信号電極10とが交差する領域から光を取出すことができる。
 つまり、走査電極8と信号電極10とが交差する領域には、図3に示すように、光の取出し率を変更可能な液晶素子(素子)9が形成されている。図3は、スイッチング部4の構成を示す断面図である。そのため、いずれかの走査電極8と信号電極10とに選択的に電圧を印加することにより、これら電極の交点に形成されている液晶素子9における光の取出し率を制御することが可能となり、平面上の任意の領域から光を取出すことができる。
 また、調光装置1では、1フレーム期間を複数のサブフレーム期間に時分割し、サブフレーム期間ごとに、走査電極8および信号電極10に対する電圧の印加、ならびにLED3からの光の出射を制御する。具体的には、光源制御部6は任意のサブフレーム期間内におけるLED3からの光の出射を制御しており、電圧印加部7は、任意のサブフレーム期間にいずれかの走査電極8を選択して電圧を印加し、当該任意のサブフレーム期間内においてさらに複数の信号電極10のうち少なくとも1つを選択して電圧を印加する。
 あるサブフレーム期間においては、複数の走査電極8のうちいずれか一つが選択されるので、その他の走査電極8に対応する液晶素子9における光の取り出し率は変化しない。つまり、光を全く取出さない状態が維持される。一方、選択された走査電極8に対応する各液晶素子9には、液晶素子9ごとに対応するいずれかの信号電極10を通じて電圧が印加され、その結果、液晶素子9の光の取り出し率が変化する。つまり、1つの走査電極8に沿って一列に配列された複数の液晶素子9のみが、あるサブフレーム期間において制御されることになる。
 このとき、サブフレーム期間ごとに、当該サブフレーム期間内にのみ、言い換えればサブフレーム期間以下の時間でLED3を点灯することによって、当該サブフレーム期間以下の持続時間を有するフラッシュ光が導光板2に導入される。すなわち、調光装置1において、LED3はサブフレーム期間以下の時間で連続的に点灯される。このフラッシュ光は、制御対象である1つの走査電極8に沿って配置されている複数の(一列の)液晶素子9のみを通じて、外部に出射する。したがって、あるサブフレーム期間に照射されたフラッシュ光が、同じサブフレーム期間において、制御対象の走査電極8に対応する液晶素子9に比べてLED3からより離れた位置にある他の液晶素子9を通じて出射されることはない。これにより、フラッシュ光の進行方向に対して尾を引くような形で光が漏れてしまうことを抑えられるので、クロストークを防止することができる。
 したがって、光漏れによる尾引きの発生を抑え、クロストークの発生を抑えることができる。なお、調光装置1における光の取出し制御の詳細については後述する。
 導光板2は、LED3から導入された光を内部において導光させる。導光板2の形状は、その表面に複数の走査電極8および信号電極10が行列方向に並列に配置することが可能であればよく、調光装置1の形状に合わせて適宜設定すればよい。導光板2の材料としては、例えばアクリル板、ポリウレタン樹脂、ポリカーボネート樹脂、PMMA(Polymethyl methacrylate)、PVA(Polyvinyl alcohol)等が挙げられる。また、この他にもガラスを用いることもできる。
 LED3は、導光板2の内部に向けて光を出射する光源である。LED3は、導光板2におけるいずれかの端部に配置されていればよいし、互いに対向する2つの端部にそれぞれ配置されていてもよい。また、LED3の数は特に限定されず、例えば導光板2の端部に複数のLED3を並列に配置させればよいし、当該端部の長さに相当する1つのLED3を配置させてもよい。LED3としては、例えば白色LEDまたはR,G,Bの3色LEDを用いればよいが、調光装置1の光源としてはこれに限定されるものではなく、例えば無機EL素子または有機EL素子等を光源として用いてもよい。これらの発光素子は面発光素子であるため、各短冊形状の断面の大きさに合わせた光源を設置することができるという利点がある。このように、調光装置1の光源としては面発光および点発光のどちらであってもよい。
 また、LED3は、LED3の配置方向と直角な方向に沿って進む指向性を有する光を出射することが好ましい。つまり、調光装置1において、走査電極8はLED3の配置方向と平行な方向に配置されており、信号電極10は走査電極8と直角な方向に配置されている。ここで、LED3からの光の出射はサブフレーム期間ごとに制御されているため、LED3から出射された光がLED3の配置方向と直角な方向、すなわち信号電極10における長辺方向に沿って進んでいけば、目標とする領域に光を集中させることができる。
 スイッチング部4は、光の取出し率を変更することにより、液晶素子9を通じて外部へ取出される光の量を制御している。具体的には、複数の走査電極8のうちいずれかに電圧を印加すると共に、複数の信号電極10のうちいずれかに電圧を印加することにより、これらが交差する領域に形成されている液晶素子9を駆動させる。
 液晶素子9としては、例えば高分子分散型液晶を用いてもよい。高分子分散型液晶は、高分子材料中に液晶材料を均一に分散させて作製した材料で構成されており、高分子分散型液晶に電圧をかけるか否かによって、光散乱および透明の2つの状態になる。光散乱状態では、分散した液晶の配向ベクトルが異なった方向を向くために、界面において光が散乱することによって不透明な白色状態を作り出す。すなわち、光が取出される。一方、透明状態では、液晶の配向ベクトルが一定の方向に向き、光に対する高分子材料と液晶との屈折率がほぼ等しくなり、光が非散乱状態となって光を透過させる。この場合、光は取出されない。
 なお、電圧印加時または無印加時いずれの場合に散乱状態または透明状態にするかは、任意に設計することが可能である。このような性質を有する高分子分散型液晶を用いた場合、偏光板または配向板を設ける必要がないため、少ない電力でより光利用効率のよい光シャッターを実現することができる。
 例えば、液晶材料として高分子分散型液晶を用いた場合、高分子分散液晶としては、例えば、PDLC(Polymer Dispersed Liquid Crystal)、またはPNLC(Polymer Network-Liquid Crystal)等が挙げられる。PDLCとは、液晶分子および重合性樹脂の均一溶液から硬化した高分子中に、ドロップレット状の液晶を分散させたものであり、PNLCは、液晶分子および重合性樹脂の均一溶液から硬化した高分子が液晶層中に3次元網目状に形成された構成であり、その中に液晶分子が不規則に並んでいる。
 一方、電圧印加時に透明状態となるリバースタイプの高分子分散型液晶において、リバースモード(Anisotropic gel)の高分子分散型液晶は、数%の重合性ポリマーをネマティック液晶に混入し、このネマティック液晶をラビング処理した液晶セル内に注入し、配向した後にUV照射することにより得られる。また、リバースモード(UVキュアラブル液晶/ネマティック液晶複合素子)の高分子分散型液晶は、PDLCおよびPNLCを混合し、配向した後にUV照射させることにより得られる。
