WO2011080854A1 - アルカリ乾電池 - Google Patents

アルカリ乾電池 Download PDF

Info

Publication number
WO2011080854A1
WO2011080854A1 PCT/JP2010/006118 JP2010006118W WO2011080854A1 WO 2011080854 A1 WO2011080854 A1 WO 2011080854A1 JP 2010006118 W JP2010006118 W JP 2010006118W WO 2011080854 A1 WO2011080854 A1 WO 2011080854A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
alkaline
zinc
electrode current
Prior art date
Application number
PCT/JP2010/006118
Other languages
English (en)
French (fr)
Inventor
中井美有紀
加藤文生
築地真知子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011080854A1 publication Critical patent/WO2011080854A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • H01M6/085Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes of the reversed type, i.e. anode in the centre

Definitions

  • the present invention relates to an alkaline battery.
  • a positive electrode, a negative electrode, a separator, and an alkaline electrolyte are contained in a battery case.
  • the positive electrode and the negative electrode are provided via a separator, and a negative electrode current collector is connected to the opening of the battery case.
  • the negative electrode terminal plate and the gasket are sealed.
  • Alkaline electrolyte shows strong alkalinity.
  • a zinc alloy containing at least one metal such as bismuth, indium and aluminum is used as the negative electrode active material.
  • corrosion of the negative electrode current collector due to the alkaline electrolyte is suppressed by performing tin plating on the surface of the negative electrode current collector to cover iron or the like contained in the negative electrode current collector.
  • JP 05-109411 A Japanese Patent Laid-Open No. 06-5284
  • the present invention has been made in view of such a point, and an object thereof is to improve the leakage resistance of the alkaline battery in an overdischarged state.
  • the alkaline dry battery according to the present invention includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a negative electrode current collector inserted into the negative electrode.
  • the negative electrode active material is zinc
  • the negative electrode current collector contains a first metal that passivates zinc
  • the first metal is, for example, aluminum.
  • the first metal is preferably present on at least the surface of the negative electrode current collector. Compared to the case where the first metal exists only inside the negative electrode current collector, zinc can be easily passivated during the reversal. Specifically, the 1st metal should just exist 50 ppm or more with respect to the mass of zinc on the surface of a negative electrode collector.
  • the surface of the negative electrode current collector is plated with a first metal.
  • the negative electrode current collector is made of an alloy containing a first metal, and the alloy contains copper or copper and zinc and 1% by mass or more and 11% by mass or less of the first metal. .
  • the negative electrode active material may be a zinc alloy containing at least one of indium and bismuth, as long as mercury is not added.
  • the leakage resistance of the alkaline battery in the overdischarged state can be improved.
  • FIG. 1 is a half sectional view of an alkaline battery according to an embodiment of the present invention.
  • FIG. 2 is a table summarizing the results of Examples 1 to 3 and Comparative Example 1.
  • FIG. 3 is a table summarizing the results of Example 4 and Comparative Example 2.
  • the potential of the negative electrode increases and may reach a potential at which metal is eluted from the negative electrode current collector into the alkaline electrolyte (metal elution potential).
  • metal elution potential a potential at which metal is eluted from the negative electrode current collector into the alkaline electrolyte.
  • the negative electrode current collector is often made of brass, copper is eluted from the negative electrode current collector as ions into the alkaline electrolyte during the reversal.
  • the copper ions eluted into the alkaline electrolyte are zinc particles existing in the vicinity of the negative electrode current collector 6 (the zinc particles include zinc alloy particles (a zinc alloy containing at least one of indium, bismuth and aluminum).
  • the zinc particles are simply referred to as “zinc particles”) and are deposited as a compound on the surface of the zinc particles.
  • copper exists in an ionic state on the surface of the zinc particles.
  • the copper ions on the surface of the zinc particles are reduced and metalized on the surface of the zinc particles.
  • copper since copper has a lower hydrogen overvoltage than zinc, it causes generation of hydrogen gas when returning from the inversion.
  • increasing the zinc filling amount in order to increase the capacity of an alkaline battery increases the amount of zinc corroded by the alkaline electrolyte, and increases the amount of zinc that undergoes pitting corrosion reaction during reversal. The amount increases. For this reason, an increase in the capacity of the alkaline battery causes an increase in the amount of hydrogen gas generated when the alkaline battery returns from the inversion.
  • the zinc filling amount increases, the internal space in the battery case becomes narrower, and the speed at which the internal pressure of the alkaline battery increases is accelerated. Therefore, when a high capacity alkaline battery is overdischarged, the leakage resistance is further reduced.
  • the content of indium, bismuth and aluminum decreases when the ratio of zinc in the zinc alloy is increased. Therefore, it is difficult to suppress the generation of hydrogen gas when returning from the inversion. Therefore, when the high-power alkaline battery is overdischarged, the leakage resistance is further reduced.
  • FIG. 1 is a half cross-sectional view of an alkaline dry battery according to this embodiment.
  • a positive electrode 2 a negative electrode 3, a separator 4, and an alkaline electrolyte (not shown) are accommodated in a battery case 1.
  • the battery case 1 serves as both a positive electrode terminal and a positive electrode current collector.
  • a nickel-plated steel sheet is press-molded into a predetermined size and a predetermined shape (specifically, a cylindrical shape with one end sealed). It is.
  • the outer peripheral surface of the battery case 1 is covered with an exterior label 8.
  • the positive electrode 2 is formed in a cylindrical shape, and is in close contact with the inner peripheral surface of the battery case 1 via, for example, a graphite film (not shown).
  • the positive electrode 2 includes a positive electrode active material (for example, electrolytic manganese dioxide powder), a conductive agent (for example, graphite powder) and an alkaline electrolyte, and further includes a binder (for example, polyethylene powder) or a lubricant (for example, (Stearate) may be included.
  • the negative electrode 3 is provided on the inner peripheral side with respect to the positive electrode 2 through a bottomed cylindrical separator 4, and the negative electrode active material (for example, zinc alloy powder) is a gel material (for example, gel such as sodium polyacrylate) In which the agent is added to the alkaline electrolyte).
  • the negative electrode 3 may be added with a metal (aluminum, indium or bismuth) or a compound thereof that has an action of suppressing corrosion of zinc by the alkaline electrolyte, and thereby the corrosion resistance of the negative electrode 3 can be improved.
  • a small amount of silicon compound such as silicic acid or a salt thereof may be added to the negative electrode 3, whereby generation of zinc dendrite can be suppressed.
  • the zinc alloy is preferably excellent in corrosion resistance, and it is more preferable to use mercury, cadmium, lead, or all of which are not added in consideration of the environment.
  • the zinc alloy should just contain at least 1 type of indium of 200 ppm or more and 1000 ppm or less, bismuth of 50 ppm or more and 500 ppm or less, and aluminum of 10 ppm or more and 50 ppm or less with respect to the mass of zinc.
  • the separator 4 is formed into a bottomed cylindrical shape, and is, for example, a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber.
  • the positive electrode 2, the negative electrode 3 and the separator 4 contain an alkaline electrolyte.
  • the alkaline electrolyte contains, for example, 30 to 40% by mass of potassium hydroxide, for example, 1 to 3% by mass of zinc oxide. is doing.
  • An opening 1a is formed in the battery case 1, and the opening 1a is sealed with an assembly sealing member.
  • the assembly sealing body is obtained by integrating the resin sealing body 5, the negative electrode current collector 6, and the negative electrode terminal plate 7. The structure of the assembly sealing body will be described while explaining the structure of the resin sealing body 5, the negative electrode current collector 6, and the negative electrode terminal plate 7.
  • Resin sealing body 5 has a cylindrical portion at the center of opening 1a.
  • the tube portion extends in parallel with the axial direction of the battery case 1, and a through hole is formed in the longitudinal direction of the tube portion.
  • a peripheral portion is provided at the periphery of the opening 1a rather than the cylindrical portion, and the cylindrical portion and the peripheral portion are connected via a connecting portion.
  • the connecting part extends in the radial direction of the opening 1a, and a thin part is provided in a part of the connecting part. When the internal pressure of the battery rises, this thin portion is broken to prevent further increase of the internal pressure.
  • Such a resin sealing body 5 is made of, for example, 6,6-nylon.
  • the negative electrode terminal plate 7 has a terminal portion in the center of the opening 1 a, and the terminal portion faces the opening side end surface of the cylindrical portion of the resin sealing body 5.
  • a peripheral portion is provided at the periphery of the opening 1 a rather than the terminal portion, and the peripheral portion is caulked to the opening 1 a via the peripheral portion of the resin sealing body 5.
  • gas vent holes are formed at intervals in the circumferential direction of the negative electrode terminal plate 7, so that when the thin portion of the resin sealing body 5 is broken, the inside of the battery case 1 Gas (for example, hydrogen gas) escapes from the vent hole.
  • Such a negative electrode terminal plate 7 is formed by press-forming, for example, a nickel-plated steel plate or a tin-plated steel plate into a predetermined size and a predetermined shape.
  • the negative electrode current collector 6 has a nail shape having a shaft portion 61 and a flange portion 62 having a diameter larger than that of the shaft portion 61.
  • the shaft portion 61 extends in the axial direction of the battery case 1, and one end thereof is press-fitted into the through hole of the resin sealing body 5 and inserted into the negative electrode 3.
