WO2011081087A1 - 走査電子顕微鏡 - Google Patents

走査電子顕微鏡 Download PDF

Info

Publication number
WO2011081087A1
WO2011081087A1 PCT/JP2010/073315 JP2010073315W WO2011081087A1 WO 2011081087 A1 WO2011081087 A1 WO 2011081087A1 JP 2010073315 W JP2010073315 W JP 2010073315W WO 2011081087 A1 WO2011081087 A1 WO 2011081087A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic chuck
applied voltage
sample
inspected
voltage
Prior art date
Application number
PCT/JP2010/073315
Other languages
English (en)
French (fr)
Inventor
菅野誠一郎
橘内浩之
松島勝
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US13/518,236 priority Critical patent/US8653459B2/en
Publication of WO2011081087A1 publication Critical patent/WO2011081087A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2007Holding mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes

Definitions

  • the present invention relates to a scanning electron microscope, and more particularly to a scanning electron microscope in which an electrostatic chuck is provided on a sample stage.
  • a scanning electron microscope is used for dimensional measurement of semiconductor device patterns and defect inspection.
  • a length-measuring SEM Critical-Dimension Scanning Electron Microscope, hereinafter referred to as CD-SEM
  • CD-SEM Cross-Dimension Scanning Electron Microscope
  • a defect inspection SEM is used for defect inspection.
  • a scanning electron microscope is also used for continuity inspection of a wiring deep hole using potential contrast.
  • CD-SEM is used for measuring the dimensions of device patterns in a semiconductor production line, it is very important to improve throughput as well as performance as an electron microscope such as resolution and measurement reproducibility. There are a plurality of factors that determine the throughput. Particularly important are the moving speed of the sample stage on which the wafer is loaded and the time required for autofocus when acquiring an image. In order to improve these two items, an electrostatic chuck is used as means for fixing the wafer to the sample stage.
  • the electrostatic chuck has an advantage that the wafer can be stably fixed. Therefore, the wafer is prevented from being displaced from the sample stage, and the wafer can be transferred at high acceleration and high speed. Further, since the electrostatic chuck adsorbs the entire surface of the wafer with a substantially uniform force, it can be flattened even when the wafer is warped. Accordingly, the time for determining the value of the current to be passed through the coil of the objective lens for focusing, that is, the autofocus time is shortened.
  • the wafer is originally a flat disk-shaped member, but in reality, it is slightly warped or has irregularities. In recent years, semiconductor wafers have a tendency to increase in diameter. For this reason, warpage and unevenness tend to increase. Conventionally, in order to ensure the flattening of a wafer by an electrostatic chuck, the voltage applied to the electrostatic chuck tends to be set to a relatively large value. That is, a predetermined relatively large voltage is applied to the electrostatic chuck regardless of the type or size of the warp or unevenness of the wafer.
  • Patent Document 1 discloses an example of a method for erasing residual charges. In order to avoid the generation of the residual charge, it is necessary to avoid unnecessarily increasing the voltage applied to the electrostatic chuck.
  • An object of the present invention is to provide a technique capable of adsorbing a sample without unnecessarily increasing the voltage applied to the electrostatic chuck.
  • an adsorption test for an electrostatic chuck is performed using a test sample with a known warpage size and warpage pattern, and the critical applied voltage when the adsorption state changes from "bad” to "good” is determined.
  • the flatness of the sample to be inspected is measured, and the warp size and warpage pattern of the sample to be inspected are detected.
  • the applied voltage to the electrostatic chuck is set based on the warp size and warp pattern of the sample to be inspected and the known critical applied voltage.
  • the wafer can be adsorbed without unnecessarily increasing the voltage applied to the electrostatic chuck.
  • the structure of the scanning electron microscope of the present invention will be described with reference to FIG.
  • a length-measuring scanning electron microscope (CD-SEM) will be described as an example of a scanning electron microscope, but according to the present invention, the invention is not limited to a CD-SEM.
  • the scanning electron microscope of this example includes an electron source 1, a primary electron acceleration electrode 2, a focusing electron lens 4, a diaphragm 5, a scanning coil 6, a secondary electron detector 7, an objective lens 8, and an XY stage 16. . These are arranged inside the housing 13 in which high vacuum is maintained.
  • the scanning electron microscope of this example further includes adsorption state measuring devices 34 and 35 and a control device 20.
  • the XY stage 16 includes an X stage 12, a Y stage 11 disposed on the X stage 12, and an electrostatic chuck 10 disposed on the Y stage 11, and is disposed in a processing chamber 18 of the housing 13. Yes.
  • an electrostatic chuck system several types such as a Coulomb system and a Johnson Rabeck system are known. According to the present invention, any type of electrostatic chuck may be used, but it is assumed below that it is a coulomb type electrostatic chuck.
  • a semiconductor wafer (hereinafter simply referred to as a wafer) 9 is mounted on the electrostatic chuck 10 as a sample.
  • a wafer 9 is mounted on the electrostatic chuck 10 as a sample.
  • the case of the wafer 9 as a sample will be described, but the sample is not limited to the wafer.
  • the wafer 9 can freely move in both the X direction and the Y direction. Therefore, an arbitrary position of the wafer can be measured.
  • the electrostatic chuck 10 is formed with three through holes (not shown), and the lift pins can be moved in the vertical direction in the three through holes. When the wafer is attached to or detached from the electrostatic chuck, the lift pins move up and down.
  • the electron beam 14 emitted from the electron source 1 is accelerated by the primary electron acceleration electrode 2 to which a high voltage is applied by the high voltage power source 3.
  • the electron beam 14 is converged by the converging electron lens 4.
  • the amount of beam current of the electron beam 14 is adjusted by the diaphragm 5.
  • the electron beam 14 is scanned two-dimensionally by the scanning coil 6.
  • the electron beam is focused and focused by the objective lens 8 disposed immediately above the wafer 9 and is incident on the wafer 9.
  • Secondary electrons 15 are generated from the wafer 9.
  • the secondary electrons 15 are detected by the secondary electron detector 7.
  • the amount of secondary electrons detected reflects the shape of the sample surface.
  • the fine pattern on the sample can be imaged by synchronizing the scanning of the electron beam and detecting the secondary electrons and displaying them on the monitor. In the CD-SEM, for example, when measuring the line width of the gate electrode, the edge of the pattern is discriminated based on the change in brightness of the obtained image, and the dimension is derived
  • the casing and its internal structure are shown in a cross-sectional view as seen from the side, but the X-Y stage, electrostatic chuck, and wafer are shown in perspective views so that the operation can be easily imagined.
  • the adsorption state measuring devices 34 and 35 measure the adsorption state of the wafer 9 mounted on the electrostatic chuck 10.
  • the adsorption state measured by the adsorption state measuring devices 34 and 35 is sent to the control device 20.
  • the control device 20 sets a DC voltage to be applied to the electrostatic chuck 10 based on the attracting state, details of which will be described later.
  • the sucked state is the flatness of the wafer 9 sucked on the electrostatic chuck 10. Therefore, the adsorption state measuring devices 34 and 35 may have any structure as long as the flatness of the sample can be measured.
  • an optical height measuring device having a light emitter 34 and a light receiver 35 or Z It may be a sensor.
  • the height measuring device not only an optical height measuring device but also a capacitance type displacement sensor can be used.
  • the flatness of the wafer can also be measured using an image taken with an optical microscope attached to the scanning electron microscope or the scanning electron microscope itself. For example, the height of the surface of the wafer can be measured by converting the sharpness of the photographed image into a numerical value and using it as a determination criterion, and the flatness and the suction state can be determined.
  • the electrostatic chuck 10 of this example is a so-called bipolar electrostatic chuck, and is mounted on a Y stage 11 of an XY stage.
  • the electrostatic chuck 10 has a main body 24 made of alumina sintered ceramics, a circular internal electrode 26 and a ring-shaped internal electrode 25 provided inside the main body. These internal electrodes 25 and 26 are connected to DC power sources 27 and 28 for operating the electrostatic chuck and a retarding power source 29.
  • the DC power sources 27 and 28 are connected to the retarding power source 29 so as to overlap in a floating manner.
  • the wafer 9 can be electrostatically adsorbed on the electrostatic chuck 10 by applying a potential difference between the internal electrodes using the DC power sources 27 and 28.
  • the retarding power source 29 is used to apply a deceleration voltage (retarding voltage) to the wafer.
  • the electron beam incident on the wafer 9 is accelerated and narrowed by a high acceleration voltage in order to increase the resolution.
  • a device formed on the wafer is damaged. Therefore, in order to reduce such damage, the electron beam incident on the wafer is decelerated immediately before entering the wafer.
  • the retarding voltage By applying the retarding voltage, a negative electric field is generated, and the electron beam incident on the wafer is decelerated.
  • the retarding voltage is applied to the electrostatic chuck 10.
  • the retarding voltage may be directly applied to the wafer 9 via a contact pin or the like.
  • the electrostatic chuck 10 of this example is different from the conventional electrostatic chuck shown in FIG. 2A in that an adsorption state measuring device for measuring the adsorption state of the wafer is provided.
  • the adsorption state measuring device measures the flatness as the adsorption state of the wafer.
  • the flatness is the height and height distribution from the surface of the electrostatic chuck to the measurement point on the surface of the wafer.
  • the optical height measuring device 36 will be described as an example of the adsorption state measuring device.
  • the height measuring device 36 includes a light emitter 34 and a light receiver 35. Light from the light emitter 34 is reflected by the wafer 9 and detected by the light receiver 35.
  • the control device 20 measures the flatness of the wafer from the position of the incident light detected by the light receiver 35.
  • the flatness of the wafer that is, the suction state of the wafer loaded on the electrostatic chuck can be monitored.
  • the control device 20 sets the voltage applied to the electrostatic chuck to an optimum value based on the wafer adsorption state.
  • a flat wafer having almost no warpage and a wafer having a warpage of about several hundred ⁇ m are uniformly applied with a high voltage of ⁇ 2 kV, for example.
  • the applied voltage can be set to ⁇ 100 V in the case of a wafer having no warp, and the applied voltage can be set to ⁇ 600 V in the case of a wafer having a warp of 100 ⁇ m.
  • FIG. 3 shows a plan configuration of the processing chamber 18, the load chamber 80, and the preparation chamber 70 in the lower part of the casing 13 (FIG. 1) of the scanning electron microscope of this example.
  • An X stage 12, a Y stage 11, and an electrostatic chuck 10 are disposed in the processing chamber 18.
  • a wafer 9 is mounted on the electrostatic chuck 10.
  • the preparation chamber 70 is provided with a transport mechanism 71 that performs front-rear, telescopic, and rotational operations.
  • the load chamber 80 is provided with a transport mechanism 81 that performs rotation and expansion / contraction operations.
  • a gate valve 82 is provided between the processing chamber 18 and the load chamber 80.
  • a gate valve 72 is provided between the load chamber 80 and the preparation chamber 70.
  • the processing chamber 18 is maintained at a high vacuum.
  • the preparation chamber 70 is under atmospheric pressure.
  • the load chamber 80 is connected to either the processing chamber 18 or the preparation chamber 70.
  • the two gate valves 72 and 82 are closed, the load chamber 80 is evacuated, and then only the second gate valve 82 is opened.
  • the load chamber 80 is released to atmospheric pressure, and then only the first gate valve 72 is opened.
  • the gate valve 82 When transferring the wafer to the processing chamber 18, the gate valve 82 is closed, the gate valve 72 is opened, and the load chamber 80 is brought to atmospheric pressure. The wafer of the load cassette 60 is transferred to the load chamber 80 by the transfer mechanism 71 of the preparation chamber 70. Next, the gate valve 82 is opened, the gate valve 72 is closed, and the load chamber 80 is evacuated. The wafer is transferred to the processing chamber 18 by the transfer mechanism 81 of the load chamber 80. When the wafer is mounted on the electrostatic chuck 10, the gate valve 82 is closed. When returning the wafer from the processing chamber 18 to the unload cassette 62, the reverse path is carried.
  • the load chamber 80 is provided with a flatness measuring device for measuring the flatness of the wafer.
  • Flatness is the height and height distribution from the plane on which the wafer is placed to the measurement point on the surface of the wafer.
  • an optical height measuring device will be described as an example of a wafer flatness measuring device.
