WO2011082505A1 - 一种荧光素和庚烷磺酸钠共插层水滑石的光学ph传感器及其制备方法 - Google Patents

一种荧光素和庚烷磺酸钠共插层水滑石的光学ph传感器及其制备方法 Download PDF

Info

Publication number
WO2011082505A1
WO2011082505A1 PCT/CN2010/000305 CN2010000305W WO2011082505A1 WO 2011082505 A1 WO2011082505 A1 WO 2011082505A1 CN 2010000305 W CN2010000305 W CN 2010000305W WO 2011082505 A1 WO2011082505 A1 WO 2011082505A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescein
hydrotalcite
sodium
solution
sensor
Prior art date
Application number
PCT/CN2010/000305
Other languages
English (en)
French (fr)
Inventor
卫敏
史文颖
陆军
段雪
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Priority to US13/520,694 priority Critical patent/US9029167B2/en
Publication of WO2011082505A1 publication Critical patent/WO2011082505A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/221Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating pH value

Definitions

  • the invention belongs to the technical field of optical pH sensor preparation, and particularly relates to an optical pH sensor for co-intercalating hydrotalcite with fluorescein and sodium heptane sulfonate and a preparation method thereof.
  • Optical sensors have attracted the attention of researchers because of their wide application in the water transport industry, blood testing, toxicology analysis and biotechnology.
  • the fixation of the fluorescent indicator is a critical factor in achieving a stable lifetime and signal for an optical pH sensor.
  • Most optical pH indicator groups are immobilized in a suitable, proton-permeable sol-gel polymer matrix.
  • the relative high heat, light instability, toxicity, etc. of the polymer itself limit the practical application of this material. Therefore, it is very important to find a matrix with high stability and good biocompatibility.
  • the inorganic layered anionic material-hydrotalcite is a two-dimensional layered material. Due to its multi-factor variability, high light, thermal stability and good biocompatibility have been widely used.
  • the insertion of luminescent molecules into the hydrotalcite layer shows unique properties: (1) Hydrotalcite provides a limited, stable environment for luminescent molecules, which is a necessary condition for the preparation of solid-state dye devices; (2) luminescent molecules and water The interaction of talc, such as electrostatic attraction, hydrogen bonding, etc., avoids the aggregation caused by the interaction between the luminescent molecules, thereby reducing the quenching of the luminescent molecules; (3) the high light and thermal stability of the hydrotalcite itself The light and thermal stability of the luminescent molecules are improved; (4) The hydrotalcite can be prepared into a colloidal solution to satisfy the conditions for preparing the optical pH sensor.
  • Electrophoretic deposition has the following advantages: (1) The thickness of the film is controllable at the nanometer and micron scale; (2) The film formation is fast and continuous; (3) The film can be formed on any shape; (4) The film and the substrate have Strong bonding.
  • the present invention provides a co-intercalation layer of fluorescein and sodium sulfonate Optical pH sensor for hydrotalcite and preparation method thereof.
  • the sensor consists of a conductive material and a surface-plated fluorescein and sodium heptanoate sulfonate co-intercalated hydrotalcite film.
  • the technical scheme of the invention is as follows: Firstly, preparing a hydrotalcite precursor colloid solution, and then performing ion exchange to obtain a hydrotalcite and a sodium heptanesulfonate co-intercalated hydrotalcite colloid solution, and finally electroplating is performed on the conductive substrate by electrophoretic deposition. Membrane, an optical pH sensor with high orientation is obtained.
  • the optical pH sensor for co-intercalating hydrotalcite prepared by the invention comprises: a conductive material and a surface-plated fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite film, wherein fluorescein and glucan
  • the molecular formula of sodium alkane sulfonate co-intercalated hydrotalcite is:
  • HES sodium heptane sulfonate
  • FLU fluorescein
  • is any one of divalent metal ions Mg 2+ , Zn 2+ , Ni 2+ , 1 ⁇ 2 is a trivalent metal ion Fe 3+ , Al Any of the 3+ .
  • step c Take 5-20ml of the colloidal solution prepared in step a, l-20ml of A solution obtained in step b and l-20ml of B solution, mix the three in a four-necked flask, add 100-200ml to C0 2 , go Ionic water; adjust the pH to 7-9 with a concentration of 0.1-1 mol/1 NaOH solution, stir the reaction at 20-80 °C for 24-72 h under N 2 protection, and centrifuge with deionized water for 1 to 2 hours.
  • step d Take 1-20 ml of the colloidal solution prepared in step c, and sonicate for 2-10 min under the protection of N 2 , and then electrophoretic deposition on the surface of the conductive material for 1-60 min to spread the film on the surface of the conductive material. 40-80!
  • the optical pH sensor was prepared by vacuum drying for 10-50 h to obtain hydrotalcite and sodium heptane sulfonate.
  • is any one of divalent metal ions Mg 2+ , Zn 2+ , M 2+ ; M 2 is any one of trivalent metal ions Fe 3+ and Al 3+ .
  • the conductive material is any one of ITO glass, aluminum, copper, and gold.
  • Preferred conditions for the preparation of the present invention are:
  • a Dissolving the soluble inorganic salts of Mg 2+ and Al 3+ in de-C0 2 and deionized water to form a mixed salt solution, wherein the molar ratio of Mg 2+ and Al 3+ is 2, and the concentration of Mg 2+ is 1.0 M.
  • the above mixed salt solution was adjusted to 8.5 by ⁇ 3 ⁇ 3 ⁇ 40 to obtain a slurry; the slurry was placed in a pressure-capacity bomb, reacted at 140 ° C for 10 h, and centrifuged with C0 2 and deionized water. Washing 4 times to obtain a paddle; 5 g of the slurry is dispersed with 150 ml of C0 2 and deionized water to prepare a colloidal solution, which is sealed and stored;
  • step c Take 15ml of the colloidal solution prepared in step a, 10ml of solution A obtained in step b and 10ml of solution B, mix the three in a four-necked flask, add 150ml to C0 2 , deionized water; use a concentration of 0.2 mol / l NaOH solution to adjust the pH of 8.0, under N 2 protection, stirring reaction at 65 ° C for 48 h, washed with C0 2 , deionized water 4 times, centrifuged twice with ethanol to obtain a slurry, then 5 g of pulp The substance is dispersed in 100-200 ml of ethanol to obtain a colloidal solution, which is sealed and stored;