 液晶材料としては、高分子材料の成分よりも複屈折率Δnが大きい材料を用いればよい。高分子材料としては、例えば、アクリレート系の材料を用いることができる。
 走査電極8および信号電極10の材料として、例えば、無機材料としては、ITO(Indium Tin Oxide)、IZO(酸化インジウムおよび酸化亜鉛からなる透明電極材料)、FTO(フッ素ドープ酸化錫)を用いることができ、有機材料としては、例えば、PEDOT-PSS(Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate))等を用いることができる。
 また、調光装置1において光シャッターとして用いる素子としてはこれに限定されるものではなく、例えば、従来の液晶方式のように、電圧を印加するか否かによって配向を変化させ、光を透過させる状態と遮断する状態とにすることにより、光を透過させて取出してもよいし、MEMS(Micro Electro Mechanical System)方式により作製した素子を用いて光を取出してもよい。
 フレーム分割部5は、1フレーム期間を複数のサブフレーム期間に分割する。すなわち、1フレーム期間における時間を分割して、各サブフレーム期間に割り当てる。例えば、1フレーム期間が60ミリ秒であるときに5つのサブフレーム期間に分割した場合、1つのサブフレーム期間は12ミリ秒である。
 フレーム分割部5による1フレーム期間の分割数は特に限定されるものではないが、複数の走査電極8と同じ数のサブフレーム期間に分割することが好ましい。上述したように、走査電極8はサブフレーム期間ごとに制御されるため、サブフレーム期間の数を走査電極8の数に合わせることにより、光の取出しを容易に制御することができる。
 光源制御部6は、サブフレーム期間ごとに、LED3を当該サブフレーム期間内にのみ点灯するように制御することによって、LED3から光を出射させる。すなわち、本実施形態において導光板2における行方向に複数の光取出し領域がある場合、当該光取出し領域に対応するサブフレーム期間内にのみ点灯するようにLED3から光を出射させる。
 また、光源制御部6による制御は、LED3から出射される光の強度、およびLED3からの光の出射時間の制御も含み得る。
 電圧印加部7は、走査電極8および信号電極10に対する電圧の印加を制御する。つまり、電圧印加部7は、サブフレーム期間ごとに、複数の走査電極8のうちいずれかを選択して電圧を印加すると共に、複数の信号電極10のうち少なくともいずれかに電圧を印加すればよく、例えば走査電極8を端から順次制御して電圧を印加し、これに合わせて信号電極10に電圧を印加するように制御してもよい。
 また、本実施形態に係る調光装置1では、図4に示すように、スイッチング部4の上に対向基板11を備えると共に、導光板2における光の出力面とは反対側の面に散乱板15を備え、対向基板11の上に反射板16をさらに備えていてもよい。図4は、調光装置1におけるさらなる構成を示す断面図である。
 導光板2における光の出力面とは反対側の面に散乱板15を備えることにより、スイッチング部4において下方向、すなわち光の出力面側とは反対の方向に散乱した光も上方向に取出すことができる。また、光の出力面側に拡散板16を備えることにより、スイッチング部4から取出した光を拡散板16によって拡散させてより広範囲に光を照射させることができる。なお、対向基板11の材料は、例えば導光板2と同じ材料を用いればよい。
 (調光装置1の動作)
 次に、本実施形態に係る調光装置1の動作について説明する。ここでは、調光装置1は図2に示すような5×5のマトリクス状に走査電極8および信号電極10が配置されており、予め1フレーム期間ごとに光の取出し領域が設定されていることが意図される。
 まず、フレーム分割部5が1フレーム期間を複数のサブフレーム期間に分割する。このとき、1フレーム期間を複数の走査電極8と同じ数のサブフレーム期間に分割することが好ましい。つまり、走査電極8はサブフレーム期間ごとに制御されるため、サブフレーム期間の数を走査電極8の数に合わせることにより、光の取出しを容易に制御することができる。
 次に、光源制御部6が、分割されたサブフレーム期間ごとにLED3を点灯するタイミングを制御することにより、LED3から光を出射させる。例えば、図2において、信号電極10のb行目において、走査電極8のB列目およびD列目のみから光を取出したいとき、走査電極8のB列目およびD列目に対応するサブフレーム期間内にのみLED3を点灯する。すなわち、信号電極10のb行目において、走査電極8のA列目、C列目およびE列目に対応するサブフレーム期間ではLED3を点灯させない。そのため、当該サブフレーム期間であって、当該領域に隣り合う光の進行方向における後の領域には光が残存していない。よって、光を取出す対象の周辺領域にまで電圧がかかり、当該周辺領域に形成されている液晶素子9が光の取出し可能な状態になったとしても、この液晶素子9に対応する領域では光が導光されていないため、光は取出されない。よって、クロストークを抑えることができる。
 ここで、電圧印加部7は、サブフレーム期間ごとに複数の走査電極8のうちいずれかを選択して電圧を印加すると共に、複数の信号電極10のうちいずれかに、選択した走査電極8と信号電極10とに対応する液晶素子9における光の取出し率に応じた電圧を印加する。このとき、電圧を印加する走査電極8の選択は、例えば並列に配置された走査電極8の一方向に順に1つずつ電圧を印加していくように順次駆動させてもよい。また、信号電極10への電圧の印加は、選択した走査電極8に列上において、光の取出し領域に対応する信号電極10に対して行なえばよい。
 また、光の取出し制御において、例えば、光源制御部6がサブフレーム期間ごとに一定強度の光を出射させるようにLED3を制御したとき、液晶素子9を通じて取出される光の量は、信号電極10に印加する電圧の値、または信号電極10に対して電圧を印加する時間によって制御してもよい。
 すなわち、LED3から出射される光が一定強度のとき、電圧印加部7は信号電極10に、任意のサブフレーム期間において選択した走査電極8と信号電極10とに対応する液晶素子9を通じて取出される光の量に応じた振幅の電圧を印加するように制御することができる。このとき信号電極10に印加する電圧のパターンを図5の(a)に示す。図5において点線で示す幅は1つのサブフレーム期間を示し、実線で示す高さは電圧の振幅を示す。
 また、LED3から出射される光が一定強度のとき、電圧印加部7は信号電極10に一定振幅の電圧を、任意のサブフレーム期間において選択した走査電極8と信号電極10とに対応する液晶素子9を通じて取出される光の量に応じた時間だけ印加するように制御することができる。このとき信号電極10に印加する電圧のパターンを図5の(b)に示す。このように、LED3から出射される光の強度が一定のとき、信号電極10に印加する電圧の振幅、または印加する時間を制御することにより、平面上の任意の領域から任意の輝度の光を照射することができる。