  • the height measuring device has a light emitter 84 and a light receiver 85. Light from the light emitter 84 is reflected by the wafer 9 and detected by the light receiver 85.
  • the control device 20 (FIG. 1) measures the height and height distribution of the wafer from the position of the incident light detected by the light receiver 85.
  • the wafer is originally a flat plate member that is flat but actually has a slight warpage.
  • the warp mode of the wafer includes a convex type, a concave type, and other types, but is usually a convex type or a concave type.
  • the convex type is a case where the surface on which the pattern is formed is convex outward
  • the concave type is the case where the surface on which the pattern is formed is concave outward.
  • the wafer flatness measuring device measures the flatness of the wafer, that is, the height and height distribution of the measurement points on the surface of the wafer.
  • the surface of the wafer is divided into a plurality of regions.
  • the surface of the wafer may be divided into concentric ring-shaped regions, but may be divided into grid-like regions. By measuring the height of each region, the height and height distribution of the wafer can be obtained.
  • the control device 20 (FIG. 1) detects the warpage mode of the wafer from the flatness distribution of the wafer.
  • the wafer flatness measuring device may be provided inside the load chamber 80 or outside. When provided outside the load chamber 80, an observation window is provided in the load chamber 80, and a light emitter 84 and a light receiver 85 are provided there.
  • the wafer flatness measuring apparatus may be provided in the preparation chamber 70.
  • step S101 the wafer is carried into the processing chamber 18 of the housing 13 of the scanning electron microscope by the transfer mechanism.
  • step S102 the wafer is loaded on the electrostatic chuck.
  • electrostatic chuck methods such as a Coulomb method and a Johnson Rabeck method, are known.
  • step S103 the electrostatic power source of the electrostatic chuck is turned on and a predetermined voltage is applied. Thereby, the wafer is electrostatically attracted to the electrostatic chuck.
  • the applied voltage required to stably electrostatically attract the wafer depends on the electrostatic chuck system and the type and state of the wafer.
  • the dielectric film has a resistivity of about 1 ⁇ 10 9 ⁇ cm to about 10 12 ⁇ cm, it is about ⁇ 300 V to about ⁇ 600 V.
  • a Coulomb electrostatic chuck in which the dielectric film has a specific resistivity higher than that, it is about ⁇ 1000 V to ⁇ 2000 V.
  • step S104 the XY stage is operated so that the inspection object on the wafer is placed at the electron beam irradiation position, and the wafer is moved to a predetermined coordinate position.
  • the inspection target on the wafer is a predetermined region of a chip that is a target for measurement, analysis, and image acquisition.
  • step S105 wafer inspection (measurement, analysis, image acquisition, etc.) is performed according to the recipe conditions.
  • the recipe conditions are beam irradiation conditions, coordinate information of an inspection object, and the like, and are input / stored in a control device (not shown).
  • beam irradiation is stopped in step S106.
  • step S107 it is determined whether or not a preset recipe is completed. If the recipe is not completed, step S104 to step S106 are repeated. If the recipe is completed, the process proceeds to step S108, the XY stage is operated, and the wafer is moved to the initial position. That is, the electrostatic chuck on which the wafer is mounted is moved to the initial position.
  • step S109 the DC power source of the electrostatic chuck is turned off and the voltage application is stopped.
  • step S110 a reverse voltage is applied in order to eliminate the residual charge.
  • step S111 the lift pins are raised and the wafer is peeled off from the electrostatic chuck.
  • step S112 the wafer is unloaded.
  • a reverse voltage is applied in step S110 in order to eliminate the residual charge.
  • an estimated value of the residual charge amount is obtained, and a reverse voltage necessary for eliminating the estimated value is obtained.
  • An estimated value of the residual charge amount can be obtained by monitoring a current flowing when a similar wafer is peeled off. Therefore, the conventional method requires a step of estimating the amount of residual charge, a step of calculating a reverse voltage value based on the estimated value of the residual charge amount, and a step of applying a reverse voltage. Therefore, not only the configuration becomes complicated, but also a problem of a reduction in throughput occurs.
  • the voltage applied to the electrostatic chuck should be as close to zero as possible.
  • the electrostatic chuck has a function of flattening the wafer. For this reason, it is necessary to operate the electrostatic chuck while minimizing the applied voltage.
  • the minimum voltage value necessary for securely holding and flattening the wafer varies depending on the electrostatic method, the state of the wafer, and the like. Therefore, according to the present invention, an appropriate minimum necessary applied voltage value is obtained according to the wafer, and it is decided to avoid applying an unnecessarily large voltage.
  • FIG. 5 shows an example of the result of the wafer adsorption experiment with respect to the electrostatic chuck performed by the inventors of the present application.
  • the wafers used in the experiment of FIG. 5 are a wafer having no warp and a wafer having a convex type and a concave type having a predetermined (several hundred ⁇ m) warp.
  • the DC voltage applied to the electrostatic chuck was increased every 100V to observe the wafer adsorption state.
  • a circle indicates that the adsorption state is good, and a cross indicates that the adsorption state is poor.
  • the flatness of the wafer attracted to the electrostatic chuck is sufficient, the attracted state is good, and when the flatness is insufficient, the attracted state is determined to be poor.
  • the flatness may be determined by the height of the wafer.
  • the voltage applied to the electrostatic chuck is set based on the result of the wafer adsorption experiment as described below.
  • the increment ⁇ V of the applied voltage may be, for example, 20V obtained by dividing 100V into five, or 50V obtained by dividing 100V into two.
  • V 0 1000 V in the case of a concave warpage mode wafer.
  • the increment ⁇ V of the applied voltage may be, for example, 20V obtained by dividing 100V into five, or 50V obtained by dividing 100V into two.
  • the increment ⁇ V of the applied voltage may be, for example, 10V obtained by dividing 50V into five.
  • the wafer chucking experiment with respect to the electrostatic chuck is performed, the applied voltage is increased, and the applied voltage when the chucking state is changed from “defective” to “good” is stored.
  • the applied voltage immediately before the adsorption state changes from “bad” to “good” is set as the initial voltage value.
  • an increment ⁇ V of the applied voltage is set. The increment ⁇ V is determined by an administrator or a user.
  • the applied voltage is increased while observing the suction state, and the applied voltage when the suction state changes from “defective” to “good” is set to the optimum value.
  • the increment ⁇ V of the applied voltage is set to a relatively small value, it takes a long time to obtain the optimum applied voltage, but the optimum applied voltage can be obtained accurately. Conversely, if the applied voltage increment ⁇ V is set to a relatively large value, the time required to obtain the optimum applied voltage is shortened, but the optimum applied voltage cannot be obtained accurately.
  • the initial voltage value V 0 applied to the electrostatic chuck is smaller than the applied voltage value used in step S103 of the conventional method described with reference to FIG.
  • the applied voltage immediately after the adsorption state is changed from “bad” to “good” is set as the optimum value of the applied voltage.
  • the increment ⁇ V is not set.
  • the results of the adsorption experiment shown in FIG. 5 were obtained using a wafer having no warpage and a wafer having convex and concave warpage modes having a warp of several hundred ⁇ m. Therefore, similar results can be obtained by changing the amount of warpage.
  • Such data accumulation is stored in the control device 20. Therefore, if the warp mode and the magnitude of the warp are known, the applied voltage before and after the adsorption state changes favorably from the defective state can be found. Therefore, the initial voltage and the increment can be obtained by the first example of the present invention, and the optimum value of the applied voltage can be obtained by the second example of the present invention.
  • the size of the warp means the maximum value of the height of the wafer surface. That is, in the warp of the convex mode, the height of the center is the magnitude of the warp. Further, in the concave mode warpage, the height of the peripheral edge is the size of the warp.
  • the DC voltage applied to the electrostatic chuck was increased every 100V to detect the attracted state, but the increased voltage is not necessarily 100V.
  • the initial voltage and increment are determined based on the adsorption availability comparison table as shown in FIG. 5, but instead of using the comparison table, for example, the initial voltage and increment are calculated based on a conversion formula using the amount of warpage as a parameter. It may be calculated.
  • FIG. 6 shows an example of the result of measuring the attracting force of the electrostatic chuck performed by the inventors of the present application.
  • the horizontal axis represents applied voltage ( ⁇ V), and the vertical axis represents adsorption force (Pa).
  • the attracting force of the electrostatic chuck basically changes depending on the applied voltage. That is, as the applied voltage increases, the attractive force of the electrostatic chuck increases.
  • the thickness of the ceramic dielectric film of the electrostatic chuck varies, and there is a variation of about several tens of microns with respect to the reference thickness. As a result, there is a range of applied voltages for generating the same adsorption force. Normally, a design tolerance of about ⁇ 20 ⁇ m is allowed.
  • the inventor of the present application provides an electrostatic chuck whose dielectric film thickness is a reference value, an electrostatic chuck whose dielectric film thickness is 20 ⁇ m thicker than the reference value, and a thickness of the dielectric film that is a reference value. Using three electrostatic chucks, an electrostatic chuck thinner by 20 ⁇ m, the relationship between the applied voltage and the attractive force was examined.
  • the applied voltage is 1000 V in the case of an electrostatic chuck whose dielectric film thickness is a reference value.
  • the applied voltage is 920V.
  • the applied voltage is 1080V. That is, in this example, the applied voltage required to generate the adsorption force of 2.3 kPa has a width of 160V. Therefore, the increment ⁇ V of the applied voltage may be 40V, for example, by dividing this 160V into four.
  • the increment ⁇ V of the applied voltage is set to a relatively small value, it takes a long time to obtain the optimum applied voltage, but the optimum applied voltage can be obtained accurately. Conversely, if the applied voltage increment ⁇ V is set to a relatively large value, the time required to obtain the optimum applied voltage is shortened, but the optimum applied voltage cannot be obtained accurately.
  • step S201 the wafer is transferred along the transfer path by a transfer mechanism (not shown).
  • the “transport path” is a path to transport the wafer to the processing chamber 18 of the scanning electron microscope, and is the load chamber 80 or the preparation chamber 70 in the example of FIG.
  • step S202 the flatness of the wafer, that is, the height and the height distribution are measured by the wafer flatness measuring device on the transfer path.
  • the wafer flatness measuring apparatus has been described with reference to FIG.
  • step S203 the control device 20 detects the warpage size and warpage mode of the wafer.
  • the magnitude of the warpage of the wafer may be the maximum value of the height of the wafer.
  • the warp mode of the wafer may be no warp, convex mode, or concave mode.
  • step S204 and calculates an initial voltage V 0 to be applied to the electrostatic chuck, to set the increment ⁇ V of the applied voltage. That is, the initial voltage V 0 and the increment ⁇ V of the applied voltage are set based on the result of the electrostatic chuck adsorption experiment stored in the control device 20.
  • the method for setting the initial voltage V 0 and the applied voltage increment ⁇ V has been described with reference to FIGS. 5 and 6.
  • step S205 the wafer is carried into the processing chamber 18 of the casing 13 of the scanning electron microscope by the transfer mechanism.
  • An example of the transport mechanism is shown in FIG.
  • step S206 the wafer is loaded on the electrostatic chuck.
  • electrostatic chuck methods such as the Coulomb method and the Johnson Rabeck method are known. According to the present invention, any type of electrostatic chuck may be used, but it is assumed below that it is a coulomb type electrostatic chuck.
  • step S207 to turn on the DC power supply of an electrostatic chuck, applying an initial voltage V 0. The initial voltage V 0 is set in step S204. Thereby, the wafer is electrostatically attracted to the electrostatic chuck.
  • step S208 the flatness of the wafer is measured.
  • the flatness of the wafer means the height of the wafer and the distribution of the height.
  • the height measuring device described with reference to FIG. 2B may be used.
  • step S209 it is determined whether the flatness of the wafer is within a reference value. When it is determined that the flatness of the wafer is not within the reference value, it is determined that the chucking force of the electrostatic chuck is not sufficient, that is, the applied voltage is insufficient, and the process proceeds to step S210.