  • the flange portion 62 is provided at the other end of the shaft portion 61, is disposed between the tube portion of the resin sealing body 5 and the terminal portion of the negative electrode terminal plate 7, and is welded to the terminal portion of the negative electrode terminal plate 7.
  • Such a negative electrode current collector 6 is obtained by pressing a wire such as copper or brass into a nail shape having a predetermined size.
  • Such an alkaline battery is manufactured according to the following method. First, after putting the pellet-shaped positive electrode 2 in the bottomed cylindrical battery case 1, the positive electrode 2 is pressurized and brought into close contact with the inner peripheral surface of the battery case 1. Next, a bottomed cylindrical separator 4 is disposed in the hollow portion of the positive electrode 2, and the negative electrode 3 is filled in the hollow portion of the separator 4. In addition, an alkaline electrolyte is injected into the battery case 1. Then, one end side of the negative electrode current collector 6 connected to the negative electrode terminal plate 7 is inserted into the negative electrode 3, and the negative electrode terminal plate 7 is inserted into the edge of the opening 1 a of the battery case 1 through the peripheral portion of the resin sealing member 5. Caulking the periphery of Thereafter, the outer peripheral surface of the battery case 1 is covered with the exterior label 8.
  • the negative electrode current collector 6 is made of, for example, copper or brass, and contains aluminum (first metal). Thereby, it can prevent that leak-proof property falls, when it will be in an overdischarge state. This is specifically shown below.
  • the aluminum ions are eluted from the negative electrode current collector 6 before the copper ions.
  • an oxide film containing Al 2 O 3 or Al (OH) 3
  • This oxide film is denser than a film containing ZnO, and has better corrosion resistance than a film containing ZnO.
  • zinc will be in a chemically inactive state (passivation of zinc).
  • the water decomposition reaction hardly occurs. Therefore, the amount of hydrogen gas generated when returning from the inversion can be suppressed.
  • the aluminum ions are a part of the surface of the zinc particles. It is thought to cover. Therefore, the progress of the pitting corrosion reaction can be suppressed at the portion where aluminum is deposited on the surface of the zinc particles. Therefore, the amount of hydrogen gas generated when returning from the inversion can be suppressed.
  • aluminum is preferentially deposited over copper compared to the case where aluminum is provided inside the negative electrode current collector 6. be able to. Therefore, it is preferable that aluminum is provided only on the surface of the negative electrode current collector 6 or both on the surface of the negative electrode current collector 6 and inside thereof. Specifically, if aluminum is present on the surface of the negative electrode current collector 6 in an amount of 50 ppm or more with respect to the mass of zinc (referred to as “zinc”) in the negative electrode 3, the zinc particles are partially dispersed during the reversal. Therefore, the generation of hydrogen gas can be suppressed when returning from the inversion.
  • zinc zinc
  • a layer containing aluminum may be formed on the surface of the negative electrode current collector 6.
  • This layer may be formed on a part of the surface of the negative electrode current collector 6, or may be formed on the entire surface of the negative electrode current collector 6.
  • aluminum is replaced with an alkaline electrolyte. It can be eluted evenly. Therefore, the layer containing aluminum is preferably formed on the entire surface of the negative electrode current collector 6.
  • aluminum may be plated on the entire surface of the negative electrode current collector 6.
  • the base material in this case, the negative electrode current collector 6
  • the negative electrode current collector 6 may be immersed in an aluminum metal melt (hot dip plating).
  • Aluminum may be plated on the entire surface of the negative electrode current collector 6, but considering that aluminum is eluted from the negative electrode current collector 6 into the alkaline electrolyte during the reversal, the axis of the negative electrode current collector 6 is used. What is necessary is just to have plated on the surface of the part 61, and also should just be plated on the surface of the part inserted in the negative electrode 3 among the axial parts 61.
  • Aluminum may be present on the surface of the negative electrode current collector 6 in an amount of 50 ppm or more with respect to the mass of zinc, and preferably 50 ppm or more and 1000 ppm or less with respect to the mass of zinc. If aluminum is present on the surface of the negative electrode current collector 6 in an amount of less than 50 ppm based on the mass of zinc, it may be difficult to sufficiently passivate zinc particles when the alkaline dry battery is reversed. When returning from the inversion, it may not be possible to prevent the occurrence of a water decomposition reaction on the surface of the zinc particles. If aluminum is present on the surface of the negative electrode current collector 6 in an amount of more than 1000 ppm with respect to the mass of zinc, the liquid leakage resistance when returning from the inversion can be improved. May cause a decrease in current collection efficiency.
  • Elution from the current collector 6 may cause a reduction in the reaction efficiency of the alkaline battery.
  • tin or the like may be electroplated.
  • production takes time and cost.
  • the negative electrode current collector 6 is produced using an alloy containing aluminum, these problems can be solved.
  • the negative electrode current collector 6 may be made of an alloy containing 1% by mass to 11% by mass of aluminum and copper or brass. If the negative electrode current collector 6 contains 1% by mass or more of aluminum, 50 ppm or more of aluminum can be present on the surface of the negative electrode current collector 6 with respect to the mass of zinc. In other words, when the negative electrode current collector 6 contains less than 1% by mass of aluminum, it is difficult for aluminum to be present at 50 ppm or more on the surface of the negative electrode current collector 6 with respect to the mass of zinc. In some cases, it may be difficult to sufficiently passivate the zinc particles when the alkaline battery is reversed.
  • the negative electrode current collector 6 contains more than 11% by mass of aluminum, it is possible to improve the liquid leakage resistance when the negative electrode current collector 6 returns from the inversion, but when the strength of the negative electrode current collector 6 is reduced. Therefore, for example, when the negative electrode current collector 6 is welded to the negative electrode terminal plate 7 or when the negative electrode current collector 6 is press-fitted into the resin sealing member 5, the negative electrode current collector 6 may be deformed. Therefore, when the negative electrode current collector 6 contains aluminum exceeding 11% by mass, the production yield of the alkaline dry battery may be reduced.
  • the negative electrode current collector 6 When the negative electrode current collector 6 is manufactured using an alloy containing aluminum, aluminum is present not only on the surface of the negative electrode current collector 6 but also inside the negative electrode current collector 6. At the time of reversal, aluminum present in the vicinity of the surface of the negative electrode current collector 6 is easily eluted in the alkaline electrolyte, but aluminum present in the negative electrode current collector 6 is difficult to elute in the alkaline electrolyte. Therefore, in order to suppress a decrease in leakage resistance when the alkaline dry battery according to the present embodiment returns from the inversion, the aluminum content in the negative electrode current collector 6 is such that aluminum is the surface of the negative electrode current collector 6. Compared to the case of plating on top, the number of cases in which the negative electrode current collector 6 is manufactured using an alloy containing aluminum is increased.
  • a metal for example, tin
  • tin a metal having a hydrogen overvoltage higher than that of zinc
  • tin precipitates on the surface of the zinc particles together with copper during the reversal. Therefore, compared with the case where the metal (for example, tin) whose hydrogen overvoltage is higher than zinc is not contained in the negative electrode current collector, the generation of hydrogen gas can be suppressed when returning from the inversion.
  • the negative electrode current collector 6 contains a metal (for example, aluminum) that has a hydrogen overvoltage higher than that of zinc and passivates zinc as in the present embodiment, the pitting corrosion reaction of zinc at the time of reversal of the zinc Since the progress can also be suppressed, generation of hydrogen gas can be further suppressed when returning from the inversion. Therefore, in this embodiment, when the hydrogen overvoltage is higher than that of zinc and a metal (for example, tin) that is difficult to passivate zinc is contained in the negative electrode current collector, the case where the negative electrode current collector returns. The leakage resistance can be improved.
  • a metal for example, aluminum
  • passivated zinc if zinc is partially passivated, the passivated portion
  • zinc is passivated after the potential returns from the overdischarged state (after returning from the inversion). That is, before the alkaline battery is overdischarged (for example, during storage or discharging of the alkaline battery), since aluminum is not eluted from the negative electrode current collector 6, zinc is not passivated. Zinc can contribute to the battery reaction. Therefore, the present embodiment is very effective because the effect can be exhibited only after the inversion due to the overdischarge. Therefore, in the present embodiment, it is possible to prevent a decrease in leakage resistance in an overdischarged state without causing a decrease in performance of the alkaline battery during storage or discharging.
  • the alkaline battery has a high capacity and a high output, a great effect can be obtained. This will be specifically described below.
  • the capacity of the alkaline dry battery can be increased.
  • the capacity of AA alkaline batteries can be increased by increasing the zinc filling amount in the AA alkaline batteries to 4.0 g or more. Can do.
  • the upper limit of the zinc filling amount is about 5.0 g.
  • the output of the alkaline battery can be increased. it can.