 一方、スイッチング部4からの光の取出し率を一定にしたとき、LED3から出射させる光の強度または光の出射時間を制御してもよい。
 例えば、任意のサブフレーム期間において、電圧印加部7が複数の信号電極10のうちいずれかのみに、選択した走査電極8と信号電極10とに対応する液晶素子9における光の取出し率を100%にする電圧を印加したとき、光源制御部6は当該液晶素子9を通じて取出される光の量に応じた強度の光をLED3から出射させるように制御することができる。また、当該取出される光の量に応じた時間だけLED3から光を出射させるように制御することもできる。
 これにより、平面上の任意の領域から任意の輝度の光を照射することができると共に、導入されたフラッシュ光のほぼ全てが、選択対象の液晶素子9を通じて取出されるので、導光板2内部における、当該液晶素子9よりもLED3から離れた位置には、フラッシュ光が全く届かなくなる。したがって、クロストークの発生をより一層抑えることができる。
 (画像表示装置)
 図6は、本発明の一実施形態に係る画像表示装置の構成を示す断面図である。図6に示すように、第1の実施形態に係る調光装置1は、調光装置1における光の出力面側に配置されている表示パネル17と組み合わせて画像表示装置20としてもよい。すなわち、調光装置1は画像表示装置20のバックライトとして機能し得る。以下、調光装置1をバックライト1ともいう。
 この構成によれば、例えば図7に示すように、表示パネル17に夕日の風景などを表示させたとき、画面の上部12および夕日13は明るい状態であるのに対し、画面の下部13は暗い状態であるため、例えばLED3から出射された光が画面上の行方向に進む場合、画面の下部13ではバックライト1を点灯させる必要がない。図7は、表示パネル17における画像の表示例を示す図である。
 本実施形態のバックライト1によれば、LED3の点灯・非点灯を領域ごとに制御することができるので、画面下部13の暗い領域にはLED3から光を出射させないことが可能である。よって、光漏れが生じないため、黒の沈み込みを深くすることができ、表示画像のコントラストを向上させることができる。
 表示パネル17としては特に限定されず、例えば液晶表示パネルを用いればよい。このように、調光装置1を液晶表示パネルと組み合わせて用いることにより、薄型のアクティブバックライトにすることができる。
 〔第2の実施形態〕
 次に、本発明に係る調光装置の第2の実施形態について以下に説明する。第1の実施形態に係る調光装置1では、LED3が導光板2の一端に配置されているのに対し、本実施形態では、LED3が導光板2の両端に配置されている点が異なるのみである。よって、第1の実施形態と同じ構成については同じ部材番号を用いて説明する。
 図8は、第2の実施形態に係る調光装置1の構成を示す上面図であり、図9は、第2の実施形態に係る調光装置1の構成を示す断面図である。図8,9に示すように、本実施形態に係る調光装置1では、LED3が導光板2において互いに対向する2つの端部にそれぞれ配置されている。すなわち、本実施形態の調光装置1では、LED3からの光を対向する2つの方向から導光板2に導入する。
 例えば、図2に示す信号電極10のb行目において、走査電極8のD列目またはE列目から光を取出したいとき、LED3からの光の出射を走査電極8のA列目の方向から行なうと、走査電極8のA列目からC列目の部分では導光板2の内部を導光する光が漏れることがある。この場合、目的とするD列目またはE列目における輝度の低下、またはクロストークが起こることがある。この現象は、光を取出すための素子の大きさが大きくなるにつれて頻度が高くなる。
 そこで、図8に示すように、LED3を対向する端部側にも配置することにより、走査電極8のE列目(図8中、右側)の方向からも光を出射させることが可能であり、導光板2の両端部近傍においてLED3からの出射光を制御することができる。したがって、より明るい光を導光板に導入できる。
 また、光源制御部6は、2つのLED3から同時に光を出射させるように、2つのLED3を制御することが好ましい。これにより、導光板2において2方向から同時に光を導入することができるため、クロストークをより一層抑えることができる。
 また、光源制御部6は、サブフレーム期間において、導光板2における2つの端部に配置されたLED3のうち、電圧が印加される走査電極8により近い方に配置されているLED3からのみ光を出射させることが好ましい。例えば、1つのLED3のみ常時点灯させていると、LED3の温度が高くなることがある。この場合、LED3の熱により液晶素子9の特性に影響を与え、光の取出し率の制御が困難になることがある。そこで、導光板2の対向する端部に設けた各LED3から光を出射するタイミングをサブフレーム期間ごとに切り替えることにより、LED3の温度の上昇を対称化して装置の信頼性を保つことができる。
 さらに、光源制御部6は、1フレーム期間ごと、またはサブフレーム期間ごとに、上記2つのLED3のいずれかから交互に光を出射させるように、2つのLED3を制御することが好ましい。これにより、LED3の温度上昇を抑え、装置の信頼性を保つことができる。
 〔第3の実施形態〕
 次に、本発明に係る調光装置の第3の実施形態について以下に説明する。本実施形態では第1の実施形態において説明した光源制御部6および電圧印加部7による制御方法が異なるのみである。よって、第1の実施形態と同じ構成については同じ部材番号を用いて説明する。図10は、調光装置1において予め1フレーム期間ごとに設定された光の取出し領域および光の取出し量を説明する図である。
 例えば、図10に示すように、信号電極10のe行目において、走査電極8のB列目では液晶素子9を通じて取出される光の量は50%であり、E列目では100%である。上述したように、サブフレーム期間ごとに、走査電極8および信号電極10に電圧を印加して光の取出しを行なうと共に、LED3の点灯を制御することによってクロストークを低減させることができる。しかし、光の取出し量に応じて信号電極10に印加する電圧を変更させる場合、B列目のように光の取出し量が50%であれば、LED3から出射された光がこの領域から全て取出されないため、クロストークが生じる虞がある。
 この場合、B列目においてLED3から出射する光の強度を光の取出し量に応じて変更し、液晶素子9における光の取出し率が100%になるように電圧を印加すればよいが、E列目では光の取出し量がc行目では50%であり、e行目では100%である。このように、1つの走査電極8上において光の取出し量が異なる信号電極10がある場合、以下のように制御してもよい。
 まず、フレーム分割部5が光の取出し量が異なる領域があるサブフレーム期間をさらに分割して複数のサブ-サブフレーム期間にする。このサブ-サブフレーム期間ごとに、電圧印加部7は信号電極10に対して液晶素子9における光の取出し率を100%にする電圧を印加する。一方、光源制御部6は、サブ-サブフレーム期間ごとに、予め設定された取出し量に応じた強度の光をLED3から出射させる。
