WO2011078309A1 - 電極乾燥装置 - Google Patents

電極乾燥装置 Download PDF

Info

Publication number
WO2011078309A1
WO2011078309A1 PCT/JP2010/073292 JP2010073292W WO2011078309A1 WO 2011078309 A1 WO2011078309 A1 WO 2011078309A1 JP 2010073292 W JP2010073292 W JP 2010073292W WO 2011078309 A1 WO2011078309 A1 WO 2011078309A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light source
gas
heat shield
supply device
Prior art date
Application number
PCT/JP2010/073292
Other languages
English (en)
French (fr)
Inventor
神田 義昭
克雄 橋▲崎▼
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2011078309A1 publication Critical patent/WO2011078309A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode drying apparatus for drying an electrode.
  • Lithium ion secondary batteries have attracted attention as one of the secondary batteries.
  • Lithium ion secondary batteries have features such as higher voltage, higher energy density, and higher coulomb efficiency than other secondary batteries such as lead storage batteries.
  • the lithium ion secondary battery has a structure in which, for example, a positive electrode is housed in a container that stores an electrolyte solution, separated from a negative electrode via a separator.
  • the positive electrode has a current collector coated with a positive electrode active material
  • the negative electrode has a current collector coated with a negative electrode active material.
  • On the outer surface of the container a positive electrode terminal connected to the positive electrode and a negative electrode terminal connected to the negative electrode are provided.
  • An electrode such as a positive electrode or a negative electrode is formed by applying an electrode active material (positive electrode active material or negative electrode active material) to a current collector sheet as a base material (for example, Patent Documents 1 and 2).
  • the formed sheet-like electrode is processed into a desired electrode shape by punching or the like and accommodated in the battery container.
  • an electrode of a battery whose electrolyte is a non-aqueous electrolyte, such as a lithium ion secondary battery is highly dried in a state of being accommodated in a battery container, regardless of whether it is manufactured by any method. Need to be. This is because if water adheres to the electrode, particularly the electrode active material (positive electrode active material or negative electrode active material), the electrolytic solution component reacts with the water and causes battery deterioration.
  • a method of drying the electrode As a method of drying the electrode, a method of evaporating moisture by heating or a method of evaporating moisture in a reduced pressure atmosphere is known.
  • the drying of the electrode is generally performed in a state in which the moisture of the electrode active material is not sufficiently removed during the period from the application of the electrode active material to the processing into the electrode shape.
  • the heating method using a heating wire or the like it is easy to increase the drying speed, but the electrode may be thermally deteriorated. Further, in the method using reduced pressure, since no heat source is used, it is possible to avoid thermal deterioration of the electrode, but it may take a long time for drying, which may reduce productivity. Thus, in the conventional electrode drying method, it is difficult to efficiently dry the electrode while preventing thermal deterioration of the electrode.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrode drying apparatus that can prevent deterioration during drying of the electrode and that can efficiently dry the electrode. .
  • the electrode drying apparatus of the present invention supplies a cooling gas by cooling the first gas, the first light source that irradiates infrared light, the planar first heat shielding material that transmits the infrared light, and the first gas.
  • the cooling gas is introduced between the first light source and one surface of the first heat shield, and the dry gas is the first on the other surface of the first heat shield. Into the electrode transport area.
  • the moisture adhering to the electrode transported in the first electrode transport region is irradiated with infrared light from the light source, and the moisture absorbs the infrared light, thereby promoting the evaporation of the moisture.
  • the dry gas supplied from the second gas supply device flows into the first electrode transport region on the other surface of the first heat shield, the electrode transported in the first electrode transport region Evaporation of the attached water is promoted.
  • heat transfer from the first light source to the electrode is blocked by the heat shield, heating of the electrode is reduced. Since the cooling gas supplied from the first gas supply device flows between the first light source and one surface of the first heat shield, the electrode may be heated by the heat of the first light source. Reduced. As described above, when the electrode is dried, the heating of the electrode is remarkably reduced and the evaporation of water adhering to the electrode is greatly accelerated, so that the electrode can be efficiently dried while preventing the electrode from deteriorating. Can be made.
  • the electrode drying apparatus of the present invention evaporation of water adhering to the electrode is remarkably promoted, and heating of the electrode is remarkably reduced, so that thermal deterioration of the electrode is prevented and the electrode is efficiently dried. It becomes possible.
  • FIG. 1 is an exploded perspective view illustrating a configuration example of a secondary battery.
  • FIG. 2 is a flowchart schematically showing an example of a method for manufacturing a secondary battery.
  • FIG. 3 is a schematic diagram showing a schematic configuration of the electrode drying apparatus of the first embodiment.
  • FIG. 4 is a schematic diagram showing a gas flow path in the electrode drying apparatus of the first embodiment.
  • FIG. 5 is a cross-sectional view of the electrode drying apparatus as viewed from above.
  • FIG. 6 is a diagram for microscopically explaining the electrode drying method.
  • FIG. 7 is a graph showing a light absorption spectrum of water.
  • FIG. 8 is a schematic diagram showing a schematic configuration of the electrode drying apparatus of the second embodiment.
  • the secondary battery 1 which is an example of a unit cell, includes a battery container 10, a positive electrode terminal 11 as an electrode terminal, and a negative electrode terminal 12.
  • the secondary battery 1 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the battery container 10 is an aluminum hollow container, for example.
  • the outer shape of the battery container 10 of this example is a substantially prismatic shape (substantially rectangular parallelepiped shape), the outer shape may be a cylindrical shape.
  • the positive electrode terminal 11 and the negative electrode terminal 12 are provided on one of the outer surfaces of the battery container 10.
  • a positive electrode plate 13 and a negative electrode plate 14 as electrodes are accommodated in the battery container 10.
  • the positive electrode plate 13 is disposed to face the negative electrode plate 14.
  • the positive electrode plate 13 and the negative electrode plate 14 are repeatedly arranged in directions facing each other.
  • a separator 15 is provided between the positive electrode plate 13 and the negative electrode plate 14 so that the positive electrode plate 13 does not contact the negative electrode plate 14.
  • the positive electrode plate 13 and the negative electrode plate 14 are formed by using a sheet-like current collector such as a conductive foil or a conductive thin plate as a base material, and coating the surface of the base material with an electrode active material corresponding to an electrolytic component.
  • the separator 15 is made of an insulating material such as a resin film.
  • a negative electrode tab 14 a is formed at the end of the negative electrode plate 14 on the negative electrode terminal 12 side.
  • the negative electrode tabs 14 a of the plurality of negative electrode plates 14 that are repeatedly arranged are collectively connected to the negative electrode terminal 12.
  • a positive electrode tab 13 a is formed at the end of the positive electrode plate 13 on the positive electrode terminal 11 side.
  • the positive electrode tabs 13 a of the plurality of positive electrode plates 13 that are repeatedly arranged are collectively connected to the positive electrode terminal 11.
  • an electrolytic component containing lithium ions is stored so as to come into contact with the positive electrode plate 13 and the negative electrode plate 14.
  • an electrolytic solution containing the electrolytic component may be stored in the battery container 10, or a solid substance containing the electrolytic component may be stored in the battery container 10. It may be.
  • Typical electrolytes include solutions in which lithium salts such as lithium hexafluorophosphate and lithium tetrafluoroborate are dissolved in an organic solvent such as ethylene carbonate and diethyl carbonate.
  • an organic solvent such as ethylene carbonate and diethyl carbonate.
  • the electrodes such as the positive electrode plate 13 and the negative electrode plate 14 need to be highly dried (for example, the water content is 10 ppm or less by weight) when being accommodated in the battery container 10.
  • FIG. 2 is a flowchart schematically showing an embodiment of the battery manufacturing method
  • FIG. 3 is a schematic diagram showing a schematic configuration of the electrode drying apparatus 2 of the first embodiment
  • FIG. 4 is a diagram of gas in the electrode drying apparatus 2.
  • FIG. 5 is a schematic view showing a distribution route
  • FIG. 5 is a cross-sectional view of the electrode drying apparatus as viewed from above.
  • an electrode active material is applied to a sheet-shaped current collector that is a base material of an electrode in step S ⁇ b> 1, An electrode is formed.
  • the electrode-active material film is pressed onto the base material by pressing the sheet-like electrode, and in step S3, the sheet-like electrode is dried.
  • the sheet-like electrode is processed by punching (die cutting) or the like to form the positive electrode plate 13, the negative electrode plate 14, and the like.
  • the positive electrode plate 13, the separator 15, and the negative electrode plate 14 are stacked and fixed to each other to form a stacked body.
  • the secondary battery 1 is obtained by inject
  • the electrode drying apparatus 2 is used for drying a sheet-like electrode in step S3, for example.
  • the electrode drying apparatus 2 includes an electrode storage chamber 20, heat shielding materials 21a to 21n, light source groups 22a to 22g, transport rollers 24a to 24g, 241 to 244, a first gas supply device 26, a second A gas supply device 27 and an exhaust device 28 are provided.
  • the heat shields 21a to 21n, the light source groups 22a to 22g, and the transport rollers 24a to 24g are disposed inside the electrode storage chamber 20.
  • the electrode rolls 23 a and 23 b, the first gas supply device 26, the second gas supply device 27, and the exhaust device 28 are disposed outside the electrode storage chamber 20.
  • the electrode drying device 2 generally operates as follows.
  • a sheet-like electrode E formed by applying an electrode active material to a sheet-like current collector is wound up after a pressing process to form an electrode roll 23a.
  • the electrode E may be a primary battery or a secondary battery as long as it is a battery electrode.
  • the electrode for the secondary battery shown in FIG. 1 will be described as an example.
  • the electrode E fed out from the electrode roll 23a includes a transport roller 241 outside the electrode storage chamber 20, a transport roller 242 inside the electrode storage chamber 20 and disposed at the entrance of the sheet-like electrode E, and further transported.
  • the rollers 24a to 24g are connected to be conveyed through the electrode storage chamber 20.
  • the electrode E is irradiated with infrared light from the light source groups 22a to 22g, and moisture adhering to the electrode E and moisture contained in the electrode active material of the electrode E are evaporated by light absorption.
  • the electrode E is dried while being transported inside the electrode storage chamber 20, and then is transported to the outside of the electrode storage chamber 20, a transport roller 243 disposed inside the electrode storage chamber 20 and disposed at the exit of the sheet-like electrode E.
  • each conveyance roller and the conveyance direction of the sheet-like electrode E are indicated by arrows.
  • the components of the electrode drying apparatus 2 will be described in detail.
  • a plurality of heat shields 21a to 21n are arranged apart from each other.
  • the heat shielding materials 21a to 21n are substantially plate-like members having surfaces in the YZ direction.
  • the heat shielding materials 21a to 21n are repeatedly arranged in the normal direction (X direction).
  • the heat shields 21a to 21n are made of a heat-resistant glass made of a material that transmits infrared light emitted from the light source groups 22a to 22g and has a low thermal conductivity, such as quartz.
  • the first heat shield 21a, the second heat shield 21b, the third heat shield 21c, and the fourth heat shield are arranged in the order in which the heat shields 21a to 21n are arranged from the X positive direction to the X negative direction.
  • the light source groups 22a to 22g are arranged between the plurality of heat shielding materials 21a to 21n.
  • Each of the light source groups 22a to 22g includes a plurality of light sources arranged in the Y direction.
  • the light source emits infrared light including mid-infrared light having a wavelength of about 2 ⁇ m to 4 ⁇ m.
  • the light source may emit light including visible light as long as it emits infrared light.
  • Each of the plurality of light sources is constituted by, for example, a substantially columnar halogen lamp having the Z direction as an axis.
  • the light source has the same length in the Z direction as the width of the electrode E and is supported at both ends in the Z direction.
  • the first light source group 22a, the second light source group 22b, the third light source group 22c, the fourth light source group 22d, and the fifth light source groups 22a to 22g are arranged in the order from the X positive direction to the X negative direction.
  • the Nth light source group is disposed between the (2 ⁇ N ⁇ 1) heat shield and the (2 ⁇ N) heat shield.
  • the portion surrounded by the (2 ⁇ N ⁇ 1) heat shield and the (2 ⁇ N) heat shield becomes the Nth light source housing chamber for housing the Nth light source group.
  • the first to seventh light source storage chambers 25a to 25g are arranged to be separated from each other in the X direction.
  • seven light source accommodation chambers are arranged, that is, 1 ⁇ N ⁇ 7 (N is an integer), but the number of N is variable according to the dryness required in the design. . Accordingly, seven or more light source accommodation chambers may be arranged depending on the design.
  • the rotation axis of the first transport roller 24a is arranged on the Y positive direction side, and similarly on the Y axis where the third light source is sequentially arranged.
  • the rotation shaft of the third transport roller 24c is arranged on the Y positive direction side.
  • the rotation shafts of the seventh transport rollers 24g are respectively arranged.
  • a partition plate 294 is provided between the first to seventh light source storage chambers 25a to 25g and the first, third, fifth, and seventh transport rollers 24a, 24c, 24e, and 24g.
  • the partition plate 294 is provided with a slit, and the electrode E moves between the light source accommodation chamber side of the partition plate 294 and the transport roller side through the slit of the partition plate 294.
  • the rotation axis of the second transport roller 24b is arranged on the Y negative direction side, and similarly, on the Y axis where the fourth light source is sequentially arranged.
  • the rotation axis of the fourth transport roller 24d is arranged on the Y negative direction side.
  • the rotation axis of the sixth transport roller 24f is arranged on the Y-axis side where the sixth light source is sequentially arranged and on the Y positive direction side.
  • a partition plate 295 is provided between the first to seventh light source storage chambers 25a to 25g and the second, fourth and sixth transport rollers 24b, 24d, 24f, 242, and 243.
  • a slit is provided in the partition plate 295, and the electrode E moves between the light source accommodation chamber side of the partition plate 295 and the transport roller side through the slit of the partition plate 295.
  • the transport rollers 24a to 24g and the transport rollers 242, 243 have a columnar shape extending in the X direction, are wider than the sheet-like electrode E, and are supported at both ends in each Z direction.
  • the radius of the cross section of these transport rollers in the XY plane is such that the electrode sheet E is between the one wall surface of the electrode storage chamber and the first light source storage chamber, between the first and second light source storage chambers, and third.
  • the radius is larger than the distance in the X direction between the Nth light source and the Nth heat shield or the (N + 1) th heat shield, and the Nth light source and the (2N + 1) th ) Or the (2N-2) th heat shield material is designed to be smaller than the distance in the X direction.
  • the electrode E includes the first conveying roller 24a to the second conveying roller 24b, the third conveying roller 24c, the fourth conveying roller 24d, the fifth conveying roller 24e, the sixth conveying roller 24f, and the seventh conveying roller.
  • the rollers 24g are suspended in this order, and are conveyed in this order through the first to seventh conveying rollers 24a to 24g.
  • the traveling direction of the electrode E changes by about 180 degrees each time it passes through each of the first to seventh transport rollers 24a to 24g, and the electrode E from the light source groups 22a to 22g while being meandered and transported inside the electrode storage chamber 20. Irradiated with infrared light.
  • the electrode E is Y along the surface opposite to the surface on the first light source group 22a side in the first heat shield 21a. Infrared light is irradiated from the first light source group 22a while traveling toward the first conveying roller 24a in the positive direction (first direction). Then, after passing through the first transport roller 24a, the electrode E performs the second transport in the Y negative direction (second direction) between the second heat shield material 21b and the third heat shield material 21c. Progress toward the roller 24b.
  • the group 22a is irradiated with infrared light
  • the surface of the electrode E on the X negative direction side is irradiated with infrared light from the second light source group 22b.
  • the electrode E passes through the second transport roller 24b, and then travels between the second and third light source storage chambers 25b and 25c in the positive Y direction toward the third transport roller 24c, Infrared light is irradiated from the light source group 22b and the third light source group 22c.
  • the electrode E passes through the third transport roller 24c and then passes between the third and fourth light source storage chambers 25c and 25d in the Y negative direction, and after passing through the fourth transport roller 24d, the fourth and fifth electrodes Between the light source accommodation chambers 25d and 25e in the Y positive direction, and after passing through the fifth conveyance roller 24e, between the fifth and sixth light source accommodation chambers 25e and 25f in the Y negative direction, and the sixth conveyance roller 24f. After passing through, it proceeds in the positive Y direction between the sixth and seventh light source accommodation chambers 25f, 25g.
  • the surface of the fourteenth heat shield 21n opposite to the surface on the seventh light source group 22g side proceeds in the Y negative direction toward the transport roller 243, while Infrared light is irradiated from the seven light source groups 22g.
  • the electrode E advances meandering between the first to seventh light source accommodation chambers 25a to 25g. Since the electrode E meanders and advances inside the electrode drying apparatus 2, the electrode drying apparatus 2 can be remarkably reduced in size while ensuring the transport path length of the electrode E as compared with the case where the electrode E does not meander. Furthermore, the electrode E is conveyed while meandering, so that the infrared light emitted from each of the adjacent light source accommodation chambers is applied to one surface and the other surface of the electrode E. Therefore, the electrode E can be efficiently dried as compared with the case where infrared light is irradiated only from one surface.
  • Each of the second to sixth light source groups 22b to 22f irradiates infrared light to the X positive direction side and the X negative direction side with respect to the electrode E transported on both sides of the light source group.
  • the cost of the electrode drying apparatus 2 can be reduced and the size thereof can be reduced.
  • the first gas supply device 26 is a device that cools a first gas such as air or an inert gas to generate a cooling gas G1 (see FIG. 4).
  • the first gas supply device 26 is connected to the pipe 291.
  • the pipe 291 is branched and connected to one end of the first to seventh light source accommodation chambers 25a to 25g.
  • the branch pipe of the pipe 291 has a one-to-one correspondence with the first to seventh light source accommodation chambers 25a to 25g.
  • the other ends of the first to seventh light source accommodation chambers 25a to 25g are connected to a pipe 296.
  • the pipe 296 is branched and connected to the other ends of the first to seventh light source accommodation chambers 25a to 25g.
  • the cooling gas G1 supplied from the first gas supply device 26 flows into the first to seventh light source accommodation chambers 25a to 25g through the pipe 291.
  • the cooling gas G1 flows through the first to seventh light source storage chambers 25a to 25g in the Y-positive direction, and reaches the first positive-side end of the first to seventh light source storage chambers 25a to 25g.
  • the first to seventh light source accommodation chambers are discharged.
  • the cooling gas G1 discharged from the insides of the first to seventh light source storage chambers 25a to 25g has little influence on the electrode E even when, for example, a gas having a dryness lower than that of the second gas described later is used.
  • the gas passes through the pipe 296 and is discharged to the vicinity of the exhaust pipe 293 installed on the wall surface of the electrode housing chamber 20. Thereafter, the cooling gas G ⁇ b> 1 discharged to the vicinity is exhausted to the outside of the electrode housing chamber 20 by the exhaust device 28 through the pipe 293. Thereby, when the dryness of the cooling gas G1 is smaller than the drying gas G2, it is possible to avoid the cooling gas G1 from coming into contact with the electrode E and the moisture of the cooling gas G1 adhering to the electrode E.
  • the second gas supply device 27 is a device that generates a dry gas G2 by drying a second gas such as air or an inert gas.
  • the second gas may be the same gas as the first gas or a different gas.
  • the moisture content of the drying gas G2 is determined according to the moisture content of the electrode E after drying, that is, the target value of the degree of drying.
  • the second gas supply device 27 is connected to a pipe 292, and the pipe 292 communicates with the inside of the electrode storage chamber 20.
  • the dry gas G2 supplied from the second gas supply device 27 flows into the electrode storage chamber 20 through the pipe 292.
  • the dry gas G2 that has flowed into the electrode storage chamber 20 flows between the first to seventh light source storage chambers 25a to 25g, that is, into the transport path of the electrode E within the range of the partition plate 294 and the partition plate 295. .
  • the pipe 292 is arranged by extending the side surface in the electrode drying apparatus 2 avoiding the electrode E.
  • the pipe 292 has a gas inlet for allowing the dry gas G2 to flow in from locations close to the first to seventh light source accommodation chambers 25a to 25g, between the respective light source accommodation chambers, that is, each transport path 33a of the electrode E. There are a plurality corresponding to ⁇ 33h.
  • the dry gas G2 passing between the first to seventh light source accommodation chambers 25a to 25g merges with the cooling gas G1 discharged from the inside of the first to seventh light source accommodation chambers 25a to 25g, and passes through the pipe 293.
  • the air is exhausted to the outside of the electrode storage chamber 20 by the exhaust device 28.
  • a configuration in which the pipe 296 and the pipe 293 are directly connected, and an exhaust device for the dry gas G2 (not shown) may be provided and the pipe may be inserted into the electrode housing chamber 20 may be employed. That is, an exhaust device for the cooling gas G1 and an exhaust device for the dry gas G2 may be provided separately.
  • an exhaust device for the cooling gas G1 and the dry gas G2 may be provided separately.
  • FIG. 6 is an explanatory view microscopically showing an electrode drying method
  • FIG. 7 is a graph showing a light absorption spectrum of water.
  • infrared light IR is irradiated from the light source 22 to the electrode E between the light source accommodation chambers 25.
  • the moisture Q adhering to the electrode E and the moisture Q contained in the electrode active material of the electrode E are heated by absorbing the infrared light IR.
  • the light absorption spectrum of water has an absorption peak in the mid-infrared wavelength range, particularly in the wavelength range of 1.7 ⁇ m to 3.4 ⁇ m. Therefore, the infrared light IR is efficiently absorbed by the moisture Q, and the moisture Q is effectively heated.
  • the heat shield 21 is made of a material that efficiently transmits infrared light, the moisture Q contained in the electrode E absorbs the infrared light and decomposes and evaporates.
  • the heat shielding material 21 is transparent quartz glass having a thickness of 1 mm to 10 mm, the transmittance of the mid-infrared is 90%. Therefore, when a halogen lamp is used as the light source 22, the infrared light from the light source 22 is converted into moisture. Q is irradiated with high intensity, and moisture Q can be efficiently evaporated to the electrode E.
  • the vapor generated by the evaporation of the moisture Q is accompanied by the dry gas G2 and carried to the outside between the light source accommodation chambers 25 and is exhausted to the outside of the electrode accommodation chamber 20 by the exhaust device 28. Since the evaporated moisture is immediately carried out by the dry gas G2, the moisture is prevented from reattaching to the electrode E.
  • the heat shield 21 is made of transparent quartz in view of downsizing of the apparatus and drying efficiency. In the case of glass, the thickness is preferably 4 mm or more and 10 mm or less.
  • the heat H radiated from the light source 22 is blocked by the heat shielding material 21, and the heat H from the light source 22 is prevented from being directly transmitted to the electrode E.
  • the cooling gas G1 that has passed through the interior of the light source housing chamber 25 is sucked into the exhaust device 28, the heat generated in the light source 22 is carried out of the light source housing chamber 25 using the cooling gas G1 as a refrigerant, and is used as a heat shield.
  • the amount of heat conducted to 21 is reduced.
  • the heat shield 21 is originally made of a material having low thermal conductivity, in the heat shield 21, the amount of heat conducted from the inner surface of the light source housing chamber 25 to the surface on the electrode E side being transported is even smaller. It will be a thing. That is, the amount of heat of secondary radiation from the heat shield 21 to the electrode E is further reduced.
  • an electrode used for a lithium ion secondary battery or the like is likely to be thermally deteriorated.
  • the electrode when the electrode is exposed to a temperature of 130 ° C. or more for a long time, the characteristics are deteriorated.
  • the electrode In order to evaporate moisture without increasing the temperature of the electrode, the electrode may be dried in a vacuum atmosphere without using a heat source.
  • the drying time becomes long (for example, several hours to several tens of hours), and the production efficiency of the electrode is lowered.
  • the processing chamber for drying for example, a vacuum chamber
  • the cost of the apparatus increases, so it is difficult to increase the efficiency of the drying process by increasing the size of the apparatus.
  • the electrode E is irradiated with infrared light IR, the moisture Q can be selectively heated, and the temperature rise of the electrode E is reduced. Since the heat shield 21 (21a to 21n) prevents the heat H from the light source 22 (light source groups 22a to 22g) from being transmitted directly to the electrode E, the temperature rise of the electrode E is reduced. Since secondary heat radiation from the heat shield 21 is avoided, the temperature rise of the electrode E due to secondary thermal radiation is reduced. Thus, since the temperature rise of the electrode E is remarkably reduced, thermal degradation of the electrode E is prevented.
  • the moisture Q can be efficiently heated, and the moisture Q can be efficiently evaporated. Since the vapor derived from the moisture Q is carried out and removed from the periphery of the electrode E by the dry gas G2, the evaporation of the moisture Q is promoted.
  • the exhaust device 28 can make the inside of the electrode housing chamber 20 into a reduced pressure atmosphere, and can further promote the evaporation of the moisture Q. In this way, the evaporation of the moisture Q is greatly promoted, so that the electrode E can be efficiently dried.
  • the electrode drying apparatus 2 can efficiently dry the electrode E while preventing thermal degradation of the electrode E. As a result, it is possible to efficiently manufacture the electrode E having good characteristics at low cost, and it is possible to efficiently manufacture a battery having good characteristics at low cost.
  • the electrode drying apparatus according to the second embodiment includes a third gas supply device that includes the first gas supply device, in other words, the second gas supply device includes the functions of the first and second gas supply devices, A light source group 221a similar to the first light source group and the first light source group so that the dry and cooled dry gas is supplied from the third gas supply device, and the conveyance path 33a is sandwiched between the first light source storage chamber and A heat shield for the light source group 221a is arranged, and a light source group 221b and a heat shield for the light source group 221b similar to the seventh light source group are arranged so as to sandwich the conveyance path 33h with the seventh light source storage chamber.
  • the point is greatly different from the first embodiment.
  • FIG. 8 is a schematic diagram showing a schematic configuration of the electrode drying apparatus 3 of the second embodiment. As shown in FIG. 8, the electrode drying device 3 is connected to the third gas supply device 31 including the functions of the first gas supply device and the second gas supply device, and the third gas supply device 31 to be connected to the electrode storage chamber. 20 and a pipe 32 communicating with the inside of 20.
  • the third gas supply device 31 cools and appropriately cools a gas selected as appropriate, such as air or an inert gas, and supplies the cooled dry gas G3.
  • the cooling dry gas G3 is supplied into the electrode housing chamber 20 through the pipe 32.
  • the gas supplied from the third gas supply device 31 is at least one (same component) gas that has been cooled and dried. As long as the gases do not react with each other, two or more kinds of cooled and dried gases may be supplied from the third gas supply device 31 in a mixed state.
  • a plurality of light sources 22 are arranged in the Y direction to constitute a light source group, and the plurality of light source groups are arranged apart from each other in the X direction.
  • the sheet-like electrode E is meandered and conveyed between the light source groups.
  • a light source group is arranged so that both front and back surfaces of the electrode E meanderingly conveyed can be irradiated uniformly.
  • a heat shielding material 21 is disposed between the transport path and the light source 22 for each transport path of the electrode E in the Y positive direction or the Y negative direction.
  • the region where the light source 22 is disposed between the two heat shields 21 communicates with the inside of the electrode housing chamber 20 at the end of the heat shield 21 in the Y positive / negative direction.
  • a region (conveyance path) between the two heat shielding materials 21 where the light source 22 is not disposed communicates with the inside of the electrode housing chamber 20 at the end of the heat shielding material 21 in the Y positive / negative direction.
  • Part of the cooling dry gas G3 supplied to the inside of the electrode storage chamber 20 flows into a region where the light source 22 is disposed between the heat shields 21 and functions as the cooling gas of the first embodiment. That is, the cooling dry gas G3 takes heat from the other surface of the heat shield 21 facing one surface and the light source 22 to the transport path of the electrode E and flows from the light source 22, and then passes through the pipe 293 to the electrode by the exhaust device 28. It is discharged outside the storage chamber 20.
  • a part of the cooling dry gas G3 supplied into the electrode storage chamber 20 flows between the heat shield 21 facing the electrode E and the electrode E, and functions as the dry gas of the first embodiment. . That is, the cooling dry gas G3 flows along with the water evaporated from the electrode E, and then is discharged to the outside of the electrode storage chamber 20 through the pipe 293 by the exhaust device 28. Further, the cooling dry gas G3 flowing between the heat shield 21 facing the electrode E and the electrode E cools the surface of the heat shield 21 opposite to the light source 22.
  • the third gas supply device serves as both the first gas supply device and the second gas supply device. Cost can be increased. Since the cooling and drying gas G3 functions as both a cooling gas and a drying gas, a region where the light source 22 is disposed between the heat shield 21 and the electrode E facing the electrode E and between the heat shield 21 In common, the cooling dry gas G3 can be supplied, and the piping system can be simplified. The cooling dry gas G3 flowing between the heat shield 21 facing the electrode E and the electrode E functions as a dry gas for carrying out the vapor, and cools the surface of the heat shield 21 opposite to the light source 22, Heat transfer from the light source 22 to the electrode E is reduced, and the effect of preventing thermal degradation of the electrode E is enhanced.
  • a light source not only a halogen lamp but also any LED can be used because it can be appropriately selected from various light emitting principles as long as it can emit infrared light sufficient for moisture drying.
  • the wavelength of light emitted from the light source is not particularly limited as long as at least infrared light can be emitted.
  • Electrode drying device 10: Battery container, 11: Positive terminal, 12: negative terminal, 13 ... Positive electrode plate (electrode), 13a ... positive electrode tab, 14 ... negative electrode plate (electrode), 14a ... negative electrode tab, 15 ... separator, 20 ... Electrode storage chamber, 21, 21 e to 21 n ... heat shield, 21a: first heat shield, 21b ... the second heat shield, 21c ... a third heat shield, 21d ... fourth heat shield, 22 ... Light source, 22a ... 1st light source group (1st light source), 22b ... 2nd light source group (2nd light source), 22c ...
  • 3rd light source group (3rd light source), 22d-22g ... light source group, 23a, 23b ... electrode rolls, 24a to 24g ... transport rollers, 25a to 25g: light source accommodation chamber, 26: first gas supply device, 27 ... second gas supply device, 31 ... Third gas supply device, 28 ... exhaust device, 32, 291 to 293, 296 ... piping, 33, 33c to 33h ... Electrode transport region (electrode transport path), 33a ... 1st electrode conveyance area

Abstract

 本発明は、電極の乾燥時の劣化を防止でき、しかも効率よく電極を乾燥させることが可能な電極乾燥装置を提供することを目的の1つとする。 本発明の電極乾燥装置(2)は、赤外光を照射する第1の光源(22a)と、赤外光を透過する平面状の第1の遮熱材(21a)と、第1ガスを冷却して冷却ガスを供給する第1ガス供給装置(26)と、第2ガスを乾燥して乾燥ガスを供給する第2ガス供給装置(27)と、第1の電極搬送領域と、を備える。冷却ガスは第1の光源(22a)と第1の遮熱材(21a)の一方の面との間に流入され、乾燥ガスは第1の遮熱材(21a)の他方の面上の第1の電極搬送領域に流入される。

Description

電極乾燥装置
 本発明は、電極を乾燥させる電極乾燥装置に関する。
 本願は、2009年12月24日に日本に出願された特願2009-292056号について優先権を主張しその内容をここに援用する。
 従来から、電池として一次電池や二次電池が知られている。近年では、二次電池の1つとしてリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、鉛蓄電池等の他の二次電池に比べて、高電圧が得られること、エネルギー密度が高いこと、クーロン効率が高いこと等の特長を有している。
 リチウムイオン二次電池は、例えば電解液を貯蔵する容器の内部に、正極がセパレータを介して負極と離間して収容された構造になっている。正極は集電体に正極活物質が塗工されており、負極は集電体に負極活物質が塗工されている。容器外面には、正極に接続された正極端子と、負極に接続された負極端子とが設けられている。
 正極や負極等の電極は、母材である集電体のシートに電極活物質(正極活物質または負極活物質)を塗工して形成されている(例えば、特許文献1、2)。形成されたシート状の電極は、打抜き等により所望の電極形状に加工されて電池容器に収容される。
 例えばリチウムイオン二次電池等のように電解液が非水電解質である電池の電極は、いずれの方法で製造された場合でも、電池容器の内部に収容される状態で電極が高度に乾燥されている必要がある。電極、特に電極活物質(正極活物質または負極活物質)に水分が付着していると、電解液成分が水分と反応して電池劣化を生じてしまうからである。
 電極を乾燥させる方法としては、加熱により水分を蒸発させる方法や、減圧雰囲気下で水分を蒸発させる方法が知られている。電極の乾燥は、一般的に電極活物質が塗工されてから電極形状に加工されるまでの間に、電極活物質の水分が十分抜けていない状態で行われる。
特開2001-23630号公報 特開平11-67220号公報
 電熱線等による加熱方法では、乾燥速度を高めることは容易であるが、電極が熱劣化するおそれがある。また、減圧による方法では、熱源を使用しないので電極の熱劣化を回避することはできるが、乾燥に長時間を要してしまい生産性が低くなるおそれがある。このように、従来の電極乾燥方法では、電極の熱劣化を防止しつつ効率よく電極を乾燥させることが困難である。
 本発明は、前記事情に鑑み成されたものであって、電極の乾燥時の劣化を防止でき、しかも効率よく電極を乾燥させることが可能な電極乾燥装置を提供することを目的の1つとする。
 本発明の電極乾燥装置は、赤外光を照射する第1の光源と、前記赤外光を透過する平面状の第1の遮熱材と、第1ガスを冷却して冷却ガスを供給する第1ガス供給装置と、第2ガスを乾燥して乾燥ガスを供給する第2ガス供給装置と、第1の電極搬送領域と、を備える。前記冷却ガスは、前記第1の光源と前記第1の遮熱材の一方の面との間に流入され、前記乾燥ガスは、前記第1の遮熱材の他方の面上の前記第1の電極搬送領域に流入される。
 このようにすれば、第1の電極搬送領域で搬送される電極に付着した水分に光源から赤外光が照射され、水分が赤外光を吸収することにより水分の蒸発が促進される。また、第1の遮熱材の他方の面上の第1の電極搬送領域に、第2ガス供給装置から供給された乾燥ガスが流入するので、第1の電極搬送領域で搬送される電極に付着した水分の蒸発が促進される。さらに第1の光源から電極への伝熱が遮熱材により遮断されるので、電極の加熱が低減される。第1の光源と第1の遮熱材の一方の面との間に、第1ガス供給装置から供給された冷却ガスが流入するので、第1の光源の熱により電極が加熱されることが低減される。以上のように、電極の乾燥時に、電極が加熱されることが格段に低減されるとともに電極に付着した水分の蒸発が格段に促進されるので、電極の劣化を防止しつつ効率よく電極を乾燥させることができる。
 本発明の電極乾燥装置によれば、電極に付着した水分の蒸発が格段に促進され、また電極の加熱が格段に低減されるので、電極の熱劣化が防止されるとともに電極を効率よく乾燥させることが可能になる。
図1は、二次電池の構成例を示す斜視分解図である。 図2は、二次電池の製造方法の一例を概略して示すフローチャートである。 図3は、第1実施形態の電極乾燥装置の概略構成を示す模式図である。 図4は、第1実施形態の電極乾燥装置におけるガスの流通経路を示す模式図である。 図5は、電極乾燥装置を上から見た断面図である。 図6は、電極乾燥方法を微視的に説明するための図である。 図7は、水の光吸収スペクトルを示すグラフである。 図8は、第2実施形態の電極乾燥装置の概略構成を示す模式図である。
 以下、図面を参照しつつ本発明の実施形態を説明する。説明に用いる図面において、特徴的な部分を分かりやすく示すために、図面中の構造の寸法や縮尺を実際の構造に対して異ならせている場合がある。実施形態において同様の構成要素については、同じ符号を付して図示し、その詳細な説明を省略する場合がある。
 電極乾燥装置の説明に先立ち、図1を参照しつつ電池の構成例について説明する。図1に示すように、単電池の一例である二次電池1は、電池容器10、電極端子としての正極端子11および負極端子12を含んでいる。二次電池1は、例えばリチウムイオン二次電池等の非水電解質二次電池である。電池容器10は、例えばアルミニウム製の中空容器である。本例の電池容器10は、外形が略角柱状(略直方体状)であるが、外形が円柱状であってもよい。正極端子11および負極端子12は、電池容器10の外面の1つに設けられている。
 電池容器10の内部に、電極としての正極板13および負極板14が収容されている。
正極板13は、負極板14と対向配置されている。正極板13および負極板14は、互いに対向する方向に繰り返し配置されている。正極板13と負極板14との間にセパレータ15が設けられており、正極板13が負極板14と接触しないようになっている。正極板13および負極板14は、導体箔や導体薄板等のシート状の集電体を母材とし、母材表面に電解成分に応じた電極活物質のコーティングがなされたものである。セパレータ15は、例えば樹脂フィルム等の絶縁材料からなる。
 負極板14における負極端子12側の端部には、負極タブ14aが形成されている。繰返し配置された複数の負極板14の負極タブ14aが一括して負極端子12と電気的に接続されている。正極板13における正極端子11側の端部には、正極タブ13aが形成されている。繰返し配置された複数の正極板13の正極タブ13aが一括して正極端子11と電気的に接続されている。
 電池容器10の内部には、リチウムイオンを含んだ電解成分が正極板13および負極板14と接触するように貯蔵される。電解成分の貯蔵形態としては、例えば電解成分を含んだ電解液を電池容器10の内部に貯留する形態であってもよいし、電解成分を含んだ固形物を電池容器10の内部に収容する形態であってもよい。
 典型的な電解液としては、炭酸エチレンや炭酸ジエチル等の有機溶媒に、六フッ化リン酸リチウムや四フッ化ホウ酸リチウム等のリチウム塩を溶解した溶液等が挙げられる。このような非水電解液に水分が混入すると、電解液と水分が反応することや電解成分が不安定になること等により、電解液が劣化してしまう。このような観点で、正極板13や負極板14等の電極は、電池容器10に収容される段階で高度に(例えば、水分含有率が重量比で10ppm以下)乾燥されている必要がある。
 次に、図2~図5を参照しつつ第1実施形態の電極乾燥装置について説明する。図2は、電池製造方法の一実施形態を概略して示すフローチャート、図3は第1実施形態の電極乾燥装置2の概略構成を示す模式図、図4は電極乾燥装置2の内部のガスの流通経路を示す模式図、図5は電極乾燥装置を上から見た断面図である。
 図2に示すように、電池の一例である二次電池1を製造するには、ステップS1で電極の母材となるシート状の集電体に電極活物質を塗工して、シート状の電極を形成する。そして、ステップS2でシート状の電極をプレスすること等により母材に電極活物質の膜を圧着し、ステップS3でシート状の電極を乾燥させる。そして、ステップS4でシート状の電極を打抜き(型抜き)等により形状加工して、正極板13や負極板14等を形成する。そして、ステップS5で正極板13、セパレータ15、負極板14を積層して互いに固定し、積層体を形成する。そして、ステップS6で電池容器10に積層体を収容して封止した後に、ステップS7で電池容器10の内部に電解液を注入して封止すること等により、二次電池1が得られる。電極乾燥装置2は、例えばステップS3でシート状の電極を乾燥させるのに用いられる。
 図3に示すように、電極乾燥装置2は、電極収容室20、遮熱材21a~21n、光源群22a~22g、搬送ローラ24a~24g、241~244、第1ガス供給装置26、第2ガス供給装置27および排気装置28を備えている。遮熱材21a~21n、光源群22a~22gおよび搬送ローラ24a~24gは、電極収容室20の内部に配置されている。電極ロール23a、23b、第1ガス供給装置26、第2ガス供給装置27および排気装置28は、電極収容室20の外部に配置されている。電極乾燥装置2は、概略すると以下のように動作する。
 シート状の集電体に電極活物質が塗工されて形成されたシート状の電極Eは、プレス工程を経た後に巻き取られて電極ロール23aとなっている。電極Eは、電池用の電極であれば一次電池用であってもよいし二次電池用であってもよい。ここでは、図1で示した二次電池用の電極を例として説明する。
 電極ロール23aから繰り出された電極Eは、電極収容室20の外部にある搬送ローラ241および電極収容室20の内部にあってシート状の電極Eの搬入口に配置された搬送ローラ242、さらに搬送ローラ24a~24gをつたって電極収容室20の内部を搬送される。電極収容室20の内部で電極Eに光源群22a~22gから赤外光が照射され、電極Eに付着している水分や電極Eの電極活物質に含まれる水分が光吸収により蒸発する。電極Eは、電極収容室20の内部を搬送されつつ乾燥された後、電極収容室20の内部にあってシート状電極Eの搬出口に配置された搬送ローラ243、電極収容室20の外部にある搬送ローラ244を介して電極ロール23bとして巻取られる。各搬送ローラの回転方向およびシート状電極Eの搬送方向は矢印で示されている。以下、電極乾燥装置2の構成要素について詳しく説明する。
 電極収容室20の内部に、複数の遮熱材21a~21nが互いに離間させて配列されている。遮熱材21a~21nは、Y-Z方向に面を有する略板状の部材である。遮熱材21a~21nは、各々の法線方向(X方向)に繰り返し配置されている。遮熱材21a~21nは、光源群22a~22gから射出された赤外光を透過し、熱伝導率が低い材質、例えば石英からなる耐熱ガラスで構成される。遮熱材21a~21nを、X正方向からX負方向に向かって並ぶ順に、第1の遮熱材21a、第2の遮熱材21b、第3の遮熱材21c、第4の遮熱材21d、第5の遮熱材21e、第6の遮熱材21f、第7の遮熱材21g、第8の遮熱材21h、第9の遮熱材21i、第10の遮熱材21j、第11の遮熱材21k、第12の遮熱材21l、第13の遮熱材21m、第14の遮熱材21nと称する。
 複数の遮熱材21a~21nの間に、光源群22a~22gが配置されている。光源群22a~22gの各々は、Y方向に配列された複数の光源を含んでいる。光源は、波長が2μm~4μm程度の中赤外線を含んだ赤外光を射出するようになっている。光源は、赤外光を射出するものであれば、可視光を含んだ光を射出するものであってもよい。
 複数の光源の各々は、例えばZ方向を軸とする略柱状のハロゲンランプにより構成される。光源は、Z方向の長さが電極Eの幅と同程度になっており、Z方向の両端部にて支持されている。光源群22a~22gを、X正方向からX負方向に向かって並ぶ順に、第1の光源群22a、第2の光源群22b、第3の光源群22c、第4の光源群22d、第5の光源群22e、第6の光源群22f、第7の光源群22gと称する。1~7の整数をNとして、第Nの光源群(N=1~7)に含まれる光源の各々を第Nの光源と称する。
 第(2×N-1)の遮熱材と第(2×N)の遮熱材との間に第Nの光源群が配置されている。換言すると、第(2×N-1)の遮熱材と第(2×N)の遮熱材とに囲まれる部分が、第Nの光源群を収容する第Nの光源収容室になっている。例えば、N=1に相当する第1の遮熱材21aと第2の遮熱材21bとの間は、第1の光源群22aを収容する第1の光源収容室25aになっている。第1~第7の光源収容室25a~25gは、X方向に互いに離間させて配列されている。ここで、本実施形態では、7つの光源収容室が配置されている、すなわち1≦N≦7(Nは整数)としているが、設計で求められる乾燥度に応じてNの数は可変である。従って、設計に応じて、7つ以上の光源収容室が配置されてもよい。
 第1の光源が順次配置されるY軸上であってY正方向側に第1の搬送ローラ24aの回転軸が配置されており、同様に第3の光源が順次配置されるY軸上であってY正方向側に第3の搬送ローラ24cの回転軸が配置されている。第5の光源が順次配置されるY軸上であってY正方向側に第5の搬送ローラ24eの回転軸が、第7の光源が順次配置されるY軸上であってY正方向側に第7の搬送ローラ24gの回転軸が、それぞれ配置されている。第1~第7の光源収容室25a~25gと、第1、第3、第5および第7の搬送ローラ24a、24c、24e、24gとの間に、仕切板294が設けられている。仕切板294にスリットが設けられており、電極Eは、仕切板294のスリットを通って仕切板294の光源収容室側と搬送ローラ側との間を移動する。
 第2の光源が順次配置されるY軸上であってY負方向側に第2の搬送ローラ24bの回転軸が配置されており、同様に第4の光源が順次配置されるY軸上であってY負方向側に第4の搬送ローラ24dの回転軸が配置されている。そして、第6の光源が順次配置されるY軸上であってY正方向側に第6の搬送ローラ24fの回転軸が配置されている。
 第1~第7の光源収容室25a~25gと、第2、第4および第6の搬送ローラ24b、24d、24f、242、243との間に、仕切り板295が設けられている。仕切板295にスリットが設けられおり、電極Eは、仕切板295のスリットを通って仕切板295の光源収容室側と搬送ローラ側との間を移動する。
 搬送ローラ24a~24gおよび搬送ローラ242、243はX方向に伸びる円柱状の形状をしており、シート状電極Eよりも幅広であって、各々のZ方向の両端部にて支持されている。これら搬送ローラのXY平面における断面の半径は、電極シートEが電極収容室の一方の壁面と第1の光源収容室との間と、第1と第2の光源収容室の間と、第3と第4の光源収容室の間と、第5と第6の光源収容室の間と、第7の光源収容室と電極収容室20の他方の壁面との間とを、これら光源収容室や当該壁面に接触しないで通過できるよう設計されている。具体的には、当該半径は、第Nの光源と第Nの遮熱材または第(N+1)の遮熱材とのX方向の距離より大きく、第Nの光源と第(2N+1)の遮熱材または第(2N-2)の遮熱材とのX方向の距離より小さくなるよう設計される。仕切板294、295が配置されることにより、例えば搬送ローラ側の微小なゴミ等が光源収容室側に侵入することが、格段に低減される。
 電極Eは、第1の搬送ローラ24aから第2の搬送ローラ24b、第3の搬送ローラ24c、第4の搬送ローラ24d、第5の搬送ローラ24e、第6の搬送ローラ24f、第7の搬送ローラ24gの順に懸架され、この順に第1~第7の搬送ローラ24a~24gを伝って搬送される。電極Eは、第1~第7の搬送ローラ24a~24gのそれぞれを経由するたびに進行方向が約180度変化し、電極収容室20の内部を蛇行して搬送されつつ光源群22a~22gから赤外光を照射される。
 具体的には、電極Eは、電極収容室20の搬入口から内部に搬入された後、第1の遮熱材21aにおける第1の光源群22a側の面の反対側の面に沿ってY正方向(第1の方向)へ第1の搬送ローラ24aに向かって進行しつつ、第1の光源群22aから赤外光を照射される。
 そして、電極Eは、第1の搬送ローラ24aを経由した後、第2の遮熱材21bと第3の遮熱材21cとの間をY負方向(第2の方向)へ第2の搬送ローラ24bに向かって進行する。第2の遮熱材21bと第3の遮熱材21cとの間、すなわち第1と第2の光源収容室25a、25bの間で、電極EのX正方向側の面に第1の光源群22aから赤外光が照射され、電極EのX負方向側の面に第2の光源群22bから赤外光が照射される。
 電極Eは、第2の搬送ローラ24bを経由した後、第2と第3の光源収容室25b、25cの間をY正方向へ第3の搬送ローラ24cに向かって進行しつつ、第2の光源群22bと第3の光源群22cから赤外光を照射される。
 以下同様に電極Eは、第3の搬送ローラ24cを経由後に第3と第4の光源収容室25c、25dの間をY負方向に、第4の搬送ローラ24dを経由後に第4と第5の光源収容室25d、25eの間をY正方向に、第5の搬送ローラ24eを経由後に第5と第6の光源収容室25e、25fの間をY負方向に、第6の搬送ローラ24fを経由後に第6と第7の光源収容室25f、25gの間をY正方向に進行する。そして、第7の搬送ローラ24gを経由後に、第14の遮熱材21nにおける第7の光源群22g側の面の反対側の面をY負方向へ搬送ローラ243に向かって進行しつつ、第7の光源群22gから赤外光を照射される。
 このように電極Eは、第1~第7の光源収容室25a~25gの間を蛇行して進行することになる。電極乾燥装置2の内部を電極Eが蛇行して進行するので、蛇行させない場合に比べ、電極Eの搬送経路長を確保しつつ電極乾燥装置2を格段に小型化することができる。
 さらに、電極Eが蛇行しつつ搬送されることで、隣り合った光源収容室のそれぞれから放射される赤外光が電極Eの一方の面と他方の面のそれぞれに照射される。したがって、一方の面からのみ赤外光を照射することに比べ、電極Eを効率よく乾燥させることができる。第2~第6の光源群22b~22fの各々が、光源群の両側を搬送される電極Eに対してX正方向側およびX負方向側に赤外光を照射するので、光源の数を減らすことができ、電極乾燥装置2を低コスト化することや小型化することができる。
 第1ガス供給装置26は、空気や不活性ガス等の第1ガスを冷却して冷却ガスG1(図4参照)を生成する装置である。第1ガス供給装置26は、配管291と接続されている。配管291は、分岐して第1~第7の光源収容室25a~25gの一端に接続されている。ここでは、配管291の分岐管が、第1~第7の光源収容室25a~25gと1対1で対応している。第1~第7の光源収容室25a~25gの他端は、配管296と接続されている。配管296は、分岐して第1~第7の光源収容室25a~25gの他端に接続されている。
 図4に示すように、第1ガス供給装置26から供給された冷却ガスG1は、配管291を通って第1~第7の光源収容室25a~25gの内部に流入する。冷却ガスG1は、第1~第7の光源収容室25a~25gの内部をY正方向に流通し、第1~第7の光源収容室25a~25gのY正方向側の端部にて第1~第7の光源収容室の内部から排出される。第1~第7の光源収容室25a~25gの内部から排出された冷却ガスG1は、例えば後述の第2ガスより乾燥度の小さいガスが用いられていた場合にも電極Eに与える影響が少ないように配管296を通り、電極収容室20の壁面に設置された排気用の配管293の近辺に排出される。その後、当該近辺に排出された冷却ガスG1は配管293を通って排気装置28により電極収容室20の外部に排気される。これにより、乾燥ガスG2より冷却ガスG1の乾燥度が小さい場合に、電極Eに冷却ガスG1が接触して冷却ガスG1の水分が電極Eに付着することを回避することができる。
 第2ガス供給装置27は、空気や不活性ガス等の第2ガスを乾燥させて乾燥ガスG2を生成する装置である。第2ガスは、第1ガスと同じガスであってもよいし、異なるガスであってもよい。乾燥ガスG2の水分含有量は、乾燥後の電極Eの水分含有量、すなわち乾燥程度の目標値に応じて定まる。第2ガス供給装置27は、配管292と接続されており、配管292は電極収容室20の内部に通じている。
 第2ガス供給装置27から供給された乾燥ガスG2は、配管292を通って電極収容室20の内部に流入する。電極収容室20の内部に流入した乾燥ガスG2は、仕切板294と仕切板295の範囲内で、第1~第7の光源収容室25a~25gの間、すなわち電極Eの搬送経路に流入する。
 具体的には、図5に示すように、配管292は電極Eを避けた電極乾燥装置2内の側面を延長して配置される。そして、配管292は、第1~第7の光源収容室25a~25gに近い箇所から乾燥ガスG2を流入するためのガス流入口を、各光源収容室の間、すなわち電極Eの各搬送経路33a~33hに対応して複数有する。第1~第7の光源収容室25a~25gの間を通った乾燥ガスG2は、第1~第7の光源収容室25a~25gの内部から排出された冷却ガスG1と合流し、配管293を通って排気装置28により電極収容室20の外部に排気される。
 ここで、配管296と配管293とを直結した構成とし、さらに図示しない乾燥ガスG2用の排気装置を設けてその配管を電極収容室20に挿入した構成としてもよい。すなわち、冷却ガスG1用の排気装置と乾燥ガスG2用の排気装置を別に設けてもよい。こうすることで、冷却ガスG1と乾燥ガスG2が異なるガスである場合に、互いのガスが混合されて化学反応により発熱が生じるなどの不具合を回避することができる。また、乾燥ガスG2より冷却ガスG1の乾燥度が小さい場合に、電極Eに冷却ガスG1が接触して冷却ガスG1の水分が電極Eに付着することをより良く回避することができる。また、排気装置28は、冷却ガスG1および乾燥ガスG2を排気するとともに電極収容室20内を減圧することができるので、電極に付着した水分をより効果的に除去することができる。
 次に、隣り合う光源収容室の間を進行する電極がどのように乾燥されるかをより微視的に説明する。図6は、電極乾燥方法を微視的に示す説明図、図7は水の光吸収スペクトルを示すグラフである。
 図6に示すように、光源収容室25の間において、電極Eに光源22から赤外光IRが照射される。電極Eに付着している水分Qや電極Eの電極活物質に含まれている水分Qは、赤外光IRを吸収して昇温する。図7に示すように水の光吸収スペクトルは、中赤外線の波長域、特に1.7μm~3.4μmの波長域に吸収ピークを有している。したがって、赤外光IRが水分Qに効率よく吸収され、水分Qが効果的に加熱される。
 遮熱材21が、赤外光を効率よく透過する材質からなっているので、電極Eに含有される水分Qがこの赤外光を吸収して分解、蒸発する。例えば、遮熱材21が厚み1mm~10mmの透明石英ガラスの場合には、中赤外線の透過率が90%であるので、光源22としてハロゲンランプを用いると、光源22からの赤外光が水分Qに高強度で照射され、電極Eに水分Qを効率よく蒸発させることができる。
 水分Qの蒸発により生成された蒸気は、乾燥ガスG2に同伴されて光源収容室25の間の外側まで運び出され、排気装置28により電極収容室20の外部に排気される。蒸発した水分が直ちに乾燥ガスG2により搬出されるので、水分が電極Eに再付着することが防止される。なお、遮熱材21の断熱効果を高めるには厚みを増すのが良いが、厚みを増すと透過率も低減するので、装置の小型化と乾燥効率を鑑みて、遮熱材21が透明石英ガラスの場合には、厚みは4mm以上10mm以下が望ましい。
 光源22から放射される熱Hは、遮熱材21に遮られ、光源22からの熱Hが電極Eに直接的に伝わることが防止される。光源収容室25の内部を通った冷却ガスG1が排気装置28に吸引されることにより、光源22で発生した熱は、冷却ガスG1を冷媒として光源収容室25の外部へ搬出され、遮熱材21に伝導される熱量が低減される。また、そもそも遮熱材21が熱伝導率の低い材質であるで、遮熱材21において、光源収容室25の内側の面から、搬送中の電極E側の面へ伝導される熱量はさらに小さいものとなる。すなわち、遮熱材21から電極Eへの二次放射の熱量はさらに小さいものとなる。
 ところで、リチウムイオン二次電池等に用いられる電極は、熱劣化を生じやすいことが知られており、例えば130℃以上の温度に長時間曝されると、特性が低下してしまう。
電極の温度を上昇させずに水分を蒸発させるには、熱源を用いないで電極を真空雰囲気で乾燥させるとよい。しかしながら、真空雰囲気で乾燥させると乾燥時間が長時間(例えば数時間~十数時間)になり、電極の製造効率が低下してしまう。乾燥用の処理室(例えば真空チャンバー)を大型にすると装置コストが高騰してしまうので、装置の大型化により乾燥処理の効率化を図ることも難しい。
 電極乾燥装置2にあっては、電極Eに赤外光IRを照射するので水分Qを選択的に加熱することができ、電極Eの昇温が低減される。光源22(光源群22a~22g)からの熱Hが電極Eに直接的に伝わることが遮熱材21(21a~21n)により防止されるので、電極Eの昇温が低減される。遮熱材21から二次的に熱が放射されることが回避されるので、二次的な熱放射による電極Eの昇温が低減される。このように、電極Eの昇温が格段に低減されているので、電極Eの熱劣化が防止される。
 また、赤外光IRを照射するので水分Qを効率的に加熱することができ、水分Qを効率よく蒸発させることができる。水分Q由来の蒸気が乾燥ガスG2により電極Eの周辺から搬出・除去されるので、水分Qの蒸発が促進される。排気装置28により電極収容室20の内部を減圧雰囲気にすることができ、水分Qの蒸発をさらに促進させることもできる。
このように、水分Qの蒸発が格段に促進されるので、電極Eを効率よく乾燥させることができる。
 以上のように、電極乾燥装置2によれば、電極Eの熱劣化を防止しつつ電極Eを効率よく乾燥させることができる。結果として、良好な特性の電極Eを低コストで効率よく製造することが可能になり、良好な特性の電池を低コストで効率よく製造可能になる。
 次に、第2実施形態の電極乾燥装置について説明する。第2実施形態の電極乾燥装置は、第2ガス供給装置が第1ガス供給装置を内包、言い換えれば、第1および第2ガス供給装置の機能をいずれも備えた第3ガス供給装置を備え、この第3ガス供給装置から乾燥かつ冷却された乾燥冷却ガスが供給される点、さらに、第1の光源収容室とで搬送経路33aを挟むように第1の光源群と同様の光源群221aおよび光源群221a用遮熱材を配置し、第7の光源収容室とで搬送経路33hを挟むように第7の光源群と同様の光源群221bおよび光源群221b用遮熱材を配置している点が第1実施形態と大きく異なる。
 図8は、第2実施形態の電極乾燥装置3の概略構成を示す模式図である。図8に示すように、電極乾燥装置3は、第1ガス供給装置と第2ガス供給装置の機能を内包した第3ガス供給装置31と、第3ガス供給装置31と接続されて電極収容室20の内部に通じる配管32と、を備えている。
 第3ガス供給装置31は、空気や不活性ガス等の適宜選択されるガスを冷却するとともに乾燥して冷却乾燥ガスG3を供給する。冷却乾燥ガスG3は、配管32を通って、電極収容室20の内部に供給される。第3ガス供給装置31から供給されるガスは、冷却され且つ乾燥された少なくとも1種(同一成分)のガスである。互いに反応等しないガスであれば、冷却され且つ乾燥された2種以上のガスが混合された状態で第3ガス供給装置31から供給される構成としてもよい。
 本実施形態では、複数の光源22がY方向に並んで光源群を構成しており、複数の光源群がX方向に互いに離間して配置されている。シート状の電極Eは、第1実施形態と同様に、光源群の間を蛇行して搬送されるようになっている。また、蛇行して搬送される電極Eの表裏両面を均等に照射できるように光源群が配置されている。Y正方向あるいはY負方向に向かう電極Eの搬送経路ごとに、搬送経路と光源22との間に遮熱材21が配置されている。本実施形態では、2つの遮熱材21に挟まれて光源22が配置されている領域は、遮熱材21のY正負方向の端部にて、電極収容室20の内部と通じている。2つの遮熱材21に挟まれて光源22が配置されていない領域(搬送経路)は、遮熱材21のY正負方向の端部にて、電極収容室20の内部と通じている。
 電極収容室20の内部に供給された冷却乾燥ガスG3の一部は、遮熱材21に挟まれて光源22が配置されている領域に流入し、第1実施形態の冷却ガスとして機能する。すなわち、冷却乾燥ガスG3は、電極Eの搬送経路に一方の面が対面する遮熱材21の他方の面や光源22から熱を奪って流通した後、配管293を通って排気装置28により電極収容室20の外部に排出される。
 また、電極収容室20の内部に供給された冷却乾燥ガスG3の一部は、電極Eに対面する遮熱材21と電極Eとの間に流入し、第1実施形態の乾燥ガスとして機能する。すなわち、冷却乾燥ガスG3は電極Eから蒸発した水分を同伴して流通した後、配管293を通って排気装置28により電極収容室20の外部に排出される。また、電極Eに対面する遮熱材21と電極Eとの間に流入した冷却乾燥ガスG3は、遮熱材21における光源22と反対の面を冷却する。
 以上のような構成の電極乾燥装置3にあっては、第3ガス供給装置が第1ガス供給装置と第2ガス供給装置とを兼ねているので、電極乾燥装置3を小型化することや低コスト化することができる。冷却乾燥ガスG3が冷却ガスとしても乾燥ガスとしても機能するので、電極Eに対面する遮熱材21と電極Eとの間、および遮熱材21に挟まれて光源22が配置されている領域に共通して冷却乾燥ガスG3を供給することができ、配管系を簡略化することができる。電極Eに対面する遮熱材21と電極Eとの間に流入した冷却乾燥ガスG3が蒸気を搬出する乾燥ガスとして機能するとともに、遮熱材21における光源22と反対の面を冷却するので、光源22から電極Eへの伝熱が低減され、電極Eの熱劣化を防止する効果が高められる。
 さらに、光源群221aおよび光源群221a用遮熱材、光源群221bおよび光源群221b用遮熱材を配置したことで、第1実施形態よりも電極両面の乾燥度の均一化を図ることができる。
 なお、本発明の技術範囲は前記実施形態に限定されるものではない。本発明の主旨を逸脱しない範囲内で多様な変形が可能である。例えば、光源としては、ハロゲンランプのみならず、水分乾燥に十分な赤外光を放射できるのであれば各種の発光原理のものから適宜選択して用いることができるので、例えばLEDも使用可能である。また光源から射出される光の波長についても少なくとも赤外光を放射できるのであれば特に限定されない。
1・・・二次電池(電池)、
2、3・・・電極乾燥装置、
10・・・電池容器、
11・・・正極端子、
12・・・負極端子、
13・・・正極板(電極)、
13a・・・正極タブ、
14・・・負極板(電極)、
14a・・・負極タブ、
15・・・セパレータ、
20・・・電極収容室、
21、21e~21n・・・遮熱材、
21a・・・第1の遮熱材、
21b・・・第2の遮熱材、
21c・・・第3の遮熱材、
21d・・・第4の遮熱材、
22・・・光源、
22a・・・第1の光源群(第1の光源)、
22b・・・第2の光源群(第2の光源)、
22c・・・第3の光源群(第3の光源)、
22d~22g・・・光源群、
23a、23b・・・電極ロール、
24a~24g・・・搬送ローラ、
25a~25g・・・光源収容室、
26・・・第1ガス供給装置、
27・・・第2ガス供給装置、
31・・・第3ガス供給装置、
28・・・排気装置、
32、291~293、296・・・配管、
33、33c~33h・・・電極搬送領域(電極搬送経路)、
33a・・・第1の電極搬送領域(電極搬送経路)、
33b・・・第2の電極搬送領域(電極搬送経路)、
294、295・・・仕切板、
E・・・シート状の電極、
G1・・・冷却ガス、
G2・・・乾燥ガス、
G3・・・乾燥冷却ガス、
H・・・熱、
IR・・・赤外光、
Q・・・水分

Claims (5)

  1.  赤外光を照射する第1の光源と、
     前記赤外光を透過する平面状の第1の遮熱材と、
     第1ガスを冷却して冷却ガスを供給する第1ガス供給装置と、
     第2ガスを乾燥して乾燥ガスを供給する第2ガス供給装置と、
     第1の電極搬送領域と、を備え、
     前記第1の光源と前記第1の遮熱材の一方の面との間に前記冷却ガスが流入され、前記第1の遮熱材の他方の面上の前記第1の電極搬送領域に前記乾燥ガスが流入される電極乾燥装置。
  2.  赤外光を照射する第2の光源と、
     前記赤外光を透過する平面状の第2の遮熱材と、をさらに備え、
     前記第2の光源と前記第2の遮熱材の一方の面との間に前記冷却ガスが流入され、前記第2の遮熱材の他方の面と前記第1の遮熱材の前記他方の面との間の前記第1の電極搬送領域に前記乾燥ガスが流入される請求項1に記載の電極乾燥装置。
  3.  前記第2の光源の照射する赤外光を透過し且つ前記第2の光源を前記第2の遮熱材と挟む位置に配置される平面状の第3の遮熱材と、
     前記第3の遮熱材を前記第2の光源とで挟む位置に確保される第2の電極搬送領域と、
     前記第2の電極搬送領域を前記第3の遮熱材とで挟む位置に配置され且つ赤外光を透過する平面状の第4の遮熱材と、
     前記第2の電極搬送領域を前記第3の遮熱材とで挟む位置に配置され且つ赤外光を透過する平面状の第4の遮熱材と、
     前記第4の遮熱材を前記第2の電極搬送領域とで挟む位置に配置される前記赤外光を照射する第3の光源と、
     搬送ローラと、
     シート状の電極と、をさらに備え、
     前記第2の光源と前記第3の遮熱材の一方の面との間に前記冷却ガスが流入され、前記第3の光源と前記第4の遮熱材の一方の面との間に前記冷却ガスが流入され、
     前記第2の電極搬送領域に前記乾燥ガスが流入され、
     前記電極は前記第1の電極搬送領域を第1の方向へ搬送された後、前記搬送ローラによって進行方向を変え、前記第2の電極搬送領域を第2の方向へ搬送される請求項2に記載の電極乾燥装置。
  4.  前記第1乃至第3の光源、第1乃至第4の遮熱材および前記搬送ローラを内部に配置した電極収容室と、
     前記電極収容室の内部の排気または減圧を行う排気装置と、をさらに備えている請求項3に記載の電極乾燥装置。
  5.  第3ガス供給装置をさらに備え、
     前記第3ガス供給装置は前記第1ガス供給装置と前記第2ガス供給装置とを内包し、前記第1ガスと前記第2ガスは同一成分のガスであり、前記第3ガス供給装置からは乾燥且つ冷却された前記ガスが供給される請求項4に記載の電極乾燥装置。
PCT/JP2010/073292 2009-12-24 2010-12-24 電極乾燥装置 WO2011078309A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009292056A JP5249916B2 (ja) 2009-12-24 2009-12-24 電極乾燥装置
JP2009-292056 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011078309A1 true WO2011078309A1 (ja) 2011-06-30

Family

ID=44195834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073292 WO2011078309A1 (ja) 2009-12-24 2010-12-24 電極乾燥装置

Country Status (3)

Country Link
JP (1) JP5249916B2 (ja)
TW (1) TWI429871B (ja)
WO (1) WO2011078309A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963372A4 (en) * 2013-02-26 2017-01-11 NGK Insulators, Ltd. Drying device
CN109028861A (zh) * 2018-07-25 2018-12-18 刘肖俊 一种高效率锂电池烘干装置
US11196034B2 (en) * 2017-08-17 2021-12-07 Lg Chem, Ltd. Electrode heating device and manufacturing system for secondary battery, which comprises the same
DE102019220279B4 (de) 2019-08-22 2023-08-10 Smartec Co., Ltd. Trocknungsgerät für Batterieelektrode
CN116618259A (zh) * 2022-02-10 2023-08-22 宁德时代新能源科技股份有限公司 极片加热装置、极片生产系统及方法
JP7429490B2 (ja) 2021-07-12 2024-02-08 芝浦メカトロニクス株式会社 有機膜形成装置、および有機膜の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019587A (ja) * 2011-07-11 2013-01-31 Rinnai Corp 調理器
WO2019035564A1 (ko) * 2017-08-17 2019-02-21 주식회사 엘지화학 전극 가열장치 및 그를 포함하는 이차전지용 제조시스템
KR102299988B1 (ko) * 2018-01-16 2021-09-09 주식회사 엘지에너지솔루션 이차전지용 노칭장치 및 노칭방법
KR102306546B1 (ko) 2018-05-23 2021-09-30 주식회사 엘지에너지솔루션 이차전지용 노칭장치 및 노칭방법
WO2021166048A1 (ja) * 2020-02-17 2021-08-26 日本碍子株式会社 熱処理炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129221A (ja) * 1995-10-27 1997-05-16 Toshiba Battery Co Ltd 乾燥装置
JP2001176502A (ja) * 1999-10-06 2001-06-29 Matsushita Electric Ind Co Ltd 電池用電極の製造方法
JP2003094605A (ja) * 2001-09-26 2003-04-03 Toppan Printing Co Ltd 乾燥器
JP2004071472A (ja) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd 塗膜シートの乾燥装置、塗膜シートの乾燥方法
JP2005345092A (ja) * 2005-05-30 2005-12-15 Toppan Printing Co Ltd 乾燥器
JP2009119377A (ja) * 2007-11-15 2009-06-04 Taikisha Ltd 塗装用乾燥方法及び塗装用乾燥装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129221A (ja) * 1995-10-27 1997-05-16 Toshiba Battery Co Ltd 乾燥装置
JP2001176502A (ja) * 1999-10-06 2001-06-29 Matsushita Electric Ind Co Ltd 電池用電極の製造方法
JP2003094605A (ja) * 2001-09-26 2003-04-03 Toppan Printing Co Ltd 乾燥器
JP2004071472A (ja) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd 塗膜シートの乾燥装置、塗膜シートの乾燥方法
JP2005345092A (ja) * 2005-05-30 2005-12-15 Toppan Printing Co Ltd 乾燥器
JP2009119377A (ja) * 2007-11-15 2009-06-04 Taikisha Ltd 塗装用乾燥方法及び塗装用乾燥装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963372A4 (en) * 2013-02-26 2017-01-11 NGK Insulators, Ltd. Drying device
US9982941B2 (en) 2013-02-26 2018-05-29 Ngk Insulators, Ltd. Drying apparatus
US11196034B2 (en) * 2017-08-17 2021-12-07 Lg Chem, Ltd. Electrode heating device and manufacturing system for secondary battery, which comprises the same
CN109028861A (zh) * 2018-07-25 2018-12-18 刘肖俊 一种高效率锂电池烘干装置
CN109028861B (zh) * 2018-07-25 2020-04-14 深圳市科瑞隆科技有限公司 一种高效率锂电池烘干装置
DE102019220279B4 (de) 2019-08-22 2023-08-10 Smartec Co., Ltd. Trocknungsgerät für Batterieelektrode
JP7429490B2 (ja) 2021-07-12 2024-02-08 芝浦メカトロニクス株式会社 有機膜形成装置、および有機膜の製造方法
CN116618259A (zh) * 2022-02-10 2023-08-22 宁德时代新能源科技股份有限公司 极片加热装置、极片生产系统及方法

Also Published As

Publication number Publication date
TWI429871B (zh) 2014-03-11
JP5249916B2 (ja) 2013-07-31
JP2011134545A (ja) 2011-07-07
TW201144730A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
JP5249916B2 (ja) 電極乾燥装置
CN110870111B (zh) 用于二次电池的切口设备和方法
JP6225117B2 (ja) 赤外線加熱装置及び乾燥炉
CN109792034B (zh) 电极加热装置和包括该电极加热装置的二次电池的制造系统
JP2013137139A (ja) 乾燥装置および熱処理システム
CN104521055A (zh) 锂离子电池材料的微波干燥
WO2015022857A1 (ja) 赤外線放射装置及び赤外線処理装置
CN110892558B (zh) 用于二次电池的切口设备和方法
JP6076631B2 (ja) ヒータユニットおよび熱処理装置
CN104466253A (zh) 锂离子二次电池及其制造方法
EP3438588B1 (en) Low-temperature drying apparatus
KR101797652B1 (ko) 박막 코팅 물질의 열처리 방법 및 장치
WO2020018832A1 (en) Air cooling arrangement for a co-axial array of fuel cell stacks
US20220158159A1 (en) Protection layer sources
KR101656140B1 (ko) 유기전자소자의 열처리 장치
JP2012144783A (ja) 薄膜製造装置及び薄膜製造方法
JP6712477B2 (ja) 基材処理装置
CN115461886A (zh) 电极干燥装置
JP2004014886A (ja) レーザー装置の収容ケースおよびそれを用いたレーザーシステム
KR20220126205A (ko) 전극 건조 장치
CN115279937A (zh) 薄膜制造装置
JP2014191905A (ja) 燃料電池モジュールおよび燃料電池装置
JP2013034977A (ja) 光照射装置および面照射型の光照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839539

Country of ref document: EP

Kind code of ref document: A1