  • the ratio of the total mass of indium, bismuth and aluminum to the mass of zinc (hereinafter referred to as “ratio of indium and the like to zinc”) is usually 500 ppm or more, if the ratio is 450 ppm or less. Further, it is possible to increase the output of the alkaline battery. The lower the ratio of indium or the like to zinc, the higher the output of the alkaline dry battery can be achieved.
  • the ratio of indium to zinc may be 100 ppm or more.
  • the negative electrode usually contains about 100 ppm of aluminum with respect to the mass of zinc.
  • the negative electrode only needs to contain 50 ppm or less of aluminum with respect to the mass of zinc, and further contains 10 ppm or more and 50 ppm or less of aluminum with respect to the mass of zinc. It is preferable.
  • a normal alkaline dry battery (filling amount of zinc is about 3.8 g, and the ratio of indium to zinc is about 500 ppm. ) Also causes generation of hydrogen gas when returning from the inversion. At this time, since the amount of zinc charged is higher in alkaline batteries having a higher capacity and higher output than ordinary alkaline batteries, the amount of hydrogen gas generated when returning from the inversion is higher than that of ordinary alkaline batteries. In addition, the number of alkaline batteries with high output increases.
  • the negative electrode current collector contains aluminum (for example, the negative electrode current collector 6 in the present embodiment)
  • the high-capacity and high-power alkaline battery or normal alkaline battery returns from the inversion.
  • the amount of generated hydrogen gas can be reduced. Therefore, the amount of reduction in the amount of hydrogen gas generated is larger in the alkaline battery having a higher capacity and higher output than the ordinary alkaline battery. That is, the effect obtained by including the aluminum in the negative electrode current collector is greater in the alkaline battery having a higher capacity and higher output than the ordinary alkaline battery.
  • the positive electrode active material amount may be increased in accordance with the increase in the negative electrode active material amount.
  • the present embodiment may have the following configuration.
  • the passivation phenomenon occurs not only in aluminum but also in iron, nickel, cobalt, chromium, titanium, niobium, tantalum, or the like, or in these alloys.
  • iron, nickel, cobalt, or chromium is selected as the first metal, hydrogen gas may be generated during storage of an alkaline battery. Therefore, it is preferable to use aluminum, titanium, niobium, or tantalum as the first metal, or it is preferable to use an alloy thereof.
  • aluminum has a high conductivity (electrical conductivity), and has an effect of suppressing the generation of hydrogen gas because of the high stability of the oxide film in an alkaline aqueous solution.
  • the negative electrode current collector 6 is made of an alloy containing aluminum, and the surface thereof may be plated with aluminum.
  • iron may be mixed into the negative electrode current collector 6. If the iron content is 100 ppm or less with respect to the total mass of the negative electrode current collector 6, it is possible to suppress the acceleration of hydrogen gas generation without taking measures such as covering the iron. However, when the iron content exceeds 100 ppm with respect to the total mass of the negative electrode current collector 6, the iron is covered on the surface of the negative electrode current collector as disclosed in Patent Document 1 and the like. It is preferable to take the following means. Specifically, it is sufficient that tin or indium is provided on the surface of the negative electrode current collector 6, and it is sufficient that tin or indium is electroplated on the surface of the negative electrode current collector 6.
  • the alkaline dry battery may be a single 1 type alkaline dry battery, single 2 type alkaline dry battery, single 3 type alkaline dry battery, single 4 type alkaline dry battery, single 5 type alkaline dry battery, or square alkaline dry battery.
  • an AA alkaline battery was taken as an example, and the presence or absence of liquid leakage under overdischarge conditions was confirmed.
  • Example 1 First, zinc alloy particles containing 0.003 mass% Al, 0.015 mass% Bi and 0.020 mass% In with respect to the mass of zinc were produced by a gas atomization method. Thereafter, the prepared zinc alloy particles were classified using a sieve. By this classification, a negative electrode active material having a particle size range of 35 to 300 mesh and a ratio of zinc alloy particles having a particle size of 200 mesh or less (75 ⁇ m) of 30% was obtained.
  • the gel-like electrolyte obtained above is mixed with the zinc alloy particles having a mass ratio of 2.00 times the predetermined amount of the gel-like electrolyte and phosphorous with respect to 100 parts by mass of the zinc alloy particles.
  • 0.05 parts by mass of an acid surfactant sodium alcohol phosphate ester having an average molecular weight of about 210 was sufficiently mixed. As a result, a gelled negative electrode was obtained.
  • electrolytic manganese dioxide (HTHF (product number) manufactured by Tosoh Corporation) and graphite (SP-20 (product number) manufactured by Nippon Graphite Industry Co., Ltd.) were blended at a mass ratio of 94: 6 to obtain a mixed powder.
  • electrolyte solution 39 mass% potassium hydroxide aqueous solution (2 mass% of ZnO is included)
  • polyethylene binder 0.2 mass part of polyethylene binder with respect to 100 mass parts of this mixed powder.
  • the mixture was stirred and mixed uniformly to adjust the particle size to a constant particle size, and the resulting granule was pressurized to form a hollow cylinder. In this way, a positive electrode mixture pellet was obtained.
  • an AA alkaline battery for evaluation was prepared. Specifically, as shown in FIG. 1, two positive electrode mixture pellets (one mass is 5.15 g) obtained above are inserted into the battery case 1, and the battery case 1 is reused in the battery case 1. The pressure was applied to the inner surface of the battery case 1. And after inserting the separator 4 and the base paper for insulating the bottom part of the battery case 1 inside this positive electrode mixture pellet, an electrolytic solution (34.5 mass% potassium hydroxide aqueous solution (2 mass% of ZnO) was added. 1.5 g) was injected. After the injection, 6.2 g of gelled negative electrode 3 (the mass of the zinc alloy particles was 4.1 g) was filled inside the separator 4.
  • the opening part 1a of the battery case 1 was sealed using the assembly sealing body in which the resin sealing body 5, the negative electrode terminal plate 7, and the negative electrode current collector 6 were integrated. Specifically, the negative electrode current collector 6 is inserted into the negative electrode 3, and the peripheral edge portion of the negative electrode terminal plate 7 is caulked to the edge of the opening 1 a of the battery case 1 through the end of the resin sealing body 5. 7 was brought into close contact with the opening 1 a of the battery case 1. Then, the outer surface of the battery case 1 was covered with an exterior label 8 to produce an AA alkaline battery in Example 1.
  • a resin sealing body 5 was produced using 6,6-nylon as a material.
  • high-strength brass having a Cu content of 60% and an Al content of 1% with respect to the mass of the negative electrode current collector 6, the thickness ( ⁇ ) is 1.425 mm and the length is 33 mm.
  • a nail-shaped negative electrode current collector 6 was prepared.
  • the separator 4 a separator for alkaline dry batteries (a composite fiber made of vinylon and Tencel (registered trademark)) manufactured by Kuraray Co., Ltd. was used.
  • Example 2 was conducted in the same manner as in Example 1 except that the negative electrode current collector 6 was produced using high-strength brass having a Cu content of 60% and an Al content of 5%. A battery was prepared.
  • Example 3 In Example 3 according to the same method as in Example 1 except that the negative electrode current collector 6 was produced using a copper alloy having a Cu content of 77% and an Al content of 11%. A battery was produced.
  • Comparative Example 1 The battery in Comparative Example 1 was prepared in the same manner as in Example 1 except that the negative electrode current collector 6 was made of brass having a Cu content of 65% and an Al content of 0%. Was made.
  • Example 4 A battery in Example 4 was produced according to the same method as in Example 1 except that the production method of the negative electrode current collector 6 was different. Specifically, a nail-shaped brass wire having a thickness ( ⁇ ) of 1.425 mm and a length of 33 mm (the mass of Cu contained is 65% of the mass of the brass wire, and the mass of Fe contained) was 35 ppm), and aluminum was hot-plated so that the average thickness was 1.15 ⁇ m (in terms of mass ratio, the Al content was 350 ppm with respect to the mass of zinc in the negative electrode). ). Thus, the negative electrode current collector 6 in Example 4 was produced.
  • Comparative Example 2 A battery in Comparative Example 2 was produced according to the same method as in Example 4 except that aluminum was not hot-plated on the surface of the negative electrode current collector 6.
  • Example 1 [Evaluation method for alkaline batteries] Four batteries (new batteries) of Example 1 were connected in series, and further connected with a 40 ⁇ resistor, and left for 50 days in an atmosphere at 20 ° C. to cause overdischarge. The presence or absence of leakage of the alkaline battery after overdischarge was examined. Here, a set of 4 batteries connected in series via a resistor is taken as one set, and 10 sets each (total of 40 AA alkaline batteries) are tested to determine the rate of liquid leakage (%). Asked. Similar tests were performed on the batteries of Examples 2 to 4 and Comparative Examples 1 and 2. FIG. 2 shows the test results of the batteries of Examples 1 to 3 and Comparative Example 1, and FIG. 3 shows the test results of the batteries of Example 4 and Comparative Example 2.
  • the present inventors presume that the reason for the difference in leakage rate between the batteries of Examples 1 to 4 and the batteries of Comparative Examples 1 and 2 is due to the mechanism described in the above embodiment. is doing. Specifically, when alkaline batteries having different capacities are connected in series and discharged, inversion occurs in the alkaline batteries having the smallest capacity. In the reversed alkaline dry battery, the negative electrode current collector is melted. At this time, in the alkaline dry batteries of Examples 1 to 4, since the negative electrode current collector contains aluminum, aluminum is deposited as a metal on the surface of the zinc particles. Thereby, since zinc is passivated, the amount of hydrogen gas generated when returning from the inversion can be suppressed.
  • the present invention is excellent in leakage resistance, and is particularly useful for high capacity and high output alkaline dry batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 負極集電体(6)は、亜鉛を不動態化させる第1の金属を含んでいる。

Description

アルカリ乾電池
 本発明は、アルカリ乾電池に関するものである。
 アルカリ乾電池では、正極と負極とセパレータとアルカリ電解液とが電池ケース内に収容されており、正極と負極とはセパレータを介して設けられており、電池ケースの開口部は負極集電体が接続された負極端子板とガスケットとにより封じられている。
 アルカリ電解液は、強アルカリ性を示している。アルカリ電解液による亜鉛の腐食を防ぐために、ビスマス、インジウム及びアルミニウム等の少なくとも1つの金属を含む亜鉛合金を負極活物質として用いている。また、特許文献1では、負極集電体の表面にスズめっきを施して負極集電体に含まれる鉄等を覆い隠すことにより、アルカリ電解液による負極集電体の腐食を抑制している。
 ところで、最近、アルカリ乾電池には、高容量化及び高出力化が要求されている。特許文献2には、負極における負極活物質の含有率を高くすれば(負極において負極活物質以外の材料の含有率を低くすれば)アルカリ乾電池の高出力化を図りつつその短寿命化を抑制できる,と記載されている。
特開平05-109411号公報 特開平06-5284号公報
 アルカリ乾電池が過放電状態となると、漏液を引き起こす場合があることが知られており、アルカリ乾電池が高容量且つ高出力になるほど、耐漏液性の低下が顕著となる。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、過放電状態におけるアルカリ乾電池の耐漏液性を向上させることである。
 本発明に係るアルカリ乾電池は、正極と、負極と、正極と負極との間に配置されたセパレータと、負極内に挿入された負極集電体とを備えている。負極活物質は亜鉛であり、負極集電体は亜鉛を不動態化させる第1の金属を含んでおり、第1の金属は例えばアルミニウムである。
 このようなアルカリ乾電池が転極(正極と負極とが逆転すること)すると、第1の金属が負極集電体からアルカリ電解液中に溶け出し、よって、亜鉛が不動態化される。従って、転極から復帰したときに水素ガスが激しく発生することを防止できる。
 本発明に係るアルカリ乾電池では、第1の金属は負極集電体の少なくとも表面に存在していることが好ましい。第1の金属が負極集電体の内部のみに存在している場合に比べて、転極時には亜鉛を容易に不動態化させることができる。具体的には、第1の金属は、負極集電体の表面上に亜鉛の質量に対して50ppm以上存在していれば良い。
 後述の好ましい実施形態では、負極集電体の表面は第1の金属でめっきされている。
 後述の好ましい別の実施形態では、負極集電体は第1の金属を含む合金からなり、合金は銅又は銅及び亜鉛と1質量%以上11質量%以下の第1の金属とを含んでいる。
 本発明のアルカリ乾電池では、負極の活物質は、インジウム及びビスマスの少なくとも一つを含む亜鉛合金であれば良く、水銀が無添加であれば良い。
 本発明では、過放電状態におけるアルカリ乾電池の耐漏液性を向上できる。
図1は、本発明の一実施形態にかかるアルカリ乾電池の半断面図である。 図2は、実施例1~3及び比較例1の結果をまとめた表である。 図3は、実施例4及び比較例2の結果をまとめた表である。
 まず、アルカリ乾電池が過放電状態となる状況を説明した上で、アルカリ乾電池が過放電状態となったときに耐漏液性が低下する理由を説明する。例えば容量が互いに異なるアルカリ乾電池を直列に接続させて回路を構成すると、容量が大きいアルカリ乾電池で放電が終了する前に容量が小さいアルカリ乾電池で放電が終了する。その後もさらに放電を続けると(過放電)、容量が小さいアルカリ乾電池にはそれ以外のアルカリ乾電池に印加される電圧が強制的に印加され、その結果、容量の小さいアルカリ乾電池では転極が発生する。その後、容量が大きいアルカリ乾電池で放電が終了すると、容量の小さいアルカリ乾電池の電圧は0V近傍にまで復帰する(転極からの復帰)。
 アルカリ乾電池で転極が発生すると、負極の電位は、上昇し、負極集電体からアルカリ電解液中へ金属が溶出する電位(金属溶出電位)に到達する場合がある。負極集電体は真鍮製である場合が多いので、転極時には、銅が負極集電体からアルカリ電解液中へイオンとなって溶出する。ここで、アルカリ電解液中へ溶出した銅イオンは、負極集電体6の近傍に存在する亜鉛粒子(この亜鉛粒子には、亜鉛合金粒子(インジウム、ビスマス及びアルミニウムの少なくとも1つを含む亜鉛合金粒子)も含まれる。以下ではこの亜鉛粒子を単に「亜鉛粒子」と記す。)の表面上に化合物として析出する。別の言い方をすると、銅は、亜鉛粒子の表面上では、イオン状態で存在する。しかし、転極から復帰すると、亜鉛粒子の表面上の銅イオンは、亜鉛粒子の表面上で還元されてメタル化される。また、銅は亜鉛よりも水素過電圧が低いので、転極から復帰したときには水素ガスの発生を引き起こす。
 それだけでなく、アルカリ乾電池で転極が発生すると亜鉛の孔食反応が進行する,と考えられている。亜鉛の孔食反応が進行すると亜鉛粒子の表面積の増大等を引き起こすので、孔食反応が進行した亜鉛は孔食反応が進行していない亜鉛に比べて化学的に活性となる。そのため、転極から復帰すると、化学的に活性な亜鉛粒子の表面上において水が分解されて水素ガスの発生を引き起こす。
 水素ガスが発生すると、アルカリ乾電池の内圧が上昇する。アルカリ乾電池の内圧が所定値を超えるまで上昇すると、樹脂封口体の薄肉部が破断して水素ガスが逃げる。これにより、アルカリ乾電池の内圧は減少するが、水素ガスとともにアルカリ電解液も放出される。つまり、漏液が発生する。この耐漏液性の低下は、アルカリ乾電池の高容量化且つ高出力化により顕著となると考えられる。
 具体的には、アルカリ乾電池の高容量化を図るために亜鉛の充填量を増加させると、アルカリ電解液に腐食される亜鉛の量が増え、また、転極時に孔食反応が進行する亜鉛の量が増加する。そのため、アルカリ乾電池の高容量化により、転極から復帰したときに発生する水素ガスの量の増加を引き起こす。それだけでなく、亜鉛の充填量が増加すると電池ケースにおける内部空間が狭くなるため、アルカリ乾電池の内圧が上昇する速度が加速する。よって、高容量なアルカリ乾電池が過放電状態となると、耐漏液性の更なる低下を引き起こす。
 また、アルカリ乾電池の反応効率を高めるために、亜鉛合金中の亜鉛の比率を増加させると、インジウム、ビスマス及びアルミニウムの含有量が減少する。そのため、転極からの復帰時における水素ガスの発生を抑制することが難しい。よって、高出力なアルカリ乾電池が過放電状態となると、耐漏液性の更なる低下を引き起こす。
 以上説明した理由から、アルカリ乾電池の高容量化且つ高出力化に伴い過放電状態下での耐漏液性の低下が顕著となると考えられる。この不具合を解消する手段として、例えば、負極中のインジウム、ビスマス及びアルミニウムの少なくとも何れか1つの含有量を増加させるという手段が考えられる。しかし、負極中のインジウム、ビスマス及びアルミニウムの少なくとも何れか1つの含有量を増加させれば、負極の利用率(反応効率)の低下を引き起こすためアルカリ乾電池の容量低下を引き起こす場合がある。
 上記考察をふまえて、本発明者らは、本発明を完成させた。以下では、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下に示す実施形態に限定されない。
 《発明の実施形態》
 図1は、本実施形態に係るアルカリ乾電池の半断面図である。
 本実施形態に係るアルカリ乾電池では、図1に示すように、正極2と負極3とセパレータ4とアルカリ電解液(不図示)とが電池ケース1内に収容されている。
 電池ケース1は、正極端子と正極集電体とを兼ねており、例えばニッケルめっき鋼板が所定の寸法及び所定の形状(具体的には一端が封止された筒状)にプレス成形されたものである。電池ケース1の外周面は外装ラベル8で被覆されている。
 正極2は、円筒状に成形されており、例えば黒鉛膜(不図示)を介して電池ケース1の内周面に密着している。正極2は、正極活物質(例えば電解二酸化マンガンの粉末)、導電剤(例えば黒鉛の粉末)及びアルカリ電解液を含んでおり、さらに、結着剤(例えばポリエチレンの粉末)又は滑沢剤(例えばステアリン酸塩)を含んでいても良い。