  • step d Take 20 ml of the colloidal solution prepared in step c, sonicated for 10 min under N 2 protection, and then electroplated on the surface of the ITO glass for 10 min, spread on the surface of the ITO glass, and dry at 65 ° C for 12 h.
  • An optical pH sensor for co-intercalating hydrotalcite with sodium fluorescein and sodium sulfonate was obtained.
  • optical pH sensing of hydrotalcite and the sodium heptanoate prepared in step d are intercalated with hydrotalcite.
  • hydrotalcite provides a stable, limited environment for luminescent molecules
  • Electrophoretic deposition method makes the thickness of the film controllable from nanometer to micrometer, and the film formation is fast and continuous, and can be formed on the surface of any shape, and the obtained film has strong binding force with the substrate;
  • the highly oriented fluorescein and sodium heptanoate sulfonate co-intercalated hydrotalcite film gives the sensor a good pH response.
  • Example 1 is an X-ray powder diffraction pattern of an optical pH sensor for co-intercalating hydrotalcite prepared by Example 1 of the present invention; wherein the abscissa is 2 ⁇ , unit: degree; ordinate is intensity; curve a is magnesium aluminum nitrate hydrotalcite, b is fluorescein and sodium heptanoate sulfonate co-intercalated hydrotalcite powder, c is fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite film, curve c is * ITO glass Base feature diffraction peak.
  • Fig. 2 is a scanning electron micrograph of an optical pH sensor for co-intercalating hydrotalcite of fluorescein and sodium sulphonate prepared in Example 1 of the present invention.
  • Example 3 is an optical pH sensor of fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite prepared in Example 1 of the present invention at pH values of 4.01, 5.02, 5.51, 5.98, 6.51, 6.62, 6.71, 6.85, 7.02, respectively.
  • Example 4 is a fluorescein solution, a fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite powder, and a fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite film of Example 1 of the present invention at a light time of 0, 0.5, respectively. , 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6 hours of fluorescence spectra, where the abscissa is time, the unit is: hour; the ordinate is the fluorescence intensity.
  • 5 is an optical pH sensor of fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite prepared according to Example 1 of the present invention at a pH of 5.02, 6.51 and 8.54, respectively, and the fluorescence intensity of the optical pH sensor is 1-20 times.
  • Change graph where the abscissa is the number of operations; the ordinate is the fluorescence intensity at 516 nm.
  • Example 6 is a graph showing changes in fluorescence intensity of an optical pH sensor of hydrofluorin and sodium heptane sulfonate co-intercalated hydrotalcite prepared in Example 1 of the present invention at pH values of 5.02, 6.51 and 8.54, wherein the abscissa is time, unit : Second; the ordinate is the fluorescence intensity value at 516 nm.
  • Example 7 is an X-ray powder diffraction pattern of an optical pH sensor for co-intercalating hydrotalcite of fluorescein and sodium heptane sulfonate prepared in Example 2 of the present invention; wherein the abscissa is 2 ⁇ , unit: degree; ordinate is intensity; curve a is magnesium aluminum nitrate hydrotalcite, b is fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite powder, c is fluorescein and sodium heptane sulfonate intercalated hydrotalcite film, curve c is made of ITO glass Base Characteristic diffraction peaks.
  • Example 8 is an X-ray powder diffraction pattern of an optical pH sensor for co-intercalating hydrotalcite of fluorescein and sodium heptane sulfonate prepared in Example 3 of the present invention; wherein the abscissa is 2 ⁇ , unit: degree; ordinate is intensity; curve a is zinc aluminum nitrate hydrotalcite, b is fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite powder, c is fluorescein and sodium heptane sulfonate intercalated hydrotalcite film, curve c is * ITO glass Base feature diffraction peak.
  • FIG. 9 is an X-ray powder diffraction pattern of an optical pH sensor for co-intercalating hydrotalcite of fluorescein and sodium sulphonate prepared according to Example 4 of the present invention; wherein the abscissa is 2 ⁇ , unit: degree; ordinate is intensity; curve a is zinc aluminum nitrate hydrotalcite, b is fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite powder, c is fluorescein and sodium heptane sulfonate intercalated hydrotalcite film, curve c is * ITO glass Base feature diffraction peak.
  • Step B The sodium fluorescein and dissolved in heptane embankment to C0 2, in deionized water, were formulated at a concentration of 2x10- 5 mol / l and 0.01mol / l solution;
  • Step C Take 15 ml of the colloidal solution prepared in the step A, 10 ml of the fluorescein solution prepared in the step B, and 10 ml of the sodium heptanesulfonate solution in a four-necked flask, and add 150 ml of C0 2 and deionized water;
  • the mol/1 NaOH solution was titrated to a pH of 8.0; under N 2 protection, the reaction was stirred and heated in a 65 ° C water bath for 48 h, washed with deionized C0 2 deionized water for 4 times, and centrifuged twice with ethanol to obtain a slurry.
  • 2 g of the slurry was dispersed in 150 ml of ethanol to obtain a colloidal solution, which was sealed and stored;
  • Step D Take 20 ml of the colloidal solution sealed in step C, protect it for 5 min, and electrophoreticly deposit the surface of the ITO glass for 3 minutes, vacuum dry at 65 °C for 12 h to obtain fluorescein and sodium heptane sulfonate.
  • the optical pH sensor prepared in step D was at a pH of 4.01, 5.02, 5.51, 5.98, respectively.
  • the fluorescence intensity was tested in solutions of 6.51, 6.62, 6.71, 6.85, 7.02, 8.01, 10.01, 11.02, 12.0.
  • Figure 1 shows that the (003) plane diffraction peak of fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite appears at 4.82°, the corresponding layer spacing ⁇ 03 is 1.82 nm, and the spacing of magnesium-aluminum nitrate hydrotalcite layer ⁇ 03 It is 0.87 nm. This indicates that fluorescein and sodium heptanoate were successfully inserted between the hydrotalcite layers. The c-curves (10/) and (11/) peaks in Figure 1 disappear, indicating that the fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite film has an orientation perpendicular to the c-axis direction.
  • the fluorescence intensity in Figure 3 increases with increasing pH, indicating that the optical pH sensor of fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite has a good response to pH.