  • step S210 the applied voltage is increased by an increment ⁇ V. The increment ⁇ V was set in step S204. If it is determined in step S209 that the flatness of the wafer is within the reference value, the process proceeds to step S104.
  • Steps S104 to S109 are the same as steps S104 to S109 according to the conventional method described in FIG.
  • step S109 the DC power source of the electrostatic chuck is turned off and the voltage application is stopped.
  • step S109a it is determined whether it is necessary to apply a reverse voltage. For example, if the voltage applied when the wafer is inspected is within a predetermined reference value, it is determined that application of a reverse voltage is not necessary, and if it is not within the reference value, it is determined that application of a reverse voltage is necessary. If it is determined that application of the reverse voltage is necessary, the process proceeds to step S110, and the reverse voltage is applied. If it is determined that application of the reverse voltage is not necessary, the process proceeds to step S111. Steps S111 and S112 are the same as steps S111 and S112 according to the conventional method described in FIG. In this example, step S109a and step S110 may be omitted.
  • step S201 the wafers are transferred to the transfer path one after another in order. Therefore, for example, when the first wafer is inspected in step S105 by the scanning electron microscope, the measurement in step S202 is performed on the second wafer.
  • the second wafer is loaded into the scanning electron microscope in step S101 by the transfer mechanism, the third wafer is transferred to the transfer path in step S201 by the transfer mechanism.
  • a minimum voltage necessary to attract the wafer in a flattened state is applied to the electrostatic chuck. Therefore, the amount of residual charge generated between the wafer and the electrostatic chuck can be minimized. Therefore, application of a reverse voltage for eliminating the residual charge can be unnecessary or minimized. Therefore, not only the throughput is improved, but also a highly reliable measurement apparatus that can operate stably over a long period of time can be provided.
  • the voltage applied to the electrostatic chuck is adjusted until the flatness of the wafer falls within the reference value. Therefore, the wafer is inspected in a state where it is completely attracted to the electrostatic chuck, and is transferred to the next process. Therefore, it is possible to prevent the wafer from dropping from the stage during the transfer. That is, it is possible to provide a highly reliable measuring apparatus that does not cause a transport error.
  • the adsorption force for adsorbing the wafer can be suppressed to a necessary minimum value, the change with time of the surface of the electrostatic chuck can be minimized. That is, a long-life measuring device can be provided. Further, since the attractive force can be kept low, the pressure on the contact surface between the wafer and the electrostatic chuck can be kept small. Therefore, an effect of reducing the adhesion of foreign matter to the back surface of the wafer can be expected. In the experiments by the inventors, when the voltage applied to the electrostatic chuck is changed from ⁇ 1500 V to ⁇ 100 V, the number of foreign matters on the back surface after the silicon wafer is attracted is reduced to 1/20 or less.
  • the voltage applied to the electrostatic chuck is adjusted for each wafer, but in practice, it is not always necessary to do so.
  • the applied voltage may be adjusted for each lot.
  • the applied voltage is usually adjusted by the method of this embodiment, and the applied voltage may be reviewed as appropriate at the user's discretion.
  • Step S401 to S403 are the same as steps S201 and S203 in the first example described with reference to FIG.
  • step S404 the optimum value of the applied pressure of the electrostatic chuck is set. That is, the optimum value of the applied voltage is set based on the result of the electrostatic chuck adsorption experiment stored in the control device 20. The method for setting the optimum value of the applied voltage has been described with reference to FIG.
  • Step S405 and step S406 are the same as step S205 and step S206 of the first example described with reference to FIG.
  • step S407 the electrostatic chuck DC power supply is turned on, and the optimum value of the applied voltage V is applied.
  • the optimum value of the applied voltage V was set in step S404. Thereby, the wafer is electrostatically attracted to the electrostatic chuck.
  • next steps S104 to S112 are the same as steps S104 to S112 in the first example described with reference to FIG. Step S109a and step S110 may be omitted.
  • step S401 the wafers are transferred to the transfer path one after another in order. Therefore, for example, when the first wafer is inspected in step S105 by the scanning electron microscope, the measurement in step S402 is performed on the second wafer. When the second wafer is loaded into the scanning electron microscope in step S101 by the transfer mechanism, the third wafer is transferred to the transfer path in step S401 by the transfer mechanism.
  • the flatness of the wafer is measured before the inspection by the scanning electron microscope, and the voltage value applied to the electrostatic chuck is calculated.
  • the measurement of the flatness of the wafer and the setting of the voltage applied to the electrostatic chuck are performed while the preceding wafer is inspected by the scanning electron microscope. Therefore, high throughput can be realized.
  • FIG. 9 is a graph showing the amount of deflection of the electron beam at the peripheral edge of the wafer. This graph shows an example of the result of calculating the deflection amount of an electron beam when a device on a wafer is measured by a conventional technique.
  • the horizontal axis in FIG. 9 is the distance (mm) measured from the periphery of the wafer inward in the radial direction, and the vertical axis is the beam deflection amount ( ⁇ m) on the surface of the sample.
  • the beam deflection amount varies depending on the conditions such as the retarding voltage value and the acceleration voltage. Since these conditions are not directly related to the essence of the present invention, the details are omitted.
  • FIG. 10 shows a part of a conventional scanning electron microscope.
  • an electrostatic chuck 10 is mounted on a Y stage 11, and a wafer 9 is held by suction thereon.
  • a step is formed between the outer edge of the wafer 9 and the electrostatic chuck 10.
  • the objective lens 8 is disposed above the wafer 9, and a potential adjustment plate 38 is provided below the objective lens 8.
  • a voltage is applied to the potential adjusting plate 38 in order to adjust the potential on the wafer.
  • the outer diameter of the ring-shaped internal electrode 25 of the electrostatic chuck 10 is smaller than the outer diameter of the wafer 9.
  • the optical axis 40 is arranged so as to pass through a measurement position slightly inside the outer edge of the wafer 9.
  • the electron beam 14 is focused by the objective lens 8 so as to be focused at the measurement position on the wafer 9.
  • the potential distribution is asymmetric around the optical axis 40 as shown.
  • the potential distribution 42 inside the optical axis 40 shows a normal potential distribution, but the potential distribution 43 outside the optical axis 40 is distorted and deformed. That is, the potential distribution is irregularly deformed due to the step at the outer edge of the wafer 9. Therefore, as shown in the figure, when the optical axis 40 is at a position slightly inside the outer edge of the wafer 9, the electron beam 14 is just before entering the wafer 9 due to the asymmetric potential distribution 43. Bend its orbit.
  • FIG. 11 shows a part of a scanning electron microscope according to the present invention.
  • an electrostatic chuck 10 is mounted on a Y stage 11, and a wafer 9 is held by suction thereon.
  • a step is formed between the outer edge of the wafer 9 and the electrostatic chuck 10.
  • the objective lens 8 is disposed above the wafer 9, and a potential adjustment plate 38 is provided below the objective lens 8.
  • a voltage is applied to the potential adjusting plate 38 in order to adjust the potential on the wafer.
  • the outer diameter of the ring-shaped internal electrode 25 of the electrostatic chuck 10 is larger than the outer diameter of the wafer 9.
  • a potential distribution 44 is generated outside the wafer 9.
  • This electric field 44 corrects the disturbance of the potential distribution generated by the objective lens 8. That is, of the potential distribution generated by the objective lens 8, the potential distribution 43 outside the wafer is pushed up. Therefore, the potential distributions 42 and 43 of the electric field generated by the objective lens 8 have a symmetrical shape around the optical axis 40. Therefore, the orbital bending of the electron beam 14 can be suppressed.
  • the outer diameter of the ring-shaped internal electrode 25 of the electrostatic chuck 10 is made larger than the outer diameter of the wafer 9, and further, the electrostatic chuck 10 is used to suppress the bending of the orbit of the electron beam 14.
  • a relatively large voltage is applied.
  • the magnitude of the applied voltage varies depending on the structure of the electrostatic chuck, the acceleration voltage of the electron beam, the retarding voltage, and the like. However, this applied voltage is larger than the minimum applied voltage necessary for adsorbing the wafer in a flat state. Therefore, the applied voltage for suppressing the orbital bending of the electron beam 14 is necessary when the vicinity of the outer edge of the wafer is to be inspected, but is not appropriate when other positions are inspected. .
  • the voltage applied to the electrostatic chuck is made relatively large in order to suppress trajectory bending of the electron beam 14.
  • the voltage applied to the electrostatic chuck is set to the minimum value necessary for attracting the wafer in a flattened state.
  • a third example of a wafer inspection (measurement / analysis / image acquisition) method using the scanning electron microscope of the present invention will be described with reference to FIG.
  • steps S201 to S209 of the first example of the present invention described with reference to FIG. 7 or steps S401 to S407 of the second example described with reference to FIG. 8 are performed.
  • the wafer is attracted to the electrostatic chuck in a flattened state.
  • the applied voltage of the electrostatic chuck is set to a minimum value necessary for attracting the wafer in a flattened state.
  • step S104 the XY stage is operated so that the inspection object on the wafer is placed at the electron beam irradiation position, and the wafer is moved to a predetermined coordinate position.
  • step S501 coordinate information of the position of the inspection target on the wafer is acquired from the control device.
  • step S502 it is determined whether the position to be inspected is near the outer edge of the wafer or not near the outer edge of the wafer. For example, when the inspection target is in a ring-shaped region 3 mm inside from the outer edge of the wafer, it is determined that it is near the outer edge of the wafer, and when it is in the inner region, the outer edge of the wafer is determined. You may judge that it is not near.
  • step S503 If the inspection target position is in the vicinity of the outer edge of the wafer, it is determined that the trajectory curve of the electron beam 14 needs to be suppressed, and the process proceeds to step S503. If the inspection target position is near the outer edge of the wafer, it is determined that there is no need to suppress the orbital bending of the electron beam 14, and the process proceeds to step S105.
  • step S503 the voltage applied to the electrostatic chuck is increased to a voltage necessary for suppressing the orbital bending of the electron beam 14, and the process proceeds to step S105.
  • step S105 the wafer is inspected (measurement, analysis, image acquisition, etc.) according to the recipe conditions. When the inspection (measurement / analysis / image acquisition) is completed, the voltage applied to the electrostatic chuck is returned to the original voltage in step S504.
  • step S106 beam irradiation is stopped.
  • step S107 it is determined whether or not a preset recipe is completed. If the recipe is not completed, step S104 to step S106 are repeated. If the recipe is complete, the process proceeds to step S108. Steps S108 to S112 are the same as in the first example of the present invention described with reference to FIG. Further, step S109a and step S110 may be omitted.
  • Electron source 2 ... Primary electron acceleration electrode, 3 ... High voltage power supply, 4 ... Electron lens, 5 ... Diaphragm, 6 ... Scanning coil, 7 ... Secondary electron detector, 8 ... Electron objective lens, 9 ... Wafer, 10 ... Electrostatic chuck, 11 ... Y stage, 12 ... X stage, 13 ... housing, 14 ... electron beam, 15 ... secondary electrons, 16 ... XY stage, 18 ... processing chamber, 24 ... main body, 25 ... inside ring shape Electrode, 26 ... Circular internal electrode, 27 ... DC power supply, 28 ... DC power supply, 29 ... Retarding power supply, 34 ... Light emitter, 35 ...
  • Light receiver 36 ... Height measuring device, 38 ... Potential adjustment plate, 40 ... Optical axis, 42, 43, 44 ... potential distribution, 60 ... load cassette, 62 ... unload cassette, 70 ... preparation chamber, 71 ... transport mechanism, 72 ... gate valve, 80 ... load chamber, 81 ... transport mechanism, 82 ... Gate valve, 84, 85 ... Height measuring device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 静電チャックに印加する電圧を不必要に大きくすることなしに、試料を吸着することができる技術を提供する。反りの大きさ及び反りのパターンが既知の検定用試料を用いて静電チャックに対する吸着実験を行い、吸着状態が「不良」から「良好」に変化するときの臨界印加電圧を求める。検査対象の試料を測定する場合には、検査対象の試料の平坦度を測定し、検査対象の試料の反りの大きさ及び反りのパターンを検出する。検査対象の試料の反りの大きさ及び反りのパターンと、既知の臨界印加電圧に基づいて、静電チャックへの印加電圧を設定する。

Description

走査電子顕微鏡
 本発明は、走査電子顕微鏡に関し、特に、試料ステージに静電チャックを設けた走査電子顕微鏡に関する。
 近年、半導体デバイスパターンの寸法測定や欠陥検査に走査電子顕微鏡(SEM)が用いられる。例えば、半導体デバイスのゲート寸法の測定には測長SEM(Critical-Dimension Scanning Electron Microscope、以下CD-SEM)を用い、欠陥検査には欠陥検査SEMを用いる。また、電位コントラストを利用する配線用深穴の導通検査にも走査電子顕微鏡が用いられるようになっている。
 CD-SEMは半導体製造ラインにおけるデバイスパターンの寸法測定に使用されるため、分解能、測長再現性等の電子顕微鏡としての性能だけでなく、スループットの向上が非常に重要である。スループットを決定する要因は複数存在するが、特に重要なのは、ウエハを積載する試料ステージの移動速度と画像を取得するときのオートフォーカスに要する時間である。この2項目を改善するために、試料ステージにウエハを固定する手段として、静電チャックが使用される。
 静電チャックは、ウエハを安定的に固定することができる利点を有する。そのため、ウエハが試料ステージからズレ落ちることが回避され、ウエハを高加速度、高速度で搬送することが可能となる。また、静電チャックは、ウエハの全面をほぼ均等な力で吸着するので、ウエハが反りを有する場合でも、平坦化することができる。従って、フォーカス合わせをするために対物レンズのコイルに流す電流値を決定する時間、すなわちオートフォーカス時間が短縮される。
特開2007-165917号公報
 ウエハは、本来、平坦な円板状の部材であるが、実際には、僅かであるが、反り、又は、凹凸を有する。近年、半導体ウエハが大口径化する傾向がある。そのため、反りや凹凸も大きくなる傾向にある。従来、静電チャックによるウエハの平坦化を確実化するために、静電チャックに印加する電圧は比較的大きな値に設定される傾向がある。即ち、静電チャックには、ウエハの反り又は凹凸の種類や大きさに関係なく、所定の比較的大きな電圧が印加される。
 静電チャックの印加電圧を大きくすると、静電チャックとウエハの接触面に残留電荷が発生する。残留電荷が発生すると様々な問題が生じる。特許文献1には、残留電荷を消去する方法の例が開示されている。残留電荷の発生を回避するには、静電チャックに印加する電圧を不必要に大きくすることは回避する必要がある。
 本発明の目的は、静電チャックに印加する電圧を不必要に大きくすることなしに、試料を吸着することができる技術を提供することにある。
 本発明によると、反りの大きさ及び反りのパターンが既知の検定用試料を用いて静電チャックに対する吸着実験を行い、吸着状態が「不良」から「良好」に変化するときの臨界印加電圧を求める。
 検査対象の試料を測定する場合には、検査対象の試料の平坦度を測定し、検査対象の試料の反りの大きさ及び反りのパターンを検出する。検査対象の試料の反りの大きさ及び反りのパターンと、既知の臨界印加電圧に基づいて、静電チャックへの印加電圧を設定する。
 本発明によると、静電チャックに印加する電圧を不必要に大きくすることなしに、ウエハを吸着することができる。
本発明の走査電子顕微鏡の第1の例の構成の概略を示す図である。 従来技術の静電チャックと電源回路の構成を示す図である。 本発明の静電チャックと電源回路の構成を示す図である。 本発明の走査電子顕微鏡に設けられた搬送路の構造の例を示す図である。 従来技術の走査電子顕微鏡を用いた検査の方法の例を示す図である。 本願の発明者が行った実験結果に基づいて、静電チャックの印加電圧及び増分を設定する方法を説明する説明図である。 本願の発明者が行った実験結果に基づいて、静電チャックの印加電圧の増分を設定する方法を説明する説明図である。 本発明の走査電子顕微鏡を用いた検査方法の第1の例を示す図である。 本発明の走査電子顕微鏡を用いた検査方法の第2の例を示す図である。 走査電子顕微鏡におけるウエハ周縁からの距離と電子ビームの偏向量の関係の計算結果の一例を示す図である。 従来の走査電子顕微鏡によりウエハの外周付近を計測する方法の説明図である。 本発明の走査電子顕微鏡によりウエハの外周付近を計測する方法の説明図である。 本発明の走査電子顕微鏡を用いた検査方法の第3の例を示す図である。
 図1を参照して、本発明の走査電子顕微鏡の構造を説明する。ここでは、走査電子顕微鏡の例として測長用走査電子顕微鏡(CD-SEM:Critical-Dimension Scanning Electron Microscope)を説明するが、本発明によるとCD-SEMに限定されるものではない。本例の走査電子顕微鏡は、電子源1、一次電子加速電極2、収束用の電子レンズ4、絞り5、走査コイル6、二次電子検出器7、対物レンズ8、及び、X-Yステージ16を有する。これらは、高真空が維持された筐体13の内部に配置されている。本例の走査電子顕微鏡は、更に、吸着状態測定装置34、35、及び、制御装置20を有する。X-Yステージ16は、Xステージ12と、Xステージ12上に配置されたYステージ11と、Yステージ11上に配置された静電チャック10を有し、筐体13の処理室18に配置されている。静電チャック方式として、クーロン方式、ジョンソンラーベック方式等の幾つかの形式が知られている。本発明によると、どのような方式の静電チャックであってもよいが、以下に、クーロン方式の静電チャックであるとする。
 静電チャック10上に、試料として半導体ウエハ(以下、単にウエハ)9が装着されている。ここでは、試料としてウエハ9の場合を説明するが、試料はウエハに限定されるものではない。
 ウエハ9は、X方向、及び、Y方向のいずれにも自由に移動可能である。従って、ウエハの任意の位置を計測可能である。また、静電チャック10には、図示していない3個の貫通孔が形成されており、この3つの貫通孔内をリフトピンが上下方向に移動することができるように構成されている。ウエハを静電チャック上に着脱するときには、リフトピンが上下方向に移動する。
 電子源1から放出された電子ビーム14は、高圧電源3により高圧電圧が印加された一次電子加速電極2で加速される。電子ビーム14は、収束用の電子レンズ4で収束される。電子ビーム14のビーム電流量は絞り5によって調節される。電子ビーム14は、走査コイル6で2次元的に走査される。電子ビームはウエハ9の直上に配置された対物レンズ8で絞られ焦点合わせがなされ、ウエハ9に入射する。ウエハ9から二次電子15が発生する。二次電子15は、二次電子検出器7により検出される。検出された二次電子の量は、試料表面の形状を反映する。電子ビームの走査と二次電子の検出を同期させてモニタに表示することで、試料上の微細パタンが画像化できる。CD-SEMでは、例えばゲート電極の線幅を測定する場合には、得られた画像の明暗の変化にもとづいてパタンのエッジを判別して寸法を導き出す。
 なお、本図では筐体とその内部構造を横方向から見た断面図で記述したが、X-Yステージ、静電チャック、及び、ウエハは動作をイメージしやすいように斜視図で記載している。
 吸着状態測定装置34、35は、静電チャック10上に装着されたウエハ9の吸着状態を測定する。吸着状態測定装置34、35によって測定された吸着状態は、制御装置20に送られる。制御装置20は、吸着状態に基づいて、静電チャック10に印加する直流電圧を設定するが、詳細は後に説明する。
 ここで吸着状態とは、静電チャック10上に吸着されたウエハ9の平坦度である。従って、吸着状態測定装置34、35は、試料の平坦度を測定することができればどのような構造であってもよく、例えば、発光器34と受光器35を有する光学式高さ測定器又はZセンサであってもよい。高さ測定装置として、光学式高さ測定器ばかりでなく、静電容量型の変位センサを用いることも可能である。また走査電子顕微鏡に付属した光学顕微鏡や走査電子顕微鏡そのもので撮影された画像を利用して、ウエハの平坦度を測定することもできる。例えば、撮影した画像の鮮鋭度を数値化して判断基準にすることでウエハの表面の高さを測定し、平坦度及び吸着状態を判断することができる。
 図2Aを参照して、従来技術におよる静電チャックと電源回路の構成を説明する。本例の静電チャック10はいわゆる双極型の静電チャックであり、X-YステージのYステージ11上に積載されている。静電チャック10は、アルミナ製の焼結体セラミックスからなる本体24と、本体の内部に設けられた円形状内部電極26とリング状内部電極25を有する。これらの内部電極25、26には静電チャックを動作させるための直流電源27、28とリターディング電源29が接続されている。直流電源27、28は、リターディング電源29に対してフローティング状に重畳して接続されている。こうして、直流電源27、28を用いて内部電極間に電位差を与えることにより、ウエハ9を静電チャック10上に静電吸着することができる。
 リターディング電源29は、ウエハに減速電圧(リターディング電圧)を印加するために用いられる。ウエハ9に入射する電子ビームは、分解能を上げるために、高い加速電圧によって加速され絞られている。このような電子ビームが、ウエハに照射されると、ウエハ上に形成されたデバイスがダメージを受ける。そこで、このようなダメージを軽減するために、ウエハに入射する電子ビームは、ウエハに入射する直前で減速される。リターディング電圧を印加することにより、負の電界が生成され、ウエハに入射する電子ビームが減速する。
 なお、本例では、静電チャック10にリターディング電圧を印加しているが、ウエハ9にコンタクトピンなどを介して直接リターディング電圧を印加するように構成してもよい。
 図2Bを参照して、本発明の静電チャックの例を説明する。本例の静電チャック10は、図2Aに示した従来の静電チャックと比較して、ウエハの吸着状態を測定するための吸着状態測定装置が設けられている点が異なる。吸着状態測定装置はウエハの吸着状態として平坦度を測定する。平坦度とは、静電チャックの表面からウエハの表面の測定点までの高さ及び高さ分布である。ここでは、吸着状態測定装置の例として、光学式高さ測定装置36を説明する。高さ測定装置36は、発光器34と受光器35を有する。発光器34からの光は、ウエハ9で反射し、受光器35によって検出される。制御装置20は、受光器35が検出した入射光の位置から、ウエハの平坦度を測定する。
 高さ測定装置36の測定結果によって、ウエハの平坦度、即ち、静電チャック上に積載されたウエハの吸着状態をモニタすることができる。制御装置20は、ウエハの吸着状態に基づいて、静電チャックへの印加電圧を最適な値に設定する。従来の静電チャックでは、殆ど反りが無い平坦なウエハも数百μm程度の反りがあるウエハも一律に、例えば、±2kVの高電圧を印加している。しかしながら、本発明では、例えば、反りが無いウエハの場合には印加電圧を±100Vに設定し、100μmの反りを有するウエハの場合には印加電圧を±600Vに設定することができる。
 図3を参照してウエハの搬送路の例を説明する。図3は、本例の走査電子顕微鏡の筐体13(図1)の下部の処理室18、ロード室80及び準備室70の平面構成を示す。処理室18には、Xステージ12、Yステージ11、及び、静電チャック10が配置されている。静電チャック10にはウエハ9が装着されている。準備室70には、前後、伸縮、及び、回転動作を行う搬送機構71が設けられている。ロード室80には、回転と伸縮動作を行う搬送機構81が設けられている。処理室18とロード室80の間にはゲートバルブ82が設けられている。ロード室80と準備室70の間にはゲートバルブ72が設けられている。処理室18は、高真空に維持されている。準備室70は大気圧下にある。ロード室80は、処理室18と準備室70のいずれか一方に接続される。ロード室80を処理室18に接続する場合には、2つのゲートバルブ72、82を閉じ、ロード室80を真空排気してから、第2のゲートバルブ82のみを開く。ロード室80を準備室70に接続する場合には、2つのゲートバルブ72、82を閉じ、ロード室80を大気圧に解放しから、第1のゲートバルブ72のみを開く。
 ウエハを処理室18に搬送する場合には、ゲートバルブ82を閉じ、ゲートバルブ72を開き、ロード室80を大気圧にする。準備室70の搬送機構71によって、ロードカセット60のウエハをロード室80に搬送する。次に、ゲートバルブ82を開け、ゲートバルブ72を閉じ、ロード室80を真空排気する。ロード室80の搬送機構81によって、ウエハを処理室18に搬送する。ウエハを静電チャック10に装着したら、ゲートバルブ82を閉じる。ウエハを処理室18からアンロードカセット62に戻す場合には逆の経路を搬送する。
 本例では、ロード室80に、ウエハの平坦度を測定する平坦度測定装置が設けられている。平坦度とは、ウエハが配置された平面からウエハの表面の測定点までの高さ及び高さ分布である。ここでは、ウエハの平坦度測定装置の例として、光学式高さ測定装置を説明する。高さ測定装置は、発光器84と受光器85を有する。発光器84からの光は、ウエハ9で反射し、受光器85によって検出される。制御装置20(図1)は、受光器85が検出した入射光の位置から、ウエハの高さ及び高さ分布を測定する。
 ウエハは本来平坦な平面状の板部材であるが、実際には僅かであるが反りがある。ウエハの反りモードとして、凸型、凹型、それ以外の型があるが、通常は凸型又は凹型である。凸型は、パターンが形成された面が外側に凸となる場合であり、凹型は、パターンが形成された面が外側に凹となる場合である。
 ウエハの平坦度測定装置は、ウエハの平坦度、即ち、ウエハの表面の測定点の高さ及び高さ分布を測定する。そのために、ウエハの表面を複数の領域に分割する。ウエハの表面を同心のリング状領域に分割してもよいが、碁盤目状の領域に分割してもよい。各領域の高さを測定することにより、ウエハの高さと高さ分布が得られる。制御装置20(図1)は、ウエハの平坦度分布から、ウエハの反りモードを検出する。
 ウエハの平坦度測定装置は、ロード室80の内側に設けてもよいが、外側に設けてもよい。ロード室80の外側に設ける場合には、ロード室80に観察窓を設け、そこに発光器84と受光器85を設ける。尚、ウエハの平坦度測定装置は、準備室70に設けてもよい。
 図4を参照して、従来技術による走査電子顕微鏡を用いたウエハの検査(計測・分析・画像取得等)方法の例を説明する。ステップS101にて、搬送機構によりウエハを走査電子顕微鏡の筐体13の処理室18に搬入する。ステップS102にて、ウエハを静電チャック上に積載する。上述のように、静電チャック方式として、クーロン方式、ジョンソンラーベック方式等の幾つかの形式が知られているが、以下に、クーロン方式の静電チャッであるとする。ステップS103にて、静電チャックの直流電源をオンにし、所定の電圧を印加する。それによってウエハが静電チャックに静電吸着される。
 ウエハを安定的に静電吸着するのに必要な印加電圧は、静電チャックの方式やウエハの種類や状態に依存する。誘電体膜の固有抵抗率が1x109Ωcmから1012Ωcm程度のジョンソンラーベック方式の静電チャックでは、±300V程度から±600V程度である。誘電体膜の固有抵抗率がそれ以上のクーロン方式の静電チャックでは、±1000Vから±2000V程度である。
 次に、ステップS104にて、ウエハ上の検査対象が、電子ビーム照射位置に配置されるように、X-Yステージを動作させ、ウエハを所定の座標位置に移動する。ここで、ウエハ上の検査対象とは、計測、分析、画像取得を行う対象であるチップの所定の領域である。
 ステップS105にて、レシピ条件に従ってウエハの検査(計測・分析・画像取得等)を行う。レシピ条件は、ビーム照射条件、検査対象の座標情報等であり、図示しない制御装置に入力/記憶されている。検査(計測・分析・画像取得等)が終了するとステップS106にて、ビーム照射を停止する。ステップS107にて、予め設定されたレシピが完了したか否かを判定する。レシピが完了していない場合には、ステップS104~ステップS106を繰り返す。レシピが完了している場合には、ステップS108に進み、X-Yステージを動作させ、ウエハを初期位置に移動する。即ち、ウエハを装着した静電チャックを初期位置に移動する。ステップS109にて、静電チャックの直流電源をオフにし、電圧の印加を停止する。
 静電チャックへの印加電圧を停止しても、ウエハと静電チャックの表面間に残留電荷が発生する場合がある。残留電荷により残留吸着力が発生する。残留吸着力は半導体ウエハが大口径化すると大きくなる。即ち、単位面積あたりの残留吸着力が同一であっても、半導体ウエハが大口径化するとウエハ全体に加わる力は大きくなる。それは、近年進められている製造コスト低減のための大口径化の流れの中では大きな課題となる。残留電荷の発生は、クーロン方式、ジョンソンラーベック方式、いずれの静電チャックの場合にも起き得る。そこで、ステップS110にて、残留電荷を消失させるために、逆電圧を印加する。
 ステップS111にて、リフトピンを上昇させて、ウエハを静電チャックより引き剥がす。ステップS112にて、ウエハを搬出する。
 従来の方法では、ステップS110にて、残留電荷を消失させるために、逆電圧を印加する。しかしながら、逆電圧の過不足により更に残留電荷が残ることは好ましくない。そのため、残留電荷量の推定値を求め、この推定値を消失させるために必要な逆電圧を求める。残留電荷量の推定値は、同様なウエハを引き剥がすときに流れる電流をモニタすることにより、得られる。従って、従来の方法では、残留電荷の量を推定するステップと、残留電荷量の推定値に基づいて逆電圧値を算出するステップと、逆電圧を印加するステップが必要である。そのため、構成が複雑となるだけでなく、スループットの低下という課題が生じる。
 また、静電チャックの表面に帯電した異物が付着している場合、逆電圧を印加すると、それによって生じた静電気力により、異物がウエハ裏面へ移動する可能性がある。そのため、ウエハの裏面に付着する異物が増加するという課題もある。ウエハの裏面の異物は、バルクシリコン中に拡散して電気特性に影響を与え、更に、次工程でウエハ表面に転写されて悪影響を及ぼすこととなる。
 従って、基本的には残留電荷の発生を回避するのが望ましい。残留電荷の発生を回避するには、静電チャックに印加する電圧を可能な限りゼロに近づけるとよい。しかしながら、静電チャックには、ウエハを平坦化する機能がある。そのために、印加電圧を、最小限に抑えて静電チャックを動作させることが必要である。ウエハを確実に保持し、且つ、平坦化するために必要な最小の電圧値は、静電方式、ウエハの状態等により異なる。そこで、本発明によると、ウエハに応じて適正な必要最小限の印加電圧値を求め、不必要に大きな電圧を印加することを回避することとした。
 図5を参照して、本発明による静電チャックの印加電圧の最適値を求める方法を説明する。図5は、本願の発明者が行った、静電チャックに対するウエハの吸着実験の結果の例を示す。図5の実験に用いたウエハは、反りのないウエハと、所定の(数百μmの)反りを有する凸型および凹型の反りモードのウエハである。静電チャックに印加する直流電圧を100V毎増加させて、ウエハの吸着状態を観察した。図5において、丸印は吸着状態が良好であることを示し、×印は吸着状態が不良であることを示す。静電チャックに吸着されたウエハの平坦度が十分である場合には、吸着状態が良好であり、平坦度が不十分である場合には、吸着状態が不良であると判定した。ここに、平坦度は、ウエハの高さによって決めてよい。本発明によると、ウエハの吸着実験の結果から、以下に説明するように、静電チャックの印加電圧を設定する。
 図5に示す結果によると、凹型反りモードのウエハの場合、900Vの印加電圧では吸着状態が「不良」であるが、1000Vの印加電圧では吸着状態が「良好」であった。そこで、本発明の第1の例によると、凹型反りモードのウエハの場合、静電チャックの初期電圧をV=900Vに設定し、印加電圧をインクリメンタルに増加させる。印加電圧を増加させると、吸着状態が「不良」から「良好」に変化するはずである。吸着状態が「良好」に変化したときの印加電圧を印加電圧の最適値とする。従って、本発明の第1の例では、印加電圧を初期電圧から増分ΔVずつ増加させながら、吸着状態を観察する必要がある。印加電圧の増分ΔVは、例えば、100Vを5分割した20Vであってよく、又は、100Vを2分割した50Vでもよい。
 本発明の第2の例によると、凹型反りモードのウエハの場合、印加電圧の最適値をV=1000Vに設定する。この場合、吸着状態は「良好」となるから、印加電圧を増加させる必要がなく、吸着状態を観察する必要が無い。印加電圧の増分ΔVを設定する必要はない。
 図5に示す結果によると、凸型反りモードのウエハの場合、1000Vの印加電圧では吸着状態が「不良」であるが、1100Vの印加電圧では吸着状態が「良好」であった。そこで、本発明の第1の例によると、凸型反りモードのウエハの場合、初期電圧をV=1000Vに設定し、印加電圧をインクリメンタルに増加させる。印加電圧を増加させると、吸着状態が「不良」から「良好」に変化するはずである。吸着状態が「良好」に変化したときの印加電圧を印加電圧の最適値とする。印加電圧の増分ΔVは、例えば、100Vを5分割した20Vであってよく、又は、100Vを2分割した50Vでもよい。本発明の第2の例によると、凸型反りモードのウエハの場合、印加電圧の最適値をV=1100Vに設定する。この場合、吸着状態は「良好」となるから、印加電圧を増加させる必要がなく、吸着状態を観察する必要が無い。従って、印加電圧の増分ΔVを設定する必要はない。
 図5に示す結果によると、反りなしのウエハでは、100Vの印加電圧で吸着状態が「良好」であった。従って、反りなしのウエハでは、例えば、50Vの印加電圧では吸着状態が「不良」となる可能性がある。そこで、本発明の第1の例によると、反りなしのウエハの場合、静電チャックの初期電圧をV=50Vに設定し、印加電圧をインクリメンタルに増加させる。吸着状態が「良好」に変化したときの印加電圧を印加電圧の最適値とする。印加電圧の増分ΔVは、例えば、50Vを5分割した10Vであってよい。本発明の第2の例によると、反りのないウエハの場合、静電チャックの印加電圧の最適値をV=100Vに設定してよい。この場合、印加電圧を増加させる必要がなく、吸着状態を観察する必要が無い。印加電圧の増分ΔVを設定する必要はない。
 こうして本発明によると、静電チャックに対するウエハの吸着実験を行い、印加電圧を増加させ、吸着状態が「不良」から「良好」に変化したときの印加電圧を記憶する。本発明の第1の例では、吸着実験で得られた結果において、吸着状態が「不良」から「良好」に変化する直前の印加電圧を初期電圧値とする。この場合には、印加電圧の増分ΔVを設定する。増分ΔVは、管理者もしくはユーザによって決められる。この場合、ウエハの検査では、吸着状態を観察しながら、印加電圧を増加させ、吸着状態が「不良」から「良好」に変化したときの印加電圧を最適値とする。
 印加電圧の増分ΔVを比較的小さな値に設定すると、最適な印加電圧を得るまでに時間が長くなるが、最適な印加電圧を正確に得ることができる。逆に、印加電圧の増分ΔVを比較的大きな値に設定すると、最適な印加電圧を得るまでに時間が短くなるが、最適な印加電圧を正確に得ることはできない。しかしながら、本例によると、静電チャックに印加する初期電圧の値Vは、図4を参照して説明した従来の方法のステップS103にて用いた印加電圧の値より小さい。
 本発明の第2の例では、吸着実験で得られた結果において、吸着状態が「不良」から「良好」に変化した直後の印加電圧を印加電圧の最適値とする。この場合には、増分ΔVを設定しない。
 図5の吸着実験の結果は、反りのないウエハと、数百μmの反りを有する凸型および凹型の反りモードのウエハを用いて得られた。従って、反りの大きさを変化させると、同様な結果が得られる。このようなデータの集積は、制御装置20に記憶されている。従って、反りのモードと反りの大きさが判れば、吸着状態が不良から良好に変化する前後の印加電圧が判る。従って、本発明の第1の例により初期電圧と増分を求めることができるし、本発明の第2の例により、印加電圧の最適値を求めることができる。
 ここに、反りの大きさは、ウエハの表面の高さの最大値の意味である。即ち、凸型モードの反りでは、中央の高さが反りの大きさとなる。また、凹型モードの反りでは、周縁の高さが反りの大きさとなる。
 この実験では、静電チャックに印加する直流電圧を100V毎増加させて、吸着状態を検出したが、増加させる電圧は、必ずしも100Vである必要はない。本例では図5に示したような吸着可否の比較表に基づいて初期電圧及び増分を決定したが、比較表の代わりに、例えば反り量をパラメータとした換算式に基づいて初期電圧及び増分を算出してもよい。
 図6は、本願の発明者が行った、静電チャックの吸着力を測定した結果の例を示す。横軸は、印加電圧(±V)、縦軸は、吸着力(Pa)である。静電チャックの吸着力は、基本的には、印加電圧により変化する。即ち、印加電圧が増加すると、静電チャックの吸着力は増加する。一方、静電チャックのセラミックス誘電体膜の厚さにはバラツキがあり、基準の厚さに対して数十ミクロン程度のバラツキがある。その結果、同じ吸着力を発生するための印加電圧には幅がある。通常、±20μm程度の設計公差を許容する。そこで、本願の発明者は、誘電体膜の厚さが基準値である静電チャック、誘電体膜の厚さが基準値より20μm厚い静電チャック、及び、誘電体膜の厚さが基準値より20μm薄い静電チャック、の3つの静電チャックを用いて、印加電圧と吸着力の関係を調べた。
 図6に示す結果によると、例えば、2.3kPaの吸着力を発生させるには、誘電体膜の厚さが基準値である静電チャックの場合、印加電圧が1000Vであるが、誘電体膜の厚さが基準値より20μm薄い静電チャックの場合、印加電圧が920Vである。また、誘電体膜の厚さが基準値より20μm厚い静電チャックの場合、印加電圧が1080Vである。即ち、本例では、2.3kPaの吸着力を発生させるために必要な印加電圧は、160Vの幅を有する。従って、印加電圧の増分ΔVは、この160Vを例えば4分割して40Vとしてよい。
 本例でも、印加電圧の増分ΔVを比較的小さな値に設定すると、最適な印加電圧を得るまでに時間が長くなるが、最適な印加電圧を正確に得ることができる。逆に、印加電圧の増分ΔVを比較的大きな値に設定すると、最適な印加電圧を得るまでに時間が短くなるが、最適な印加電圧を正確に得ることはできない。
 図7を参照して本発明の走査電子顕微鏡を用いたウエハの検査(計測・分析・画像取得等)方法の第1の例を説明する。ステップS201にて、図示しない搬送機構によりウエハを搬送路に沿って搬送する。ここで「搬送路」とは、ウエハを走査電子顕微鏡の処理室18に搬送するまでの経路であり、図3の例では、ロード室80又は準備室70である。次に、ステップS202にて、搬送路にて、ウエハの平坦度測定装置によって、ウエハの平坦度、即ち高さ及び高さ分布を測定する。ウエハの平坦度測定装置は図3を参照して説明した。ステップS203にて、制御装置20によって、ウエハの反りの大きさと反りモードを検出する。ウエハの反りの大きさは、ウエハの高さの最大値であってよい。ウエハの反りモードは、反りなし、凸型モード、凹型モードであってよい。
 ステップS204にて、静電チャックに印加する初期電圧Vを算出し、印加電圧の増分ΔVを設定する。即ち、制御装置20に記憶された静電チャックの吸着実験の結果に基づいて、初期電圧V、及び、印加電圧の増分ΔVを設定する。初期電圧V、及び、印加電圧の増分ΔVの設定方法は、図5および図6を参照して説明した。
 ステップS205にて、搬送機構によりウエハを走査電子顕微鏡の筐体13の処理室18に搬入する。搬送機構の例は図3に示した。ステップS206にて、ウエハを静電チャック上に積載する。上述のように、静電チャック方式として、クーロン方式、ジョンソンラーベック方式等の幾つかの形式が知られている。本発明によると、どのような方式の静電チャックであってもよいが、以下に、クーロン方式の静電チャッであるとする。ステップS207にて、静電チャックの直流電源をオンにし、初期電圧Vを印加する。初期電圧VはステップS204にて設定した。それによってウエハが静電チャックに静電吸着される。
 ステップS208にて、ウエハの平坦度を測定する。ここに、ウエハの平坦度は、ウエハの高さ、及び、高さの分布の意味である。この測定には、図2Bを参照して説明した高さ測定装置を用いてよい。ステップS209にて、ウエハの平坦度が、基準値以内であるか否かを判定する。ウエハの平坦度が、基準値以内でないと判定されたときは、静電チャックの吸着力が十分でない、即ち、印加電圧が不足と判断し、ステップS210に進む。ステップS210にて、印加電圧を増分ΔVだけ増加させる。増分ΔVは、ステップS204にて設定した。ステップS209にて、ウエハの平坦度が、基準値以内であると判定されたときは、ステップS104に進む。
 ステップS104からステップS109は、図4で説明した従来の方法によるステップS104からステップS109と同様である。ステップS109にて、静電チャックの直流電源をオフにし、電圧の印加を停止する。ステップS109aにて、逆電圧の印加が必要であるか否かを判定する。例えば、ウエハの検査を行うときに印加した電圧が所定の基準値以内なら、逆電圧の印加が不要であると判定し、基準値以内でないなら、逆電圧の印加が必要であると判定する。逆電圧の印加が必要であると判定した場合はステップS110に進み、逆電圧を印加する。逆電圧の印加が必要でないと判定したときは、ステップS111に進む。ステップS111、及び、ステップS112は、図4で説明した従来の方法によるステップS111、及び、ステップS112と同様である。尚、本例では、ステップS109a及びステップS110は省略してもよい。
 本例では、ステップS201にて、ウエハを1つずつ、順に且つ連続的に搬送路に搬送する。従って、例えば、最初のウエハが走査電子顕微鏡によってステップS105の検査が行われているときに、2番目のウエハはステップS202の測定が行われる。2番目のウエハが搬送機構によってステップS101の走査電子顕微鏡への搬入が行われているとき、3番目のウエハは、搬送機構によってステップS201の搬送路への搬送が行われる。
 図7に示した本発明の第1の例によれば、ウエハを平坦化した状態で吸着するのに必要な最小限の電圧を静電チャックに印加する。そのため、ウエハと静電チャック間に発生する残留電荷量を最小化することができる。したがって、残留電荷を消失させるための逆電圧印加が不要又は最小化することができる。そのため、スループットが向上するだけでなく、長期間にわたり安定して動作可能な信頼性の高い計測装置を提供することができる。
 また、本例によると、ウエハの平坦度が基準値以内となるまで、静電チャックへの印加電圧を調整する。そのため、ウエハは静電チャックに完全に吸着した状態で検査を行い、次の工程に搬送される。そのため、搬送中に、ウエハがステージから脱落することが防止できる。即ち、搬送エラーの発生のない、信頼性の高い計測装置を提供することができる。
 更に、ウエハを吸着するための吸着力を必要最小限の値に抑えることができるので、静電チャックの表面の経時変化を最小化することができる。即ち、長寿命の計測装置を提供できる。また、吸着力を低く抑えることができるため、ウエハと静電チャックの間の接触面における圧力も小さく抑えられる。そのため、ウエハの裏面への異物の付着が減少するという効果が期待できる。発明者らの実験において、静電チャックへの印加電圧を±1500Vから±100Vに変更したら、シリコンウエハの吸着後における裏面の異物の数が1/20以下に低減した結果が得られている。
 また、本例の方法では、ウエハ毎に静電チャックに印加する電圧を調節するが、実際には、必ずしもそうする必要はない。例えば、同一仕様のウエハが連続的に流れている製造ラインでは、ロット毎に印加電圧を調節してもよい。また、長期間に亘って同一仕様のウエハが流れている製造ラインでは、通常は本実施例の方法により印加電圧の調整を行い、ユーザの判断で印加電圧を適宜見直すこととしてもよい。
 図8を参照して本発明の走査電子顕微鏡を用いたウエハの検査(計測・分析・画像取得等)方法の第2の例を説明する。ステップS401~ステップS403は、図7を参照して説明した第1の例のステップS201及びステップS203と同様である。ステップS404にて、静電チャックの印加デ圧の最適値を設定する。即ち、制御装置20に記憶された静電チャックの吸着実験の結果に基づいて、印加電圧の最適値を設定する。印加電圧の最適値の設定方法は、図5を参照して説明した。
 ステップS405及びステップS406は、図7を参照して説明した第1の例のステップS205及びステップS206と同様である。ステップS407にて、静電チャックの直流電源をオンにし、印加電圧Vの最適値を印加する。印加電圧Vの最適値はステップS404にて設定した。それによってウエハが静電チャックに静電吸着される。
 次のステップS104~ステップS112は、図7を参照して説明した第1の例のステップS104~ステップS112と同様である。尚、ステップS109a及びステップS110は省略してもよい。
 本例でも、図7の例と同様に、ステップS401にて、ウエハを1つずつ、順に且つ連続的に搬送路に搬送する。従って、例えば、最初のウエハが走査電子顕微鏡によってステップS105の検査が行われているときに、2番目のウエハはステップS402の測定が行われる。2番目のウエハが搬送機構によってステップS101の走査電子顕微鏡への搬入が行われているとき、3番目のウエハは、搬送機構によってステップS401の搬送路への搬送が行われる。
 本例では、走査電子顕微鏡による検査の前に、ウエハの平坦度が測定され、静電チャックに印加する電圧値が算出される。しかも、ウエハの平坦度の測定と、静電チャックへの印加電圧の設定は、先行のウエハが走査電子顕微鏡によって検査されている間に行われる。そのため、高いスループットの実現が可能となる。
 また、再生ウエハのように規格で決まっているウエハの寸法とは異なる寸法のウエハが流れてきた場合でも、高さ測定器による高さ測定で吸着エラーなどを引き起こすことを防止することができる。
 次に、本発明の第3の例を説明する前に、走査電子顕微鏡におけるウエハ外周でのビーム曲がり量の抑制技術について説明する。
 図9は、ウエハの周縁部における電子ビームの偏向量を示すグラフである。このグラフは、従来技術により、ウエハ上のデバイスを計測した場合に、電子ビームの偏向量を計算した結果の一例を示す。図9の横軸は、ウエハの周縁から半径方向内方に向って測定した距離(mm)、縦軸は試料の表面におけるビーム偏向量(μm)である。ビーム偏向量は、リターディング電圧の値、加速電圧等の条件により変化するが、これらの条件は、本発明の本質とは直接関係がないので詳細は省略する。図示のように、ウエハの外縁から半径方向内方に向って測定した4mmの位置までは、電子ビーム曲がりが発生する。しかしながら、4mmの位置より半径方向内方の領域では、ビーム曲がりは発生しない。従って、ウエハの外縁の約4mm幅のリング状の領域において、ウエハの検査を行う場合には、測定位置の誤差が拡大する。
 図10を参照して、ウエハの外周付近におけるビーム曲がりの原因を説明する。図10は、従来の走査電子顕微鏡の一部を示す。図示のように、Yステージ11上に静電チャック10が搭載され、その上にウエハ9が吸着保持されている。ウエハ9の外縁と静電チャック10の間に段差が形成されている。ウエハ9の上方に、対物レンズ8が配置され、その下に電位調整板38が設けられている。電位調整板38には、ウエハ上の電位を調節するために電圧が印加される。静電チャック10のリング状内部電極25の外径は、ウエハ9の外径より小さい。
 ウエハ9の外縁付近に形成されたデバイスのパターンの計測を行うものとする。光軸40は、ウエハ9の外縁より僅かに内側の測定位置を通るように配置されている。電子ビーム14は、ウエハ9上の測定位置にて焦点を結ぶように対物レンズ8によって集束される。しかしながら、対物レンズ8によって生成された電界の中に、ウエハ9の外縁の段差がある。そのため、電位分布は、図示のように光軸40周りに非対称となる。
 光軸40より内側の電位分布42は正常な電位分布を示すが、光軸40より外側の電位分布43は乱れて変形している。即ち、ウエハ9の外縁の段差によって、電位分布が不規則に変形している。そのため、図示のように、光軸40が、ウエハ9の外縁より僅かに内側の位置にある場合には、非対称な電位分布43に起因して、電子ビーム14は、ウエハ9に入射する直前で、その軌道を曲げる。
 しかしながら、光軸40が、ウエハ9の外縁より十分に内側の位置にある場合には、電位分布42は乱れていないから、電子ビーム14は、その軌道を曲げることなく入射される。
 図11を参照して本発明による静電チャックの構造の例を説明する。図11は、本発明による走査電子顕微鏡の一部を示す。図示のように、Yステージ11上に静電チャック10が搭載され、その上にウエハ9が吸着保持されている。ウエハ9の外縁と静電チャック10の間に段差が形成されている。ウエハ9の上方に、対物レンズ8が配置され、その下に電位調整板38が設けられている。電位調整板38には、ウエハ上の電位を調節するために電圧が印加される。
 本例によると、静電チャック10のリング状内部電極25の外径は、ウエハ9の外径より大きい。静電チャック10に比較的大きな負の直流電圧を印加すると、ウエハ9の外側に電位分布44が発生する。この電界44によって、対物レンズ8によって生成された電位分布の乱れが修正される。即ち、対物レンズ8によって生成された電位分布のうち、ウエハの外側にある電位分布43が押し上げられる。そのため、対物レンズ8によって生成される電界の電位分布42、43が、光軸40周りの対称的な形状となる。そのため、電子ビーム14の軌道曲がりを抑制することができる。
 このように、本例では、静電チャック10のリング状内部電極25の外径を、ウエハ9の外径より大きくし、更に、電子ビーム14の軌道曲がりを抑制するために静電チャック10に比較的大きな電圧を印加する。この印加電圧の大きさは、静電チャックの構造、電子ビームの加速電圧、リターディング電圧などにより変化する。しかしながら、この印加電圧は、上述のウエハを平坦化した状態で吸着するのに必要な最小限の印加電圧より大きい。従って、電子ビーム14の軌道曲がりを抑制するための印加電圧は、ウエハの外縁付近を検査対象とする場合には、必要であるが、それ以外の位置を検査対象とする場合には、適切でない。
 そこで、本発明によると、ウエハの外縁付近を検査対象とする場合には、電子ビーム14の軌道曲がりを抑制するために、静電チャックに印加する電圧を比較的大きくする。一方、ウエハの外縁付近以外の位置を検査対象とする場合には、静電チャックに印加する電圧を、ウエハを平坦化した状態で吸着するのに必要な最小限の値にする。
 図12を参照して本発明の走査電子顕微鏡を用いたウエハの検査(計測・分析・画像取得等)方法の第3の例を説明する。先ず、図7を参照して説明した本発明の第1の例のステップS201~ステップS209、又は、図8を参照して説明した第2の例のステップS401~ステップS407を行う。それによって、静電チャックにウエハが平坦化した状態で吸着される。尚、静電チャックの印加電圧は、ウエハを平坦化した状態で吸着するのに必要な最小限の値に設定されている。
 次に、ステップS104にて、ウエハ上の検査対象が、電子ビーム照射位置に配置されるように、X-Yステージを動作させ、ウエハを所定の座標位置に移動する。ステップS501にて、ウエハ上の検査対象の位置の座標情報を制御装置より取得する。ステップS502にて、検査対象の位置が、ウエハの外縁付近であるか、ウエハの外縁付近でないかを判定する。例えば、検査対象が、ウエハの外縁から3mm内側までのリング状の領域内にある場合には、ウエハの外縁付近であると判定し、それより内側の領域内にある場合には、ウエハの外縁付近でないと判定してよい。検査対象の位置が、ウエハの外縁付近である場合には、電子ビーム14の軌道曲がりを抑制する必要があると判定し、ステップS503に進む。検査対象の位置が、ウエハの外縁付近である場合には、電子ビーム14の軌道曲がりを抑制する必要がないと判定し、ステップS105に進む。
 ステップS503にて、静電チャックに印加する電圧を、電子ビーム14の軌道曲がりを抑制するために必要な電圧に増加させ、ステップS105に進む。ステップS105にて、レシピ条件に従ってウエハの検査(計測・分析・画像取得等)を行う。検査(計測・分析・画像取得等)が終了するとステップS504にて、静電チャックに印加する電圧を、元の電圧に戻す。ステップS106にて、ビーム照射を停止する。ステップS107にて、予め設定されたレシピが完了したか否かを判定する。レシピが完了していない場合には、ステップS104~ステップS106を繰り返す。レシピが完了している場合には、ステップS108に進む。ステップS108~ステップS112は、図7を参照して説明した本発明の第1の例と同様である。また、ステップS109a及びステップS110は省略してもよい。
 以上本発明の例を説明したが本発明は上述の例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは、当業者によって容易に理解されよう。
1…電子源、2…一次電子加速電極、3…高圧電源、4…電子レンズ、5…絞り、6…走査コイル、7…二次電子検出器、8…電子対物レンズ、9…ウエハ、10…静電チャック、11…Yステージ、12…Xステージ、13…筐体、14…電子ビーム、15…二次電子、16…X-Yステージ、18…処理室、24…本体、25…リング状内部電極、26…円状内部電極、27…直流電源、28…直流電源、29…リターディング電源、34…発光器、35…受光器、36…高さ測定装置、38…電位調整板、40…光軸、42、43、44…電位分布、60…ロードカセット、62…アンロードカセット、70…準備室、71…搬送機構、72…ゲートバルブ、80…ロード室、81…搬送機構、82…ゲートバルブ、84、85…高さ測定装置