 負極3は、有底筒状のセパレータ4を介して正極2よりも内周側に設けられており、負極活物質(例えば亜鉛合金の粉末)がゲル状物質(例えばポリアクリル酸ナトリウム等のゲル化剤がアルカリ電解液に添加されたもの)に分散されたものである。負極3には、アルカリ電解液による亜鉛の腐食を抑制する作用がある金属(アルミニウム、インジウム若しくはビスマス)又はその化合物が添加されていても良く、これにより、負極3の耐食性を向上させることができる。また、負極3には、微量のケイ酸又はその塩等のケイ素化合物が添加されていても良く、これにより、亜鉛デンドライトの発生を抑制することができる。
 上記亜鉛合金は、耐食性に優れていることが好ましく、環境に配慮して水銀、カドミウム、もしくは鉛、又はそれら全てが無添加であるものを用いることがさらに好ましい。亜鉛合金は、亜鉛の質量に対して、例えば、200ppm以上1000ppm以下のインジウム、50ppm以上500ppm以下のビスマス及び10ppm以上50ppm以下のアルミニウムの少なくとも一種を含んでいれば良い。
 セパレータ4は、有底筒状に成形されており、例えばポリビニルアルコール繊維及びレーヨン繊維を主体として混抄した不織布である。
 このような正極2、負極3及びセパレータ4にはアルカリ電解液が含まれており、アルカリ電解液は、例えば水酸化カリウムを30~40質量%含有し、例えば酸化亜鉛を1~3質量%含有している。
 電池ケース1には開口部1aが形成されており、開口部1aは組立封口体により封止されている。組立封口体は、樹脂封口体5と負極集電体6と負極端子板7とが一体化されたものである。樹脂封口体5、負極集電体6及び負極端子板7の各構成を説明しつつ組立封口体の構成を説明する。
 樹脂封口体5は、開口部1aの中央に筒部を有する。筒部は電池ケース1の軸方向と平行に延びており、筒部の長手方向には貫通孔が形成されている。筒部よりも開口部1aの周縁には周縁部が設けられており、筒部と周縁部とは連結部を介して連結されている。連結部は開口部1aの径方向に延びており、連結部の一部分には薄肉部が設けられている。電池の内圧が上昇したときには、この薄肉部が破断して内圧の更なる上昇を防止する。このような樹脂封口体5は、例えば6,6-ナイロンからなる。
 負極端子板7は、開口部1aの中央に端子部を有しており、端子部は、樹脂封口体5の筒部の開口側端面に対向している。端子部よりも開口部1aの周縁には周縁部が設けられており、この周縁部は樹脂封口体5の周縁部を介して開口部1aにかしめられている。端子部と周縁部との間には、ガス抜き孔が負極端子板7の周方向に間隔を開けて形成されており、これにより、樹脂封口体5の薄肉部が破断したときには電池ケース1内のガス(例えば水素ガス)がガス抜き孔から逃げる。このような負極端子板7は、例えばニッケルめっき鋼板又はスズめっき鋼板等が所定の寸法及び所定の形状にプレス成形されたものである。
 負極集電体6は、軸部61と軸部61よりも大径な鍔部62とを有する釘形である。軸部61は電池ケース1の軸方向に延びており、その一端側は樹脂封口体5の貫通孔内に圧入されて負極3内に挿入されている。鍔部62は、軸部61の他端に設けられており、樹脂封口体5の筒部と負極端子板7の端子部との間に配置されており、負極端子板7の端子部に溶接されている。このような負極集電体6は、例えば銅又は真鍮等の線材を所定の寸法の釘形にプレス加工されたものである。
 このようなアルカリ乾電池は、次に示す方法に従って作製される。まず、有底円筒形の電池ケース1内にペレット状の正極2を入れた後、正極2を加圧して電池ケース1の内周面に密着させる。次に、正極2の中空部に有底円筒形のセパレータ4を配置し、セパレータ4の中空部に負極3を充填する。また、アルカリ電解液を電池ケース1内に注入する。それから、負極端子板7に接続された負極集電体6の一端側を負極3内に挿入し、電池ケース1の開口部1aの縁に樹脂封口体5の周縁部を介して負極端子板7の周縁部をかしめる。その後、電池ケース1の外周面を外装ラベル8で被覆する。
 では、本実施形態における負極集電体6を順に説明する。
 負極集電体6は、例えば銅又は真鍮等からなり、また、アルミニウム(第1の金属)を含んでいる。これにより、過放電状態となったときに耐漏液性が低下することを防止できる。以下に具体的に示す。
 本実施形態に係るアルカリ乾電池が転極して負極3の電位が金属溶出電位に到達すると、負極集電体6からの金属イオン(銅イオン又はアルミニウムイオン)の溶出が開始する。金属イオンの溶出は負極集電体6の最表面から始まるため、電解液へのアルミニウムイオンの溶出状態は負極集電体6におけるアルミニウムの存在箇所に依存すると考えられる。
 例えばアルミニウムが負極集電体6の最表面に存在している場合、銅イオンよりも先にアルミニウムイオンが負極集電体6から溶出すると考えられる。アルカリ電解液中に溶出したアルミニウムイオンが亜鉛粒子の表面上に付着すると、転極から復帰したときにはAl(もしくはAl(OH))を含んだ酸化皮膜が形成される。この酸化皮膜は、ZnOを含んだ膜よりも緻密であり、また、ZnOを含んだ膜よりも耐食性に優れている。これにより、亜鉛は、化学的に不活性な状態となる(亜鉛の不動態化)。不動態化された亜鉛粒子の表面では水の分解反応が起こりにくい。よって、転極から復帰したときに発生する水素ガスの量を抑えることができる。
 また、負極集電体6におけるアルミニウムと銅との存在位置がほぼ同じである場合(例えば負極集電体6がアルミニウムと銅との合金からなる場合)、アルミニウムイオンは亜鉛粒子の表面の一部分を被覆すると考えられる。そのため、亜鉛粒子の表面のうちアルミニウムが析出した部分では孔食反応の進行を抑制できる。よって、転極から復帰したときに発生する水素ガスの量を抑えることができる。
 このように、アルミニウムが負極集電体6の表面上に設けられていれば、アルミニウムが負極集電体6の内部に設けられている場合に比べて、銅よりも優先的にアルミニウムを析出させることができる。そのため、アルミニウムは、負極集電体6の表面上のみ又は負極集電体6の表面上とその内部との両方に設けられていることが好ましい。具体的には、アルミニウムが負極集電体6の表面上に負極3中の亜鉛(「亜鉛」と記す。)の質量に対して50ppm以上存在していれば、転極時には亜鉛粒子を部分的に不動態化させることができ、よって、転極から復帰したときには水素ガスの発生を抑制できる。
 アルミニウムが負極集電体6の表面上のみに設けられている場合、負極集電体6の表面上にはアルミニウムを含む層が形成されていれば良い。この層は、負極集電体6の表面の一部分に形成されていても良いし、負極集電体6の表面全体に形成されていても良い。しかし、この層が負極集電体6の表面全体に形成されていれば、この層が負極集電体6の表面の一部分に形成されている場合に比べて、転極時にアルミニウムをアルカリ電解液中へ均一に溶出させることができる。よって、アルミニウムを含む層は負極集電体6の表面全体に形成されていることが好ましい。
 例えば、アルミニウムは、負極集電体6の表面全体にめっきされていれば良い。具体的には、アルミニウムの金属融液中に基材(この場合、負極集電体6)を浸漬させれば良い(溶融めっき)。アルミニウムは、負極集電体6の表面全体にめっきされていても良いが、転極時にアルミニウムが負極集電体6からアルカリ電解液中へ溶出することを考慮すると、負極集電体6の軸部61の表面にめっきされていれば良く、さらには、軸部61のうち負極3内に挿入される部分の表面にめっきされていれば良い。
 アルミニウムは、負極集電体6の表面上に、亜鉛の質量に対して50ppm以上存在していれば良く、亜鉛の質量に対して50ppm以上1000ppm以下存在していることが好ましい。アルミニウムが負極集電体6の表面上に亜鉛の質量に対して50ppm未満存在していれば、アルカリ乾電池が転極したときに亜鉛粒子を十分に不動態化させることが難しい場合があり、よって、転極から復帰したときには亜鉛粒子の表面上における水の分解反応の発生を防止できない場合がある。アルミニウムが負極集電体6の表面上に亜鉛の質量に対して1000ppmよりも多く存在していれば、転極から復帰したときにおける耐漏液性を向上させることができるが、負極集電体6による集電効率の低下を引き起こす場合がある。
 ところで、アルミニウムを負極集電体6の表面上に溶融めっきさせると、負極集電体6の表面の大部分はアルミニウムに被覆される。しかし、アルカリ乾電池の保存中には、負極集電体6のうちアルミニウムが被覆されていない部分から、負極集電体6に含まれる不純物成分に由来するガスの発生を引き起こす場合がある。また、アルミニウムを負極集電体6の表面上に溶融めっきさせると、負極集電体6による集電効率の低下を引き起こす場合がある。さらに、アルミニウムが負極集電体6の最表面に被覆された場合には、アルカリ乾電池を通常状態で保存したときには、亜鉛が負極集電体6の表面上に被覆される前に、アルミニウムが負極集電体6から溶出してアルカリ乾電池の反応効率の低下を引き起こす場合がある。これらの不具合の発生を防止するためには、負極集電体6の表面上にアルミニウムを溶融めっきさせた後に、スズ等を電解めっきさせれば良い。しかし、このようにして負極集電体6を作製すれば、作製に時間とコストがかかる。一方、アルミニウムを含む合金を用いて負極集電体6を作製すれば、これらの不具合を解消できる。
 負極集電体6は、1質量%以上11質量%以下のアルミニウムと、銅又は真鍮とを含む合金からなれば良い。負極集電体6が1質量%以上のアルミニウムを含んでいれば、アルミニウムを負極集電体6の表面上に亜鉛の質量に対して50ppm以上存在させることができる。別の言い方をすると、負極集電体6が1質量%未満のアルミニウムを含んでいる場合には、アルミニウムを負極集電体6の表面上に亜鉛の質量に対して50ppm以上存在させることが難しい場合があるので、アルカリ乾電池が転極したときに亜鉛粒子を十分に不動態化させることが難しい場合がある。負極集電体6が11質量%を超えるアルミニウムを含んでいる場合には、転極から復帰したときにおける耐漏液性を向上させることができるが、負極集電体6の強度の低下を引き起こす場合があるので、例えば負極集電体6を負極端子板7に溶接するとき又は負極集電体6を樹脂封口体5に圧入するときに負極集電体6の変形を引き起こす場合がある。そのため、負極集電体6が11質量%を超えるアルミニウムを含んでいる場合には、アルカリ乾電池の製造歩留まりの低下を招来する場合がある。
 なお、アルミニウムを含む合金を用いて負極集電体6を作製すると、アルミニウムは、負極集電体6の表面上だけでなく負極集電体6の内部にも存在する。転極時、負極集電体6の表面近傍に存在するアルミニウムはアルカリ電解液中に溶出し易いが、負極集電体6の内部に存在するアルミニウムはアルカリ電解液中に溶出し難い。そのため、本実施形態に係るアルカリ乾電池が転極から復帰したときの耐漏液性の低下を抑制するためには、負極集電体6におけるアルミニウムの含有量は、アルミニウムを負極集電体6の表面上にめっきする場合に比べてアルミニウムを含む合金を用いて負極集電体6を作製する場合の方が多くなる。
 以上説明したように、本実施形態では、アルカリ乾電池が転極したときには、アルミニウムが負極集電体6から溶出して亜鉛粒子の表面上に析出するので、亜鉛の不動態化を図ることができる。よって、転極から復帰したときに発生する水素ガスの量を低減できるので、耐漏液性の向上を図ることができる。
 亜鉛よりも水素過電圧が高い金属(例えばスズ)が負極集電体に含まれていれば、転極時には銅とともにスズが亜鉛粒子の表面上に析出する。よって、亜鉛よりも水素過電圧が高い金属(例えばスズ)が負極集電体に含まれていない場合に比べて、転極から復帰したときには水素ガスの発生を抑制できる。しかし、本実施形態のように亜鉛よりも水素過電圧が高く且つ亜鉛を不動態化させる金属(例えばアルミニウム)が負極集電体6に含まれていれば、転極時における亜鉛の孔食反応の進行も抑制できるので、転極から復帰したときには水素ガスの発生をさらに抑制できる。よって、本実施形態では、亜鉛よりも水素過電圧が高く且つ亜鉛を不動態化させることが難しい金属(例えばスズ)が負極集電体に含まれている場合に比べて、転極から復帰したときの耐漏液性の向上を図ることができる。
 ところで、不動態化された亜鉛(亜鉛が部分的に不動態化された場合にはその不動態化された部分)は、電池反応に寄与できない。しかし、亜鉛が不動態化されるのは、過放電状態から電位が復帰した後(転極から復帰した後)である。つまり、アルカリ乾電池が過放電状態となる前(例えばアルカリ乾電池の保管中又は放電中)には、アルミニウムが負極集電体6から溶出していないので亜鉛は不動態化されておらず、そのため、亜鉛は電池反応に寄与できる。よって、本実施形態では、過放電に因る転極を経た後でだけ効果を発現させることができるので、非常に有効である。従って、本実施形態では、保管中又は放電中のアルカリ乾電池の性能低下を引き起こすことなく、過放電状態における耐漏液性の低下を防ぐことができる。
 さらに、本実施形態では、アルカリ乾電池が高容量且つ高出力であれば、大きな効果を得ることができる。以下に具体的に説明する。
 負極3における亜鉛の充填量を増やすと、アルカリ乾電池の高容量化を図ることができる。例えば単3形アルカリ乾電池は通常3.8g程度の亜鉛を含んでいるので、単3形アルカリ乾電池における亜鉛の充填量を4.0g以上とすれば単3形アルカリ乾電池の高容量化を図ることができる。アルカリ乾電池における亜鉛の充填量が多ければ多いほど、アルカリ乾電池の高容量化を図ることができる。しかし、電池ケースの大きさは規格により定められているので、亜鉛の充填量の増加には限りがある。単3形アルカリ乾電池の場合では、亜鉛の充填量の上限は5.0g程度である。
 負極3における亜鉛の含有率を高くすると、別の言い方をすると負極3における負極活物質以外の材料(例えばインジウム、ビスマス又はアルミニウム)の含有率を低くすると、アルカリ乾電池の高出力化を図ることができる。具体的には、亜鉛の質量に対するインジウム、ビスマス及びアルミニウムの合計質量の割合(以下では「亜鉛に対するインジウム等の割合」と記す。)は通常500ppm以上であるので、その割合を450ppm以下とすれば、アルカリ乾電池の高出力化を図ることができる。亜鉛に対するインジウム等の割合が低ければ低いほど、アルカリ乾電池の高出力化を図ることができる。しかし、亜鉛に対するインジウム等の割合が100ppmを下回ると、アルカリ電解液による亜鉛の腐食を防止することが難しい場合があり、インジウム、ビスマス及びアルミニウムを負極3に添加する意義が没却される場合がある。よって、亜鉛に対するインジウム等の割合は、100ppm以上であれば良い。ここで、アルミニウムに着目すると、負極は、通常、亜鉛の質量に対して100ppm程度のアルミニウムを含んでいる。アルカリ乾電池の高出力化を図るためには、負極は、亜鉛の質量に対して50ppm以下のアルミニウムを含んでいれば良く、さらには亜鉛の質量に対して10ppm以上50ppm以下のアルミニウムを含んでいることが好ましい。
 負極集電体がアルミニウムを含んでいない場合、高容量且つ高出力なアルカリ乾電池においても通常のアルカリ乾電池(亜鉛の充填量が3.8g程度であり、亜鉛に対するインジウム等の割合が500ppm程度である)においても、転極から復帰したときには水素ガスの発生を引き起こす。このとき、亜鉛の充填量は通常のアルカリ乾電池よりも高容量且つ高出力なアルカリ乾電池の方が多いため、転極から復帰したときに発生する水素ガスの量は通常のアルカリ乾電池よりも高容量且つ高出力なアルカリ乾電池の方が多くなる。
 しかし、負極集電体がアルミニウムを含んでいると(例えば本実施形態における負極集電体6)、高容量且つ高出力なアルカリ乾電池においても通常のアルカリ乾電池においても、転極から復帰したときに発生する水素ガス量の低減を図ることができる。従って、水素ガスの発生量の減少幅は、通常のアルカリ乾電池よりも高容量且つ高出力なアルカリ乾電池の方が大きくなる。つまり、負極集電体がアルミニウムを含んでいることにより得られる効果は、通常のアルカリ乾電池よりも高容量且つ高出力なアルカリ乾電池の方が大きくなる。
 なお、この場合、負極活物質量の増加に合わせて正極活物質量を増加させても良い。
 本実施形態は、以下に示す構成を有していても良い。
 一般に、不動態化現象は、アルミニウムだけでなく、鉄、ニッケル、コバルト、クロム、チタン、ニオブ若しくはタンタル等において起こり、又は、これらの合金において起こる。しかし、第1の金属として鉄、ニッケル、コバルト又はクロムを選択すると、アルカリ乾電池の保存中等に水素ガスの発生を引き起こす場合がある。よって、第1の金属としては、アルミニウム、チタン、ニオブ若しくはタンタルを用いることが好ましく、又は、これらの合金を用いることが好ましい。その中でもアルミニウムは、伝導度(電気伝導度)が高く、また、アルカリ水溶液中での酸化皮膜の安定性が高いために水素ガスの発生を抑制させるという効果を得ることができる。
 負極集電体6は、アルミニウムを含む合金からなるとともに、その表面にアルミニウムがめっきされていても良い。