 例えば、走査電極8のE列目に対応するサブフレームをさらに2つのサブ-サブフレーム期間に分割し、これら2つのサブ-サブフレーム期間において信号電極10には光の取出し率を100%にする電圧を印加する。このとき、2つのサブ-サブフレーム期間のうちいずれかにはLED3から出射させる光の強度を100%にして、もう一方のサブ-サブフレーム期間では200%にする。つまり、100%の強度の光が出射される時間はサブフレーム期間の半分になるため、実質的に取出される光の量は50%になる。また、200%の強度の光が出射される時間についてもサブフレーム期間の半分になるため、実質的に取出される光の量は100%になる。このように、1つのサブフレーム期間を複数分割することにより、走査電極8上において光の取出し量が異なる領域が存在しても、常に液晶素子9における光の取出し率を100%にすることができる。よって、クロストークをさらに抑えることができる。
 また、本発明に係る調光装置では、
 上記光源制御手段は、上記サブフレーム期間ごとに、同一強度の上記光を上記光源から出射させるように上記光源を制御し、
 上記電圧印加手段は、上記サブフレーム期間ごとに、上記複数の信号電極のそれぞれに、選択した上記走査電極と当該信号電極とに対応する上記素子を通じて取出される光の量に応じた振幅の電圧を一定時間連続して印加することが好ましい。
 上記の構成によれば、素子を通じて取出される光の量は、信号電極に印加する電圧の値によって制御する。すなわち、光源はサブフレーム期間ごとに一定強度の光を出射させており、当該サブフレーム期間において選択された信号電極に印加する電圧を、素子を通じて取出される光の量に応じた振幅となるように制御する。これにより、平面上の任意の領域から任意の輝度の光を照射することができる。
 また、本発明に係る調光装置では、
 上記光源制御手段は、上記サブフレーム期間ごとに、同一強度の上記光を上記光源から出射させるように上記光源を制御し、
 上記電圧印加手段は、上記サブフレーム期間ごとに、上記複数の信号電極のそれぞれに、選択した上記走査電極と当該信号電極とに対応する上記素子を通じて取出される光の量に応じた時間だけ連続する一定振幅の電圧を印加することが好ましい。
 上記の構成によれば、素子を通じて取出される光の量は、信号電極に対して電圧を印加する時間によって制御する。すなわち、光源はサブフレーム期間ごとに一定強度の光を出射させており、当該サブフレーム期間において選択された信号電極には一定振幅の電圧を印加する。このとき、当該信号電極に対して、素子を通じて取出される光の量に応じた時間だけ電圧を印加することにより、平面上の任意の領域から任意の輝度の光を照射することができる。
 また、本発明に係る調光装置では、
 上記電圧印加手段は、任意の上記サブフレーム期間において、上記複数の信号電極のうちいずれかのみに、選択した上記走査電極と当該信号電極とに対応する上記素子における上記光の取出し率を100%にする電圧を印加し、
 上記光源制御手段は、上記任意のサブフレーム期間において上記電圧が印加される上記走査電極と上記信号電極とに対応する上記素子を通じて取出される光の量に応じた強度の光を、上記任意のサブフレーム期間にのみ上記光源から出射させるように、上記光源を制御することが好ましい。
 上記の構成によれば、素子を通じて取出される光の量は、光源から出射される光の強度によって制御する。すなわち、任意のサブフレーム期間において選択された信号電極では、素子における光の取出し率が100%になるような電圧を印加し、当該サブフレーム期間において光源から出射される光の強度は、素子を通じて取出される光の量に応じて制御する。これにより、導入されたフラッシュ光のほぼ全てが、選択対象の素子を通じて取出されるので、導光板内部における、当該素子よりも光源から離れた位置には、フラッシュ光が全く届かなくなる。したがって、クロストークの発生をより一層抑えることができる。
 また、本発明に係る調光装置では、
 上記分割手段は、任意の上記サブフレーム期間を複数のサブ-サブフレーム期間に分割し、
 上記電圧印加手段は、上記サブ-サブフレーム期間ごとに、上記複数の信号電極のうちいずれかのみに、選択した上記走査電極と当該信号電極とに対応する上記素子における上記光の取出し率を100%にする電圧を印加し、
 上記光源制御手段は、上記サブ-サブフレーム期間ごとに、当該サブ-サブフレーム期間において上記電圧が印加されている上記走査電極と上記信号電極とに対応する上記素子を通じて取出される光の量に応じた強度の光を、当該サブ-サブフレーム期間にのみ上記光源から出射させるように、上記光源を制御することが好ましい。
 上記の構成によれば、任意のサブフレーム期間において複数の走査電極のうちいずれかに電圧が印加されると共に、少なくとも2つ以上の信号電極に電圧が印加されるとき、当該任意のサブフレーム期間をさらに複数のサブ-サブフレーム期間に分割することにより、複数の信号電極のいずれかのみに電圧を印加することができる。
 例えば、いずれかの走査電極に電圧が印加されると同時に2つ以上の信号電極に電圧が印加される場合、これらの電極が交差する領域は2箇所以上となるため、複数の素子を通じて同時に光が取出されることになる。このとき、同じサブフレーム期間において複数の素子を通じて取出される光の量がそれぞれ異なる場合であっても、当該サブフレーム期間をさらにサブ-サブフレーム期間に分割することにより、素子ごとに光の取り出し率を100%に制御可能である。
 つまり、任意のサブフレーム期間において複数の素子を通じて光を取出す場合、当該サブフレーム期間を複数のサブ-サブフレーム期間に分割し、サブ-サブフレーム期間ごとにいずれかの信号電極のみに、当該信号電極と選択された走査電極とに対応する素子における光の取出し率を100%にする電圧を印加する。すなわち、本構成では、信号電極に印加する電圧は常に素子における光の取出し率が100%となるように制御する。
 一方、サブ-サブフレーム期間において、光源は、電圧が印加されている信号電極と走査電極とに対応する素子を通じて取出される光の量に応じた強度の光を出射する。すなわち、サブ-サブフレーム期間において素子を通じて取出される光の量は、光源から出射される光の強度によって制御する。
 このように、任意のサブフレーム期間に複数の素子から異なる量の光を取出す場合であっても、当該サブフレーム期間をさらに分割することにより、素子における光の取出し率を常に100%に保つことが可能である。よって、光源から出射された光は当該素子を通じて100%取出されるため、クロストークをさらに抑えることができる。
 また、本発明に係る調光装置では、
 上記分割手段は、上記1フレーム期間を、上記複数の走査電極と同じ数の上記サブフレーム期間に分割することが好ましい。
 上記の構成によれば、サブフレーム期間は走査電極の数に相当する。上述したように、走査電極はサブフレーム期間ごとに制御されるため、サブフレーム期間の数を走査電極の数に合わせることにより、1フレーム期間内において、全ての走査電極に対して、本発明による駆動手法を適用できる。したがって、光の出射面全体において、クロストークの発生を抑えることができる。
 また、本発明に係る調光装置では、
 上記光源は、上記光源の配置方向と直角な方向に沿って進む指向性を有する光を出射することが好ましい。
 上記の構成によれば、光源から出射された光は、光源の配置方向と直角な方向に沿って進む。つまり、走査電極は光源の配置方向と平行な方向に配置されており、信号電極は走査電極と直角な方向に配置されている。また、走査電極および信号電極はサブフレーム期間ごとに制御されると共に、光源からの光の出射もサブフレーム期間ごとに制御される。よって、光源から出射される光が光源の配置方向と直角な方向、すなわち信号電極における長辺方向に沿って進むことにより、目標とする領域に光を集中させることができる。
 また、本発明に係る調光装置では、
 上記光源は、上記導光板において互いに対向する2つの端部にそれぞれ配置されていることが好ましい。
 上記の構成によれば、導光板において互いに対向する2つの端部から光を導入することができる。したがって、より明るい光を導光板に導入できる。
 また、本発明に係る調光装置では、
 上記光源制御手段は、上記2つの光源から同時に上記光を出射させるように、上記2つの光源を制御することが好ましい。
 上記の構成によれば、導光板において2方向から同時に光を導入することができるため、光を影の発生を確実に抑えられる。したがって、クロストークをより抑えることができる。
 また、本発明に係る調光装置では、
 上記光源制御手段は、上記サブフレーム期間ごとに、上記2つの光源のうち、当該サブフレーム期間において上記電圧印加手段によって選択される上記走査電極により近い方に配置されている上記光源から上記光を出射させるように、上記2つの光源を制御することが好ましい。
 導光板における1つの端部から光を導入する場合、導入した位置から離れていくにつれて、光が目的とする領域に達するまでにわずかに漏れて(取出されて)しまうことがある。この場合、目的とする領域まで目的とする取出し量に相当する光が残っていないことがある。そこで、上記の構成のように、サブフレーム期間において、導光板における2つの端部に配置された光源のうち、電圧が印加される走査電極により近い方に配置されている光源からのみ光を出射させる。これにより、目的とする領域まで目的とする取り出し量に相当する光を到達させることができる。
 また、本発明に係る調光装置では、
 上記光源制御手段は、上記1フレーム期間ごとに上記2つの光源のいずれかから交互に上記光を出射させるように、上記2つの光源を制御することが好ましい。
 また、本発明に係る調光装置では、
 上記光源制御手段は、上記サブフレーム期間ごとに上記2つの光源のいずれかから交互に上記光を出射させるように、上記2つの光源を制御することが好ましい。
 上記の構成によれば、1フレーム期間ごと、またはサブフレーム期間ごとに、導光板における2つの端部に配置された光源のいずれかから交互に光を出射させる。例えば、1つの光源のみ常時点灯させていると、光源の温度が高くなることがある。この場合、光源の熱により素子の特性に影響を与え、光の取出し率の制御が困難になることがある。よって、導光板の対向する端部に設けた各光源から光を出射するタイミングを、フレーム期間またはサブフレーム期間ごとに交互に入れ替えることにより、光源の温度上昇を抑え、装置の信頼性を保つことができる。
 以下、本発明の実施例について説明するが、本発明はこれに限定されない。
 〔実施例1〕
 本実施例では、以下の方法により図10に示す構成の30cm×40cmの5×5マトリクス制御の調光装置を作製した。
 (導光板)
 導光板としては、幅450cm、高さ4mmのアクリル板を使用した。このアクリル板の上に、幅8cmのITO(indium tin oxide)を0.1mm間隔で並列に5本パターン形成し、電極とした。
 また、対向基板として、幅450cm、高さ4mmのアクリル板を使用し、幅6cmのITOを、導光板に形成した電極と垂直な方向になるようにパターニングし、電極を形成した。
 (スイッチング素子)
 スイッチング素子(素子)には、高分子分散タイプの液晶を使用した。
 高分子分散型液晶は、電界によって配向状態が変化する液晶材料と、当該液晶材料を取り囲むように混合された高分子材料とから構成した。この高分子分散型液晶は、液晶材料と高分子材料との界面における屈折率のマッチングによって透明状態と散乱状態とになる。屈折率のマッチングは、電界による液晶分子の配向状態によって制御した。本実施例では、電界無印加時には透明状態、電界印加時には散乱状態になるように設計し、高分子材料の屈折率を導光板の屈折率とほぼ同じになるようにした。すなわち、本実施例では、上述の実施形態において示したリバースタイプの高分子分散型液晶を用いて、電圧印加時の散乱状態の光を取出すように制御した。
 このような液晶を、上記のアクリル板、すなわち導光板と対向基板との間に膜厚10μmで配置した。これにより、高分子分散型液晶を用いたスイッチング素子を得た。
 (LEDの配置)
 本実施例では、光源として、高さ3.5mm、幅7mm、奥行き1.5mmの白色LEDチップを用いた。この白色LEDチップを導光板の一端に搭載し、1つの導光板に間隔5mmで均等に配置した。なお、低格電圧は18V、低格電流量は100mAとした。
 (調光装置の構成)
 上記の方法により得られた導光板にLEDから光を入射したところ、電圧印加時には高分子分散型液晶中に入射した光は散乱されて導波条件が崩されるため、外部へ光を取出すことができた。このとき、60Vの電圧印加によって光取出し量は飽和したが、飽和電圧までは電圧の強度によって光の取出し量を制御することができた。
 また、導光板の上側、すなわち光取出し面側には拡散板を配置し、導光板の下側、すなわち光取出し面とは反対側の面には散乱板を配置した。これにより、スイッチング素子によって下方向に散乱した光も再び上側に取出すことができた。また、導光板の上側に散乱板を置くことによって、光取出し面側の光取出し方向を広げることができた。これにより、本実施例の調光装置を作製した。
 (駆動方法)
 以上により得られた調光装置を次のように駆動させた。本実施例では、5×5のマトリクス状に配置された調光装置のうち、図10において丸を付けた領域を点灯させた。すなわち、A列ではa行目における光の取出し量を100%、d行目における光の取出し量を80%とし、B列ではe行目における光の取出し量を50%とし、C列ではb行目における光の取出し量を100%とし、D列ではa行目における光の取出し量を20%、c行目における光の取出し量を80%とし、E列ではc行目における光の取出し量を50%、e行目における光の取出し量を100%とした。このように、実施例1ではA列からE列まで全て点灯させる領域があるため、1フレーム内におけるLEDの発光を5分割してフラッシュ点灯させた。
 まず、A列からE列までスイッチング素子を1フレーム60Hzで駆動させるため、1列当たり3.7ミリ秒(60Hzの1/5)、すなわち5つのサブフレーム期間(スイッチング期間ともいう)に分割し、LEDをフラッシュ点灯させた。このとき、発光期間は2.5ミリ秒、消灯期間は1.2ミリ秒であった。この各フラッシュ点灯期間を、図11に示すようにA列からE列それぞれのスイッチング期間(SW期間)に割り当てた。図11は、実施例1における駆動パターンを示す図である。フラッシュ点灯期間は、スイッチング素子のスイッチング応答時間またはLEDの発光輝度により任意に調整した。
 次に、割り当てられたA~E列目それぞれのスイッチタイミングにおいて、各列の発光タイミングに合わせてa~e行目のスイッチング素子のON/OFF状態を制御した。
 (A列目のスイッチング条件)
 上述したように、A列目では、a行目における光の取出し量が100%、d行目における光の取出し量が80%となるように、a,d行目のスイッチ状態を制御した。具体的には、パルス変調方式を採用し、LEDの発光期間に合わせてLED発光期間中にスイッチング素子をどの程度の期間ON状態にするかにより光取出し量を制御した。本実施例に用いた高分子分散型液晶は、100%ON/OFF状態には高速で切り替えることができるが、中間状態の制御は応答速度が遅くなる傾向があるためパルス変調方式が好ましいが、本発明はこれに限定されるものではなく、例えば電界強度により制御してもよい。
 (B列目のスイッチング条件)
 B列目では、e行目における光の取出し量が50%となるように、A列目と同様にスイッチング素子を制御して光を取出した。
 (C~E列目のスイッチング条件)
 C~E列目においても、A列目と同様にスイッチング素子を制御して光を取出した。
 このように、スイッチング素子およびLEDの発光状態を制御することにより、5×5のマトリクスにおける2次元の導波光取出しを制御した。その結果、本実施例では1フレームを60Hzで駆動させているため、人間の目には5×5のマトリクスが任意の明るさで発光しているように見えた。また、スイッチング素子における各列のみの発光状態を制御するので、クロストークが起こり難かった。
 〔実施例2〕
 本実施例では、実施例1において作製した調光装置を別の方法で駆動させた。具体的には、LEDの点灯時間をさらに分割した。
 上述の実施例1は、e行目においてB列目では光の取出し量を50%とし、E列目では100%になるように制御した。このとき、各列のスイッチ選択期間に光を取出すことによりクロストークを低減させた。しかし、図12に示すように、E列のe行目では100%光を取出すためLEDから導入された光を全て外部へ取出すことができたが、E列のc行目では50%しか光を取出さないため、取出さなかった光の一部がクロストークになる虞がある。図12は、各光の取出し領域における光取出し率を示す図である。
 そこで、本実施例では、各列の取出し領域が複数あり、且つそれぞれの領域からの取出し率が異なるとき、以下に示すようにLEDの発光期間をさらに分割して制御した。
 (B列選択時)
 B列では、e行目のみを発光させるため、LEDの点灯時間は図12に示すようにLEDの発光量を50%にして、スイッチング素子の光取出し率を100%にした。図12は、各光の取出し領域における光取出し率を示す図である。ここでは、スイッチング素子の光取出し率を100%にしているので、光が導光する方向に尾を引くことがなく、クロストークを防止することができた。
 (E列選択時)
 E列では、c行目およびe行目から光を取出した。具体的には、図13に示すようにLEDのE列選択時の発光期間をさらに2分割し、前半(図13中、「Y」で示す)はc行目を発光させるためにLEDから光を入射させ、後半(図13中、「Z」で示す)はe行目を発光させるためにLEDから光を入射させた。図13は、各光の取出し領域における光取出し方を示す図である。この場合、c行目は目標とする光の取出し量が50%であるため、LEDの光強度を100%にし、c行目のスイッチング素子の光取出し率を100%にした。つまり、100%の強度の光が出射される時間はサブフレーム期間の半分になるため、実質的に取出される光の量は50%となった。LEDの発光強度を図13中、「X」で示す。
 次に、e行目では目標とする光の取出し量が100%であるため、LEDの光強度はc行目を発光させたときの2倍となる200%にして、スイッチング素子の光取出し率を100%にした。この200%の強度の光が出射される時間についてもサブフレーム期間の半分になるため、実質的に取出される光の量は100%となった。
 このように、スイッチング素子の光取出し率は常に100%であるため、クロストークが起こらなかった。
 〔実施例3〕
 実施例3では、実施例2における駆動方法を変更した。具体的には、実施例2ではLEDから出射される光の強度を変更することにより光の取出し量を制御していたが、実施例3ではLEDから出射される光の強度は同一であり、スイッチング素子をON状態にする期間を変更した。
 つまり、実施例3では、図14に示すように、E列の選択期間において光の取出し量が50%のc行目では2分割したうちの前半(図14中、「Y」で示す)のみ、強度100%の光をスイッチング素子が100%の光取出し率で取出した。つまり、100%の強度の光が出射される時間はサブフレーム期間の半分になるため、実質的に取出される光の量は50%となった。
 また、e行目では2分割した両方の期間(図14中、「Z」で示す)において継続して強度100%の光をスイッチング素子が100%の光取出し率で取出した。図14は、各光の取出し領域における光取出し方を示す図であり、図14中、LEDからの発光強度を「X」で示す。この場合においても、スイッチング素子の透過率は常に100%にしているため、クロストークは起こらなかった。
 なお、本実施例において作製した調光装置をバックライトとして用いた画像表示装置を作製した。具体的には、汎用的な20インチTFT液晶表示パネルの下部に本実施例の調光装置を配置し、液晶表示パネルの駆動と同期させて調光装置を駆動させた。このとき、調光装置の発光パターンは液晶表示パネルで表示させる画像に合わせて調整した。その結果、コントラストの高い画像表示を行なうことができた。
 さらに、一般的なLED直下型のアクティブバックライトの厚みが約3cmであるのに対し、本実施例の調光装置は5mm以下の厚みであるため、薄型の画像表示装置を実現できた。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、テレビ、パーソナルコンピュータ、携帯電話または携帯情報端末などの表示装置のバックライトとして最適に利用することができる。
 1  調光装置
 2  導光板
 3  LED(光源)
 4  スイッチング部(光取出手段)
 5  フレーム分割部(分割手段)
 6  光源制御部(光源制御手段)
 7  電圧印加部(電圧印加手段)
 8  走査電極
 9  液晶素子(素子)
 10 信号電極

Claims (13)

  1.  端部から内部に導入された光を導光させる導光板と、
     上記導光板における上記端部に配置されており、当該導光板の内部に向けて光を出射する光源と、
     上記光源の配置方向と平行な方向に互いに並列に配置された複数の短冊状の走査電極、上記複数の走査電極と直角な方向に互いに並列に配置された複数の短冊状の信号電極、および任意の上記走査電極と任意の上記信号電極とが交差する領域ごとに形成される、上記導光板からの光の取出し率を変更可能な素子とを有し、上記導光板における光の出力面側に配置されている光取出手段と、
     1フレーム期間を複数のサブフレーム期間に分割する分割手段と、
     上記サブフレーム期間ごとに、上記光源を当該サブフレーム期間以下の時間で点灯するように制御することによって、上記光源から上記光を出射させる光源制御手段と、
     上記サブフレーム期間ごとに、上記複数の走査電極のうちいずれかを選択して電圧を印加すると共に、上記複数の信号電極のうち少なくともいずれかに、当該選択した走査電極と当該信号電極とに対応する上記素子における上記光の取出し率に応じた電圧を印加する電圧印加手段とを備えていることを特徴とする調光装置。
  2.  上記光源制御手段は、上記サブフレーム期間ごとに、同一強度の上記光を上記光源から出射させるように上記光源を制御し、
     上記電圧印加手段は、上記サブフレーム期間ごとに、上記複数の信号電極のそれぞれに、選択した上記走査電極と当該信号電極とに対応する上記素子を通じて取出される光の量に応じた振幅の電圧を一定時間連続して印加することを特徴とする請求項1に記載の調光装置。
  3.  上記光源制御手段は、上記サブフレーム期間ごとに、同一強度の上記光を上記光源から出射させるように上記光源を制御し、
     上記電圧印加手段は、上記サブフレーム期間ごとに、上記複数の信号電極のそれぞれに、選択した上記走査電極と当該信号電極とに対応する上記素子を通じて取出される光の量に応じた時間だけ連続する一定振幅の電圧を印加することを特徴とする請求項1に記載の調光装置。
  4.  上記電圧印加手段は、任意の上記サブフレーム期間において、上記複数の信号電極のうちいずれかのみに、選択した上記走査電極と当該信号電極とに対応する上記素子における上記光の取出し率を100%にする電圧を印加し、
     上記光源制御手段は、上記任意のサブフレーム期間において上記電圧が印加される上記走査電極と上記信号電極とに対応する上記素子を通じて取出される光の量に応じた強度の光を、上記任意のサブフレーム期間にのみ上記光源から出射させるように、上記光源を制御することを特徴とする請求項1に記載の調光装置。
  5.  上記分割手段は、任意の上記サブフレーム期間を複数のサブ-サブフレーム期間に分割し、
     上記電圧印加手段は、上記サブ-サブフレーム期間ごとに、上記複数の信号電極のうちいずれかのみに、選択した上記走査電極と当該信号電極とに対応する上記素子における上記光の取出し率を100%にする電圧を印加し、
     上記光源制御手段は、上記サブ-サブフレーム期間ごとに、当該サブ-サブフレーム期間において上記電圧が印加されている上記走査電極と上記信号電極とに対応する上記素子を通じて取出される光の量に応じた強度の光を、当該サブ-サブフレーム期間にのみ上記光源から出射させるように、上記光源を制御することを特徴とする請求項1に記載の調光装置。
  6.  上記分割手段は、上記1フレーム期間を、上記複数の走査電極と同じ数の上記サブフレーム期間に分割することを特徴とする請求項1~5のいずれか1項に記載の調光装置。
  7.  上記光源は、上記光源の配置方向と直角な方向に沿って進む指向性を有する光を出射することを特徴とする請求項1~6のいずれか1項に記載の調光装置。
  8.  上記光源は、上記導光板において互いに対向する2つの端部にそれぞれ配置されていることを特徴とする請求項1~7のいずれか1項に記載の調光装置。
  9.  上記光源制御手段は、上記2つの光源から同時に上記光を出射させるように、上記2つの光源を制御することを特徴とする請求項8に記載の調光装置。
  10.  上記光源制御手段は、上記サブフレーム期間ごとに、上記2つの光源のうち、当該サブフレーム期間において上記電圧印加手段によって選択される上記走査電極により近い方に配置されている上記光源から上記光を出射させるように、上記2つの光源を制御することを特徴とする請求項8に記載の調光装置。
  11.  上記光源制御手段は、上記1フレーム期間ごとに上記2つの光源のいずれかから交互に上記光を出射させるように、上記2つの光源を制御することを特徴とする請求項8に記載の調光装置。
  12.  上記光源制御手段は、上記サブフレーム期間ごとに上記2つの光源のいずれかから交互に上記光を出射させるように、上記2つの光源を制御することを特徴とする請求項8に記載の調光装置。
  13.  請求項1~12のいずれか1項に記載の調光装置と、
     当該調光装置における光の出力面側に配置されている表示パネルとを備えていることを特徴とする画像表示装置。
PCT/JP2010/069176 2010-01-06 2010-10-28 調光装置および画像表示装置 WO2011083614A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/518,950 US20120293566A1 (en) 2010-01-06 2010-10-28 Dimming device and image display device
CN2010800607283A CN102695982A (zh) 2010-01-06 2010-10-28 调光装置和图像显示装置
JP2011548915A JPWO2011083614A1 (ja) 2010-01-06 2010-10-28 調光装置および画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-001298 2010-01-06
JP2010001298 2010-01-06

Publications (1)

Publication Number Publication Date
WO2011083614A1 true WO2011083614A1 (ja) 2011-07-14

Family

ID=44305354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069176 WO2011083614A1 (ja) 2010-01-06 2010-10-28 調光装置および画像表示装置

Country Status (4)

Country Link
US (1) US20120293566A1 (ja)
JP (1) JPWO2011083614A1 (ja)
CN (1) CN102695982A (ja)
WO (1) WO2011083614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100174A1 (en) * 2011-10-25 2013-04-25 Toshiba Lighting & Technology Corporation Luminaire
JP2017076002A (ja) * 2015-10-13 2017-04-20 株式会社ジャパンディスプレイ 表示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713410A (zh) * 2010-01-07 2012-10-03 夏普株式会社 调光装置和图像显示装置
JP6171356B2 (ja) * 2013-01-25 2017-08-02 セイコーエプソン株式会社 液晶表示装置及び表示制御方法
CN104730584B (zh) * 2013-12-20 2017-06-16 中国科学院上海微系统与信息技术研究所 瞬变电磁接收机
JP6602695B2 (ja) * 2016-03-01 2019-11-06 株式会社ジャパンディスプレイ 表示装置
JP2018128641A (ja) * 2017-02-10 2018-08-16 株式会社ジャパンディスプレイ 表示装置及び調光装置
JP6866868B2 (ja) * 2018-03-30 2021-04-28 オムロン株式会社 表示装置及び展示装置
KR102557951B1 (ko) * 2018-08-27 2023-07-21 삼성전자주식회사 디스플레이 장치
CN109298565A (zh) * 2018-11-19 2019-02-01 福建捷联电子有限公司 可区域调控出光强度的led背光模块及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272652A (ja) * 2000-03-28 2001-10-05 Toshiba Corp 表示装置
JP2002049037A (ja) * 2000-08-03 2002-02-15 Hitachi Ltd 照明装置及びそれを用いた液晶表示装置
JP2004212489A (ja) * 2002-12-27 2004-07-29 Sharp Corp 液晶表示装置
JP2005284198A (ja) * 2004-03-31 2005-10-13 Citizen Watch Co Ltd 液晶装置
JP2010176117A (ja) * 2009-01-28 2010-08-12 Sharp Corp 制御可能な光源を備えたエリアアクティブバックライト

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685029B2 (ja) * 2000-10-04 2005-08-17 セイコーエプソン株式会社 液晶表示装置、画像信号補正回路、液晶表示装置の駆動方法、および画像信号補正方法、ならびに電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272652A (ja) * 2000-03-28 2001-10-05 Toshiba Corp 表示装置
JP2002049037A (ja) * 2000-08-03 2002-02-15 Hitachi Ltd 照明装置及びそれを用いた液晶表示装置
JP2004212489A (ja) * 2002-12-27 2004-07-29 Sharp Corp 液晶表示装置
JP2005284198A (ja) * 2004-03-31 2005-10-13 Citizen Watch Co Ltd 液晶装置
JP2010176117A (ja) * 2009-01-28 2010-08-12 Sharp Corp 制御可能な光源を備えたエリアアクティブバックライト

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100174A1 (en) * 2011-10-25 2013-04-25 Toshiba Lighting & Technology Corporation Luminaire
JP2017076002A (ja) * 2015-10-13 2017-04-20 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
US20120293566A1 (en) 2012-11-22
CN102695982A (zh) 2012-09-26
JPWO2011083614A1 (ja) 2013-05-13

Similar Documents

Publication Publication Date Title
WO2011083614A1 (ja) 調光装置および画像表示装置
JP5290435B2 (ja) 調光装置および画像表示装置
US8259384B2 (en) Illumination device and display device
KR100606968B1 (ko) 표시장치의 백 라이트 유닛 및 이를 사용한 액정표시장치
CN102235607B (zh) 照明装置和显示装置
KR100493387B1 (ko) 표시장치의 백 라이트 유닛 및 그 백라이트 유닛을 사용한액정표시장치
CN104303099A (zh) 照明装置和显示装置
JP2013080646A (ja) 照明装置、表示装置および電子機器
JP2010156811A (ja) 照明装置、表示装置および光変調素子の製造方法
CN108845457B (zh) 背光模组及其控制方法和显示设备
US8760600B2 (en) Area active backlight with spatiotemporal backlight
KR101043949B1 (ko) 백라이트 유닛 및 이를 포함하는 디스플레이 장치
CN102686932A (zh) 照明单元和显示器
KR101015299B1 (ko) 화질이 향상된 액정표시소자
JP2017032782A (ja) 表示装置
KR20190060447A (ko) 액정표시장치
CN105759490A (zh) 一种增光膜、显示模组及显示设备
TWM258239U (en) A display device and an illumination apparatus therefor
KR20130030441A (ko) 액정표시장치
TW200826053A (en) LCD panel with scanning backlight
JP2013239289A (ja) 面状光源装置及びそれを備えた表示装置
US7982823B1 (en) Area active backlight with steerable backlight
WO2011162024A1 (ja) 調光装置、画像表示装置および調光装置の製造方法
WO2012070520A1 (ja) 照明装置、液晶表示装置
JP7225013B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842129

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011548915

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13518950

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842129

Country of ref document: EP

Kind code of ref document: A1