Claims (20)

  1.  走査電子顕微鏡の試料ステージに設けられた静電チャックへの印加電圧の設定方法において、
     反りの大きさ及び反りのパターンが既知の検定用試料を静電チャックに装着する検定用試料装着ステップと、
     前記静電チャックへの印加電圧を増加させながら、前記静電チャックに対する前記検定用試料の吸着状態を検出するステップと、
     前記検定用試料の吸着状態が「不良」から「良好」に変化したときの臨界印加電圧を記憶する印加電圧記憶ステップと、
     検査対象の試料を走査電子顕微鏡の処理室に搬入する前に、該検査対象の試料の平坦度を測定する検査対象の試料の測定ステップと、
     前記検査対象の試料の平坦度から前記検査対象の試料の反りの大きさ及び反りのパターンを検出するステップと、
     前記検査対象の試料の反りの大きさ及び反りのパターンと、前記印加電圧記憶ステップにて記憶した臨界印加電圧に基づいて、前記静電チャックへの印加電圧を設定する印加電圧設定ステップと、
     前記検査対象の試料を、走査電子顕微鏡の処理室に搬入し、前記静電チャックに装着し、前記印加電圧設定ステップにて設定した印加電圧を印加する印加電圧ステップと、
     を含む静電チャックへの印加電圧の設定方法。
  2.  請求項1記載の静電チャックへの印加電圧の設定方法において、
     前記印加電圧設定ステップは、前記検定用の試料の吸着状態が「不良」から「良好」に変化する直前の印加電圧を初期電圧として設定する初期電圧設定ステップを有し、
     前記印加電圧ステップは、
     前記静電チャックに前記初期電圧を印加するステップと、
     前記静電チャックにおける前記検査対象の試料の吸着状態を検出するステップと、
     前記検査対象の試料の吸着状態が「不良」から「良好」となるまで前記初期電圧を所定の増分毎に増加させる印加電圧増加ステップと、
    を有することを特徴とする静電チャックへの印加電圧の設定方法。
  3.  請求項2記載の静電チャックへの印加電圧の設定方法において、
     前記印加電圧増加ステップにおける前記所定の増分は、前記検定用試料の吸着状態を検出するステップにおける前記静電チャックへの印加電圧の増加の単位を複数に等分して求めることを特徴とする静電チャックへの印加電圧の設定方法。
  4.  請求項2記載の静電チャックへの印加電圧の設定方法において、
     前記印加電圧増加ステップにおける前記所定の増分は、前記静電チャックの表面の誘電体膜の厚さの設計公差に基づいて設定されることを特徴とする静電チャックへの印加電圧の設定方法。
  5.  請求項2記載の静電チャックへの印加電圧の設定方法において、
     前記検査対象の試料の吸着状態を検出するステップにおいて、前記検査対象の試料の平坦度を測定し、該平坦度を用いて前記検査対象の試料の吸着状態を検出することを特徴とする静電チャックへの印加電圧の設定方法。
  6.  請求項2記載の静電チャックへの印加電圧の設定方法において、
     前記検査対象の試料の吸着状態を検出するステップにおいて、前記検査対象の試料の表面の光学顕微鏡像又は走査電子顕微鏡像を用いて、前記検査対象の試料の吸着状態を検出することを特徴とする静電チャックへの印加電圧の設定方法。
  7.  請求項2記載の静電チャックへの印加電圧の設定方法において、
     前記印加電圧増加ステップにおいて、前記検査対象の試料の平坦度が所定の基準値以内となったとき、前記検査対象の試料の吸着状態が「不良」から「良好」に変化したと判定することを特徴とする静電チャックへの印加電圧の設定方法。
  8.  請求項1記載の静電チャックへの印加電圧の設定方法において、
     前記検定用試料装着ステップと、前記検定用試料の吸着状態を検出するステップと、前記印加電圧記憶ステップは、前記検定用の試料の反りの大きさ及び反りのパターン毎に実行することを特徴とする静電チャックへの印加電圧の設定方法。
  9.  請求項1記載の静電チャックへの印加電圧の設定方法において、
     前記検査対象の試料の測定ステップは、前記検査対象の試料が、走査電子顕微鏡の処理室に接続されたロード室にて行われることを特徴とする静電チャックへの印加電圧の設定方法。
  10.  請求項1記載の静電チャックへの印加電圧の設定方法において、
     前記印加電圧設定ステップは、前記検定用の試料の吸着状態が「不良」から「良好」に変化した直後の印加電圧を印加電圧の最適値として設定する初期電圧設定ステップを有し、
     前記印加電圧ステップは、前記印加電圧の最適値を前記静電チャックに印加することを特徴とする静電チャックへの印加電圧の設定方法。
  11.  請求項1記載の静電チャックへの印加電圧の設定方法において、
     更に、測定対象の領域が前記検査対象の試料の縁であるか否かを判定する測定対象領域判定ステップと、
    を有し、
     前記測定対象領域判定ステップにおいて、測定点が前記検査対象の試料の縁であると判定された場合には、前記静電チャックへの印加電圧を所定の値に増加させることを特徴とする静電チャックへの印加電圧の設定方法。
  12.  電子源からの一次電子を走査する走査コイルと、該一次電子を集束させて試料に照射する対物レンズと、試料からの二次電子を検出する二次電子検出器と、試料を保持する静電チャックと、前記静電チャックへの印加電圧を制御する制御装置と、を有する走査電子顕微鏡において、
     前記制御装置には、反りの大きさ及び反りのパターンが既知の検定用試料について、前記静電チャックへの印加電圧と前記静電チャックに対する前記検定用試料の吸着状態の関係を示す測定データが記憶されており、
     前記静電チャックに検査対象の試料を装着したとき、前記静電チャックの印加電圧は、前記検査対象の試料の反りの大きさ及び反りのパターンと、前記制御装置に記憶されている測定データに基づいて、設定されることを特徴とする走査電子顕微鏡。
  13.  請求項12記載の走査電子顕微鏡において、
     前記検査対象の試料を装着した前記静電チャックの印加電圧は、前記静電チャックへの印加電圧を増加させたとき前記検定用の試料の吸着状態が「不良」から「良好」に変化する直前の印加電圧を、前記静電チャックに印加する初期電圧として設定し、前記検査対象の試料の吸着状態が「不良」から「良好」となるまで前記初期電圧を所定の増分毎に増加させるように構成されていることを特徴とする走査電子顕微鏡。
  14.  請求項12記載の走査電子顕微鏡において、
     前記静電チャックに装着された検査対象の試料の吸着状態を検出する吸着状態検出装置を有することを特徴とする走査電子顕微鏡。
  15.  請求項14記載の走査電子顕微鏡において、
     前記吸着状態検出装置は、前記検査対象の試料の平坦度を測定することによって前記吸着度を測定することを特徴とする走査電子顕微鏡。
  16.  請求項14記載の走査電子顕微鏡において、
     前記吸着状態検出装置は、前記検査対象の試料の表面の高さを測定する高さ測定装置、前記検査対象の試料の表面の光学顕微鏡像又は走査電子顕微鏡像を用いて前記検査対象の試料の平坦度を測定する画像処理装置によって構成されることを特徴とする走査電子顕微鏡。
  17.  請求項12記載の走査電子顕微鏡において、
     前記検査対象の試料を装着した前記静電チャックの印加電圧は、前記静電チャックへの印加電圧を増加させたとき前記検定用の試料の吸着状態が「不良」から「良好」に変化する直後の印加電圧を、印加電圧の最適値として設定することを特徴とする走査電子顕微鏡。
  18.  電子源からの一次電子を走査する走査コイルと、該一次電子を集束させて試料に照射する対物レンズと、試料からの二次電子を検出する二次電子検出器と、試料を保持する静電チャックと、前記静電チャックへの印加電圧を制御する制御装置と、前記静電チャックに対する試料の吸着状態を検出する吸着状態検出装置と、を有する走査電子顕微鏡において、
     前記静電チャックは、本体と、該本体内に配置された円状内部電極と、該円状内部電極の外周に配置されたリング状内部電極と、を有する双極型静電チャックであり、
     前記リング状内部電極は、前記静電チャックに吸着された試料の外径より大きい外径を有し、
     検査対象の試料上の測定点の位置が、試料の縁より内側である場合には、前記静電チャックの印加電圧は、前記試料を平坦な状態で支持することができる最適値に設定され、検査対象の試料上の測定点の位置が、試料の縁である場合には、前記静電チャックの印加電圧は、前記最小値より大きな値に設定することを特徴とする走査電子顕微鏡。
  19.  請求項18に記載の走査電子顕微鏡において、
     前記制御装置には、反りの大きさ及び反りのパターンが既知の検定用試料について、前記静電チャックへの印加電圧と前記静電チャックに対する前記検定用試料の吸着状態の関係を示す測定データが記憶されており、
     前記印加電圧の最適値は、前記検査対象の試料の反りの大きさ及び反りのパターンと、前記制御装置に記憶されている測定データに基づいて、設定されることを特徴とする走査電子顕微鏡。
  20.  請求項18に記載の走査電子顕微鏡において、
     前記静電チャックの印加電圧の最適値は、前記吸着状態検出装置によって検出された吸着状態が良好となるまで、初期電圧の増加させることによって得られることを特徴とする走査電子顕微鏡。
PCT/JP2010/073315 2009-12-28 2010-12-24 走査電子顕微鏡 WO2011081087A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/518,236 US8653459B2 (en) 2009-12-28 2010-12-24 Scanning electron microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009297104A JP5412270B2 (ja) 2009-12-28 2009-12-28 走査電子顕微鏡
JP2009-297104 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011081087A1 true WO2011081087A1 (ja) 2011-07-07

Family

ID=44226493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073315 WO2011081087A1 (ja) 2009-12-28 2010-12-24 走査電子顕微鏡

Country Status (3)

Country Link
US (1) US8653459B2 (ja)
JP (1) JP5412270B2 (ja)
WO (1) WO2011081087A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167665A1 (en) * 2011-12-28 2013-07-04 Hitachi High-Technologies Corporation Sample observation apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2014697A (en) 2014-05-06 2016-03-31 Asml Netherlands Bv Substrate support, method for loading a substrate on a substrate support location, lithographic apparatus and device manufacturing method.
KR101810947B1 (ko) * 2015-12-09 2018-01-25 (주)파웰이엔지 정전 척 및 그를 포함하는 전자 현미경
US9911571B2 (en) * 2016-04-20 2018-03-06 Applied Materials Israel Ltd. High voltage electron beam system and method
JP7246154B2 (ja) * 2018-10-02 2023-03-27 東京エレクトロン株式会社 プラズマ処理装置及び静電吸着方法
JP2022524034A (ja) 2019-03-08 2022-04-27 アプライド マテリアルズ インコーポレイテッド 基板処理チャンバ向けのチャッキングのプロセス及びシステム
US11393118B2 (en) * 2019-06-18 2022-07-19 Kla Corporation Metrics for asymmetric wafer shape characterization
JP7449198B2 (ja) * 2020-08-20 2024-03-13 株式会社日立ハイテク 荷電粒子ビーム装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645214A (ja) * 1992-03-04 1994-02-18 Hitachi Ltd 静電吸着装置
JP2000031252A (ja) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp 静電チャックを備えた半導体製造装置および静電チャックからのウエハ離脱方法
JP2005072521A (ja) * 2003-08-28 2005-03-17 Hitachi Ltd プラズマ処理装置
JP2005116849A (ja) * 2003-10-09 2005-04-28 Canon Inc 静電吸着装置及び方法、露光装置、デバイスの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484883B2 (ja) 1997-05-23 2010-06-16 株式会社アルバック 被吸着物の処理方法
US5872694A (en) * 1997-12-23 1999-02-16 Siemens Aktiengesellschaft Method and apparatus for determining wafer warpage for optimized electrostatic chuck clamping voltage
US6303451B1 (en) * 1999-11-22 2001-10-16 Chartered Semiconductor Manufacturing, Ltd Method for forming a transistor within an integrated circuit
US6861165B2 (en) * 2000-02-24 2005-03-01 Ibiden Co., Ltd. Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
US6753129B2 (en) * 2001-12-07 2004-06-22 Applied Materials Inc. Method and apparatus for modification of chemically amplified photoresist by electron beam exposure
US7186658B2 (en) * 2004-05-24 2007-03-06 Winbond Electronics Corporation Method and resulting structure for PCMO film to obtain etching rate and mask to selectively by inductively coupled plasma
KR101431950B1 (ko) * 2008-06-25 2014-08-19 가부시키가이샤 히다치 하이테크놀로지즈 반도체 검사 장치
JP5143787B2 (ja) * 2009-06-04 2013-02-13 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び荷電粒子線装置を利用した評価方法
KR101842101B1 (ko) * 2010-08-03 2018-03-26 가부시키가이샤 에바라 세이사꾸쇼 이물질 부착 방지 기능을 구비한 전자선 검사 장치 및 방법
JP5963453B2 (ja) * 2011-03-15 2016-08-03 株式会社荏原製作所 検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645214A (ja) * 1992-03-04 1994-02-18 Hitachi Ltd 静電吸着装置
JP2000031252A (ja) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp 静電チャックを備えた半導体製造装置および静電チャックからのウエハ離脱方法
JP2005072521A (ja) * 2003-08-28 2005-03-17 Hitachi Ltd プラズマ処理装置
JP2005116849A (ja) * 2003-10-09 2005-04-28 Canon Inc 静電吸着装置及び方法、露光装置、デバイスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167665A1 (en) * 2011-12-28 2013-07-04 Hitachi High-Technologies Corporation Sample observation apparatus

Also Published As

Publication number Publication date
JP5412270B2 (ja) 2014-02-12
US20120256087A1 (en) 2012-10-11
JP2011138878A (ja) 2011-07-14
US8653459B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
JP5412270B2 (ja) 走査電子顕微鏡
JP5554852B2 (ja) 試料検査装置
US7763863B2 (en) Charged particle beam application apparatus
US20200395188A1 (en) Charged-Particle Beam Device
US9401297B2 (en) Electrostatic chuck mechanism and charged particle beam apparatus
JP6064032B2 (ja) 荷電粒子線装置
KR101624067B1 (ko) 하전 입자선 장치
US9543113B2 (en) Charged-particle beam device for irradiating a charged particle beam on a sample
WO2015163036A1 (ja) 荷電粒子線装置及びその帯電除去方法
JP6640975B2 (ja) 静電チャック機構、及び荷電粒子線装置
JP6411799B2 (ja) 荷電粒子線装置
KR101538256B1 (ko) 하전 입자선 장치 및 정전 척 장치
US9129775B2 (en) Specimen potential measuring method, and charged particle beam device
WO2007086398A1 (ja) 試料表面検査装置及び検査方法
JP3952997B2 (ja) 半導体製造装置、および半導体検査装置
JP2010272586A (ja) 荷電粒子線装置
JP2007189238A (ja) 半導体製造装置、および半導体検査装置
JP2014216183A (ja) 半導体検査装置、及び検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518236

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840943

Country of ref document: EP

Kind code of ref document: A1