 負極集電体6の製造時等において負極集電体6に鉄が混入する場合がある。鉄の含有量が負極集電体6の全質量に対して100ppm以下であれば、その鉄を覆い隠すなどの手段を講じなくても水素ガスの発生が加速することを抑制できる。しかし、鉄の含有量が負極集電体6の全質量に対して100ppmを超えている場合には、特許文献1等で開示されているように負極集電体の表面において鉄を覆い隠すなどの手段を講じることが好ましい。具体的には、負極集電体6の表面上にスズ又はインジウムが設けられていれば良く、負極集電体6の表面上にスズ又はインジウムが電解めっきされていれば良い。
 本実施形態で記載した電池ケース、正極、負極、セパレータ、アルカリ電解液、樹脂封口体、負極集電体及び負極端子板の各材料は、一例に過ぎない。また、アルカリ乾電池は、単1形アルカリ乾電池、単2形アルカリ乾電池、単3形アルカリ乾電池、単4形アルカリ乾電池若しくは単5形アルカリ乾電池であっても良く、角形アルカリ乾電池であっても良い。
 本実施例では、単3形アルカリ乾電池を例に挙げ過放電状態下での漏液の有無を確認した。
 [アルカリ乾電池の作製方法]
 (実施例1)
 まず、ガスアトマイズ法によって、亜鉛の質量に対して0.003質量%のAl、0.015質量%のBi及び0.020質量%のInを含有する亜鉛合金粒子を作製した。その後、篩を用いて、作製した亜鉛合金粒子を分級した。この分級により、35~300メッシュの粒度範囲を有し、且つ、200メッシュ以下の粒径(75μm)を有する亜鉛合金粒子の比率が30%である負極活物質を得た。
 次に、34.5質量%の水酸化カリウム水溶液(ZnOを2質量%含む)の100質量部に対して、合計質量が2.2質量部となるようにポリアクリル酸とポリアクリル酸ナトリウムとを加えて混合し、ゲル化させた。これにより、ゲル状の電解液を得た。その後、得られたゲル状の電解液を24時間静置して十分に熟成させた。
 その後、上記で得たゲル状の電解液に、そのゲル状の電解液の所定量に対して質量比で2.00倍の上記亜鉛合金粒子と、その亜鉛合金粒子100質量部に対してリン酸系界面活性剤(平均分子量が約210のアルコールリン酸エステルナトリウム)0.05質量部とを十分に混合した。これにより、ゲル状の負極を得た。
 その後、電解二酸化マンガン(東ソー(株)製 HHTF(品番))及び黒鉛(日本黒鉛工業(株)製 SP-20(品番))を質量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100質量部に対し電解液(39質量%の水酸化カリウム水溶液(ZnOを2質量%含む))1.5質量部とポリエチレンバインダー0.2質量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒し、得られた粒状物を加圧して中空円筒型に成形した。このようにして、正極合剤ペレットを得た。
 続いて、評価用の単3形アルカリ乾電池の作製を行った。具体的には、図1に示すように、電池ケース1の内部に、上記で得られた正極合剤ペレット(1個の質量が5.15g)を2個挿入し、電池ケース1内で再加圧することによって電池ケース1の内面に密着させた。そして、この正極合剤ペレットの内側にセパレータ4と電池ケース1の底部を絶縁するための底紙とを挿入した後、電解液(34.5質量%の水酸化カリウム水溶液(ZnOを2質量%含む))を1.5g注液した。注液後、セパレータ4の内側にゲル状の負極3を6.2g(亜鉛合金粒子の質量は4.1g)充填した。その後、樹脂封口体5、負極端子板7及び負極集電体6が一体化された組立封口体を用いて電池ケース1の開口部1aを封じた。具体的には、負極集電体6を負極3に差し込み、樹脂封口体5の端部を介して電池ケース1の開口部1aの縁に負極端子板7の周縁部をかしめつけて負極端子板7を電池ケース1の開口部1aに密着させた。それから、電池ケース1の外表面に外装ラベル8を被覆し、実施例1における単3形アルカリ乾電池を作製した。
 ここで、6,6-ナイロンを材料として樹脂封口体5を作製した。負極集電体6の質量に対してCuの含有質量が60%でありAlの含有質量が1%である高力黄銅を用いて、太さ(φ)が1.425mmであり長さが33mmの釘形の負極集電体6を作製した。セパレータ4としては、クラレ(株)製のアルカリ乾電池用セパレータ(ビニロンとテンセル(登録商標)とからなる複合繊維)を用いた。
 (実施例2)
 Cuの含有質量が60%でありAlの含有質量が5%である高力黄銅を用いて負極集電体6を作製したことを除いては上記実施例1と同様の方法に従って、実施例2における電池を作製した。
 (実施例3)
 Cuの含有質量が77%でありAlの含有質量が11%である銅合金を用いて負極集電体6を作製したことを除いては上記実施例1と同様の方法に従って、実施例3における電池を作製した。
 (比較例1)
 Cuの含有質量が65%でありAlの含有質量が0%である真鍮を用いて負極集電体6を作製したことを除いては上記実施例1と同様の方法に従って、比較例1における電池を作製した。
 (実施例4)
 負極集電体6の作製方法が異なることを除いては上記実施例1と同様の方法に従って実施例4における電池を作製した。具体的には、太さ(φ)が1.425mmであり長さが33mmである釘状の真鍮線(この真鍮線の質量に対して、Cuの含有質量が65%でありFeの含有質量が35ppmである)の表面に、平均厚さが1.15μmとなるようにアルミニウムを溶融めっきさせた(質量比に換算すると、Alの含有量は負極中の亜鉛の質量に対して350ppmである)。このようにして、実施例4における負極集電体6を作製した。
 (比較例2)
 負極集電体6の表面にアルミニウムが溶融めっきされていないことを除いては上記実施例4と同様の方法に従って比較例2における電池を作製した。
 [アルカリ乾電池の評価方法]
 実施例1の電池(新品の電池)を4個、直列に接続し、さらに、40Ωの抵抗器を接続して、20℃雰囲気下で50日間放置して過放電させた。過放電後におけるアルカリ乾電池の漏液の有無を調べた。ここでは、抵抗器を介して電池4個を直列に接続したものを1セットとし、各10セット(単3形アルカリ乾電池の総数はそれぞれ40個)ずつ試験して漏液発生率(%)を求めた。同様の試験を実施例2~4並びに比較例1及び2の電池に対しても行った。図2には実施例1~3及び比較例1の各電池の試験結果を示し、図3には実施例4及び比較例2の各電池の試験結果を示す。
 実施例1~3と比較例1とを比較すると、負極集電体6を構成する合金が1質量%以上11質量%以下のアルミニウムを含んでいれば過放電状態における漏液を抑制できることが分かった。
 実施例4と比較例2とを比較すると、負極集電体6の表面をアルミニウムで溶融めっきすれば過放電状態における漏液を抑制できることが分かった。
 本発明者らは、実施例1~4の電池と比較例1~2の電池とにおいて漏液発生率に差が生じた理由として、上記実施形態で記載したメカニズムに因るものであると推察している。具体的には、容量が相異なるアルカリ乾電池を直列に接続して放電させると、容量の最も小さいアルカリ乾電池において転極が発生する。転極したアルカリ乾電池では、負極集電体が溶ける。このとき、実施例1~4のアルカリ乾電池では、負極集電体がアルミニウムを含んでいるので、亜鉛粒子の表面にはアルミニウムが金属として析出する。これにより、亜鉛が不動態化されるので、転極から復帰したときに発生する水素ガスの量を抑えることができる。
 一方、比較例1~2のアルカリ乾電池では、負極集電体がアルミニウムを含んでいないので、転極時には亜鉛粒子の孔食反応が進行する。そのため、転極から復帰したときには亜鉛粒子の表面上において水の電気分解が発生する。これにより、水素ガスの発生を引き起こすため、樹脂封口体の薄肉部が破断し、その結果、アルカリ電解液の漏れを招来する。
 実際、過放電終了後、電池をそれぞれ分解して解析してみると、比較例1~2の電池では亜鉛粒子には銅が析出しているのみであったが、実施例1~4の電池では亜鉛粒子には銅だけでなくアルミニウムも析出していることが確認された。
 以上説明したように、本発明は、耐漏液性に優れており、特に、高容量且つ高出力なアルカリ乾電池に有用である。
 1  電池ケース
 2  正極
 3  負極
 4  セパレータ
 5  樹脂封口体
 6  負極集電体
 7  負極端子板
 8  外装ラベル

Claims (9)

  1.  正極と、亜鉛を活物質とする負極と、前記正極と前記負極との間に設けられたセパレータと、前記負極内に挿入された負極集電体とを備えたアルカリ乾電池であって、
     前記負極集電体は、前記亜鉛を不動態化させる第1の金属を含んでいるアルカリ乾電池。
  2.  請求項1に記載のアルカリ乾電池であって、
     前記第1の金属は、前記負極集電体の少なくとも表面に存在しているアルカリ乾電池。
  3.  請求項2に記載のアルカリ乾電池であって、
     前記第1の金属は、前記負極集電体の表面上に、前記亜鉛の質量に対して50ppm以上存在しているアルカリ乾電池。
  4.  請求項3に記載のアルカリ乾電池であって、
     前記負極集電体の表面は、前記第1の金属でめっきされているアルカリ乾電池。
  5.  請求項3に記載のアルカリ乾電池であって、
     前記負極集電体は、前記第1の金属を含む合金からなるアルカリ乾電池。
  6.  請求項5に記載のアルカリ乾電池であって、
     前記合金は、銅又は銅及び亜鉛と、1質量%以上11質量%以下の前記第1の金属とを含んでいるアルカリ乾電池。
  7.  請求項1に記載のアルカリ乾電池であって、
     前記第1の金属は、アルミニウムであるアルカリ乾電池。
  8.  請求項1に記載のアルカリ乾電池であって、
     前記負極の活物質は、インジウム及びビスマスの少なくとも一つを含む亜鉛合金であり、水銀が無添加であるアルカリ乾電池。
  9.  請求項1に記載のアルカリ乾電池であって、
     単3形アルカリ乾電池であり、
     前記負極は4.0g以上5.0g以下の亜鉛を含んでいるアルカリ乾電池。
PCT/JP2010/006118 2009-12-28 2010-10-14 アルカリ乾電池 WO2011080854A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-296854 2009-12-28
JP2009296854A JP2013051027A (ja) 2009-12-28 2009-12-28 アルカリ乾電池

Publications (1)

Publication Number Publication Date
WO2011080854A1 true WO2011080854A1 (ja) 2011-07-07

Family

ID=44226286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006118 WO2011080854A1 (ja) 2009-12-28 2010-10-14 アルカリ乾電池

Country Status (2)

Country Link
JP (1) JP2013051027A (ja)
WO (1) WO2011080854A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620698A (ja) * 1992-07-06 1994-01-28 Fuji Elelctrochem Co Ltd 筒形アルカリ電池用集電子の加工方法
JP2004319205A (ja) * 2003-04-15 2004-11-11 Dowa Mining Co Ltd アルカリ電池用集電棒
JP2009043417A (ja) * 2007-08-06 2009-02-26 Hitachi Maxell Ltd 筒形アルカリ電池
JP2009170157A (ja) * 2008-01-11 2009-07-30 Panasonic Corp 単3形アルカリ乾電池
JP2009176631A (ja) * 2008-01-25 2009-08-06 Fdk Energy Co Ltd アルカリ電池用集電棒、アルカリ電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620698A (ja) * 1992-07-06 1994-01-28 Fuji Elelctrochem Co Ltd 筒形アルカリ電池用集電子の加工方法
JP2004319205A (ja) * 2003-04-15 2004-11-11 Dowa Mining Co Ltd アルカリ電池用集電棒
JP2009043417A (ja) * 2007-08-06 2009-02-26 Hitachi Maxell Ltd 筒形アルカリ電池
JP2009170157A (ja) * 2008-01-11 2009-07-30 Panasonic Corp 単3形アルカリ乾電池
JP2009176631A (ja) * 2008-01-25 2009-08-06 Fdk Energy Co Ltd アルカリ電池用集電棒、アルカリ電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Also Published As

Publication number Publication date
JP2013051027A (ja) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5453243B2 (ja) アルカリ化学電池
JP4491208B2 (ja) 電池缶およびその製造方法ならびに電池
US8247111B2 (en) Alkaline battery and sealing unit for alkaline battery
US7897282B2 (en) AA alkaline battery
US20090263710A1 (en) Aa alkaline battery
US8338023B2 (en) AA alkaline battery
JP2018506150A (ja) 改善された信頼性及び放電性能を有するアルカリセル
US9040196B2 (en) Alkaline primary battery
JP5172181B2 (ja) 亜鉛アルカリ電池
US20100129716A1 (en) Mercury-free alkaline dry battery
WO2011080854A1 (ja) アルカリ乾電池
US11637278B2 (en) Alkaline dry batteries
CN113646919A (zh) 具有增加的氧化锌水平的碱性电化学电池
EP2063475A1 (en) Alkaline primary battery
JP2011119153A (ja) アルカリ電池
JP2011216217A (ja) アルカリ乾電池
JP2016173936A (ja) アルカリ電池
WO2023210155A1 (ja) 電池
US20090181293A1 (en) Aa alkaline battery
JP2007048623A (ja) アルカリ乾電池
JP2009170161A (ja) 単4形アルカリ乾電池
JP2009163896A (ja) 単3形アルカリ乾電池
JP2006040701A (ja) アルカリ乾電池
JP2006019090A (ja) マンガン乾電池
JPH04328261A (ja) アルカリ電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP