WO2011077806A1 - 太陽光受熱器及び太陽光集光受熱システム - Google Patents

太陽光受熱器及び太陽光集光受熱システム Download PDF

Info

Publication number
WO2011077806A1
WO2011077806A1 PCT/JP2010/067358 JP2010067358W WO2011077806A1 WO 2011077806 A1 WO2011077806 A1 WO 2011077806A1 JP 2010067358 W JP2010067358 W JP 2010067358W WO 2011077806 A1 WO2011077806 A1 WO 2011077806A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
flow path
header
receiver
light receiving
Prior art date
Application number
PCT/JP2010/067358
Other languages
English (en)
French (fr)
Inventor
浩己 中谷
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2010334038A priority Critical patent/AU2010334038B2/en
Priority to EP10839043.6A priority patent/EP2495440A4/en
Priority to US13/513,081 priority patent/US10054335B2/en
Publication of WO2011077806A1 publication Critical patent/WO2011077806A1/ja
Priority to ZA2012/04007A priority patent/ZA201204007B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/80Accommodating differential expansion of solar collector elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a solar heat receiver and a solar light collecting heat receiving system that receive sunlight and convert it into high-temperature heat energy and transmit the heat energy to a heat medium by heat transfer.
  • a solar condensing heat receiving system (hereinafter referred to as a condensing heat receiving system) that generates electric power by converting thermal energy obtained by condensing sunlight into electric energy is in progress. .
  • the tower condensing method arranges a condenser heat receiver on the top of the tower part built on the ground, and arranges a plurality of heliostats whose operation is controlled so as to track the sun rays around the tower part, It concentrates and collects heat by directing the sunlight reflected by the heliostat to a condenser heat receiver.
  • FIG. 15 is a cross-sectional view of a conventional condenser heat receiver as viewed from the axial direction of the casing.
  • a conventional condenser heat receiver 500 is installed on an upper portion of a tower portion (not shown) and includes a bottomed cylindrical casing 502 and a plurality of heat receiving tubes 503.
  • the casing 502 has an opening 501 into which sunlight rays reflected by the heliostat enter.
  • the plurality of heat receiving tubes 503 are arranged along the inner wall surface of the casing 502 so that the axial direction thereof is parallel to the central axis of the casing 502, and receive sunlight incident on the casing 502.
  • the condensing heat receiver 500 mentioned above there exists a problem that a big temperature difference arises in the circumferential direction (outer peripheral surface) of each heat receiving pipe 503.
  • the sunlight H ′ reflected by the heliostat enters the casing 502 from the opening 501 and proceeds from the opening 501 toward the inner periphery of the casing 502. Therefore, the surface of the heat receiving tube 503 in front of the irradiation direction of the solar light H ′ (the surface facing the radially inner side of the casing 502 on the outer peripheral surface of the heat receiving tube 503) is a light receiving surface 503a that directly receives the solar light H ′.
  • the surface behind the irradiation direction of the sunlight H ′ (the surface facing the radially outer side of the casing 502 on the outer peripheral surface of the heat receiving tube 503) is a non-light-receiving surface 503b that cannot directly receive the sunlight H ′.
  • a non-light-receiving surface 503b that cannot directly receive the sunlight H ′.
  • thermal stress is generated due to a temperature difference between the light receiving surface 503a and the non-light receiving surface 503b.
  • the heat receiving pipe 503 is deformed, and there is a possibility that stress concentrates on a connection portion with the heat receiving pipe 503 itself or a header (not shown) that collects the plurality of heat receiving pipes 503.
  • the solar radiation H since the solar radiation H 'varies in the amount of solar radiation depending on the day / night cycle, the weather, and the like, the heat receiving pipe 503 undergoes a temperature change due to the influence of the solar radiation amount change.
  • the heat receiving tube 503 is repeatedly deformed due to thermal stress each time the temperature changes, so that the fatigue life may be reduced.
  • Patent Document 1 in order to reinforce the heat receiving tube and improve heat transfer between the light receiving surface and the non-light receiving surface, a support body that contacts the light receiving surface and the non-light receiving surface of the heat receiving tube is inserted. A configuration is disclosed.
  • the temperature difference between the light receiving surface and the non-light receiving surface can be sufficiently increased only by heat conduction between the light receiving surface and the non-light receiving surface by the support provided inside the heat receiving tube. It is difficult to reduce, and a large thermal stress still acts on the heat receiving tube. As a result, there is a problem that the durability of the heat receiving tube 503 is reduced due to stress concentration, fatigue life reduction, and the like as described above.
  • the solar heat receiver of the present invention is a solar heat receiver having a heat receiving pipe that transmits heat of sunlight irradiated to the heat medium while a heat medium circulates inside the solar heat receiver.
  • the inside of the heat receiving tube is a first flow path of a light receiving surface (irradiation side) irradiated with sunlight and a non-light receiving surface (non-irradiation side) opposite to the first flow path in the sunlight irradiation direction. And a second flow path on the side).
  • the 1st flow path of the light-receiving surface (irradiation side) of a sunlight ray and the 2nd of a non-light-receiving surface (non-irradiation side) are made into the heat receiving pipe
  • the heat medium flow conditions can be set for the first flow path and the second flow path, respectively.
  • the first flow path to the heat medium is set.
  • the heat transfer efficiency is higher than the heat transfer efficiency from the second flow path to the heat medium.
  • the heat transfer to the heat medium in the first flow path is more actively performed than the heat transfer to the heat medium in the second flow path, so that the second flow path by the heat transfer to the heat medium is performed.
  • the temperature drop can be suppressed as compared with the temperature drop of the first flow path.
  • the temperature difference between the sunlight receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) can be reduced, thereby reducing the thermal stress generated due to the temperature difference between the two sides. It becomes possible.
  • the flow rate of the heat medium flowing into the second flow path is changed to the flow rate of the heat medium flowing through the second flow path.
  • the efficiency of heat transfer from the first flow path to the heat medium can be made higher than the efficiency of heat transfer from the second flow path to the heat medium.
  • the temperature difference between the light receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) can be reduced.
  • the plurality of the heat receiving tubes and the upstream ends of the plurality of heat receiving tubes in the flow direction of the heat medium are connected, and the heat medium introduction header introduces the heat medium toward the plurality of heat receiving tubes.
  • the heat medium introduction header includes a first header communicating with the first flow path of the heat receiving pipe and a second header communicating with the second flow path of the heat receiving pipe, and the restriction is provided on the second header. Means may be provided.
  • the heat medium introduction header is partitioned into a first header and a second header, and a restriction means is provided in the second header, so that the flow rate is restricted collectively for the second flow paths of the plurality of heat receiving tubes. can do.
  • the efficiency of heat transfer from the first flow path to the heat medium can be made higher than the efficiency of heat transfer from the second flow path to the heat medium.
  • the temperature difference between the light receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) can be reduced.
  • the first flow path and the second flow path may communicate with each other at one end in the flow direction of the heat medium.
  • the heat medium may be supplied from the other end in the flow direction of the first flow path and discharged from the other end in the flow direction of the second flow path.
  • the heat medium having a relatively low temperature is in the first flow path, and the first flow path is in the second flow path.
  • a relatively high-temperature heat medium subjected to heat exchange will circulate. That is, the temperature difference between the first flow path and the heat medium flowing in the first flow path is larger than the temperature difference between the second flow path and the heat medium flowing in the second flow path.
  • heat transfer to the heat medium in the first flow path is more actively performed than heat transfer to the heat medium in the second flow path. Therefore, the second flow by heat transfer to the heat medium is performed.
  • the temperature drop of the path can be suppressed compared to the temperature drop of the first flow path. As a result, the temperature difference between the light receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) can be reduced.
  • the plurality of heat receiving tubes and the other flow direction end of the first flow channel in the plurality of heat receiving tubes are connected, and a heat medium is introduced toward the first flow channels.
  • a heat medium introduction header and a heat medium derivation header in which the other end in the flow direction of the second flow path is connected and the heat medium is derived from each of the second flow paths may be provided.
  • the heat receiving pipe is connected to the heat medium introduction header and the heat medium outlet header only at the other end, one end is a free end. Therefore, even if the heat receiving tube is deformed due to a temperature change, this deformation is allowed, so that the thermal stress acting on the heat receiving tube can be reduced.
  • the solar light collecting heat receiving system of the present invention a plurality of reflecting mirrors that are installed on the ground and reflect the solar rays, the tower portion built from the ground, and the tower portion are supported to collect the solar rays.
  • a casing having an opening, and the solar heat receiver of the present invention housed in the casing are provided.
  • the solar heat receiver of the present invention since the solar heat receiver of the present invention is provided, the temperature difference between the light receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) is reduced. Thus, heat energy from sunlight can be efficiently transmitted to the heat medium.
  • the solar heat receiver of the present invention it is possible to improve the durability of the heat receiving tube by reducing the temperature difference between the light receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) in the heat receiving tube. Moreover, since the solar light collecting heat receiving system of the present invention includes the solar heat receiver of the present invention, the temperature difference between the light receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) is reduced. Thus, heat energy from sunlight can be efficiently transmitted to the heat medium.
  • FIG. 3B is a sectional view taken along line AA in FIG. 3B. It is the perspective view seen from the arrow B of FIG. It is an expansion perspective view of a heat receiving part.
  • a solar thermal power generation apparatus (hereinafter, referred to as a solar thermal power generation apparatus) in which the solar light collecting heat receiver of the present invention and a power generation unit that generates electric power using a heat medium heated by the solar light collecting heat receiver (hereinafter, The power generation device will be described as an example.
  • FIG. 1 and 2 are explanatory views showing the positional relationship between the heliostat and the light collecting heat receiver on the tower, FIG. 1 is a side view, and FIG. 2 is a plan view.
  • the place suitable for the location of the power generation device on the earth is a dry region in a subtropical high-pressure zone where direct solar radiation from the sun is strong and close to a good regression line. Therefore, in the power generation device of this embodiment, a power generation device of an all-around arrangement method that is arranged in a low latitude region in the subtropical high-pressure zone will be described.
  • FIG. 1 what is indicated by reference numeral 1 is a heliostat field provided in the ground G.
  • the power generation apparatus 100 generates power using a condensing heat receiving system 101 that collects and receives the sunlight H irradiated to the heliostat field 1 and a heat medium heated by the heat received by the condensing heat receiving system 101. And a power generation unit 102 to perform.
  • the condensing heat receiving system 101 is arranged on the heliostat field 1 and is installed on the top of the tower section 3, a plurality of heliostats 2 for reflecting the sunlight H, a tower section 3 built on the ground G, and the like.
  • the housing 12 and the condensing heat receiver 10 that is housed in the housing 12 and receives sunlight H are provided.
  • the tower part 3 is arrange
  • the housing 12 has a bottomed cylindrical shape that is arranged in a state where the axial direction and the vertical direction coincide with each other. While the upper surface of the housing 12 is closed, an opening 15 that opens toward the ground G is formed in the radial central portion of the lower surface.
  • a partition floor 16 is provided in the housing 12 to partition the upper part and the lower part in the axial direction.
  • the upper space partitioned by the partition floor 16 is a turbine generator chamber 17 in which the power generation unit 102 is disposed, and the lower space is a condensing chamber 18 in which the condensing heat receiver 10 is disposed.
  • the tower portion 3 includes a plurality of (for example, four) columns 21 built from the ground G toward the lower surface of the housing 12 and beam portions 22 connected so as to bridge between the columns 21. .
  • FIG. 3A is a cross-sectional view of the power generator as viewed from above
  • FIG. 3B is a cross-sectional view as viewed from the side.
  • the power generation unit 102 is housed in the turbine generator chamber 17 of the housing 12, and includes a gas turbine 25 including a compressor 23 and a turbine 24, an intake filter 26, and a regenerative heat exchanger 27. And a generator 28 are mainly provided.
  • the gas turbine 25 includes a rotatable rotor 30 connected to a generator 28 via a speed reducer 31, and a compressor 23 and a turbine 24 are attached so as to be coaxially disposed with respect to the rotor 30.
  • the compressor 23 takes in the air supplied through the air supply path 35 from a supply source (not shown) provided outside the housing 12 as a working fluid from the air intake port 29 of the housing 12 and generates compressed air. To do.
  • a heat receiver supply path 32 through which the compressed air compressed by the compressor 23 flows toward the upstream end of the light collecting heat receiver 10 is connected to the compressor 23 (see FIG. 4).