  • the light stability of Figure 4 indicates that the photostability of the fluorescein and sodium sulphonate co-intercalated hydrotalcite film is much higher than that of the powder and fluorescein solution.
  • the repeated operation experiments shown in Figure 5 show that the standard deviation of the fluorescence intensity of the same film at the same pH value, ie, pH values of 5.02, 6.51 and 8.54, is only 1.35%, 0.65% and 0.84%, respectively, indicating that the pH sensor has Very good operational stability. It can be seen from Figure 6 that this pH sensor has a faster response value of 2 seconds.
  • Step B using fluorescein and sodium heptane sulfonate in a solution of C0 2 and deionized water, respectively, to a concentration of 2 x 10 - 5 mol / l and O. Olmol / 1 solution;
  • Step C Take 20 ml of the colloidal solution prepared in the step A, 15 ml of the fluorescein solution prepared in the step B, 15 ml of the sodium heptanesulfonate solution in a four-necked bottle, add 150 ml of C0 2 and deionized water; The mol/1 NaOH solution was titrated to a pH of 8.0; under the protection of 13 ⁇ 4, the reaction was heated and heated in a 65 °C water bath for 48 h, washed with CQ 2 deionized water for 5 times, and washed by ethanol for 3 times to obtain a slurry.
  • Step D 10 ml of the colloid stored in step C was taken, and ultrasonically treated for 5 min under protection, and electrophoretic deposition was performed on the surface of the ITO glass. Electroplating was carried out for 10 minutes, and dried under vacuum at 30 ° C for 10 h to obtain an optical pH sensor in which fluorescein and sodium heptane sulfonate were intercalated with hydrotalcite.
  • the optical pH sensors prepared in step D were at pH values of 4.01, 5.02, 5.51, 5.98, respectively.
  • the fluorescence intensity was tested in solutions of 6.51, 6.62, 6.71, 6.85, 7.02, 8.01, 10.01, 11.02, 12.0.
  • Figure 7 shows that the (003) plane diffraction peak of fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite appears at 4.72, the corresponding layer spacing 4Q 3 is 1.87 nm, and the spacing of magnesium-aluminum nitrate hydrotalcite layer ⁇ K is 0.87 nm. This indicates that fluorescein and sodium heptane sulfonate were successfully inserted between the hydrotalcite layers. The XRD curves (10/) and (11/) peaks disappeared, indicating that the fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite film has an orientation perpendicular to the c-axis direction.
  • Step B The sodium fluorescein and dissolved in heptane to C0 2, in deionized water, were formulated at a concentration of 5xl0- 5 mol / l and 0.02mol / l solution;
  • Step C Take 16 ml of the colloidal solution prepared in the step A, and dissolve the fluorescein prepared in the step B.
  • 8 ml of liquid, 8 ml of sodium heptane sulfonate solution in a four-necked flask add 150 1111 to (0 2 , deionized water; titrate to pH 8.0 with 0.2 mol/1 NaOH solution; under N 2 protection, 65
  • the reaction was stirred and heated for 48 h in a water bath at °C, washed three times with deionized C0 2 deionized water, washed three times with ethanol to obtain a slurry, and then 3 g of the slurry was dispersed with 150 ml of ethanol to obtain a colloidal solution, which was sealed and stored;
  • Step D Take 16 ml of the colloidal solution sealed in step C, ultrasonically treated for 6 min under N 2 protection, electrophoretic deposition on the surface of ITO glass for 5 minutes, vacuum drying at 65 ° C for 13 h to obtain fluorescein and heptane sulfonate.
  • the optical pH sensor prepared in Step D was tested for its pod light intensity in solutions having pH values of 4.01, 5.02, 5.51, 5.98, 6.51, 6.62, 6.71, 6.85, 7.02, 8.01, 10.01, 11.02, 12.0, respectively.
  • Figure 8 shows that the (003) plane diffraction peak of fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite appears at 4.60°, the corresponding layer spacing is 4 ⁇ 1.90 nm, and the magnesium-aluminum nitrate hydrotalcite layer spacing is 0.87. Nm. This indicates that fluorescein and sodium heptane sulfonate were successfully inserted between the hydrotalcite layers. The XRD curves (10/) and (11/) peaks disappeared, indicating that the fluorescein and sodium sulphonate co-intercalated hydrotalcite films have an orientation perpendicular to the c-axis direction.
  • Salt solution another 45 ml ⁇ 3 ⁇ ⁇ 2 0 adjust the above mixed solution to pH 7.5, to obtain a slurry; put the slurry in a pressure volume bomb, react at 130 ° C for 11 h, use C0 2 , deionized water was washed by centrifugation 5 times to obtain a slurry; 1 g of the slurry was dispersed with 170 ml of C0 2 and deionized water to prepare a colloidal solution, which was sealed and stored; Step B: The sodium fluorescein and dissolved in heptane to C0 2, in deionized water, were formulated at a concentration of 2x 10- 5 mol / l and 0.2mol / l solution;
  • Step C Take 1 ml of the colloidal solution prepared in step A, 5 ml of the fluorescein solution prepared in step B, 5 ml of sodium heptane sulfonate solution in a four-necked bottle, and add 160 1111 to (30 2 , deionized water; Titrate with a 0.2 mol/1 NaOH solution to a pH of 8.0; under N 2 protection, stir the reaction in a 65 °C water bath for 48 h, centrifuge three times with deionized C0 2 deionized water, and centrifuge three times to obtain a slurry. Then, the lg slurry was dispersed in 150 ml of ethanol to obtain a colloidal solution, which was sealed and stored;
  • Step D Take 16 ml of the colloidal solution sealed in step C, sonicated for 6 min under N 2 protection, electrophoretic deposition on the surface of ITO glass for 7 minutes, vacuum drying at 60 ° C for llh to obtain fluorescein and heptane sulfonic acid.
  • the optical pH sensor prepared in Step D was tested for its fluorescence intensity in solutions having pH values of 4.01, 5.02, 5.51, 5.98, 6.51, 6.62, 6.71, 6.85, 7.02, 8.01, 10.01, 1 1.02, 12.0, respectively.
  • Figure 9 shows that the (003) plane diffraction peak of the fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite appears at 4.92°, the corresponding layer spacing ⁇ ⁇ is 1.95 nm, and the spacing of the magnesium-aluminum nitrate hydrotalcite layer is ⁇ It is 0.87 nm. This indicates that fluorescein and sodium heptane sulfonate were successfully inserted between the hydrotalcite layers. The XRD curves (10/) and (11/) peaks disappeared, indicating that the fluorescein and sodium heptane sulfonate co-intercalated hydrotalcite film has an orientation perpendicular to the c-axis direction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

一种荧光素和庚烧磺酸钠共插层水滑石的光学
pH传感器及其制备方法
技术领域
本发明属于光学 pH传感器制备技术领域, 特别涉及一种荧光素和庚烷 磺酸钠共插层水滑石的光学 pH传感器及其制备方法。
背景技术
光学传感器由于其在水运业, 血液测试, 毒物分析及生物技术领域的广 泛应用, 目前已受到广大研究者的关注。 而荧光指示团的固定是光学 pH传 感器获得稳定寿命和信号至关重要的因素。 大多数光学 pH指示团被固定在 一种适合的, 质子可渗透的溶胶凝胶聚合基质中。 然而, 聚合物本身所具有 的相对高热、 光不稳定性, 毒性等限制了这种材料在实际中的应用。 因此, 寻找一种稳定性高、 生物相容性好的基质是非常重要的。
目前, 由于发光分子与无机材料结合的复合发光材料具有更优异于两者 的性能, 已有相当的研究集中于此复合材料。其中无机层状的阴离子材料一 水滑石是一种二维层状材料, 由于其具有多因素可调变性, 高光、 热稳定性 及好的生物相容性得到了广泛的应用。发光分子插入到水滑石层间显示了独 特的优异性能: (1 )水滑石为发光分子提供了一个限域、 稳定的环境, 这是 制备固态染料器件的必要条件; (2)发光分子与水滑石的相互作用, 如静电 吸引、 氢键等, 避免了发光分子之间的相互作用而产生的聚集, 从而降低了 发光分子的淬灭; (3 )水滑石本身所具有的高光、 热稳定性提高了发光分子 的光、 热稳定性; (4)水滑石可以被制备成胶体溶液满足了其制备光学 pH 传感器的条件。
实现固定的发光分子薄膜器件化通常有溶剂蒸发法、层层组装法及电泳 沉积法。然而, 对于前两种方法分别由于其结合力差和组装厚度小受到一定 的限制。 电泳沉积法具有以下优点: (1 ) 薄膜的厚度在纳米和微米级可控; (2) 成膜快速、 连续; (3 )可在任意形状的面上成膜; (4) 薄膜与基底有 较强的结合力。
发明内容
鉴于上述现有技术的情况,本发明提供一种荧光素和庚垸磺酸钠共插层 水滑石的光学 pH传感器及其制备方法。 该传感器由导电材料和表面镀覆的 荧光素和庚垸磺酸钠共插层水滑石薄膜组成。本发明的技术方案为: 首先制' 备水滑石前体胶体溶液,然后进行离子交换得到荧光素和庚烷磺酸钠共插层 水滑石胶体溶液, 最后采用电泳沉积法在导电基底镀覆成膜, 得到具有高取 向的光学 pH传感器。
本发明制备的荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器由导 电材料和表面镀覆的荧光素和庚烷磺酸钠共插层水滑石薄膜组成,其中荧光 素和庚烷磺酸钠共插层水滑石的分子式为:
(M ) x (M2) i- x (FLU) y ( HES ) z (OH) 2 · ¾0,
= 0.5-0.8, 10— ¾y /z≤10— 2, m=0.3-1.5为层间结晶水分子数;
HES为庚垸磺酸钠, FLU为荧光素, ]^为二价金属离子 Mg2+、 Zn2+、 Ni2+中的任何一种, 1^2为三价金属离子 Fe3+、 Al3+中的任何一种。
本发明的制备步骤如下:
a. 将 和 M2的可溶性无机盐溶于去 C02、 去离子水中, 配成混合盐 溶液, 其中 Μ^Π Μ2摩尔比为 1-3, IV^浓度为 0.01-1.6M; 用 ΝΗ3·Η20调节 上述混合盐溶液至 pH为 7-10, 得到浆状液; 将此浆状液置于压力容弹中, 于 110-150 °C反应 8-12 h, 用去 C02、 去离子水离心洗涤 1-6次得到浆状物; 将 1-lOg浆状物用 100-200ml去 C02、 去离子水分散, 制备成胶体溶液, 密 封保存;
b. 将荧光素和庚烷磺酸钠溶于去 co2、 去离子水中, 分别配成浓度为
10— 5-l(T4mol/l的 A溶液和 0.01-2 mol/1的 B溶液;
c. 取 a步骤中制得的胶体溶液 5-20ml, b步骤得到的 A溶液 l-20ml和 B溶液 l-20ml, 三者混合于四口烧瓶中, 并加入 100-200ml去 C02、 去离子 水;用浓度为 0.1-1 mol/1 NaOH溶液调节 pH为 7-9, 在 N2保护下, 20-80 °C 搅拌反应 24-72 h, 用去 C02、 去离子水离心洗涤 1-6次, 乙醇离心洗涤 1-6 次得到浆状物, 然后将 1-lOg浆状物用 100-200ml乙醇分散得到胶体溶液, 密封保存;
d. 取步骤 c制得的胶体溶液 1 -20ml, N2保护下超声处理 2-10 min后, 采用电泳沉积法在导电材料表面电镀 1-60 min, 在导电材料表面铺展成膜, 40-80!真空干燥 10-50 h,得到荧光素和庚烷磺酸钠共插层水滑石的光学 pH 传感器。
所述的!^为二价金属离子 Mg2+、 Zn2+、 M2+中的任何一种; M2为三价 金属离子 Fe3+、 Al3+中的任何一种。
所述的导电材料为 ITO玻璃, 铝, 铜, 金中的任何一种。
本发明制备优选条件为:
a. 将 Mg2+和 Al3+的可溶性无机盐溶于去 C02、 去离子水中, 配成混合 盐溶液, 其中 Mg2+和 Al3+摩尔比为 2, Mg2+浓度为 1.0M; 用 ΝΗ3·¾0调节 上述混合盐溶液至 ρΗ为 8.5, 得到浆状液; 将此浆状液置于压力容弹中, 于 140 °C反应 10 h, 用去 C02、去离子水离心洗涤 4次得到桨状物; 将 5g浆状 物用 150ml去 C02、 去离子水分散, 制备成胶体溶液, 密封保存;
b. 将荧光素和庚烷磺酸钠溶于去 co2、 去离子水中, 分别配成浓度为
2xl0"5mol/l的 A溶液和 0.02mol/l的 B溶液;
c. 取 a步骤中制得的胶体溶液 15ml, b步骤得到的 A溶液 10ml和 B 溶液 10ml, 三者混合于四口烧瓶中, 并加入 150ml去 C02、 去离子水; 用 浓度为 0.2 mol/l NaOH溶液调节 pH为 8.0,在 N2保护下, 65 °C搅拌反应 48 h, 用去 C02、 去离子水离心洗涤 4次, 乙醇离心洗涤 2次得到浆状物, 然 后将 5g浆状物用 100-200ml乙醇分散得到胶体溶液, 密封保存;
d.取步骤 c制得的胶体溶液 20ml, N2保护下超声处理 lO min后,采用 电泳沉积法在 ITO玻璃表面电镀 10 min, 在 ITO玻璃表面铺展成膜, 65 °C 真空干燥 12 h, 得到荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器。
将 d步骤中所制备的荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感 益:
( 1 )进行 XRD、 SEM测定, 以证明荧光素和庚烷磺酸钠共插层水滑石成功 及荧光素和庚烷磺酸钠共插层水滑石薄膜具有垂直于 c轴的方向性;
(2)进行元素分析, 以确定荧光素和庚烷磺酸钠共插层水滑石薄膜分子式;
(3 )在氙灯照射 0-7小时, 进行光稳定性分析;
(4)在 pH值为 1-14的溶液中测试其荧光强度。
本发明的优点在于: 水滑石为发光分子提供了一种稳定、 限域的环境; 釆用电泳沉积方法使膜的厚度在纳米到微米级可控, 且成膜快速、连续, 并 可在任意形状的面上成膜, 得到的薄膜与基底有较强的结合力; 镀覆的高取 向荧光素和庚垸磺酸钠共插层水滑石薄膜使传感器具有良好的 pH响应。 附图说明
图 1为本发明实施例 1制备的荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器的 X射线粉末衍射图; 其中横坐标为 2Θ, 单位: 度; 纵坐标为强 度; 曲线 a为镁铝硝酸根水滑石, b为荧光素和庚垸磺酸钠共插层水滑石粉 末, c为荧光素和庚垸磺酸钠共插层水滑石薄膜, 曲线 c中*为 ITO玻璃基底 特征衍射峰。
图 2为本发明实施例 1制备的荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器的扫描电镜图。
图 3为本发明实施例 1制备的荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器在 pH值分别为 4.01, 5.02, 5.51 , 5.98, 6.51, 6.62, 6.71 , 6.85, 7.02, 8.01 , 10.01, 11.02和 12.01条件下的荧光光谱图,其中横坐标为波长, 单位: 纳米; 纵坐标为荧光强度。
图 4为本发明实施例 1的荧光素溶液、荧光素和庚烷磺酸钠共插层水滑 石粉末及荧光素和庚烷磺酸钠共插层水滑石薄膜在光照时间分别为 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5和 6小时的荧光光谱图, 其中横坐 标为时间, 单位: 小时; 纵坐标为荧光强度。
图 5为本发明实施例 1制备的荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器分别在 pH值 5.02, 6.51和 8.54时, 操作循环为 1-20次时其荧光 强度的变化图, 其中横坐标为操作次数; 纵坐标为 516纳米处荧光强度值。
图 6为本发明实施例 1制备的荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器交替在 pH值为 5.02, 6.51和 8.54时荧光强度变化图, 其中横坐 标为时间, 单位: 秒; 纵坐标为 516纳米处荧光强度值。
图 7为本发明实施例 2制备的荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器的 X射线粉末衍射图; 其中横坐标为 2Θ, 单位: 度; 纵坐标为强 度; 曲线 a为镁铝硝酸根水滑石, b为荧光素和庚垸磺酸钠共插层水滑石粉 末, c为荧光素和庚烷磺酸钠共插层水滑石薄膜,曲线 c中令为 ITO玻璃基底 特征衍射峰。
图 8为本发明实施例 3制备的荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器的 X射线粉末衍射图; 其中横坐标为 2Θ, 单位: 度; 纵坐标为强 度; 曲线 a为锌铝硝酸根水滑石, b为荧光素和庚垸磺酸钠共插层水滑石粉 末, c为荧光素和庚烷磺酸钠共插层水滑石薄膜, 曲线 c中*为 ITO玻璃基底 特征衍射峰。
图 9为本发明实施例 4制备的荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器的 X射线粉末衍射图; 其中横坐标为 2Θ, 单位: 度; 纵坐标为强 度; 曲线 a为锌铝硝酸根水滑石, b为荧光素和庚垸磺酸钠共插层水滑石粉 末, c为荧光素和庚烷磺酸钠共插层水滑石薄膜, 曲线 c中*为 ITO玻璃基底 特征衍射峰。
具体实施方式
实施例 1
步骤 A: 称取 15.38 g Mg(N03)2'6¾0和 11.25 g Α1(Ν03)3·9Η20, Mg /Al=2, 溶于 150 ]111去( 02、去离子水配制混合盐溶液, 另取 45 πι1 ΝΗ3·Η20 调节上述混合溶液至 pH为 8.5, 得到浆状液; 将此浆状液置于压力容弹中, 于 140。C反应 10 h, 用去 C02、 去离子水离心洗涤 4次得到浆状物; 将 2 g 浆状物用 150ml去 C02、 去离子水分散, 制备成胶体溶液, 密封保存;
步骤 B: 将荧光素和庚垸磺酸钠溶于去 C02、 去离子水中, 分别配成浓 度为 2x10— 5mol/l和 0.01mol/l溶液;
步骤 C: 取步骤 A中制得的胶体溶液 15ml, 步骤 B中制备的荧光素溶 液 10ml,庚烷磺酸钠溶液 10ml于四口瓶中,加入 150 ml去 C02、去离子水; 用 0.2 mol/1 NaOH溶液滴定至 pH值为 8.0;在 N2保护下, 65 °C水浴加热搅 拌反应 48 h,用脱 C02去离子水离心洗涤 4次, 乙醇离心洗涤 2次得到浆状 物, 然后将 2 g浆状物用 150ml乙醇分散, 得到胶体溶液, 密封保存;
步骤 D: 取步骤 C中密封保存的胶体溶液 20ml, 护下超声处理 5 min, 采用电泳沉积方法在 ITO玻璃表面电镀 3分钟, 65 °C真空干燥 12 h, 得到荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器。
取步骤 D制备的光学 pH传感器分别在 pH值为 4.01, 5.02, 5.51 , 5.98, 6.51, 6.62, 6.71, 6.85, 7.02, 8.01, 10.01, 11.02, 12.0的溶液中测试其荧 光强度。
图 1表明了荧光素和庚烷磺酸钠共插层水滑石的 (003 ) 晶面衍射峰出 现在 4.82°, 对应层间距^ 03为 1.82 nm, 而镁铝硝酸根水滑石层间距 ^03为 0.87 nm。这表明荧光素和庚垸磺酸钠成功的插入了水滑石层间。 图 1中的 c 曲线 (10/) 和 (11/) 峰消失, 说明荧光素和庚烷磺酸钠共插层水滑石膜具 有垂直于 c轴方向的取向。 同时由图 2中 SEM图也证明镀覆的荧光素和庚 烷磺酸钠共插层水滑石薄膜具有很好的平行于基底的取向。元素分析结果给 出 了 荧 光素和 庚烷磺酸钠 共插层 水滑石 的 化 学式 为 [ g0.67Alo.33(OH)2](FLU)o.oOl(HES)o.329- 0.51H2O。图 3中荧光强度随 pH 值的的增加而增加, 说明荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感 器对 pH具有很好的响应。 图 4的光稳定性说明荧光素和庚垸磺酸钠共插层 水滑石薄膜的光稳定性较其粉体和荧光素溶液都有了较大的提高。 通过图 5 所示的重复操作实验说明同一个膜在同一 pH值,即 pH值 5.02, 6.51和 8.54 下其荧光强度的标准偏差分别为只有 1.35%, 0.65%和 0.84%, 说明此 pH传 感器具有很好的操作稳定性。 由图 6可以看到此 pH传感器具有 2秒钟较快 的响应值。
实施例 2
步骤 A: 称取 23.04 g Mg(N03)2'6H20和 11.25 g Α1(Ν03)3·9Η20, Mg /Al=3, 溶于 150 1111去0)2、去离子水配制混合盐溶液, 另取 45 ml ΝΗ3·Η20 调节上述混合溶液至 pH为 8, 得到浆状液; 将此浆状液置于压力容弹中, 于 130 °C反应 10 h, 用去 C02、 去离子水离心洗涤 3次得到浆状物; 将 3 g 浆状物用 160ml去 C02、 去离子水分散, 制备成胶体溶液, 密封保存;
步骤 B:将荧光素和庚烷磺酸钠用去 C02、 去离子水, 分别配成浓度为 2x 10— 5mol/l和 O.Olmol/1溶液;
步骤 C: 取步骤 A中制得的胶体溶液 20ml, 步骤 B中制备的荧光素溶 液 15ml,庚烷磺酸钠溶液 15ml于四口瓶中,加入 150 ml去 C02、去离子水; 用 0.2 mol/1 NaOH溶液滴定至 pH值为 8.0;在 1¾保护下, 65 °C水浴加热搅 拌反应 48 h,用脱 CQ2去离子水离心洗涤 5次, 乙醇离心洗涤 3次得到浆状 物, 然后将 3 g浆状物用 100ml乙醇分散, 得到胶体溶液, 密封保存; 步骤 D: 取步骤 C中密封保存的胶体 10ml, ½保护下超声处理 5 min, 采用电泳沉积方法在 ITO玻璃表面电镀 10分钟, 30 °C真空干燥 10 h,得到 荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器。
取步骤 D制备的光学 pH传感器分别在 pH值为 4.01, 5.02, 5.51, 5.98,
6.51 , 6.62, 6.71, 6.85, 7.02, 8.01, 10.01, 11.02, 12.0的溶液中测试其荧 光强度。
图 7表明了荧光素和庚烷磺酸钠共插层水滑石的 (003 ) 晶面衍射峰出 现在 4.72, 对应层间距 4Q3为 1.87 nm, 而镁铝硝酸根水滑石层间距 ^K 为 0.87 nm。 这表明荧光素和庚烷磺酸钠成功的插入了水滑石层间。 XRD曲线 ( 10/)和 (11/) 峰消失, 说明荧光素和庚烷磺酸钠共插层水滑石膜具有垂 直于 c轴方向的取向。 同时由 SEM图也证明镀覆的荧光素和庚烷磺酸钠共 插层水滑石薄膜具有很好的平行于基底的取向。元素分析结果给出了荧光素 和 庚 烷 磺 酸 钠 共 插 层 水 滑 石 的 化 学 式 为 [Mgo.75Alo.25(OH)2](FLU)o.ooi(HES)o.329 · 0.45H2O。荧光强度随 pH值的 的增加而增加, 说明荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器对 pH具有很好的响应。 通过重复操作实验说明同一个膜在同一 pH值, 即 pH 值 5.51, 7.02和 10.01下其荧光强度的标准偏差分别为只有 1.45%, 0.85%和 0.94%, 说明此 pH传感器具有很好的操作稳定性。 pH传感器具有 2秒钟较 快的响应值。
实施例 3
步骤 A:称取 17.64 g Ζη(Ν03)2·6Η20和 11.25 g Α1(Ν03)3·9Η20, Ζη /Al=2, 溶于 150 ml去 C02、去离子水配制混合盐溶液, 另取 45 ml H3-H20调节上 述混合溶液至 pH为 7,得到浆状液;将此浆状液置于压力容弹中,于 120 °C 反应 10 h, 用去 C02、 去离子水离心洗搽 3次得到浆状物; 将 3 g浆状物用 160ml去 C02、 去离子水分散, 制备成胶体溶液, 密封保存;
步骤 B: 将荧光素和庚烷磺酸钠溶于去 C02、 去离子水中, 分别配成浓 度为 5xl0—5mol/l和 0.02mol/l溶液;
步骤 C: 取步骤 A中制得的胶体溶液 16ml, 步骤 B中制备的荧光素溶 液 8ml, 庚烷磺酸钠溶液 8ml于四口瓶中, 加入 150 1111去(:02、 去离子水; 用 0.2 mol/1 NaOH溶液滴定至 pH值为 8.0;在 N2保护下, 65 °C水浴加热搅 拌反应 48 h,用脱 C02去离子水离心洗涤 3次, 乙醇离心洗涤 3次得到浆状 物, 然后将 3 g浆状物用 150ml乙醇分散, 得到胶体溶液, 密封保存;
步骤 D: 取步骤 C中密封保存的胶体溶液 16ml, N2保护下超声处理 6 min, 采用电泳沉积方法在 ITO玻璃表面电镀 5分钟, 65 °C真空干燥 13 h, 得到荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器。
取步骤 D制备的光学 pH传感器分别在 pH值为 4.01, 5.02, 5.51, 5.98, 6.51, 6.62, 6.71 , 6.85, 7.02, 8.01, 10.01, 11.02, 12.0的溶液中测试其莢 光强度。
图 8表明了荧光素和庚烷磺酸钠共插层水滑石的 (003 ) 晶面衍射峰出 现在 4.60°, 对应层间距 4为 1.90 nm, 而镁铝硝酸根水滑石层间距 为 0.87 nm。 这表明荧光素和庚烷磺酸钠成功的插入了水滑石层间。 XRD曲线 ( 10/) 和 (11/) 峰消失, 说明荧光素和庚垸磺酸钠共插层水滑石膜具有垂 直于 c轴方向的取向。 同时由 SEM图也证明镀覆的荧光素和庚烷磺酸钠共 插层水滑石薄膜具有很好的平行于基底的取向。元素分析结果给出了荧光素 和 庚 烷 磺 酸 钠 共 插 层 水 滑 石 的 化 学 式 为 [Zn0.67Al0.33(OH)2]( FLU)0.00l(HES)0.329 · 0.32H2O。荧光强度随 pH值的 的增加而增加, 说明荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器对 pH具有很好的响应。 通过重复操作实验说明同一个膜在同一 pH值, 即 pH 值 5.51, 7.02和 10.01下其荧光强度的标准偏差分别为只有 1.25%, 0.75%和 0.96%, 说明此 pH传感器具有很好的操作稳定性。 pH传感器具有 2秒钟较 快的响应值。
实施例 4
步骤 A:称取 17.82 g Zn(N03)2'6H20和 11.25 g Α1(Ν03)3·9Η20,Ζη /Α1=3, 溶于 150 ml去 C02、去离子水配制混合盐溶液, 另取 45 ml ΝΗ3·Η20调节上 述混合溶液至 pH为 7.5, 得到浆状液; 将此浆状液置于压力容弹中, 于 130 °C反应 11 h, 用去 C02、 去离子水离心洗涤 5次得到浆状物; 将 1 g浆状物 用 170ml去 C02、 去离子水分散, 制备成胶体溶液, 密封保存; 步骤 B : 将荧光素和庚烷磺酸钠溶于去 C02、 去离子水中, 分别配成浓 度为 2x 10— 5mol/l和 0.2mol/l溶液;
步骤 C: 取步骤 A中制得的胶体溶液 1 1ml, 步骤 B中制备的荧光素溶 液 5ml, 庚烷磺酸钠溶液 5ml于四口瓶中, 加入 160 1111去(302、 去离子水; 用 0.2 mol/1 NaOH溶液滴定至 pH值为 8.0;在 N2保护下, 65 °C水浴加热搅 拌反应 48 h,用脱 C02去离子水离心洗涤 3次, 乙醇离心洗涤 3次得到浆状 物, 然后将 l g浆状物用 150ml乙醇分散, 得到胶体溶液, 密封保存;
步骤 D: 取步骤 C中密封保存的胶体溶液 16ml, N2保护下超声处理 6 min, 采用电泳沉积方法在 ITO玻璃表面电镀 7分钟, 60 °C真空干燥 l l h, 得到荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器。
取步骤 D制备的光学 pH传感器分别在 pH值为 4.01, 5.02 , 5.51, 5.98, 6.51, 6.62, 6.71, 6.85 , 7.02, 8.01, 10.01, 1 1.02, 12.0的溶液中测试其荧 光强度。
图 9表明了荧光素和庚烷磺酸钠共插层水滑石的 (003 ) 晶面衍射峰出 现在 4.92°, 对应层间距 ί οω为 1.95 nm, 而镁铝硝酸根水滑石层间距 ^为 0.87 nm。 这表明荧光素和庚烷磺酸钠成功的插入了水滑石层间。 XRD曲线 ( 10/)和 (11/) 峰消失, 说明荧光素和庚烷磺酸钠共插层水滑石膜具有垂 直于 c轴方向的取向。 同时由 SEM图也证明镀覆的荧光素和庚烷磺酸钠共 插层水滑石薄膜具有很好的平行于基底的取向。元素分析结果给出了荧光素 和 庚 烷 磺 酸 钠 共 插 层 水 滑 石 的 化 学 式 为 [Zn0.75Alo.25(OH)2]( FLU)0.0001(HES)0.3299 · 0·68Η2Ο。荧光强度随 pH值 的的增加而增加, 说明荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器 对 pH具有很好的响应。 通过重复操作实验说明同一个膜在同一 pH值, 即 pH值 5.51, 7.02和 10.01下其荧光强度的标准偏差分别为只有 1.43%, 0.96% 和 0.94%, 说明此 pH传感器具有很好的操作稳定性。 pH传感器具有 2秒钟 较快的响应值。

Claims

权 利 要 求
1.一种荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器,其特征在 于,该传感器由导电材料和表面镀覆的荧光素和庚垸磺酸钠共插层水滑石薄 膜组成, 其中荧光素和庚烷磺酸钠共插层水滑石的分子式为-
(Mi) x (M2) 1- x (FLU) y ( HES) z (OH) 2 - /"H20,
= 0.5-0.8, 10— ¾y /z≤10— 2, m=0.3-1.5为层间结晶水分子数;
HES为庚烷磺酸钠, FLU为荧光素。
2. '—种荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器的制备方 法, 其特征在于, 其制备步骤如下:
a. 将 !V^和 M2的可溶性无机盐溶于去 C02、 去离子水中, 配成混合盐 溶液, 其中 Μ^Π Μ2摩尔比为 1-3, Mi浓度为 0.01-1.6M; 用 ΝΗ3·Η20调节 上述混合盐溶液至 pH为 7-10, 得到浆状液; 将此浆状液置于压力容弹中, 于 110-150 °C反应 8-12 h, 用去 C02、 去离子水离心洗涤 1-6次得到浆状物; 将 1-lOg浆状物用 100-200ml去 C02、 去离子水分散, 制备成胶体溶液, 密 封保存;
b. 将荧光素和庚垸磺酸钠溶于去 co2、 去离子水中, 分别配成浓度为
10"5-10"4mol/l的 A溶液和 0.01-2 mol/1的 B溶液;
c. 取 a步骤中制得的胶体溶液 5-20ml, b步骤得到的 A溶液 l-20ml和 B溶液 l-20ml, 三者混合于四口烧瓶中, 并加入 100-200ml去 C02、 去离子 水; 用浓度为 0.1-1 mol/1 NaOH溶液调节 pH为 7-9, 在 N2保护下, 20-80 °C 搅拌反应 24-72 h, 用去 C02、 去离子水离心洗涤 1-6次, 乙醇离心洗涤 1-6 次得到桨状物, 然后将 1-lOg浆状物用 100-200ml乙醇分散得到胶体溶液, 密封保存;
d. 取步骤 c制得的胶体溶液 l-20ml, N2保护下超声处理 2-10 min后, 采用电泳沉积法在导电材料表面电镀 1-60 min, 在导电材料表面铺展成膜, 40-80 °C真空干燥 10-50 h,得到荧光素和庚烷磺酸钠共插层水滑石的光学 pH 传感器。
3. 根据权利要求 1所述的一种荧光素和庚烷磺酸钠共插层水滑石的光 学 pH传感器, 其特征在于, 所述的 为二价金属离子 Mg2+、 Zn2+、 Ni2+ 中的任何一种, ^12为三价金属离子 Fe3+、 Al3+中的任何一种。
4. 根据权利要求 2所述的一种荧光素和庚垸磺酸钠共插层水滑石的光 学 pH传感器的制备方法, 其特征在于, 所述的 M1为二价金属离子 Mg2+、 Zn2+、 Ni2+中的任何一种, 1^2为三价金属离子 Fe3+、 Al3+中的任何一种。
5.根据权利要求 1或 3所述的一种荧光素和庚烷磺酸钠共插层水滑石的 光学 pH传感器, 其特征在于, 所述的导电材料为 ITO玻璃, 铝, 铜, 金中 的任何一种。
6.根据权利要求 2或 4所述的一种荧光素和庚烷磺酸钠共插层水滑石的 光学 pH传感器的制备方法,其特征在于,所述的导电材料为 ΠΌ玻璃,铝, 铜, 金中的任何一种。
7.根据权利要求 6所述一种荧光素和庚垸磺酸钠共插层水滑石的光学 pH传感器的制备方法, 其特征在于, 其制备条件如下:
a. 将 Mg2+和 Al3+的可溶性无机盐溶于去 C02、 去离子水中, 配成混合 盐溶液, 其中 Mg2+和 Al3+摩尔比为 2, Mg2+浓度为 1.0M; 用 Η3·Η20调节 上述混合盐溶液至 pH为 8.5,得到浆状液; 将此浆状液置于压力容弹中, 于 140。C反应 10 h, 用去 C02、去离子水离心洗涤 4次得到浆状物; 将 5g浆状 物用 150ml去 C02、 去离子水分散, 制备成胶体溶液, 密封保存;
b. 将荧光素和庚垸磺酸钠溶于去 co2、 去离子水中, 分别配成浓度为 2x10— 5mol/l的 A溶液和 0.02mol/l的 B溶液;
c. 取 a步骤中制得的胶体溶液 15ml, b步骤得到的 A溶液 10ml和 B 溶液 10ml, 三者混合于四口烧瓶中, 并加入 150ml去 C02、 去离子水; 用 浓度为 0.2 mol/1 NaOH溶液调节 pH为 8.0,在 N2保护下, 65 搅拌反应 48 h, 用去 C02、 去离子水离心洗涤 4次, 乙醇离心洗涤 2次得到桨状物, 然 后将 5g浆状物用 100-200ml乙醇分散得到胶体溶液, 密封保存;
d.取步骤 c制得的胶体溶液 20ml, N2保护下超声处理 lO min后, 采用 电泳沉积法在 ΓΓΟ玻璃表面电镀 10 min, 在 ITO玻璃表面铺展成膜, 65 真空干燥 12 h, 得到荧光素和庚烷磺酸钠共插层水滑石的光学 pH传感器。
PCT/CN2010/000305 2010-01-07 2010-03-12 一种荧光素和庚烷磺酸钠共插层水滑石的光学ph传感器及其制备方法 WO2011082505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/520,694 US9029167B2 (en) 2010-01-07 2010-03-12 Preparation of an optical PH sensor based on fluorescein and 1-heptanesulfonic acid sodium Co-intercalated layered double hydroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010033948.9 2010-01-07
CN 201010033948 CN101793828B (zh) 2010-01-07 2010-01-07 一种荧光素和庚烷磺酸钠共插层水滑石的光学pH传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2011082505A1 true WO2011082505A1 (zh) 2011-07-14

Family

ID=42586636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000305 WO2011082505A1 (zh) 2010-01-07 2010-03-12 一种荧光素和庚烷磺酸钠共插层水滑石的光学ph传感器及其制备方法

Country Status (3)

Country Link
US (1) US9029167B2 (zh)
CN (1) CN101793828B (zh)
WO (1) WO2011082505A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127425B (zh) * 2010-12-31 2013-01-23 北京化工大学 8-羟基-1,3,6-三磺酸基芘阴离子和辛烷磺酸根阴离子共插层水滑石复合发光材料
KR20170068968A (ko) * 2015-12-10 2017-06-20 삼성전자주식회사 검체 분석 장치 및 그 분석방법
CN111051207A (zh) * 2017-04-20 2020-04-21 沃拉蒂莱分析公司 用于跟踪化学品和异味暴露的系统和方法
CN108531162B (zh) * 2018-04-20 2020-07-24 北京化工大学 一种荧光素@CTAB@ssDNA与层状复合金属氢氧化物复合发光薄膜及其制备方法
HUP1900197A2 (hu) * 2019-06-04 2020-12-28 Moow Farm Kft Új polimer gél hordozó polimer indikátor kombináció
CN112250896B (zh) * 2020-10-08 2022-07-05 北京化工大学 一种基于碳点和水滑石形成的压制变色发光传感器薄膜及其制备方法
DE102021127227A1 (de) 2021-10-20 2023-04-20 Endress+Hauser Conducta Gmbh+Co. Kg Sensor zur Messung eines pH-Werts
CN115192767B (zh) * 2022-07-21 2024-02-02 河北工业大学 一种兼具抗菌成骨性能粉体及其制备方法和应用
CN116376041B (zh) * 2023-03-27 2024-09-17 北京化工大学 一种基于水滑石限域效应的可控同手性超分子组装体的制备及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607644A (en) * 1993-06-10 1997-03-04 Optical Sensors Incorporated Optical sensor for the measurement of pH in a fluid, and related sensing compositions and methods
CN1792808A (zh) * 2006-01-06 2006-06-28 北京化工大学 一种阴离子型表面活性剂插层铁基水滑石及其制备方法
CN101504369A (zh) * 2009-03-18 2009-08-12 北京化工大学 一种生物荧光探针分子插层水滑石及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333005C (zh) * 2005-12-19 2007-08-22 北京化工大学 超分子插层结构紫外光吸收剂及其制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607644A (en) * 1993-06-10 1997-03-04 Optical Sensors Incorporated Optical sensor for the measurement of pH in a fluid, and related sensing compositions and methods
CN1792808A (zh) * 2006-01-06 2006-06-28 北京化工大学 一种阴离子型表面活性剂插层铁基水滑石及其制备方法
CN101504369A (zh) * 2009-03-18 2009-08-12 北京化工大学 一种生物荧光探针分子插层水滑石及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHI, W.Y.: "Molecular Orientation and Fluorescence Studies on Naphthalene Acetate Intercalated Zn2Al Layered Double Hydroxide", J. PHYS. CHEM. C, vol. 112, 2008, pages 19886 - 19895 *
UMBERTO C. ET AL.: "Surface Uptake and Intercalation of Fluorescein Anions into Zn-Al-Hydrotalcite.", PHOTOPHYSICAL CHARACTERIZATION OF MATERIALS OBTAINED *

Also Published As

Publication number Publication date
CN101793828A (zh) 2010-08-04
US9029167B2 (en) 2015-05-12
US20120282706A1 (en) 2012-11-08
CN101793828B (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2011082505A1 (zh) 一种荧光素和庚烷磺酸钠共插层水滑石的光学ph传感器及其制备方法
Han et al. Water-soluble boron carbon oxynitride dots with excellent solid-state fluorescence and ultralong room-temperature phosphorescence
CN102897724B (zh) 硒化锡纳米花及其制备方法
Hu et al. Colloidally stable monolayer nanosheets with colorimetric responses
CN107215863A (zh) 一种制备石墨烯/mof多孔复合材料水凝胶和气凝胶的方法
CN104591233B (zh) 一种氧化镁纳米晶包覆石墨烯复合材料及其制备方法
CN101474899A (zh) 石墨烯-无机材料复合多层薄膜及其制备方法
CN103623741B (zh) 石墨烯分散剂、其制备方法及石墨烯的制备方法
CN103408055A (zh) 一种球形Cu2O多孔吸附材料的常温制备方法
Fan et al. Decoration of surface-carboxylated graphene oxide with luminescent Sm 3+-complexes
CN107586392A (zh) 一种导电高分子薄膜的制备方法及用途
Kar et al. Highly stable and water dispersible polymer-coated CsPbBr 3 nanocrystals for Cu-ion detection in water
CN1333113C (zh) 高度定向层状双羟基复合金属氧化物薄膜及其制备方法
Ray et al. Synthesis of highly stable double-coated Zn-doped cesium lead bromide nanocrystals for indium ion detection in water
CN108329910B (zh) 一种氧化石墨烯接枝8-羟基喹啉荧光复合物及其插层层状双氢氧化物荧光复合材料
CN110487772B (zh) 一种三维SnO2/Ag NPs拉曼增强基底及其制备方法与应用
Liu et al. Cross-linked polymer modified layered double hydroxide nanosheet stabilized CsPbBr3 perovskite quantum dots for white light-emitting diode
Xiang et al. Spatial organization and optical properties of layer-by-layer assembled upconversion and gold nanoparticles in thin films
CN113136173B (zh) 碗状有机硅热储能相变微胶囊及制备方法
Xiao et al. Controllable Production of Micro-nanoscale Metal-Organic Frameworks Coatings on Cotton Fabric for Sensing Cu 2+
CN101504369B (zh) 一种生物荧光探针分子插层水滑石及其制备方法
Virtudazo et al. Synthesis and characterization of geometrically tunable nano-size hollow silicate particles and their dip-coating prepared films for thermal management applications
WO2017134769A1 (ja) 金属膜形成用組成物および金属膜形成方法
CN101318688A (zh) 一种通过前驱体反应制备氧化铜纳米空心球的方法
Mizoshita et al. Nanostructured organosilicas constructed by homopolycondensation of a transesterified bulky precursor and their potential in laser desorption/ionization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13520694

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841849

Country of ref document: EP

Kind code of ref document: A1