  • the compressed air heated with the condensing heat receiver 10 is supplied to the turbine 24 through the turbine supply path 33 connected to the downstream end of the condensing heat receiver 10 (refer arrow F2 in FIG. 4).
  • the turbine 24 converts the thermal energy of the compressed air supplied from the turbine supply path 33 into rotational energy of the rotor 30 to generate driving force.
  • the driving force is output to the generator 28 connected to the rotor 30 to generate power.
  • the compressed air that has circulated in the turbine 24 is discharged from the turbine 24 through the air discharge path 34 as exhaust gas.
  • the intake filter 26 is disposed between the supply source on the air supply path 35 and the compressor 23, and removes dust and the like contained in the air supplied from the supply source at a stage before being supplied to the compressor 23.
  • the regenerative heat exchanger 27 is connected to a heat receiver supply path 32 and an air discharge path 34. In the regenerative heat exchanger 27, heat exchange is performed between the compressed air flowing through the heat receiver supply passage 32 and the exhaust gas flowing through the air discharge passage 34. As a result, the compressed air flowing through the heat receiver supply path 32 is preheated in the previous stage where the condensed heat receiver 10 is supplied.
  • FIG. 4 is a perspective view showing a part of the condensing heat receiver in a cutaway manner.
  • the condenser heat receiver 10 is housed in the condenser chamber 18 of the housing 12, and includes a heat receiver body 41 that serves as a casing, and an interior of the heat receiver body 41.
  • a heat receiving portion 42 that is provided and receives heat by being irradiated with the sunlight H reflected by the heliostat 2.
  • the heat receiver body 41 has a bottomed cylindrical shape that is arranged in a state where the axial direction coincides with the axial direction of the housing 12.
  • An upper portion of the heat receiver body 41 is closed by the top plate portion 43, and an opening portion 44 that opens toward the ground G is formed at the lower portion.
  • the top plate portion 43 of the heat receiver main body 41 and the partition floor 16 are connected by a plurality of hook members 45 (see FIG. 3B), and the heat receiver main body 41 is suspended from the partition floor 16 by the hook members 45. In this state, the light is stored in the light collecting chamber 18.
  • the lower end portion of the hook member 45 passes through the heat receiver main body 41 and is also connected to the heat receiving portion 42. That is, the heat receiver main body 41 and the heat receiving part 42 of the light collecting heat receiver 10 are both supported by the same hook member 45.
  • the end face position of the opening 44 of the heat receiver body 41 is arranged at the same position in the vertical direction with respect to the lower surface of the housing 12, and the sunlight H reflected by the heliostat 2 is received from the opening 44 through the heat receiver body. 41. Further, a tapered portion 46 whose inner diameter gradually decreases toward the opening 44 (downward) is formed in the lower portion of the heat receiver body 41.
  • a heat insulating material 47 (see FIG. 4) is attached to the inner wall surface of the heat receiver main body 41 over the entire area. Thereby, it can suppress that the heat energy in the heat receiver main body 41 is radiated
  • FIG. 5 is a perspective view of the heat receiving portion.
  • the heat receiving section 42 includes a plurality of heat receiving tubes 51 and a low-temperature header ((heat medium introduction header)) in which the upstream ends of the plurality of heat receiving tubes 51 in the flow direction of compressed air are connected together.
  • a high-temperature header (heat medium derivation header) 53 to which the downstream ends of the plurality of heat receiving pipes 51 in the flow direction of the compressed air are connected together.
  • the low-temperature header 52 is an annular member disposed so as to surround the tapered portion 46 of the heat receiver main body 41, and a plurality of heat receiver supply paths that connect between the compressor 23 and the heat receiving portion 42 on the outer peripheral surface thereof. 32 is provided.
  • the heat receiver supply path 32 is arranged at equal intervals along the circumferential direction of the low temperature header 52, and the compressed air supplied from the heat receiver supply path 32 into the low temperature header 52 spreads over the entire area of the low temperature header 52.
  • the high-temperature header 53 is an annular member disposed along the outer periphery of the top plate portion 43 in the heat receiver main body 41.
  • a plurality of (for example, four) outflow pipes 55 extending toward the radial center are formed at equal intervals along the circumferential direction. These outflow pipes 55 gather at the center in the radial direction of the high-temperature header 53 to constitute the turbine supply path 33.
  • the turbine supply path 33 extends through the top plate portion 43 and the partition floor 16 along the vertical direction to the turbine generator chamber 17 and is connected to the turbine 24 at the downstream end.
  • the plurality of hook members 45 described above are connected to the high-temperature header 53, and the heat receiving portion 42 is suspended and supported on the partition floor 16.
  • the heat receiving pipe 51 is a member arranged so that its axial direction is parallel to the axial direction of the heat receiver main body 41, and all the circumferential direction on the inner wall surface of the heat receiver main body 41 is arranged. A plurality are arranged over the circumference.
  • the lower end portion (upstream end) of each heat receiving pipe 51 passes through the taper portion 46 and is connected to the upper portion of the low temperature header 52, while the upper end portion (downstream end) is the lower portion of the high temperature header 53 in the heat receiver main body 41.
  • the heat receiving pipes 51 are parallel to each other for each predetermined pipe pitch (arrangement pitch) P with a space between the heat receiving pipes 51 adjacent in the circumferential direction of the heat receiver body 41. Is arranged.
  • the pipe pitch P is the distance between the central axes (for example, O1 and O2) of the adjacent heat receiving pipes 51 in the circumferential direction of the heat receiving body 41. Then, on the outer peripheral surface of the heat receiving pipe 51, an area of about 180 degrees facing inward in the radial direction of the heat receiver main body 41 (before the irradiation direction of the solar light H) of the solar light H condensed from the opening 44.
  • a light-receiving surface (irradiation side) 51a that directly receives the sunlight H is opposed to the irradiation direction.
  • a region of about 180 degrees facing the outer side in the radial direction of the heat receiving pipe 51 (in the irradiation direction of the sunlight H) faces the heat insulating material 47 and does not directly receive the sunlight H (non-irradiation side). ) 51b.
  • FIG. 8 is an enlarged perspective view of the heat receiving portion.
  • a partition plate 56 that partitions the light receiving surface 51a and the non-light receiving surface 51b described above is disposed.
  • the partition plate 56 is a flat plate formed integrally with the heat receiving tube 51 by welding, drawing, or the like, and is formed over the entire length of the heat receiving tube 51 in the axial direction.
  • the heat receiving tube 51 has a light receiving side flow path (first flow path) 61 surrounded by the light receiving surface 51 a and the partition plate 56, and a non-light receiving side flow surrounded by the non-light receiving surface 51 b and the partition plate 56. It is divided into a path (second flow path) 62.
  • the orifice plate 63 is formed with an orifice hole 64 penetrating in the thickness direction, whereby the flow rate of the compressed air flowing into the non-light receiving side flow path 62 is changed to the compressed air flowing into the light receiving side flow path 61. Limited compared to flow rate.
  • the compressed air supplied into the low temperature header 52 spreads throughout the low temperature header 52 in the entire circumferential direction, and then is connected to each heat receiving pipe 51 connected over the entire circumference in the low temperature header 52. Flows in.
  • the sunlight H incident on the heliostat 2 is reflected by the heliostat 2 and then enters the heat receiver main body 41 from the opening 44 of the heat receiver main body 41.
  • the sunlight rays H incident on the heat receiver main body 41 the sunlight rays H received by the light receiving surface 51a of the heat receiving tube 51 become heat energy and heat the heat receiving tube 51 directly.
  • the sunlight H from the heliostat 2 located closest to the light collecting heat receiver 10 irradiates the upper part (downstream) of the heat receiving pipe 51, and the light collecting heat receiver.
  • Sunlight H from the heliostat 2 located farthest from 10 irradiates the lower part (upstream) of the heat receiving pipe 51. Then, heat exchange is performed between the heated heat receiving pipe 51 and the compressed air flowing through the heat receiving pipe 51, and the compressed air becomes a high temperature while flowing through the heat receiving pipe 51.
  • the sunlight H incident on the heat receiver body 41 is received by the light receiving surface 51 a of the heat receiving tube 51, so that the light receiving side flow path 61 has a higher temperature than the non-light receiving side flow path 62. .
  • the compressed air flowing into the heat receiving pipe 51 from the low temperature header 52 is branched into the light receiving side flow path 61 and the non-light receiving side flow path 62 at the inlet of the heat receiving pipe 51.
  • the flow rate of the compressed air flowing into the light receiving side flow channel 61 in the non-light receiving side flow channel 62 is restricted by the orifice hole 64, so This is larger than the flow rate of the compressed air flowing into the passage 62.
  • the efficiency of heat transfer from the light receiving side flow path 61 to the compressed air is higher than the efficiency of heat transfer from the non-light receiving side flow path 62 to the compressed air. That is, the heat transfer to the compressed air in the light receiving side flow path 61 is more actively performed than the heat transfer to the compressed air in the non-light receiving side flow path 62, so that non-light reception due to heat transfer to the compressed air
  • the temperature drop of the side flow path 62 can be suppressed compared to the temperature drop of the light receiving side flow path 61.
  • the compressed air that has flowed through the light receiving side flow path 61 and the non-light receiving side flow path 62 and has reached a high temperature flows into the high temperature header 53 from the downstream end of the heat receiving pipe 51. That is, the compressed air heated in each heat receiving pipe 51 is collected in the high temperature header 53 and then flows into the turbine supply path 33 through the outflow pipe 55.
  • the compressed air that has flowed into the turbine supply path 33 flows vertically upward in the turbine supply path 33 (see arrow F2 in FIG. 4), and flows into the turbine 24 to drive the turbine 24.
  • the thermal energy of the compressed air supplied from the turbine supply path 33 is converted into the rotational energy of the rotor 30, and the driving force is generated in the turbine 24.
  • this driving force is output to the generator 28 connected to the rotor 30 to generate power.
  • the compressed air that has circulated in the turbine 24 becomes exhaust gas, and is exhausted from the turbine 24 through the air discharge path 34.
  • the exhaust gas flowing through the air discharge path 34 is supplied into the regenerative heat exchanger 27, and after exchanging heat with the compressed air flowing from the compressor 23 toward the heat receiving unit 42, the exhaust gas is discharged to the outside. Discharged.
  • the compressed air supplied from the compressor 23 toward the heat receiving unit 42 is preheated before the compressed air flowing to the heat receiving unit 42 is supplied to the heat receiving unit 42.
  • the power generation efficiency of the power generation apparatus 100 can be further improved.
  • the exhaust gas supplied to the power generation by the turbine 24 can be used effectively, a separate heat source is not prepared, and the configuration is simplified and the equipment cost is reduced. Can do.
  • the partition plate 56 that partitions the light receiving surface 51a side and the non-light receiving surface 51b side in the heat receiving tube 51 is provided, and an orifice that restricts the compressed air flowing into the non-light receiving side flow path 62.
  • the plate 63 is arranged. According to this configuration, as described above, the light receiving surface is more actively exchanged with the compressed air in the light receiving side flow path 61 than the heat exchange with the compressed air in the non-light receiving side flow path 62. Since the temperature difference between 51a and the non-light-receiving surface 51b can be reduced, it is possible to reduce the thermal stress generated due to the temperature difference between the two surfaces.
  • the sunlight rays H that have entered the heat receiver body 41 are irradiated on the inner surface of the heat insulating material 47 and become thermal energy in the heat receiver body 41.
  • the inner surface of the heat receiver main body 41 is insulated by the heat insulating material 47, and the black body paint is applied to the surface of the heat insulating material 47. Therefore, the heat energy generated in the heat receiver main body 41 is absorbed by the heat receiver. It is not transmitted to the wall surface of the main body 41 and is radiated into the heat receiver main body 41.
  • the heat energy radiated into the heat receiver main body 41 is transmitted to the non-light receiving surface 51b of the heat receiving pipe 51, and heats the heat receiving pipe 51. Further, the heat energy obtained by the heat receiving pipe 51 is radiated to the inside of the heat receiving pipe 51, and is also radiated to the outside of the heat receiving pipe 51 (inside the heat receiver main body 41). Also in this case, since the heat insulating material 47 is provided on the inner wall surface of the heat receiver main body 41, thermal energy stays in the heat receiver main body 41. The accumulated thermal energy is radiated to the heat receiving pipe 51. Therefore, since the heat receiving pipe 51 can be heated over the entire circumferential direction, the temperature difference between the light receiving surface 51a and the non-light receiving surface 51b can be reduced more effectively.
  • FIG. 9 is a plan view showing the heat receiving portion of the present embodiment with a part broken away.
  • the configuration in which the orifice plate 63 that is a restricting unit is disposed at the inlet of the non-light-receiving side flow path 62 of each heat receiving pipe 51 has been described. This is different from the above-described embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted. As shown in FIG.
  • the heat receiving portion 142 of the present embodiment is provided with a plurality of partition walls 111 that partition the low temperature header 152 at equal intervals along the circumferential direction.
  • the partition wall 111 is disposed at one end of the outlet of each heat receiver supply path 32 in the low-temperature header 152, and regions surrounded by the partition walls 111 constitute the divided headers 112, respectively. That is, each divided header 112 divides the low-temperature header 152 every 90 degrees, and the outlet of the heat receiver supply path 32 is opened at one end in the circumferential direction of each divided header 112.
  • each divided header 112 is provided with a partition plate (partition member) 156 that divides the low-temperature header 152 in half in the radial direction inside and outside.
  • the partition plate 156 is substantially circular in plan view (viewed from the axial direction of the low-temperature header 152) extending from the partition wall 111 downstream (the other end in the circumferential direction) to the partition wall 111 upstream (one end in the circumferential direction). It is an arc-shaped member.
  • the divided header 112 includes a light receiving side header (first header) 113 surrounded by the partition plate 156 on the inner side in the radial direction of the low temperature header 152 and a non-partitioned portion surrounded by the partition plate 156 on the outer side of the low temperature header 152 in the radial direction.
  • the light receiving side header 114 is partitioned.
  • each divided header 112 the downstream end of the partition plate 156 and the downstream partition wall 111 are connected, while the upstream end of the partition plate 156 and the upstream partition wall 111 are not connected. That is, a common flow path 115 into which compressed air flows from the heat receiver supply path 32 is formed between the upstream end of the partition plate 156 and the upstream partition wall 111. Therefore, the compressed air flowing into the divided headers 112 from the heat receiver supply path 32 flows through the common flow path 115 and then branches to the light receiving side header 113 and the non-light receiving side header 114, respectively.
  • Each partition plate 156 is disposed so as to overlap with the partition plate 56 of the heat receiving pipe 51 described above and the low-temperature header 152 in the axial direction.
  • the light receiving side header 113 of the divided header 112 and the light receiving side flow path 61 of the heat receiving tube 51 communicate with each other, while the non-light receiving side header 114 of the divided header 112 and the non-light receiving side flow path 62 of the heat receiving tube 51 are respectively connected. Communicate.
  • an orifice plate 163 is provided at the inlet of the non-light receiving side header 114 so as to narrow the inlet.
  • the orifice plate 163 is formed with an orifice hole 164 penetrating in the thickness direction, whereby the flow rate of compressed air flowing into the non-light receiving side header 114 is compared with the flow rate of compressed air flowing into the light receiving side header 113. Limit.
  • the low temperature header 152 is partitioned into the light receiving side header 113 and the non-light receiving side header 114, and the non-light receiving side header 114 is provided with the orifice plate 163, so that the non-light receiving side of the plurality of heat receiving tubes 51 is provided.
  • the flow rate can be restricted collectively for the flow path 62. Therefore, the same effects as those of the first embodiment described above can be achieved, and the facility cost can be reduced as compared with the case where each heat receiving pipe 51 is provided with the orifice plate 63 (see FIG. 8).
  • FIG. 10 is a cross-sectional view showing the heat receiving portion of the present embodiment.
  • the heat receiving portion 242 of the present embodiment is arranged in the heat receiver main body 41 along the outer periphery of the top plate portion 43, and on the radially inner side of the high temperature header 253.
  • the low-temperature header 252 and a plurality of heat receiving pipes 251 communicating the headers 252 and 253 are provided.
  • the low temperature header 252 and the high temperature header 253 are supported in a state of being suspended from the top plate portion 43 by a plurality of hook members 245.
  • Each heat receiving pipe 251 is divided into a light receiving side flow path 261 and a non-light receiving side flow path 262 by a partition plate 256.
  • Branch pipes 201 and 202 are connected to the openings at one end (upper end) of the light receiving side flow path 261 and the non-light receiving side flow path 262, respectively, and extend in a bifurcated manner, while the openings at the other end communicate with each other.
  • the folded flow path 203 is connected, and each heat receiving pipe 251 is Y-shaped.
  • the branch pipe 201 of the light receiving side flow path 261 is connected to the low temperature header 252, and the branch pipe 202 of the non-light receiving side flow path 262 is connected to the high temperature header 253.
  • each heat receiving pipe 251 is disposed so as to be suspended and supported by the low temperature header 252 and the high temperature header 253.
  • the compressed air flowing through the low-temperature header 252 flows from the branch pipe 201 into the light receiving side flow path 261, is folded back by the return flow path 203, then flows through the non-light receiving side flow path 262, and from the branch pipe 202 It flows into the high temperature header 253.
  • the low temperature header 252 is connected to the light receiving side flow path 261, while the high temperature header 253 is connected to the non-light receiving side flow path 262, so that compressed air flows from the light receiving side flow path 261. Then, it is discharged from the non-light receiving side channel 262. Therefore, relatively low-temperature compressed air supplied from the low-temperature header 252 flows through the light-receiving side flow channel 261, and relatively high-temperature compressed air that is heat-exchanged through the light-receiving side flow channel 261 flows through the non-light-receiving side flow channel 262. Will do.
  • the temperature difference between the light receiving side flow path 261 and the compressed air is larger than the temperature difference between the non-light receiving side flow path 262 and the compressed air. Therefore, heat transfer to the compressed air in the light receiving side flow path 261 is more actively performed than heat exchange to the compressed air in the non-light receiving side flow path 262. As a result, the temperature difference between the light receiving side flow path 261 and the non-light receiving side flow path 262 can be reduced.
  • the heat receiving pipe 251 is connected to the low temperature header 252 and the high temperature header 253 only at the upper end, the lower end is not restrained and is a free end. Therefore, even if the heat receiving pipe 251 is deformed due to a temperature change, this deformation is allowed, so that the thermal stress acting on the heat receiving pipe 251 can be reduced. Furthermore, since each header 252,253 is arrange
  • FIG. 11A and FIG. 11B are cross-sectional views showing the heat receiving portion of this embodiment.
  • the arrangement direction of the heat receiving pipe 251 is arranged upside down as compared with the third embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted. As shown in FIG.
  • the heat receiving unit 242 in the present embodiment includes a low temperature header 252 and a high temperature header 253 arranged in the lower part in the direction of gravity in the heat receiver body 41, and an upper portion from the low temperature header 252 and the high temperature header 253 A plurality of heat receiving tubes 251 are connected so as to extend toward.
  • the top plate portion 43 in the heat receiver main body 41 is provided with a plurality of hook members 345 that connect the top plate portion 43 and the upper end surface of each heat receiving pipe 251, whereby the heat receiving portion 242 is provided with the heat receiver main body 242. 41 is supported suspended.
  • the same effects as those of the third embodiment described above can be achieved.
  • a structure which suspends the heat receiving part 242 you may make it a structure as shown to FIG. 11B other than the structure mentioned above, for example.
  • a connecting member 346 having a through hole 346a is formed on the upper end surface of each heat receiving pipe 251 while a ring portion 347 to be inserted into the through hole 346 is formed on the tip (lower end) of the hook member 345.
  • the connecting member 346 and the ring part 347 are connected. Accordingly, the heat receiving portion 242 is suspended and supported by the hook member 345 in the heat receiver main body 41.
  • FIG. 12 is a cross-sectional view of the condenser heat receiver as viewed from the axial direction.
  • the present embodiment is different from the above-described embodiments in that a reflecting mirror is disposed on the inner wall surface of the heat receiver body.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the reflecting mirror 401 is disposed on the inner wall surface of the heat receiver main body 41 over the entire circumference.
  • the reflecting mirror 401 is of a cross-sectional view wave type in which a crest 402 and a trough 403 are continuously formed along the circumferential direction of the heat receiver body 41, and a heat receiving tube 351 is provided between the crests 403. Has been placed. In this case, a part of the sunlight H that has entered the heat receiver body 41 is directly irradiated to the light receiving surface 351 a of the heat receiving tube 351. On the other hand, among the sunlight rays H that have entered the heat receiver body 41, the sunlight rays H that have passed between the heat receiving tubes 351 are reflected by the reflecting mirror 401 provided on the inner wall surface of the heat receiver body 41, and the opening 44. Is irradiated to the non-light-receiving surface 351b that cannot directly receive the sunlight H incident thereon.
  • the heat receiving tube 51 is heated over the entire circumferential direction, so that the light receiving surface 351a and the non-light receiving surface 351b A temperature difference can be reduced.
  • the heat receiving pipe 351 that is not partitioned by the partition plate for example, the partition plate 56
  • the temperature difference between the light receiving surface 351a and the non-light receiving surface 351b can be further reduced.
  • the reflecting mirror 401 may be formed in a concave shape. Further, the interval at which the reflecting mirror 401 is disposed does not necessarily need to be matched with the interval at which the heat receiving pipe 351 is disposed.
  • the technical scope of the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific structure and shape described in the embodiment are merely examples, and can be changed as appropriate.
  • the present invention is not limited thereto, and the turbine 24 has a separate working fluid (for example, combustion gas). ) And the compressed air heated by the heat receiving unit 42 may be used for heat exchange of the working fluid. Further, the positional relationship between the light collecting heat receiver and the power generation unit can be appropriately changed in design.
  • the arrangement position of the power generation unit is not limited to above or behind the light collecting heat receiver. Further, in the above-described embodiment, the case where the generator 28 has a function as an alternator that drives the rotor 30 and generates power by rotating the turbine 24 has been described. A drive motor that rotates the rotor 30 separately from the motor 28 may be adopted.
  • the solar light collection efficiency in some directions tends to decrease because the solar altitude decreases as the installation location becomes higher latitude.
  • the power generation apparatus 100 of the all-around arrangement method disposed in the low-latitude region in the subtropical high-pressure zone has been described.
  • the heliostat 2 is not limited to the power generation apparatus 100 but only on one side. It is also possible to adopt a one-sided arrangement method in which the two are arranged on the side.
  • the single-sided power generation apparatus is configured by forming the heat receiver body in a semicircular shape and arranging the heat receiving tubes along the arc shape. Then, it is preferable to use the all-around arrangement type power generation device 100 and the one-side arrangement type power generation device in accordance with the solar altitudes in the low latitude region and the high latitude region.
  • the present invention is not limited to this.
  • a guide vane 410 that covers a part of the inflow port in the non-light-receiving side channel 62 may be provided.
  • the guide vane 410 may be movable so that the opening width of the inflow port of the non-light-receiving side channel 62 can be varied based on the amount of solar radiation H or the like.
  • the opening width of the heat receiving pipe 51 may be made variable by a plurality of blades like an air conditioning damper.
  • the partition plate 56 is integrally formed by welding, drawing, or the like.
  • the inner surface of the heat receiving pipe 451 is directed radially inward.
  • a configuration may be adopted in which ribs 452 projecting are provided, and a partition plate 456 is inserted between the ribs 452 separately.
  • the heat receiving pipe 451 and the partition plate 456 may be formed of different materials.
  • the partition plate 56 is provided over the entire axial direction of the heat receiving pipe 51 . Only the part may be partitioned by the partition plate 56.
  • the number of the heliostats 2 increases as it goes to the outer periphery in the heliostat field 1, so the opening portion of the heat receiver body 41 moves from the inner periphery to the outer periphery of the heliostat field 1. Incident amount of the sunlight H entering the inside 44 increases.
  • the amount of light received by the heat receiving tube 51 is greater in the lower portion than in the upper portion in the axial direction, and the temperature difference between the light receiving surface 51a and the non-light receiving surface 51b increases at the lower portion of the heat receiving tube 51. Therefore, the light receiving side flow path 61 and the non-light receiving side flow path 62 are partitioned only at the lower part of the heat receiving pipe 51, and the light receiving side flow path 61 and the non-light receiving side flow path 62 are combined at the upper part of the heat receiving pipe 51. It is preferable.
  • the configuration in which the flow rate of the compressed air flowing into the light receiving side flow path 61 and the non-light receiving side flow path 62 is limited by the low temperature header 152 is described. You may limit them at once.
  • a light receiving side supply flow path for supplying compressed air to the light receiving side flow path 61 and a non-light receiving side supply flow path for supplying compressed air to the non-light receiving side flow path 62 are branched to provide a non-light receiving side supply flow path.
  • the flow rate of the compressed air supplied to the light receiving side flow path 61 and the non-light receiving side flow path 62 may be adjusted before the compressed air is supplied to the low temperature header 152. .
  • the durability of the heat receiving tube can be improved by reducing the temperature difference between the light receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) in the heat receiving tube. Moreover, according to the solar light collecting heat receiving system of the present invention, since the solar heat receiver of the present invention is provided, the temperature difference between the light receiving surface (irradiation side) and the non-light receiving surface (non-irradiation side) is reduced. In addition, heat energy from sunlight can be efficiently transmitted to the heat medium.

Abstract

 本発明の太陽光受熱器は、内部に熱媒体が流通するとともに、照射される太陽光の熱を熱媒体に伝達する受熱管を有し、前記受熱管の内部を、太陽光が照射される受光面の第1流路と、太陽光の照射方向における前記第1流路と反対側であって非受光面の第2流路と、に区画する仕切部材を備えている。

Description

太陽光受熱器及び太陽光集光受熱システム
 本発明は、太陽光線を受光して高温の熱エネルギーに変換し、熱エネルギーを熱伝達により熱媒体に伝える太陽光受熱器及び太陽光集光受熱システムに関する。
 本願は、2009年12月24日に日本出願された特願2009-291637に基づいて優先権を主張し、その内容をここに援用する。
 近年、環境に影響を与えないクリーンなエネルギーとして、太陽光線を集光して得られる熱エネルギーを利用した装置が知られている。このような装置として、太陽光線を集光して得られる熱エネルギーを電気エネルギーに変換することで発電を行う太陽光集光受熱システム(以下、集光受熱システムという)の開発が進められている。
 上述した集光受熱システムにおいて、太陽光線を集光する方式の一つとしてタワー集光方式という方式がある。
 タワー集光方式とは、地上に建てられたタワー部の上部に集光受熱器を配置するとともに、タワー部の周囲に太陽光線を追尾するように動作制御された複数のヘリオスタットを配置し、ヘリオスタットで反射される太陽光線を集光受熱器に導くことで集光・集熱するものである。
 図15は、従来の集光受熱器をケーシングの軸方向から見た断面図である。
 図15に示すように、従来の集光受熱器500は、図示しないタワー部の上部に設置され、有底筒状のケーシング502と、複数の受熱管503とを有している。ケーシング502は、ヘリオスタットで反射される太陽光線が入射する開口部501を有する。複数の受熱管503は、軸方向がケーシング502の中心軸と平行になるようにして、ケーシング502の内壁面に沿って配列され、ケーシング502内に入射した太陽光線を受光する。
 ところで、上述した集光受熱器500では、各受熱管503の周方向(外周面)において大きな温度差が生じるという問題がある。具体的に、ヘリオスタットで反射された太陽光線H’は、開口部501からケーシング502内に入射し、開口部501からケーシング502内周に向かって進む。そのため、受熱管503における太陽光線H’の照射方向手前の面(受熱管503の外周面においてケーシング502の径方向内方を向いた面)は、太陽光線H’を直接受光する受光面503aとなり、太陽光線H’の照射方向奥の面(受熱管503の外周面においてケーシング502の径方向外方を向いた面)は太陽光線H’を直接受光できない非受光面503bとなる。その結果、非受光面503bでは太陽光線H’による熱エネルギーを効率的に得ることができないため、受光面503aと非受光面503bとの間で温度差が大きくなるという問題がある。
 この場合、受光面503aと非受光面503bとの温度差に起因して熱応力が発生する。これにより、受熱管503が変形して、受熱管503自体や複数の受熱管503を集合させるヘッダ(不図示)との接続部分等に応力が集中する虞がある。また、太陽光線H’は、昼夜のサイクルや、天候等により日射量が変動するため、受熱管503にはそれらの日射量変化の影響によっても温度変化が生じる。そして、温度変化の度に受熱管503は熱応力による変形を繰り返すことで、疲労寿命が低下する虞もある。
 そこで、例えば特許文献1には、受熱管の補強、及び受光面と非受光面との熱伝達の向上を図るために、受熱管の受光面と非受光面とを接触させる支持体を挿入する構成が開示されている。
特開昭56-105250号公報
 しかしながら、上述した特許文献1の構成のように、受熱管の内部に設けられた支持体による受光面と非受光面との熱伝導だけでは、受光面と非受光面との温度差を十分に低減することが難しく、受熱管には未だ大きな熱応力が作用する。その結果、上述したように応力集中や疲労寿命の低下等により、受熱管503の耐久性が低下するという問題がある。
 そこで、本発明は、上述した事情に鑑みてなされたものであって、受熱管における受光面(照射側)と非受光面(非照射側)との温度差を低減することで、受熱管の耐久性の向上を図ることができる太陽光受熱器及び太陽光集光受熱システムの提供を目的とする。
 上記課題を解決するために、本発明の太陽光受熱器では、内部に熱媒体が流通するとともに、照射される太陽光の熱を熱媒体に伝達する受熱管を有する太陽光受熱器であって、前記受熱管の内部を、太陽光が照射される受光面(照射側)の第1流路と、太陽光の照射方向における前記第1流路と反対側であって非受光面(非照射側)の第2流路と、に区画する仕切部材を備えている。
 そして、このような構成の太陽光受熱器によれば、熱媒体が流通する受熱管を太陽光線の受光面(照射側)の第1流路と、非受光面(非照射側)の第2流路とに区画することで、第1流路と第2流路とで熱媒体の流通条件をそれぞれ設定することができる。
 この場合、例えば第1流路内に流通する熱媒体の流量が、第2流路内に流通する熱媒体の流量に比べて多くなるように設定することで、第1流路から熱媒体への熱伝達の効率は、第2流路から熱媒体への熱伝達の効率に比べて高くなる。すなわち、第1流路での熱媒体への熱伝達を、第2流路での熱媒体への熱伝達よりも積極的に行わせることで、熱媒体への熱伝達による第2流路の温度低下を、第1流路の温度低下に比べて抑制することができる。これにより、太陽光の受光面(照射側)と非受光面(非照射側)との温度差を低減することができるので、両側間での温度差に起因して発生する熱応力を低減することが可能となる。その結果、応力集中や、応力の繰り返し発生による疲労寿命の低下を抑制することができるので、受熱管の耐久性を向上させることができる。
 本発明の太陽光受熱器では、前記第2流路への熱媒体の流入を制限する制限手段を有していてもよい。
 この場合、制限手段により第2流路内へ流入する熱媒体の流量を制限することで、第1流路内を流通する熱媒体の流量を、第2流路内に流通する熱媒体の流量に比べて多くすることができる。その結果、上述したように第1流路から熱媒体への熱伝達の効率を、第2流路から熱媒体への熱伝達の効率に比べて高くすることができる。その結果、上述したように受光面(照射側)と非受光面(非照射側)との温度差を低減することができる。
 本発明の太陽光受熱器では、複数の前記受熱管と、前記複数の受熱管における熱媒体の流通方向上流端が連結され、前記複数の受熱管に向けて熱媒体を導入させる熱媒体導入ヘッダとを備えていてもよい。前記熱媒体導入ヘッダは、前記受熱管の前記第1流路に連通する第1ヘッダと、前記受熱管の前記第2流路に連通する第2ヘッダとを備え、前記第2ヘッダに前記制限手段が設けられていてもよい。
 この場合、熱媒体導入ヘッダを第1ヘッダと第2ヘッダとに区画するとともに、第2ヘッダに制限手段を設けることで、複数の受熱管の第2流路に対して一括して流量を制限することができる。これにより、上述したように第1流路から熱媒体への熱伝達の効率を、第2流路から熱媒体への熱伝達の効率に比べて高くすることができる。その結果、上述したように受光面(照射側)と非受光面(非照射側)との温度差を低減することができる。
 本発明の太陽光受熱器では、前記第1流路と前記第2流路とは、熱媒体の流通方向一端で連通していてもよい。熱媒体は、前記第1流路の流通方向他端から供給され、前記第2流路の流通方向他端から排出されていてもよい。
 この場合、熱媒体が第1流路から流入して、第2流路から排出されるため、第1流路には比較的低温の熱媒体が、第2流路には第1流路で熱交換された比較的高温の熱媒体が流通することになる。すなわち、第1流路と第1流路内を流通する熱媒体との温度差は、第2流路と第2流路内を流通する熱媒体の温度差に比べて大きくなる。そのため、第1流路での熱媒体への熱伝達が、第2流路での熱媒体への熱伝達よりも積極的に行われることになるので、熱媒体への熱伝達による第2流路の温度低下を、第1流路の温度低下に比べて抑制することができる。その結果、受光面(照射側)と非受光面(非照射側)との温度差を低減することができる。
 本発明の太陽光受熱器では、複数の前記受熱管と、前記複数の受熱管における前記第1流路の流通方向他端が連結され、前記各第1流路に向けて熱媒体を導入させる熱媒体導入ヘッダと、前記第2流路の流通方向他端が連結され、前記各第2流路から熱媒体が導出される熱媒体導出ヘッダとを備えていてもよい。
 この場合、受熱管は、他端のみで熱媒体導入ヘッダ及び熱媒体導出ヘッダに連結されているので、一端は自由端となっている。そのため、仮に受熱管が温度変化により変形した場合であっても、この変形が許容されることになるので、受熱管に作用する熱応力を低減することができる。
 本発明の太陽光集光受熱システムでは、地上に設置され、太陽光線を反射する複数の反射鏡と、前記地上から建てられたタワー部と、前記タワー部に支持され、太陽光線を集光する開口部を有するケーシングと、前記ケーシング内に収容された上記本発明の太陽光受熱器とを備えている。
 このような構成の太陽光集光受熱システムでは、上記本発明の太陽光受熱器を備えているので、受光面(照射側)と非受光面(非照射側)との温度差を低減した上で、太陽光線からの熱エネルギーを熱媒体に対して効率的に伝達することができる。
 本発明の太陽光受熱器では、受熱管における受光面(照射側)と非受光面(非照射側)との温度差を低減することで、受熱管の耐久性を向上させることができる。
 また、本発明の太陽光集光受熱システムでは、上記本発明の太陽光受熱器を備えているので、受光面(照射側)と非受光面(非照射側)との温度差を低減した上で、太陽光線からの熱エネルギーを熱媒体に対して効率的に伝達することができる。
実施形態における発電装置を側面から見た図である。 実施形態における発電装置を上面から見た図である。 実施形態における発電装置を上面から見た断面図である。 実施形態における発電装置を側面から見た断面図である。 実施形態における集光受熱器の一部を破断して示す斜視図である。 実施形態における受熱部の斜視図である。 図3BのA-A線に沿う断面図である。 図6の矢印Bから見た斜視図である。 受熱部の拡大斜視図である。 第2実施形態の受熱部を一部破断して示す平面図である。 第3実施形態の受熱部を示す断面図である。 第4実施形態の受熱部を示す断面図である。 第4実施形態の受熱部を示す断面図である。 第5実施形態の集光受熱器を軸方向から見た断面図である。 制限手段の他の構成を示す受熱管の斜視図である。 受熱管の他の構成を示す受熱管の斜視図である。 従来の集光受熱器を軸方向から見た断面図である。
 次に、本発明の実施形態を図面に基づいて説明する。以下の説明では、本発明の太陽光集光受熱器と、太陽光集光受熱器により加熱された熱媒体を用いて発電を行う発電ユニットとが一体的に構成された太陽熱発電装置(以下、発電装置という)を例にして説明する。
 (発電装置)
 図1,2は、ヘリオスタットと、タワー上の集光受熱器との位置関係を示す説明図であり、図1は側面図、図2は平面図である。なお、地球上で発電装置の立地に適する場所は、太陽からの直達日射が強く良好な回帰線に近い亜熱帯高圧帯の乾燥地域である。そこで、本実施形態の発電装置では、特に亜熱帯高圧帯の中における低緯度地域に配置される全周配置方式の発電装置について説明する。
 図1において、符号1で示すものは、グランドGに設けられたヘリオスタットフィールドである。発電装置100は、このヘリオスタットフィールド1に照射される太陽光線Hを集光し受熱する集光受熱システム101と、集光受熱システム101で受熱した熱により加熱された熱媒体を用いて発電を行う発電ユニット102とを備えている。
 (集光受熱システム)
 集光受熱システム101は、ヘリオスタットフィールド1上に配置され、太陽光線Hを反射するための複数のヘリオスタット2と、グランドGに建てられたタワー部3と、タワー部3の上部に設置されたハウジング12と、ハウジング12内に収納されて太陽光線Hを受光する集光受熱器10とを備えている。ここで、本実施形態では、タワー部3は、ヘリオスタットフィールド1のほぼ中央に配置されている。すなわち、ヘリオスタットフィールド1内のヘリオスタット2は、タワー部3を約360度全周囲むように配置されている(図2参照)。
 ハウジング12は、軸方向と鉛直方向とが一致した状態で配置された有底筒状のものである。ハウジング12の上面は閉塞される一方、下面における径方向中央部には、グランドGに向けて開口する開口部15が形成されている。また、ハウジング12内には、軸方向における上部と下部とを仕切る仕切床16が設けられている。仕切床16で仕切られた上部空間は発電ユニット102が配置されたタービン発電機室17、下部空間は集光受熱器10が配置された集光室18となっている。
 タワー部3は、グランドGからハウジング12の下面に向かって建てられた複数(例えば、4本)の支柱21と、各支柱21間を架け渡すように連結された梁部22とを備えている。
 (発電ユニット)
 図3Aは発電装置を上面から見た断面図、図3Bは側面から見た断面図である。
 図3Bに示すように、発電ユニット102は、ハウジング12のタービン発電機室17内に収納されており、圧縮機23及びタービン24からなるガスタービン25と、吸気フィルター26と、再生熱交換器27と、発電機28とを主に備えている。
 ガスタービン25は、減速機31を介して発電機28に連結された回転可能なロータ30を備え、このロータ30に対して同軸上に配置されるように圧縮機23及びタービン24が取り付けられている。
 圧縮機23は、ハウジング12の外部に設けられた図示しない供給源から空気供給路35を流通して供給される空気を、ハウジング12の空気取込口29から作動流体として取り込んで圧縮空気を生成する。圧縮機23には、圧縮機23で圧縮された圧縮空気が集光受熱器10の上流端に向けて流通する受熱器供給路32が接続されている(図4参照)。そして、集光受熱器10で加熱された圧縮空気は、集光受熱器10の下流端に接続されたタービン供給路33を通ってタービン24に供給される(図4中矢印F2参照)。
 タービン24は、タービン供給路33から供給される圧縮空気の熱エネルギーをロータ30の回転エネルギーに変換して駆動力を発生させる。そして、この駆動力がロータ30に連結された発電機28に出力されることで、発電が行われる。そして、タービン24内を流通した圧縮空気は、排出ガスとなって空気排出路34を通ってタービン24から排気される。
 吸気フィルター26は、空気供給路35上における供給源と圧縮機23との間に配置され、供給源から供給される空気中に含まれる塵埃等を圧縮機23に供給される前段で除去する。
 また、再生熱交換器27には、受熱器供給路32と空気排出路34とが接続されている。再生熱交換器27において、受熱器供給路32内を流通する圧縮空気と、空気排出路34内を流通する排出ガスとの間で熱交換が行われる。これにより、受熱器供給路32内を流通する圧縮空気が集光受熱器10に供給される前段で予備加熱される。
 (集光受熱器)
 図4は、集光受熱器の一部を破断して示す斜視図である。
 図3A,図3B,及び図4に示すように、集光受熱器10は、ハウジング12の集光室18に収納されており、ケーシングとなる受熱器本体41と、受熱器本体41の内部に設けられ、ヘリオスタット2で反射された太陽光線Hが照射されて受熱する受熱部42とを有する。
 受熱器本体41は、軸方向がハウジング12の軸方向に一致した状態で配置された有底筒状のものである。受熱器本体41の上部は天板部43により閉塞される一方、下部にはグランドGに向けて開口する開口部44が形成されている。そして、受熱器本体41の天板部43と仕切床16とは、複数のフック部材45(図3B参照)により連結されており、これらフック部材45により受熱器本体41は仕切床16から吊り下げられた状態で集光室18内に収納されている。なお、後述するがフック部材45の下端部は受熱器本体41を貫通しており、受熱部42にも連結されている。すなわち、集光受熱器10の受熱器本体41及び受熱部42は、ともに同一のフック部材45により支持されている。
 受熱器本体41の開口部44の端面位置は、ハウジング12の下面に対して鉛直方向において同位置に配置されており、ヘリオスタット2で反射された太陽光線Hは、開口部44から受熱器本体41内に取り込まれる。また、受熱器本体41の下部には、開口部44(下方)に向かって内径が漸次縮小するテーパ部46が形成されている。
 また、受熱器本体41の内壁面には、全域に亘って断熱材47(図4参照)が取り付けられている。これにより、受熱器本体41内の熱エネルギーが、受熱器本体41の壁面から外部に向けて放射されることを抑制することができる。
 図5は受熱部の斜視図である。
 図3A~5に示すように、受熱部42は、複数の受熱管51と、複数の受熱管51における圧縮空気の流通方向上流端がまとめて接続された低温ヘッダ((熱媒体導入ヘッダ))52と、複数の受熱管51における圧縮空気の流通方向下流端がまとめて接続された高温ヘッダ(熱媒体導出ヘッダ)53とを備えている。
 低温ヘッダ52は、受熱器本体41のテーパ部46を囲むように配置された環状の部材であり、その外周面には圧縮機23と受熱部42との間を接続する複数の受熱器供給路32が設けられている。受熱器供給路32は、低温ヘッダ52の周方向に沿って等間隔に配置されており、受熱器供給路32から低温ヘッダ52内に供給された圧縮空気が低温ヘッダ52の全域に行き渡る。このように、低温ヘッダ52が受熱器本体41の外部に配置されているので、低温ヘッダ52の材料として耐熱性の高い材料を用いる必要がない。そのため、装置コストの低減を図ることができる。
 高温ヘッダ53は、受熱器本体41内において天板部43の外周に沿って配置された環状の部材である。高温ヘッダ53の内周には、径方向中心に向かって延びる複数(例えば、4本)の流出管55が周方向に沿って等間隔に形成されている。これら流出管55は、高温ヘッダ53の径方向中心で集合してタービン供給路33を構成している。そして、タービン供給路33は、天板部43及び仕切床16を鉛直方向に沿って貫通してタービン発電機室17まで延ばして、下流端でタービン24に接続されている。なお、高温ヘッダ53には、上述した複数のフック部材45が連結されており、これにより受熱部42が仕切床16に吊り下げ支持されている。
 図6は図3BのA-A線に沿う断面図であり、図7は図6の矢印Bから見た斜視図である。
 図4~図7に示すように、受熱管51は、その軸方向が受熱器本体41の軸方向と平行になるように配置された部材であり、受熱器本体41の内壁面における周方向全周に亘って複数配列されている。各受熱管51の下端部(上流端)は、テーパ部46を貫通して低温ヘッダ52の上部にそれぞれ接続される一方、上端部(下流端)は受熱器本体41内で高温ヘッダ53の下部にそれぞれ接続されている。すなわち、低温ヘッダ52を流通する圧縮空気は各受熱管51内に分散され、各受熱管51内で加熱された後、再び高温ヘッダ53で集合する。
 図6に示すように、各受熱管51は、受熱器本体41の周方向において隣接する受熱管51との間に間隔を空けた状態で、所定の管ピッチ(配列ピッチ)P毎に互いに平行に配列されている。なお、管ピッチPとは、受熱器本体41の周方向において、隣接する受熱管51の中心軸(例えば、O1,O2)間の距離である。そして、受熱管51の外周面において、受熱器本体41の径方向内方を向いた約180度の領域(太陽光線Hの照射方向手前)が、開口部44から集光された太陽光線Hの照射方向に対向して太陽光線Hを直接受光する受光面(照射側)51aを構成している。一方、受熱管51の径方向外方を向いた約180度の領域(太陽光線Hの照射方向奥)が、断熱材47に対向して太陽光線Hが直接受光されない非受光面(非照射側)51bを構成している。
 図8は、受熱部の拡大斜視図である。
 ここで、図6~図8に示すように、各受熱管51内には、上述した受光面51aと非受光面51bとを区画する仕切板56が配置されている。この仕切板56は、溶接加工や引抜き加工等により受熱管51に一体的に形成された平板状のものであり、受熱管51の軸方向における全長に亘って形成されている。これにより、受熱管51は、受光面51aと仕切板56とに囲まれた受光側流路(第1流路)61と、非受光面51bと仕切板56とに囲まれた非受光側流路(第2流路)62とに区画されている。
 また、非受光側流路62の上流、すなわち非受光側流路62における低温ヘッダ52からの流入口には、非受光側流路62の流入口を閉塞するようにオリフィスプレート(制限手段)63が設けられている。このオリフィスプレート63には、厚さ方向に貫通するオリフィス孔64が形成され、これにより、非受光側流路62内に流入する圧縮空気の流量を受光側流路61内に流入する圧縮空気の流量に比べて制限している。
 (発電装置の動作方法)
 次に、上述した発電装置の動作方法について説明する。
 まず、図3Bに示すように、発電機28が作動し、減速機31を介してロータ30が回転し始めると、供給源に貯留された空気が空気取込口29から空気供給路35内に流入し、吸気フィルター26を通って圧縮機23内に流入する。圧縮機23に流入した空気は圧縮機23内で圧縮された後、圧縮空気となって受熱器供給路32に流出し、受熱器供給路32から受熱部42の低温ヘッダ52内に供給される(図4中矢印F1参照)。
 図4に示すように、低温ヘッダ52内に供給された圧縮空気は、低温ヘッダ52内を周方向全域に行き渡った後、低温ヘッダ52の周方向全周に亘って接続された各受熱管51内に流入する。
 一方、ヘリオスタット2に入射した太陽光線Hは、ヘリオスタット2で反射された後、受熱器本体41の開口部44から受熱器本体41内に入射する。受熱器本体41に入射した太陽光線Hのうち、受熱管51の受光面51aで受光される太陽光線Hは熱エネルギーとなって受熱管51を直接加熱する。具体的には、図1に示すように、集光受熱器10に最も近くに位置するヘリオスタット2からの太陽光線Hは受熱管51の上部(下流)を照射し、また、集光受熱器10から最も遠くに位置するヘリオスタット2からの太陽光線Hが受熱管51の下部(上流)を照射する。
 そして、加熱された受熱管51と受熱管51内を流通する圧縮空気との間で熱交換が行われ、圧縮空気は受熱管51内を流通する間に高温となる。
 ここで、上述したように受熱器本体41に入射した太陽光線Hは、受熱管51の受光面51aで受光されるため、受光側流路61は非受光側流路62に比べて高温となる。そして、低温ヘッダ52から受熱管51内に流入する圧縮空気は、受熱管51の流入口で受光側流路61と非受光側流路62とに分岐される。この時、非受光側流路62は、オリフィス孔64によって流路に流入する圧縮空気の流量が制限されているため、受光側流路61内に流入する圧縮空気の流量は、非受光側流路62内に流入する圧縮空気の流量に比べて多くなる。すなわち、高温の受光側流路61には、受光側流路61よりも低温の非受光側流路62に比べて多くの圧縮空気が供給される。
 そのため、受光側流路61から圧縮空気への熱伝達の効率は、非受光側流路62から圧縮空気への熱伝達の効率に比べて高くなる。すなわち、受光側流路61での圧縮空気への熱伝達を、非受光側流路62での圧縮空気への熱伝達よりも積極的に行わせることで、圧縮空気への熱伝達による非受光側流路62の温度低下を、受光側流路61の温度低下に比べて抑制することができる。
 そして、受光側流路61及び非受光側流路62内を流通して高温となった圧縮空気は、受熱管51の下流端から高温ヘッダ53内に流入する。すなわち、各受熱管51で加熱された圧縮空気は、高温ヘッダ53内で集合された後、流出管55を通ってタービン供給路33内に流入する。
 タービン供給路33内に流入した圧縮空気は、タービン供給路33内を鉛直方向上方に向かって流通し(図4中矢印F2参照)、タービン24内に流入してタービン24を駆動させる。これにより、タービン供給路33から供給される圧縮空気の熱エネルギーがロータ30の回転エネルギーに変換され、タービン24に駆動力を発生させる。そして、この駆動力がロータ30に連結された発電機28に出力され、発電が行われる。
 タービン24内を流通した圧縮空気は排出ガスとなり、空気排出路34を通ってタービン24から排気される。空気排出路34を流通する排出ガスは、再生熱交換器27内に供給され、上述した圧縮機23から受熱部42に向かって流通する圧縮空気との間で熱交換を行った後、外部に排出される。このように、再生熱交換器27において、圧縮機23から受熱部42に向かって流通する圧縮空気を受熱部42に供給する前段で予備加熱しておくことで、タービン24に供給される圧縮空気の温度をより高温に設定することができる。その結果、発電装置100の発電効率の更なる向上を図ることができる。しかも、再生熱交換器27では、タービン24で発電に供された排出ガスを有効利用することができるので、別の熱源を用意することがなく、構成の簡素化及び設備コストの低減を図ることができる。
 このように、本実施形態では、受熱管51における受光面51a側と非受光面51b側とを区画する仕切板56を設けるとともに、非受光側流路62内に流入する圧縮空気を制限するオリフィスプレート63を配置する構成とした。
 この構成によれば、受光側流路61での圧縮空気との熱交換を非受光側流路62での圧縮空気との熱交換よりも積極的に行わせることで、上述したように受光面51aと非受光面51bとの温度差を低減することができるので、両面間での温度差に起因して発生する熱応力を低減することが可能となる。これにより、受熱管51自体や受熱管51とヘッダ52,53との接合部分等に作用する応力集中や、応力が繰り返し発生することを理由とした疲労による寿命の低下を抑制することができるので、受熱管51の耐久性を向上させることができる。その結果、受熱管51を長寿命にすることで、受熱管51のメンテナンスや交換の間隔を長くすることができるため、設備コストを低減させることができる。これにより設備コストに対する発電量を増加させ、発電効率を向上させることができる。
 そして、このような集光受熱システム101では、受光側流路61と非受光側流路62との温度差を低減した上で、太陽光線Hからの熱エネルギーを圧縮空気に対して効率的に伝達することができる。
 なお、受熱器本体41に入射した太陽光線Hのうち、各受熱管51の間を通過した太陽光線Hは、断熱材47の内面に照射されて受熱器本体41内で熱エネルギーとなる。この場合、受熱器本体41の内面は、断熱材47によって断熱されるとともに、断熱材47の表面には黒体塗料が塗布されているので、受熱器本体41内で発生した熱エネルギーは受熱器本体41の壁面まで伝達されることはなく、受熱器本体41内に放射される。そのため、受熱器本体41内に放射される熱エネルギーは受熱管51における非受光面51bに伝達され、受熱管51を加熱する。また、受熱管51が得た熱エネルギーは、受熱管51の内部に放射される一方、受熱管51の外部(受熱器本体41内)にも放射される。この場合も、受熱器本体41の内壁面には断熱材47が設けられているため、受熱器本体41内で熱エネルギーが滞留する。そして、この滞留した熱エネルギーが受熱管51に対して放射される。
 したがって、受熱管51を周方向全域に亘って加熱することができるので、受光面51aと非受光面51bとの温度差をより効果的に低減することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。図9は本実施形態の受熱部を一部破断して示す平面図である。上述した実施形態では、各受熱管51の非受光側流路62の流入口に制限手段であるオリフィスプレート63を配置する構成について説明したが、本実施形態では低温ヘッダ52に制限手段を配置する点で上述した実施形態と相違している。なお、以下の説明では、上述した実施形態と同様の構成については同一の符号を付して説明を省略する。
 図9に示すように、本実施形態の受熱部142は、低温ヘッダ152を周方向に沿って等間隔に区画する複数の区画壁111が設けられている。区画壁111は、低温ヘッダ152における各受熱器供給路32の流出口の一端に配置され、区画壁111間で囲まれた領域が分割ヘッダ112をそれぞれ構成している。すなわち、各分割ヘッダ112は、低温ヘッダ152を90度毎に分割しており、これら各分割ヘッダ112における周方向一端で受熱器供給路32の流出口が開口している。
 ここで、各分割ヘッダ112は、低温ヘッダ152を径方向に内側と外側とに半分に区画する仕切板(仕切部材)156が設けられている。仕切板156は、分割ヘッダ112における下流(周方向他端)の区画壁111から上流(周方向一端)の区画壁111に向かって延びる平面視(低温ヘッダ152の軸方向から見て)略円弧状の部材である。これにより、分割ヘッダ112は、低温ヘッダ152の径方向内側で仕切板156に囲まれた受光側ヘッダ(第1ヘッダ)113と、低温ヘッダ152の径方向外側で仕切板156に囲まれた非受光側ヘッダ114とに区画されている。
 なお、各分割ヘッダ112において、仕切板156の下流の端部と下流の区画壁111とは連結される一方、仕切板156の上流の端部と上流の区画壁111とは連結されていない。すなわち、仕切板156の上流の端部と上流の区画壁111との間には、受熱器供給路32から圧縮空気が流入してくる共通流路115が形成されている。そのため、受熱器供給路32から各分割ヘッダ112に流入してくる圧縮空気は、共通流路115内を流通した後、受光側ヘッダ113及び非受光側ヘッダ114にそれぞれ分岐される。
 各仕切板156は、上述した受熱管51の仕切板56と低温ヘッダ152の軸方向から見て重なるように配置されている。この場合、分割ヘッダ112の受光側ヘッダ113と受熱管51の受光側流路61とが連通する一方、分割ヘッダ112の非受光側ヘッダ114と受熱管51の非受光側流路と62がそれぞれ連通している。
 また、非受光側ヘッダ114の流入口には、流入口を狭めるようにオリフィスプレート163が設けられている。このオリフィスプレート163には、厚さ方向に貫通するオリフィス孔164が形成され、これにより、非受光側ヘッダ114内に流入する圧縮空気の流量を受光側ヘッダ113に流入する圧縮空気の流量に比べて制限している。
 本実施形態によれば、低温ヘッダ152を受光側ヘッダ113と非受光側ヘッダ114とに区画するとともに、非受光側ヘッダ114にオリフィスプレート163を設けることで、複数の受熱管51の非受光側流路62に対して一括して流量を制限することができる。したがって、上述した第1実施形態と同様の効果を奏するとともに、各受熱管51にオリフィスプレート63(図8参照)をそれぞれ設ける場合に比べて、設備コストの低下を図ることができる。
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。図10は本実施形態の受熱部を示す断面図である。なお、以下の説明では、上述した実施形態と同様の構成については同一の符号を付して説明を省略する。
 図10に示すように、本実施形態の受熱部242は、受熱器本体41内において、天板部43の外周に沿って配置された高温ヘッダ253と、高温ヘッダ253の径方向内側に配置された低温ヘッダ252と、これらヘッダ252,253を連通させる複数の受熱管251とを備えている。なお、低温ヘッダ252及び高温ヘッダ253は、複数のフック部材245により天板部43から吊り下げられた状態で支持されている。
 各受熱管251は、1本の配管が仕切板256によって受光側流路261と非受光側流路262とに区画されている。受光側流路261及び非受光側流路262の一端(上端)の開口部にはそれぞれ分岐管201,202が接続されて二股状に延びる一方、他端の開口部には開口部同士を連通させる折返し流路203が接続され、各受熱管251は、Y字状になっている。そして、各受熱管251は、受光側流路261の分岐管201が低温ヘッダ252に、非受光側流路262の分岐管202が高温ヘッダ253にそれぞれ接続されている。すなわち、各受熱管251は、低温ヘッダ252及び高温ヘッダ253に吊り下げ支持されるように配置されている。この場合、低温ヘッダ252を流通する圧縮空気は、分岐管201から受光側流路261に流入し、折返し流路203で折り返された後、非受光側流路262を流通し、分岐管202から高温ヘッダ253内に流入する。
 本実施形態によれば、低温ヘッダ252が受光側流路261に接続される一方、高温ヘッダ253が非受光側流路262に接続されているため、圧縮空気は受光側流路261から流入して、非受光側流路262から排出される。そのため、受光側流路261には低温ヘッダ252から供給される比較的低温の圧縮空気が、非受光側流路262には受光側流路261で熱交換された比較的高温の圧縮空気が流通することになる。すなわち、受光側流路261と圧縮空気の温度差は、非受光側流路262と圧縮空気との温度差に比べて大きくなる。そのため、受光側流路261での圧縮空気への熱伝達が、非受光側流路262での圧縮空気への熱交換よりも積極的に行われることになる。その結果、受光側流路261と非受光側流路262との温度差を低減することができる。
 また、受熱管251は、上端のみで低温ヘッダ252及び高温ヘッダ253に連結されているので、下端は拘束されておらず、自由端となっている。そのため、仮に受熱管251が温度変化により変形した場合であっても、この変形が許容されることになるので、受熱管251に作用する熱応力を低減することができる。
 さらに、各ヘッダ252,253がともに受熱器本体41の上端に配置されているため、上述した第1実施形態のように圧縮機23で圧縮された圧縮空気を低温ヘッダ52まで供給するために、受熱器本体41の下端まで引き回す必要がない。そのため、装置のレイアウト性を向上させることも可能である。
 (第4実施形態)
 次に、本発明の第4実施形態について説明する。図11A及び図11Bは本実施形態の受熱部を示す断面図である。本実施形態では、受熱管251の配置方向を第3実施形態に比べて上下逆向きに配置している。なお、以下の説明では、上述した実施形態と同様の構成については同一の符号を付して説明を省略する。
 図11Aに示すように、本実施形態における受熱部242は、受熱器本体41内において、低温ヘッダ252及び高温ヘッダ253が重力方向下部に配置されるとともに、これら低温ヘッダ252及び高温ヘッダ253から上方に向けて延びるように複数の受熱管251が接続されている。
 また、受熱器本体41内における天板部43には、天板部43と各受熱管251の上端面とを連結する複数のフック部材345が設けられ、これにより、受熱部242は受熱器本体41内で吊り下げ支持されている。
 このように、本実施形態によれば、第3実施形態に対して受熱管251を上下逆向きに配置した場合であっても、上述した第3実施形態と同様の効果を奏することができる。なお、受熱部242を吊り下げる構成としては、上述した構成の他に、例えば図11Bに示すような構成にしても構わない。具体的に、各受熱管251の上端面に貫通孔346aを有する連結部材346を形成する一方、フック部材345の先端(下端)に貫通孔346内に挿入されるリング部347を形成し、これら連結部材346とリング部347とを連結する。これにより、受熱器本体41内において、受熱部242がフック部材345によって吊り下げ支持される。
 (第5実施形態)
 次に、本発明の第5実施形態について説明する。図12は、集光受熱器を軸方向から見た断面図である。本実施形態では、受熱器本体の内壁面に反射鏡を配置する点で上述した各実施形態と相違している。なお、以下の説明では、上述した実施形態と同様の構成については同一の符号を付して説明を省略する。
 図12に示すように、受熱器本体41の内壁面には全周に亘って反射鏡401が配置されている。この反射鏡401は、受熱器本体41の周方向に沿って山部402と谷部403とが連続的に形成された断面視波型のものであり、各山部403間に受熱管351が配置されている。この場合、受熱器本体41内に入射した太陽光線Hのうち、一部は受熱管351の受光面351aに直接照射される。一方、受熱器本体41内に入射した太陽光線Hのうち、各受熱管351間を通過した太陽光線Hは、受熱器本体41の内壁面に設けられた反射鏡401で反射され、開口部44から入射した太陽光線Hを直接受光できない非受光面351bに照射される。
 これにより、受熱管351の非受光面351bに積極的に太陽光線Hを照射することができるので、受熱管51を周方向全域に亘って加熱して、受光面351aと非受光面351bとの温度差を低減することができる。
 なお、上述した第5実施形態では、上述した第1~第4実施形態と異なり、仕切板(例えば、仕切板56)によって区画されていない受熱管351を用いて説明したが、第1~第4実施形態の仕切板が形成された受熱管51,151,251を用いても構わない。これにより、受光面351aと非受光面351bとの温度差をより低減することができる。また、反射鏡401は、凹面状に形成しても構わない。また、反射鏡401が配置される間隔は必ずしも受熱管351が配置される間隔に合わせる必要はない。
 なお、本発明の技術範囲は上述した実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な構造や形状などはほんの一例に過ぎず、適宜変更が可能である。
 例えば、上述した実施形態では、集光受熱器10で加熱した圧縮空気を作動流体としてタービン24に供給する場合について説明したが、これに限らず、タービン24には別途作動流体(例えば、燃焼ガス)を供給し、受熱部42で加熱された圧縮空気を作動流体の熱交換に用いる構成にしても構わない。
 また、集光受熱器と発電ユニットとの位置関係は適宜設計変更が可能である。すなわち、発電ユニットの配置位置は、集光受熱器の上方や、後方に限られることはない。
 さらに、上述した実施形態では、発電機28がロータ30を駆動させるとともに、タービン24が回転することによって発電を行うオルタネータとしての機能を有している場合について説明したが、これに限らず発電機28とは別体でロータ30を回転させる駆動モータを採用しても構わない。
 ところで、発電装置100では、設置場所が高緯度になるにつれ、太陽高度が低くなる関係で、一部の方角(例えば、北半球の場合は南)における太陽光の集光効率が低下するという傾向がある。そのため、上述した各実施形態では、亜熱帯高圧帯の中における低緯度地域に配置される全周配置方式の発電装置100について説明したが、これ限らずヘリオスタット2を発電装置100に対して片側のみに配置する片側配置方式を採用することも可能である。この場合、片側配置方式の発電装置では、受熱器本体を半円状に形成して、その円弧状に沿って受熱管を配列することで構成される。そして、低緯度地域と高緯度地域とでの太陽高度に応じて、これら全周配置方式の発電装置100と、片側配置方式の発電装置とを使い分けることが好ましい。
 また、上述した各実施形態では、非受光側流路62内を流通する圧縮空気の流量を制限する制限手段として、オリフィスプレート63を採用した場合について説明したが、これに限られない。例えば、図13に示すように、非受光側流路62における流入口の一部を覆うガイドベーン410を設ける構成にしても構わない。さらに、このガイドベーン410を可動式にして、非受光側流路62の流入口の開口幅を太陽光線Hの日射量等に基づいて可変するようにしても構わない。この場合、空調ダンパーのように複数の羽根によって、受熱管51の開口幅を可変にするようにしても構わない。
 さらに、上述した実施形態では、仕切板56を溶接や引抜き等により一体的に形成する場合について説明したが、例えば図14に示すように、受熱管451の内周面に径方向内方に向かって突出するリブ452を設け、このリブ452間に別体で仕切板456を挿入する構成でも構わない。この場合、受熱管451と仕切板456とを異種材料で形成しても構わない。
 また、上述した第1各実施形態、第2実施形態及び第5実施形態では、受熱管51の軸方向全域に亘って仕切板56を設ける場合について説明したが、受熱管51の軸方向における一部のみを仕切板56によって区画する構成でも構わない。この場合、集光受熱システム101では、ヘリオスタットフィールド1における外周に向かうにつれ、ヘリオスタット2の配置個数が増加するため、ヘリオスタットフィールド1の内周から外周に向かうにつれ受熱器本体41の開口部44内に入射する太陽光線Hの入射量が増加する。そのため、受熱管51の受光量は軸方向上部よりも下部の方が多く、受熱管51の下部で受光面51aと非受光面51bとの温度差が大きくなる。そのため、受熱管51の下部のみで受光側流路61と非受光側流路62とに区画し、受熱管51の上部では受光側流路61と非受光側流路62との集合配管とすることが好ましい。
 また、上述した第2実施形態では、受光側流路61と非受光側流路62とに流入する圧縮空気の流量を、低温ヘッダ152で制限する構成について説明したが、低温ヘッダ152よりも上流でまとめて制限しても構わない。この場合、受光側流路61に圧縮空気を供給する受光側供給流路と、非受光側流路62に圧縮空気を供給する非受光側供給流路とに分岐させ、非受光側供給流路に流量制御弁を設けることで、低温ヘッダ152に圧縮空気が供給される前段で、受光側流路61と非受光側流路62とに供給される圧縮空気の流量を調整しても構わない。
 本発明の太陽光受熱器によれば、受熱管における受光面(照射側)と非受光面(非照射側)との温度差を低減することで、受熱管の耐久性を向上させることができる。
 また、本発明の太陽光集光受熱システムによれば、上記本発明の太陽光受熱器を備えているので、受光面(照射側)と非受光面(非照射側)との温度差を低減した上で、太陽光線からの熱エネルギーを熱媒体に対して効率的に伝達することができる。
 2 ヘリオスタット
 3 タワー部
 10 集光受熱器(太陽光受熱器)
 41 受熱器本体(ケーシング)
 44 開口部
 51,151,251,351,451 受熱管
 51a,351a 受光面(照射側)
 51b,351b 非受光面(非照射側)
 52,152,252 低温ヘッダ(熱媒体導入ヘッダ)
 53,253 高温ヘッダ(熱媒体導出ヘッダ)
 56,156,256,456 仕切板(仕切部材)
 61,261 受光側流路(第1流路)
 62,262 非受光側流路(第2流路)
 63,163 オリフィスプレート(制限手段)
 113 受光側ヘッダ(第1ヘッダ)
 114 非受光側ヘッダ(第2ヘッダ)

Claims (6)

  1.  内部に熱媒体が流通するとともに、照射される太陽光の熱を熱媒体に伝達する受熱管を有する太陽光受熱器であって、
     前記受熱管の内部を、太陽光が照射される受光面側の第1流路と、非受光面側の第2流路と、に区画する仕切部材を備えている太陽光受熱器。
  2.  請求項1記載の太陽光受熱器において、
     前記第2流路への熱媒体の流入を制限する制限手段を有する太陽光受熱器。
  3.  請求項2記載の太陽光受熱器において、
     複数の前記受熱管と、
     前記複数の受熱管における熱媒体の流通方向上流端が連結され、前記複数の受熱管に向けて熱媒体を導入させる熱媒体導入ヘッダとを備え、
     前記熱媒体導入ヘッダは、
      前記受熱管の前記第1流路に連通する第1ヘッダと、
      前記受熱管の前記第2流路に連通する第2ヘッダとを備え、
     前記第2ヘッダに前記制限手段が設けられている太陽光受熱器。
  4.  請求項1記載の太陽光受熱器において、
     前記第1流路と前記第2流路とは、熱媒体の流通方向一端で連通し、
     熱媒体は、前記第1流路の流通方向他端側から供給され、前記第2流路の流通方向他端から排出される太陽光受熱器。
  5.  請求項4記載の太陽光受熱器において、
     複数の前記受熱管と、
     前記複数の受熱管における前記第1流路の流通方向他端が連結され、前記各第1流路に向けて熱媒体を導入させる熱媒体導入ヘッダと、
     前記第2流路の流通方向他端側が連結され、前記各第2流路から熱媒体が導出される熱媒体導出ヘッダとを備えている太陽光受熱器。
  6.  地上に設置され、太陽光線を反射する複数の反射鏡と、
     前記地上から建てられたタワー部と、
     前記タワー部に支持され、太陽光線を集光する開口部を有するケーシングと、
     前記ケーシング内に収容された請求項1ないし請求項5の何れか1項に記載の太陽光受熱器とを備えている太陽光集光受熱システム。
PCT/JP2010/067358 2009-12-24 2010-10-04 太陽光受熱器及び太陽光集光受熱システム WO2011077806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2010334038A AU2010334038B2 (en) 2009-12-24 2010-10-04 Solar light heat receiver, and solar light collecting and heat receiving system
EP10839043.6A EP2495440A4 (en) 2009-12-24 2010-10-04 SOLAR LIGHT HEAT RECEIVER AND SOLAR LIGHT COLLECTION AND HEAT RECEPTION SYSTEM
US13/513,081 US10054335B2 (en) 2009-12-24 2010-10-04 Solar light heat receiver, and solar light collecting and heat receiving system
ZA2012/04007A ZA201204007B (en) 2009-12-24 2012-05-31 Solar light heat receiver,and solar light collecting and heat receiving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009291637A JP5404374B2 (ja) 2009-12-24 2009-12-24 太陽光受熱器及び太陽光集光受熱システム
JP2009-291637 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011077806A1 true WO2011077806A1 (ja) 2011-06-30

Family

ID=44195352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067358 WO2011077806A1 (ja) 2009-12-24 2010-10-04 太陽光受熱器及び太陽光集光受熱システム

Country Status (6)

Country Link
US (1) US10054335B2 (ja)
EP (1) EP2495440A4 (ja)
JP (1) JP5404374B2 (ja)
AU (1) AU2010334038B2 (ja)
WO (1) WO2011077806A1 (ja)
ZA (1) ZA201204007B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2345379B1 (es) * 2009-03-20 2011-09-16 Abengoa Solar New Technologies S.A. Planta solar combinada de tecnologia de aire y vapor.
MX2011002035A (es) 2011-02-11 2012-08-30 Fricaeco America S A De C V Calentador solar de líquidos.
JP5734803B2 (ja) * 2011-10-05 2015-06-17 住友重機械工業株式会社 太陽集光システム及び太陽熱発電システム
JP2013113459A (ja) * 2011-11-25 2013-06-10 Mitsubishi Heavy Ind Ltd 太陽光受熱器及び太陽熱発電装置
US20160327312A1 (en) * 2014-01-06 2016-11-10 Skyfuel, Inc. Linear receivers for solar collectors
US8936020B1 (en) * 2014-03-12 2015-01-20 Fricaeco America Sapi De C.V. Solar fluids preheating system with low thermal losses
US9534811B2 (en) 2014-12-31 2017-01-03 Fricaeco America, SAPI de C.V. Solar fluid preheating system having a thermosiphonic aperture and concentrating and accelerating convective nanolenses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124434A (en) * 1974-08-23 1976-02-27 Hitachi Ltd Taiyonetsu karyokuheiyohatsudensochi
JPS5341836A (en) * 1976-09-29 1978-04-15 Agency Of Ind Science & Technol Absorbing body to collect solar radiation energy
JPS56105250A (en) 1980-01-25 1981-08-21 Agency Of Ind Science & Technol Solar heat collecting tube
JPS63243463A (ja) * 1987-03-30 1988-10-11 Agency Of Ind Science & Technol 発電装置
US20030047180A1 (en) * 2001-09-11 2003-03-13 Travis Smith Solar collector pipe

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE555535A (ja) * 1956-03-06
US2932091A (en) * 1956-10-08 1960-04-12 Day George Donald Heated shell drum dryers
FR1194319A (ja) * 1958-04-09 1959-11-09
US3399656A (en) * 1967-01-19 1968-09-03 Electrodyne Res Corp Circulation system for a steam generator
US3847750A (en) * 1970-10-30 1974-11-12 Standard Oil Co Aerobic fermentation apparatus
US3957109A (en) * 1974-10-31 1976-05-18 Worthington Mark N Solar collector -- heat exchanger
US4156420A (en) * 1975-04-10 1979-05-29 Gunderson Charles F Solar heat collector
US4284068A (en) * 1977-07-13 1981-08-18 Gunderson Charles F Solar heat collector for gasses
US4198956A (en) * 1977-11-01 1980-04-22 Joe Simpkins Multi-purpose solar energy collector
US4299200A (en) * 1977-12-12 1981-11-10 University Of Iowa Research Foundation Apparatus and method for collecting solar energy
US4289114A (en) * 1978-09-12 1981-09-15 The Babcock & Wilcox Company Control system for a solar steam generator
US4273104A (en) * 1979-06-25 1981-06-16 Alpha Solarco Inc. Solar energy collectors
DE2937529C2 (de) * 1979-09-17 1983-05-11 Kraftwerk Union AG, 4330 Mülheim Sonnenkraftwerk
JPS56162350A (en) * 1980-04-30 1981-12-14 Kaaruson Kuraaku Piitaa Heating panel
US4505260A (en) * 1982-09-09 1985-03-19 Metzger Research Corporation Radiant energy device
JPS61107051A (ja) 1984-10-31 1986-05-24 Agency Of Ind Science & Technol 太陽エネルギ−集熱管
JP3055253B2 (ja) * 1991-10-18 2000-06-26 日産自動車株式会社 車両用ドアの開閉制御装置
JPH05341836A (ja) * 1992-06-10 1993-12-24 Japan Aviation Electron Ind Ltd 無人搬送車
US5572987A (en) * 1994-07-18 1996-11-12 Moratalla; Jose M. Solar energy system
US6254734B1 (en) * 1995-03-14 2001-07-03 Hugo H Sephton Barometric evaporation process and evaporator
DE10132639C1 (de) * 2001-07-05 2003-03-20 Schuetz Gmbh & Co Kgaa Solarkollektor
US6619283B2 (en) * 2001-09-11 2003-09-16 Manu Ghela Solar collector pipe
US6931851B2 (en) * 2002-12-13 2005-08-23 The Boeing Company Solar central receiver with inboard headers
US6957630B1 (en) * 2005-03-31 2005-10-25 Alstom Technology Ltd Flexible assembly of once-through evaporation for horizontal heat recovery steam generator
WO2009027986A2 (en) * 2007-08-30 2009-03-05 Yeda Research And Development Company Ltd Solar receivers and systems thereof
WO2009105689A2 (en) * 2008-02-22 2009-08-27 Esolar, Inc. Solar receivers with internal reflections and flux-limiting patterns of reflectivity
US8707947B2 (en) * 2008-09-25 2014-04-29 Solfast Pty Ltd Solar collector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124434A (en) * 1974-08-23 1976-02-27 Hitachi Ltd Taiyonetsu karyokuheiyohatsudensochi
JPS5341836A (en) * 1976-09-29 1978-04-15 Agency Of Ind Science & Technol Absorbing body to collect solar radiation energy
JPS56105250A (en) 1980-01-25 1981-08-21 Agency Of Ind Science & Technol Solar heat collecting tube
JPS63243463A (ja) * 1987-03-30 1988-10-11 Agency Of Ind Science & Technol 発電装置
US20030047180A1 (en) * 2001-09-11 2003-03-13 Travis Smith Solar collector pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2495440A4 *

Also Published As

Publication number Publication date
US20120234312A1 (en) 2012-09-20
EP2495440A4 (en) 2013-10-23
EP2495440A1 (en) 2012-09-05
AU2010334038B2 (en) 2013-12-19
ZA201204007B (en) 2013-02-27
AU2010334038A1 (en) 2012-06-21
JP5404374B2 (ja) 2014-01-29
JP2011132846A (ja) 2011-07-07
US10054335B2 (en) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2011077806A1 (ja) 太陽光受熱器及び太陽光集光受熱システム
US10280903B2 (en) Concentrated solar power generation using solar receivers
US20060174866A1 (en) Volumetric solar receiver
CN102388277A (zh) 太阳能传递及存储设备
US8960184B2 (en) Solar receiver system
US20140318127A1 (en) Solar power system
JP6011827B2 (ja) 太陽光集光器およびタービンが組み合わされた装置
US20160123628A1 (en) Heat Concentrator Device for Solar Power System
WO2011096339A1 (ja) 太陽熱受熱器
US9032730B2 (en) Solar receiving
WO2012090651A1 (ja) 太陽光集光受熱器及び太陽光集光受熱システム
CN111247336B (zh) 用非成像太阳能集中器收集辐射能的系统
JP2011007459A (ja) 太陽光集光受熱器及び太陽熱発電装置
JP2011007458A (ja) 太陽光集光受熱器及び太陽熱発電装置
JP2011032902A (ja) 太陽光集光受熱装置
JP2013119969A (ja) 太陽熱受熱器、および、太陽熱発電装置
CN219640464U (zh) 一种菲涅尔柱状透镜阵列的聚能装置
JP2011007150A (ja) 受熱器
US20140238386A1 (en) Radiation absorbing metal pipe
JP2011094820A (ja) 太陽光集光受熱システム
JP2011094819A (ja) 太陽光集光受熱装置
JP2013113459A (ja) 太陽光受熱器及び太陽熱発電装置
JP2012117394A (ja) 太陽熱受熱器
JP2012021409A (ja) 太陽熱受熱器及び太陽熱発電装置
PL240831B1 (pl) Odbiornik ciepła wysokotemperaturowego

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010334038

Country of ref document: AU

Ref document number: 13513081

Country of ref document: US

Ref document number: 4782/CHENP/2012

Country of ref document: IN

Ref document number: 2010839043

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010334038

Country of ref document: AU

Date of ref document: 20101004

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE