WO2011076971A2 - Artículo de peek poroso como implante - Google Patents

Artículo de peek poroso como implante Download PDF

Info

Publication number
WO2011076971A2
WO2011076971A2 PCT/ES2010/070867 ES2010070867W WO2011076971A2 WO 2011076971 A2 WO2011076971 A2 WO 2011076971A2 ES 2010070867 W ES2010070867 W ES 2010070867W WO 2011076971 A2 WO2011076971 A2 WO 2011076971A2
Authority
WO
WIPO (PCT)
Prior art keywords
article
pores
peek
porogen
μηπ
Prior art date
Application number
PCT/ES2010/070867
Other languages
English (en)
French (fr)
Other versions
WO2011076971A3 (es
Inventor
Beatriz Olalde Graells
María Jesús Jurado Oñate
Original Assignee
Fundacion Inasmet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Inasmet filed Critical Fundacion Inasmet
Priority to US13/518,669 priority Critical patent/US20120323339A1/en
Priority to CA2785571A priority patent/CA2785571A1/en
Publication of WO2011076971A2 publication Critical patent/WO2011076971A2/es
Publication of WO2011076971A3 publication Critical patent/WO2011076971A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0422Elimination of an organic solid phase containing oxygen atoms, e.g. saccharose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • C08J2201/0446Elimination of NaCl only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/10Medical applications, e.g. biocompatible scaffolds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle

Definitions

  • the present invention relates to a new porous PEEK type article having at least one trimodal pore distribution and to a process for its preparation comprising using a porogen as well as a solvent to generate the porosity.
  • the resulting porous article is very suitable for medical implants among other applications.
  • Biocompatible PEEK materials have been used in the state of the art for bone implant applications. Its use in other applications, such as a support structure has not yet been possible due to its structural limitations, lack of porosity, and therefore the impossibility of PEEK materials to resemble bone structure to facilitate their integration.
  • the parameters of the support structures such as pore size, porosity and surface area are widely recognized as very important and are not currently satisfied with PEEK materials. known.
  • other architectural features for support structures such as pore shape, pore wall morphology and interconnectivity between pores are essential for planting, migration, cell growth, mass transport, expression genetics and the formation of new tissue in three dimensions.
  • Porous PEEK materials have been obtained according to a variety of procedures of the art that in general have some disadvantages, mainly an inadequate morphology to meet the aforementioned requirements for medical application.
  • a process, as described in WO2007 / 051307, is well known in the prior art, comprising producing a porous article by mixing a salt-like porogen such as sodium chloride with a PEEK polymer to form a molding material, which is then subjected to a molding process to produce a molded article and subsequently wash said article to leach the porogen, thereby forming pores.
  • the PEEK has a lower melting point than the porogen and the process comprises heating the mixture to a temperature between that of the PEEK melting point and that of the porogen, molding and cooling the article until it solidifies.
  • the resulting material has a pore size distribution that resembles the pore size distribution of the porogen that does not provide the architectural features necessary for bone regeneration.
  • JP 2006241363 Methods such as those disclosed in JP 2006241363 are also known, based on compression molding with a porogen that requires high temperatures at which the PEEK polymer melts, that is, temperatures above the melting point are needed. of the polymer greater than 374 Q C.
  • Figure 1 SEM micrographs with increasing degree of enlargement of a prepared porous article as described in example 1.
  • Figure 2 SEM micrographs of a prepared porous article as described in example 2.
  • Figure 3 SEM micrograph and EDS spectrum of a porous article prepared as described in example 2.
  • Figure 4 SEM micrographs of the prepared porous article as described in example 3.
  • Figure 5 A diagram of the porous article of the invention, SEM images of the article and the pore distributions.
  • the present invention relates to a process for the production of a porous article comprising a polymer structure of the polyether ether ketone type, also referred to below in The present PEEK polymer document, comprising the following steps:
  • step e) an intermediate article comprising at least one PEEK type polymer, a porogen and an organic solvent.
  • the organic solvent and the porogen are then removed in step f) and a porous article in g) is recovered.
  • This new porous PEEK type article presents a new and very characteristic morphology that makes it very suitable for applications such as tissue engineering.
  • Said porous article of the PEEK type which constitutes another aspect of the present invention, comprises a polymer structure of the PEEK type (or matrix) and has at least one trimodal pore distribution as follows:
  • pores A a distribution of pores A corresponding to pores of an average size between 50 ⁇ and 500 ⁇ that are interconnected throughout the article, and which are also referred to hereinafter as pores A;
  • pores B a distribution of pores B corresponding to the gaps between adjacent pores A of an average size between 5 ⁇ and 70 ⁇ ; and which are also referred to hereinafter as pores B;
  • pores C (iii). - a distribution of pores C that corresponds to pores of an average size of approximately 5 ⁇ or less that corresponds to pores that are located in the walls of pores A and pores B, hereinafter referred to as pores C.
  • the distribution of pores A is generated in the process of the invention in step f) when the porogen is removed leaving the pores A that retain the shape of the porogen, and which are located inside and throughout the polymer type structure.
  • PEEK The pores B of the distribution of pores B originate because in the shaped intermediate article obtained in step e), the porogen particles are adjacent and in contact. Therefore, when the particles are removed, they leave gaps between adjacent pores A.
  • the distribution of pores C is generated due to the presence of the solvent in the intermediate article. When the solvent is then removed in step f) it leaves pores of about 5 ⁇ or less, which will be referred to herein below as pores C. These pores C may be in the nanometric range or in both the micro- and nanometric
  • Figure 5 shows a typical pore distribution in which it can be clearly seen that the pore distribution A (see A), centered at approximately 100 ⁇ corresponds to pores A, the distribution of pores B (see B), centered between 7-8 ⁇ , corresponds to pores B (gaps between adjacent pores A) and the distribution of pores C (see C), centered at approximately 0 , 2 ⁇ , corresponds to the pores C.
  • This characteristic morphology comprising said at least trimodal pore distribution and different pore sizes is achieved according to the process of the invention by means of the combination of a porogen and an organic solvent. Therefore, the procedure of the The invention provides improved PEEK-type polymer articles that can, among other applications, be used as support structures in tissue engineering applications as further disclosed in detail below.
  • Polyether ether ketone polymers refer to polymers predominantly containing ether bonds, -R-O-R-, and ketone, -R-CO-R-, in which R is a divalent aromatic group.
  • R is preferably a substituted or unsubstituted phenylene of the following formula:
  • X is independently in each case hydrogen, a Ci -4 alkyl or a halogen
  • n is an integer between 0 and 4 inclusive.
  • X is preferably hydrogen, methyl, ethyl, chlorine, bromine or fluorine.
  • poly (etherether ketone) type polymers within the scope of this invention include poly (ether ketone) (PEK), poly (aryl ether ketone) (PAEK), poly (ether ether ketone) (PEEK), poly (ether ether ketone) (PEEKK), poly (ether ketone ketone) (PEKEKK) and mixtures thereof.
  • a polymer of the poly (ether ether ketone) type especially preferred for use in this invention is PEEK, that is, poly (oxy-p-phenyloxy-p-phenylenecarbonyl-p-phenylene).
  • PEEK is composed of the repeating units described in the following formula:
  • Polymers (of PEEK type) for use in this invention are commercially available and / or can be obtained by synthesis procedures well known in the art (US 4,320,224 and US 4,331,798).
  • the PEEK type polymer is contacted with a composition comprising at least one organic solvent.
  • the organic solvent for use in the present invention may be a single solvent or a mixture of solvents.
  • the solvent must dissolve the PEEK-type polymer and must have an appropriate boiling point.
  • the selection of the solvent depends on the nature and quantity of the PEEK type polymer used, and can be easily selected by the expert.
  • the solvent used should not dissolve the porogen at the temperatures of the present process.
  • the solvents useful for preparing a PEEK polymer solution are organic compounds with a certain degree of polarity. A large percentage of such organic compounds have a polynuclear aromatic or aromatic component.
  • the solvents useful in this invention are organic compounds consisting predominantly of carbon and hydrogen and optionally oxygen, nitrogen, sulfur, halogen and mixtures thereof, in which the organic compound normally has a molecular weight of between 1 60 and 450.
  • Each solvent suitable to be used in the present invention has at least a six-member ring structure and a boiling point in a range between 150 Q C and 400 Q C and can dissolve at least 10% of the PEEK type polymer present at the forming temperature of the article.
  • the solvent preferably dissolves at the forming temperature at least 25 percent by weight of the PEEK type polymer, more preferably 50 percent by weight of the PEEK type polymer.
  • the organic solvent is selected from the group consisting of benzophenone, pentafluorophenol, phenylsulfone, 2- phenylphenol, dimethyl phthalate, phenyl benzoate, ethyl 4-hydroxybenzoate, n-cyclohexyl-2-pyrrolidone and mixtures thereof, preferably benzophenone or pentafluorophenol.
  • composition comprising at least one organic solvent may further comprise a bioactive ceramic.
  • a bioactive ceramic refers to a material that can provide a specific biological response on the material's contact surface, which results from the bond between the material and the tissues.
  • a bioactive ceramic forms a junction with adjacent tissues (Bauer TW, Smith ST: Bioactive materials in orthopedic surgery. Overview and regulatory considerations. Clin Orthop 2002; 395: 1 1-22).
  • bioactive ceramics useful in the present invention are any of the prior art, such as, for example, calcium phosphates, preferably tricalcium phosphate, hydroxyapatite, biphasic calcium phosphate, and mixtures thereof. Bioactive ceramics are used in the form of nanoparticles, microparticles or mixtures thereof.
  • heating is carried out while stirring the mixture of the PEEK type polymer with a solvent or with a suspension comprising a solvent, after which, with stirring, the PEEK type polymer is dissolved in the solvent
  • the heating of the PEEK and the composition is carried out at a temperature normally between 150 Q C and 400 Q C, although said temperature may vary depending on the amount of PEEK to be dissolved, its chemical nature and the selected solvent.
  • He Heating is preferably carried out under an inert atmosphere to avoid unwanted side reactions of any of the components. Nitrogen and argon are useful inert atmospheres.
  • the mixing times necessary to completely dissolve the polymer vary with the boiling point of the chosen solvent, and the temperature at which the mixture is heated. Such times may vary within a wide range, but are usually between 30 minutes and 120 minutes.
  • the weight ratio of polymer to solvent can vary between a wide range. Normally, the weight ratio of polymer to solvent is between 5-50 percent by weight.
  • the weight ratio of bioactive ceramics with respect to polymer can also vary over a wide range. Normally, the weight ratio of bioactive ceramic with respect to polymer is between 5-50 percent by weight.
  • Steps a) and b) are carried out in a slightly different manner depending on the presence or not of a bioactive ceramic in the composition. Therefore, according to a particular embodiment the PEEK polymer type is contacted with a composition consisting of a solvent selected and the mixture is heated to a temperature at which the polymer is generally between 150 Q C and Q 400 C. The dissolved heating is carried out under an inert atmosphere for the same reason set forth above while stirring the mixture and stirring the PEEK and solvent mixture until a complete solution is achieved becoming a homogeneous and transparent solution.
  • a composition of a bioactive ceramic and a selected solvent consisting of a dispersion that is obtained with stirring and under inert atmosphere is previously obtained.
  • the PEEK type polymer is then contacted with the resulting dispersion and then the mixture obtained is heated, with stirring, after which, with stirring, the PEEK type polymer is dissolved in the solvent.
  • porogenic agent After completely dissolving the PEEK type polymer, it is added to the same a porogenic agent.
  • Said porogenic agent may be organic or inorganic.
  • the working temperature which is generally between 150 Q C and 400 Q C
  • the porogen is selected depending on the solvent used, and the working temperature.
  • the agent is selected from the group of sugar-like porogens, salt-like porogens and mixtures thereof.
  • Salt-type porogens are preferred.
  • Some exemplary salt-like porogens suitable for use in the present invention are sodium chloride, sodium citrate, sodium tartrate, potassium chloride, sodium fluoride, potassium fluoride, sodium iodide, sodium nitrate , sodium sulfate, sodium iodate and mixtures thereof, sodium chloride, sodium citrate, sodium tartrate, potassium chloride and more preferably sodium chloride or potassium chloride are preferably used due to their availability and low cost.
  • Some exemplary sugar-like porogens suitable for use in the present invention are water soluble sugars, for example sucrose, galactose, saccharin, glucose, fructose and mixtures thereof, preferably sucrose, galactose and mixtures thereof.
  • the porogen materials are particles that can be shaped in any shape and size as necessary, or desired, such as cubes, spheres, regular geometric shapes, irregular geometric shapes, and mixtures thereof.
  • the average particle size of the porogen can normally be between 50-500 ⁇ , and is selected depending on the porosity, pore size and shape, and distribution of desired pore sizes to be obtained.
  • the porogen agent is generally used in the invention in a amount between 50% by weight and 90% by weight with respect to the weight of the PEEK-solvent type polymer mixture.
  • a first porogen that has a first size distribution and a second porogen that has a second size distribution are used simultaneously generating two different pore A distributions, that is a first pore distribution A and a second distribution of pores A 'in the porous article obtained.
  • Both pore distributions A and A ' correspond to pores with an average size between 50-500 ⁇ .
  • step d) the mixture obtained in c) is cooled to a temperature at least equal to or less than the temperature at which the PEEK type polymer precipitates.
  • Said temperature at which the polymer solution becomes cloudy depends on the amount of the polymer and the solvent.
  • step e) the mixture is then formed (step e)) to give a shaped solidified intermediate article.
  • Said temperature is generally the ambient temperature, which is maintained for a period of time usually between several minutes and several hours until the mixture is formed. In a particular embodiment the shaping is performed overnight.
  • the size of the pores C obtained will also depend on said temperature, such that the lower the temperature, the smaller the pore size C.
  • the cooling and shaping of the article can be carried out according to different well-known procedures of the state of the art depending for example on the configuration (shape, dimension and size) of the article to be obtained.
  • the conformation of the article in the present invention refers to the conformation of the hot mixture to give the desired configuration.
  • the mixture obtained in c) is cast to ambient temperature on a support surface, such as a glass plate.
  • the article thus obtained is finally a porous sample of 2D.
  • the forming of the cooled mixture is carried out by placing said mixture in a mold that has the shape and dimensions of the article to be obtained.
  • Said mold can be of any conventional material, such as a glass vial, a metal vial or a Teflon vial for example.
  • the removal of the solvent and the porogen is carried out by extracting or leaching with another solvent, hereinafter referred to as the non-solvent, since it cannot dissolve the PEEK type polymer. It is known that PEEK-type polymers are insoluble in many common organic solvents that therefore do not affect the properties of the article.
  • Said non-solvent may be one or more liquid solvents, it must be miscible with the solvent and both the solvent and / or the porogen can be dissolved.
  • the non-solvent can therefore be easily determined by the expert in each case.
  • the benzophenone solvent can be removed with ethanol; the solvent pentafluorophenol with distilled water and phenylsulfone with acetone.
  • the porogen such as a salt-like agent, can be removed, for example, with distilled water.
  • the leaching step can be carried out in a single contact extraction with a sufficiently large volume of a non-solvent or by a sequence of several, at least two solvent extractions, with one or more liquid solvents.
  • the stages are carried out by submerging the items intermediates in a non-solvent with stirring to facilitate the extraction of the solvent and the porogen during times that can vary from 5 minutes to 120 minutes, or several hours.
  • the maximum extraction temperature is that at which the article is not yet affected.
  • the minimum temperature is that at which the extraction occurs at a reasonable rate. Therefore the temperatures can be within a wide range, usually between 0 Q C and 80 Q C, and more preferably at room temperature.
  • At least two different non-solvents such as ethanol and distilled water, are used one after the other, alternately.
  • Each non-solvent can be used more than once.
  • Said article recovery comprises, for example, a lyophilization step to completely remove the distilled water giving the porous article of the invention.
  • the porosity, the pore distribution and the pore size and the shape of the pores corresponding to the macropores can be designed and controlled by selecting and determining variables such as the ratio of porogen / polymer type PEEK, PEEK concentration, particle size and shape of the porogen, and cooling temperature.
  • Porosity refers to the volume of holes in the article and is defined as the fraction of the volume of holes with respect to the total volume of a sample.
  • the porosity of the articles of the present invention has been measured with a mercury porosimeter (AutoPore IV 9500 V1 .09,
  • Porosity can vary within wide ranges, although porosities have usually been determined between 75-90% (see examples 1 to 3).
  • the pore size of an article can be estimated by several techniques including scanning electron microscopy (SEM).
  • Pore distributions have also been determined with a mercury porosimeter. Pore distributions A within the range of 50 ⁇ and 500 ⁇ can be reduced or enlarged depending on the characteristics of the porogen particles used. The pore distributions obtained were according to the results observed in the SEM images (see, for example, figure 5).
  • the distribution of pores A and the pore size corresponding to the pores A can be controlled and varied as desired by the person skilled in the art that implements the present invention within an article.
  • the distribution of pores A and the pore size corresponding to the pores A can be substantially homogeneous within a complete produced porous article due to the use of a particle size of the substantially homogeneous porogen that is homogeneously distributed within the PEEK type polymer mixture and porogen agent obtained after step c).
  • the distribution of pores A and the pore size A can be substantially heterogeneous within said entire article, due to the simultaneous use in the process of at least two different porogen particles that differ at least in their size distributions.
  • Said at least two different porogen particles having different sizes can be used in the process distributed homogeneously within the entire article to be obtained or can be distributed heterogeneously within the article.
  • particles having a certain size can be distributed in a first area of the article to be obtained, and particles of different size can be distributed in a second different area.
  • particles having a certain size are distributed in a certain area of the article to be obtained, for example the lower part of an article, particles of different size are located in a different area, for example the upper part of said article, and mixtures of both particles are located in a still different zone (in the central part). In this way a porosity gradient can be designed within an article.
  • the different areas to which it was made reference above may also be at least a first internal part and a second external part. Therefore, it should be understood that all the different possibilities of combining all the different particle sizes and using them by distributing them in certain areas of the article obtained are contemplated according to the present invention. It should also be understood that the process of the present invention contemplates controlling and varying the distribution of pores A and the pore size corresponding to pores A as explained within an article, in combination with the simultaneous use of at least one ceramic bioactive as discussed above.
  • a gradient of pore distribution is achieved within a cylindrical article having a first distribution of pore sizes A of approximately 300 ⁇ at its bottom and a second distribution of pore sizes A 'of approximately 50 ⁇ at its top. Accordingly, the process of the present invention provides articles with homogeneous and / or heterogeneous pore size distributions within the entire article.
  • porous PEEK type polymer articles of the present invention can be used for many different applications, such as supporting structures for tissue engineering, due to the biocompatibility of the PEEK type polymer, cell culture matrices, release matrices. controlled, wound dressings, separation membranes, chromatography column fillers, filters, packaging and insulation materials, among others.
  • the articles may present, according to their intended use, different forms such as membranes, cylinders, prisms, etc.
  • the porous articles can be further processed if necessary, according to conventional techniques, such as cutting, to further adjust their shape or size to the desired specific application.
  • porous articles are used in applications such as supporting structures for tissue engineering due to their advantageous morphology.
  • the pores A and B facilitate the entry of cells and the growth of bone tissue, and the pores C facilitate the absorption of proteins, facilitate the transport of nutrients, and enhance cell adhesion, proliferation and differentiation due to nanometric topography, which is similar to that presented by the bone.
  • the combination of at least these different pore distributions has proven to be essential for the success of the porous article of the invention as a support structure and / or porous implant.
  • parameters such as porosity, pore size distribution, size and shape of said article, its composition, for example the presence and concentration of a certain bioactive ceramic, among others, are well designed and controlled. .
  • the present invention relates to the use of the porous article of the invention as a support structure and / or porous implant.
  • Porosity, average pore size and pore size distribution were measured with a mercury porosimeter (AutoPore IV 9500 V1 .09, Micromeritics).
  • Sample microstructures were evaluated by scanning electron microscopy (SEM). The articles were fractured in liquid nitrogen and then sprayed with gold to observe the cross section morphology by SEM. (JEOL JSM 5910-LV (20 kV)).
  • the image analysis coupled with analysis by dispersive energy spectrometry (EDS) in an SEM was applied to the characterization of the elementary composition of the particles observed in the SEM images.
  • sodium chloride particles (Sigma Aldrich) of size between 80-120 ⁇ were sieved with conventional sieves and collected to obtain the desired sizes.
  • PEEK polyether ether ketone
  • BF benzophenone
  • the porosimeter results showed that the porosity of the article was 84%. It presented a multimodal (trimodal) pore distribution. A distribution of pore sizes A was centered at 95 ⁇ due to the extraction of porogenic particles; another distribution of pore sizes B was centered at 5 ⁇ due to the opening created by the union of two adjacent salt particles. And a distribution of pore sizes
  • sodium chloride particles (Sigma Aldrich) of size between 120-180 ⁇ were screened with conventional sieves and collected to obtain the desired sizes.
  • HA hydroxyapatite
  • BF benzophenone
  • the porosimeter results showed that the porosity of the article was 86%. It presented a multimodal (trimodal) pore distribution. A distribution of pore sizes A was centered at 187 ⁇ due to the extraction of porogenic particles; another B was centered at 62 ⁇ due to the opening created by the union of two adjacent salt particles. And a distribution of pore C sizes, less than 1 ⁇ , due to the extraction of benzophenone.
  • sodium chloride particles (Sigma Aldrich) of size between 80-120 ⁇ were sieved with conventional sieves and collected to obtain the desired sizes.
  • PEEK polyether ether ketone
  • PF pentafluorophenol
  • the glass vial was removed from the oil bath and kept at room temperature overnight without stirring.
  • the PEEK / PF / solidified salt intermediate was immersed in 50 ml of distilled water in a stirrer at 100 r.p.m. at room temperature for 8 days (distilled water was changed every 12 h) to leach the PF and the porogenic particles.
  • the porous PEEK sample was lyophilized to completely remove the distilled water. The spaces originally occupied by the solvent and the porogenic particles became the pores in the porous PEEK article.
  • the porosimeter results showed that the porosity of the Article was 83%. It presented a multimodal (trimodal) pore distribution. A distribution of pore sizes A was centered at 73 ⁇ due to the extraction of porogenic particles; Another distribution of pore sizes B was centered at 1.5 ⁇ ⁇ corresponding to the junction zones between the porogenic particles. And the last distribution of pores C was ⁇ 1 ⁇ due to the extraction of benzophenone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Materials For Medical Uses (AREA)

Abstract

La presente invención se refiere a un artículo de polímero de tipo PEEK poroso que comprende una estructura de polímero de tipo PEEK porosa y que presenta al menos una distribución de poros trimodal. La invención describe un procedimiento para la producción de dicho artículo de polímero de tipo PEEK poroso que comprende: a) poner en contacto un polímero de tipo PEEK con una composición que comprende al menos un disolvente orgánico, b) calentar a una temperatura a la que se disuelve el polímero de tipo PEEK, c) añadir al menos un agente porógeno, d) enfriar la mezcla obtenida en c) a una temperatura al menos igual o menor que la temperatura a la que precipita el polímero de tipo PEEK, e) conformar dicha mezcla enfriada para dar un artículo conformado, f) retirar el disolvente orgánico y el agente porógeno, y g) recuperar el artículo de polímero de tipo PEEK.

Description

ARTÍCULO DE PEEK POROSO COMO IMPLANTE
CAMPO DE LA INVENCIÓN La presente invención se refiere a un artículo de tipo PEEK poroso nuevo que presenta al menos una distribución de poros trimodal y a un procedimiento para su preparación que comprende usar un agente porógeno así como un disolvente para generar la porosidad. El artículo poroso resultante es muy adecuado para implantes médicos entre otras aplicaciones.
ANTECEDENTES DE LA INVENCIÓN
Los materiales biocompatibles de PEEK se han usado en el estado de la técnica para aplicaciones de implantes óseos. Su uso en otras aplicaciones, tales como una estructura de apoyo no ha sido todavía posible debido a sus limitaciones estructurales, falta de porosidad, y por tanto la imposibilidad de los materiales de PEEK de parecerse a la estructura ósea para facilitar su integración. En este sentido debe indicarse que para las aplicaciones de ingeniería de tejidos óseos, los parámetros de las estructuras de apoyo tales como tamaño de poro, porosidad y área superficial están ampliamente reconocidos como muy importantes y no se satisfacen en la actualidad con los materiales de PEEK conocidos. También se sugiere que otras características arquitectónicas para las estructuras de apoyo, tales como forma de poro, morfología de las paredes de los poros e interconectividad entre poros son fundamentales para la siembra, la migración, el crecimiento celulares, el transporte de masa, la expresión génica y la formación de tejido nuevo en tres dimensiones.
Se han conseguido materiales porosos de PEEK según una variedad de procedimientos de la técnica que en general presentan algunas desventajas, principalmente una morfología inadecuada para cumplir con los requisitos mencionados anteriormente para su aplicación médica. En particular, se conoce bien en la técnica anterior un procedimiento, tal como se describe en el documento WO2007/051307, que comprende producir un artículo poroso mezclando un agente porógeno de tipo sal tal como cloruro de sodio con un polímero de PEEK para formar un material de moldeo, que se somete entonces a un procedimiento de moldeo para producir un artículo moldeado y lavar posteriormente dicho artículo para lixiviar el agente porógeno, conformando de ese modo poros. En una realización particular la PEEK presenta un punto de fusión menor que el agente porógeno y el procedimiento comprende calentar la mezcla hasta una temperatura entre la del punto de fusión de la PEEK y la del agente porógeno, moldeando y enfriando el artículo hasta que solidifica. El material así resultante presenta una distribución de tamaños de poro que se parece a la distribución de tamaños de poro del porógeno que no proporciona las características arquitectónicas necesarias para la regeneración ósea.
Según este procedimiento se ha contemplado el uso de diferentes agentes porógenos de diferentes tamaños, aunque este enfoque proporciona una estructura porosa con baja conectividad entre poros.
Otros procedimientos para obtener materiales de PEEK porosos se basan en sinterización por láser tal como el procedimiento dado a conocer en el que se requiere el uso de equipos de alto coste (Tan, K. H. et al., Bio- Medical Materials and Engineering (2005), 15 (1 ,2) 1 13-124.
También se conocen procedimientos como el dado a conocer en el documento JP 2006241363, basándose en moldeo por compresión con un agente porógeno que requiere temperaturas altas a las que se funde el polímero de PEEK, es decir, se necesitan temperaturas por encima del punto de fusión del polímero superiores a 374QC.
Otros procedimientos se basan en una separación de fases inducida térmicamente, que comprenden las etapas de disolver un polímero de tipo PEEK en un disolvente orgánico polar que tiene una estructura de anillo de seis miembros y un punto de ebullición de 175QC a 420QC y colar la disolución en un soporte. Un procedimiento de este tipo se da a conocer en el documento EP 0 407 684 A1 y presenta la desventaja de que el tamaño de poro no es mayor que 10 μηπ.
A pesar de la variedad de procedimientos, ninguno de los materiales obtenidos en consecuencia presenta las características de porosidad y morfológicas adecuadas que permiten su aplicación satisfactoria en ingeniería de tejidos óseos.
Por tanto, en vista de lo anterior existe todavía la necesidad en la técnica de proporcionar artículos biocompatibles nuevos con características mejoradas con respecto a la forma de poro, la morfología de las paredes de los poros y la interconectividad entre poros, entre otras, que se supone que son fundamentales para la siembra, la migración, el crecimiento celulares, el transporte de masa, la expresión génica y la formación de tejido nuevo en tres dimensiones, y puede por tanto usarse satisfactoriamente en aplicaciones de ingeniería de tejidos óseos.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Micrografías de SEM con grado creciente de ampliación de un artículo poroso preparado tal como se describe en el ejemplo 1 .
Figura 2: Micrografías de SEM de un artículo poroso preparado tal como se describe en el ejemplo 2.
Figura 3: Micrografía de SEM y espectro de EDS de un artículo poroso preparado tal como se describe en el ejemplo 2.
Figura 4: Micrografías de SEM del artículo poroso preparado tal como se describe en el ejemplo 3.
Figura 5: Un diagrama del artículo poroso de la invención, imágenes de SEM del artículo y las distribuciones de poros.
DESCRIPCIÓN DE LA INVENCIÓN
En un aspecto la presente invención se refiere a un procedimiento para la producción de un artículo poroso que comprende una estructura de polímero de tipo polieteretercetona, denominado también a continuación en el presente documento polímero de tipo PEEK, que comprende las etapas siguientes:
a) poner en contacto un polímero de tipo PEEK con una composición que comprende al menos un disolvente orgánico,
b) calentar a una temperatura a la que se disuelve el polímero de tipo PEEK,
c) añadir al menos un agente porógeno, en una cantidad comprendida entre el 50% y el 90% en peso con respecto al peso de la mezcla de polímero de tipo PEEK-disolvente,
d) enfriar la mezcla obtenida en c) a una temperatura al menos igual o menor que la temperatura a la que precipita el polímero de tipo PEEK, e) conformar dicha mezcla enfriada para dar un artículo intermedio conformado,
f) retirar el disolvente orgánico y el agente porógeno,
g) recuperar el artículo que comprende un polímero de tipo PEEK.
El procedimiento, a continuación en el presente documento el procedimiento de la invención, proporciona tras la etapa e) un artículo intermedio que comprende al menos un polímero de tipo PEEK, un agente porógeno y un disolvente orgánico. Entonces se retiran el disolvente orgánico y el agente porógeno en la etapa f) y se recupera un artículo poroso en g). Este nuevo artículo poroso de tipo PEEK presenta una morfología nueva y muy característica que lo hace muy adecuado para aplicaciones tales como ingeniería de tejidos.
Dicho artículo poroso de tipo PEEK, que constituye otro aspecto de la presente invención, comprende una estructura de polímero de tipo PEEK (o matriz) y presenta al menos una distribución de poros trimodal tal como sigue:
(i).- una distribución de poros A que corresponde a poros de un tamaño promedio entre 50 μηπ y 500 μηπ que están interconectados por todo el artículo, y que se denominan también a continuación en el presente documento poros A; (ii) . - una distribución de poros B que corresponde a los huecos entre poros A adyacentes de un tamaño promedio entre 5 μηπ y 70 μηπ; y que se denominan también a continuación en el presente documento poros B;
(iii) . - una distribución de poros C que corresponde a poros de un tamaño promedio de aproximadamente 5 μηι o inferior que corresponde a poros que están ubicados en las paredes de los poros A y poros B, denominados a continuación en el presente documento poros C.
La distribución de poros A se genera en el procedimiento de la invención en la etapa f) cuando se retira el agente porógeno dejando los poros A que conservan la forma del agente porógeno, y que están ubicados dentro y por toda la estructura de polímero de tipo PEEK. Los poros B de la distribución de poros B se originan porque en el artículo intermedio conformado obtenido en la etapa e), las partículas de agente porógeno son adyacentes y están en contacto. Por tanto, cuando se retiran las partículas, dejan huecos entre los poros A adyacentes. La distribución de poros C se genera debido a la presencia del disolvente en el artículo intermedio. Cuando se elimina entonces el disolvente en la etapa f) deja poros de alrededor de 5 μηπ o menores, que se denominarán a continuación en el presente documento poros C. Estos poros C pueden estar en el rango nanométrico o en los rangos tanto micro- como nanométricos.
Estas tres distribuciones de poros pueden observarse claramente en las figuras 1 , 2 y 4. En la figura 5 se representa una distribución de poros típica en la que puede observarse claramente que la distribución de poros A (véase A), centrada a aproximadamente 100 μηπ corresponde a los poros A, la distribución de poros B (véase B), centrada entre 7-8 μηπ, corresponde a los poros B (huecos entre poros A adyacentes) y la distribución de poros C (véase C), centrada a aproximadamente 0,2 μηπ, corresponde a los poros C.
Esta morfología característica, que comprende dicha al menos distribución de poros trimodal y diferentes tamaños de poro se consigue según el procedimiento de la invención por medio de la combinación de un agente porógeno y un disolvente orgánico. Por tanto, el procedimiento de la invención proporciona artículos de polímero de tipo PEEK mejorados que pueden, entre otras aplicaciones, usarse como estructuras de apoyo en aplicaciones de ingeniería de tejidos tal como se da a conocer adicionalmente más adelante en detalle.
Los polímeros de tipo polieteretercetona (de tipo PEEK) se refieren a polímeros que contienen predominantemente enlaces éter, -R-O-R-, y cetona, -R-CO-R-, en los que R es un grupo aromático divalente. R es preferiblemente un fenileno sustituido o no sustituido de fórmula siguiente:
Figure imgf000007_0001
en la que
X es independientemente en cada caso hidrógeno, un alquilo Ci-4 o un halógeno; y
m es un número entero entre 0 y 4 inclusive.
X es preferiblemente hidrógeno, metilo, etilo, cloro, bromo o flúor.
Los ejemplos de polímeros de tipo poli(eteretercetona) dentro del alcance de esta invención incluyen poli(etercetona) (PEK), poli(ariletercetona) (PAEK), poli(eteretercetona) (PEEK), poli(eteretercetonacetona) (PEEKK), poli(etercetonaetercetonacetona) (PEKEKK) y mezclas de los mismos. Un polímero de tipo poli(eteretercetona) especialmente preferido para su uso en esta invención es PEEK, es decir, poli(oxi-p-fenilenoxi-p-fenilencarbonil-p-fenileno). PEEK está compuesto por las unidades de repetición descritas en la fórmula siguiente:
Figure imgf000007_0002
Los polímeros (de tipo PEEK) para su uso en esta invención están disponibles comercialmente y/o pueden obtenerse mediante procedimientos de síntesis bien conocidos en la técnica (documentos US 4.320.224 y US 4.331 .798).
El polímero de tipo PEEK se pone en contacto con una composición que comprende al menos un disolvente orgánico.
El disolvente orgánico para su uso en la presente invención puede ser un único disolvente o una mezcla de disolventes. El disolvente ha de disolver el polímero de tipo PEEK y debe presentar un punto de ebullición apropiado. La selección del disolvente depende de la naturaleza y la cantidad del polímero de tipo PEEK usado, y puede seleccionarse fácilmente por el experto. El disolvente usado no debe disolver el agente porógeno a las temperaturas del presente procedimiento.
Los disolventes útiles para preparar una disolución de polímero de tipo PEEK son compuestos orgánicos con cierto grado de polaridad. Un gran porcentaje de tales compuestos orgánicos tienen un componente aromático o aromático polinuclear. Los disolventes útiles en esta invención son compuestos orgánicos constituidos predominantemente por carbono e hidrógeno y opcionalmente oxígeno, nitrógeno, azufre, halógeno y mezclas de los mismos, en los que el compuesto orgánico tiene normalmente un peso molecular de entre 1 60 y 450. Cada disolvente adecuado que va a usarse en la presente invención presenta al menos una estructura de anillo de seis miembros y un punto de ebullición en un intervalo entre 150QC y 400QC y puede disolver al menos el 10% del polímero de tipo PEEK presente a la temperatura de conformación del artículo. El disolvente preferiblemente disuelve a la temperatura de conformación al menos el 25 por ciento en peso del polímero de tipo PEEK, más preferiblemente el 50 por ciento en peso del polímero de tipo PEEK.
En una realización particular el disolvente orgánico se selecciona del grupo constituido por benzofenona, pentafluorofenol, fenilsulfona, 2- fenilfenol, ftalato de dimetilo, benzoato de fenilo, 4-hidroxibenzoato de etilo, n-ciclohexil-2-pirrolidona y mezclas de los mismos, preferiblemente benzofenona o pentafluorofenol.
La composición que comprende al menos un disolvente orgánico puede comprender además una cerámica bioactiva. En el contexto de la presente invención una cerámica bioactiva se refiere a un material que puede proporcionar una respuesta biológica específica en la superficie de contacto del material, que resulta de la unión entre el material y los tejidos. Una cerámica bioactiva forma una unión con tejidos adyacentes (Bauer TW, Smith ST: Bioactive materials in orthopaedic surgery. Overview and regulatory considerations. Clin Orthop 2002; 395: 1 1 -22).
Las cerámicas bioactivas útiles en la presente invención son cualquiera del estado de la técnica, tal como por ejemplo, fosfatos de calcio, preferiblemente fosfato de tricalcio, hidroxiapatita, fosfato de calcio bifásico, y sus mezclas. Las cerámicas bioactivas se usan en forma de nanopartículas, micropartículas o sus mezclas.
Los inventores han mostrado que cuando se usan partículas de cerámica bioactiva (HA por ejemplo con un tamaño promedio de aproximadamente 3 μηπ, véase el ejemplo 2) dichas partículas se distribuyen por todo el artículo (figuras 2b, c, e). Estas partículas se integran satisfactoriamente en la matriz de polímero de tipo PEEK sin formación de aglomeración visible. En este sentido también se ha demostrado a partir de la caracterización por EDS (figura 3) que las partículas observadas en las imágenes de SEM estaban compuestas básicamente por los elementos calcio y fósforo, dos de los componentes principales de HA.
En el procedimiento de la invención, el calentamiento se lleva a cabo mientras se agita la mezcla del polímero de tipo PEEK con un disolvente o con una suspensión que comprende un disolvente, tras lo cual, con agitación, el polímero de tipo PEEK se disuelve en el disolvente. El calentamiento de la PEEK y la composición se lleva a cabo a una temperatura comprendida normalmente entre 150QC y 400QC, aunque dicha temperatura puede variar dependiendo de la cantidad de PEEK que ha de disolverse, su naturaleza química y el disolvente seleccionado. El calentamiento se lleva a cabo preferiblemente bajo atmósfera inerte para evitar reacciones secundarias no deseadas de cualquiera de los componentes. El nitrógeno y el argón son atmósferas inertes útiles.
Los tiempos de mezclado necesarios para disolver completamente el polímero varían con el punto de ebullición del disolvente elegido, y la temperatura a la que se calienta la mezcla. Dichos tiempos pueden variar dentro de un intervalo amplio, pero están comprendidos normalmente entre 30 minutos y 120 minutos. La razón en peso de polímero con respecto a disolvente puede variar entre un amplio intervalo. Normalmente, la razón en peso de polímero con respecto a disolvente está comprendida entre el 5-50 por ciento en peso. La razón en peso de cerámica bioactiva con respecto a polímero puede variar también entre un amplio intervalo. Normalmente, la razón en peso de cerámica bioactiva con respecto a polímero está comprendida entre el 5-50 por ciento en peso.
Las etapas a) y b) se llevan a cabo de una manera ligeramente diferente dependiendo de la presencia o no de una cerámica bioactiva en la composición. Por tanto, según una realización particular el polímero de tipo PEEK se pone en contacto con una composición constituida por un disolvente seleccionado y se calienta la mezcla a una temperatura a la que se disuelve el polímero generalmente entre 150QC y 400QC. El calentamiento se lleva a cabo bajo atmósfera inerte por el mismo motivo expuesto anteriormente mientras se agita la mezcla y se agita la mezcla de PEEK y disolvente hasta que se consigue una disolución completa pasando a ser una disolución homogénea y transparente.
En otra realización se obtiene previamente una composición de una cerámica bioactiva y un disolvente seleccionado constituida por una dispersión que se obtiene con agitación y bajo atmósfera inerte. El polímero de tipo PEEK se pone entonces en contacto con la dispersión resultante y entonces se calienta la mezcla obtenida, con agitación, tras lo cual, con agitación, se disuelve el polímero de tipo PEEK en el disolvente.
Tras disolver completamente el polímero de tipo PEEK se añade al mismo un agente porógeno. Dicho agente porógeno puede ser orgánico o inorgánico.
Debido a que el tipo de disolvente y la cantidad de polímero influye en la temperatura de trabajo (que se encuentra generalmente entre 150QC y 400QC), es necesario usar un agente porógeno que no sea soluble en el disolvente usado y que no funda a la temperatura de trabajo. Por tanto, el agente porógeno se selecciona dependiendo del disolvente usado, y de la temperatura de trabajo.
En una realización particular el agente se selecciona del grupo de agentes porógenos de tipo azúcar, agentes porógenos de tipo sal y sus mezclas. Se prefieren los agentes porógenos de tipo sal. Algunos agentes porógenos de tipo sal a modo de ejemplo adecuados para su uso en la presente invención son cloruro de sodio, citrato de sodio, tartrato de sodio, cloruro de potasio, fluoruro de sodio, fluoruro de potasio, yoduro de sodio, nitrato de sodio, sulfato de sodio, yodato de sodio y mezclas de los mismos, preferiblemente se usan cloruro de sodio, citrato de sodio, tartrato de sodio, cloruro de potasio y más preferiblemente cloruro de sodio o cloruro de potasio debido a su disponibilidad y bajo coste. Algunos agentes porógenos de tipo azúcar a modo de ejemplo adecuados para su uso en la presente invención son azúcares solubles en agua, por ejemplo sacarosa, galactosa, sacarina, glucosa, fructosa y sus mezclas, preferiblemente sacarosa, galactosa y sus mezclas.
Debe entenderse que los materiales de agente porógeno son partículas que pueden conformarse en cualquier forma y tamaño según sea necesario, o deseado, tal como cubos, esferas, formas geométricas regulares, formas geométricas irregulares, y mezclas de los mismos. El tamaño de partícula promedio del agente porógeno puede estar comprendido normalmente entre 50-500 μηπ, y se selecciona dependiendo de la porosidad, tamaño y forma de poro, y distribución de tamaños de poro deseados que han de obtenerse.
El agente porógeno se usa generalmente en la invención en una cantidad comprendida entre el 50% en peso y el 90% en peso con respecto al peso de la mezcla de polímero de tipo PEEK-disolvente.
Según una realización particular se usan al menos dos agentes porógenos diferentes, no necesariamente que difieren en su naturaleza química, sino que difieren al menos en sus distribuciones de tamaños de partícula. Por tanto, un primer agente porógeno que presenta una primera distribución de tamaños y un segundo agente porógeno que presenta una segunda distribución de tamaños, se usan simultáneamente generando dos distribuciones de poros A diferentes, es decir una primera distribución de poros A y una segunda distribución de poros A' en el artículo poroso obtenido. Ambas distribuciones de poros A y A' corresponden a poros con un tamaño promedio comprendido entre 50-500 μηπ.
En la etapa d) la mezcla obtenida en c) se enfría a una temperatura al menos igual o menor que la temperatura a la que precipita el polímero de tipo PEEK. Dicha temperatura a la que la disolución de polímero pasa a ser turbia, depende de la cantidad del polímero y del disolvente. A dicha temperatura la mezcla se conforma entonces (etapa e)) para dar un artículo intermedio solidificado conformado. Dicha temperatura es generalmente la temperatura ambiente, que se mantiene durante un periodo de tiempo comprendido normalmente entre varios minutos y varias horas hasta que se forma la mezcla. En una realización particular la conformación se realiza durante la noche. El tamaño de los poros C obtenidos también dependerá de dicha temperatura, de tal manera que a menor temperatura, menor es el tamaño de poro C.
El enfriamiento y la conformación del artículo pueden realizarse según diferentes procedimientos bien conocidos del estado de la técnica dependiendo por ejemplo de la configuración (forma, dimensión y tamaño) del artículo que va a obtenerse. La conformación del artículo en la presente invención se refiere a la conformación de la mezcla caliente para dar la configuración deseada.
Según una realización particular la mezcla obtenida en c) se cuela a temperatura ambiente sobre una superficie de soporte, tal como una placa de vidrio. El artículo así obtenido finalmente es entonces una muestra porosa de 2D.
Según una realización preferida, la conformación de la mezcla enfriada se lleva a cabo colocando dicha mezcla en un molde que presenta la forma y las dimensiones del artículo que va a obtenerse. Dicho molde puede ser de cualquier material convencional, tal como un vial de vidrio, un vial metálico o un vial de teflón por ejemplo.
Tras las etapas d) y e) se obtiene un artículo intermedio solidificado del cual se retiraran entonces el disolvente y el agente porógeno pasando a ser el artículo poroso de la invención que tiene la morfología porosa controlada y deseada. Dicho artículo es un aspecto adicional de la presente invención tal como ya se mencionó anteriormente.
La retirada del disolvente y el agente porógeno se lleva a cabo extrayendo o lixiviando con otro disolvente, denominado a continuación en el presente documento el no disolvente, puesto que no puede disolver el polímero de tipo PEEK. Se sabe que los polímeros de tipo PEEK son insolubles en muchos disolventes orgánicos comunes que por tanto no afectan a las propiedades del artículo.
Dicho no disolvente puede ser uno o más disolventes líquidos, debe ser miscible con el disolvente y poder disolver ambos el disolvente y/o el agente porógeno. El no disolvente puede determinarse por tanto fácilmente por el experto en cada caso. Por ejemplo el disolvente benzofenona puede retirarse con etanol; el disolvente pentafluorofenol con agua destilada y fenilsulfona con acetona. El agente porógeno, tal como un agente de tipo sal puede retirarse por ejemplo con agua destilada.
La etapa de lixiviado puede llevarse a cabo en una única extracción por contacto con un volumen suficientemente grande de un no disolvente o mediante una secuencia de varias, al menos dos extracciones de disolvente, con uno o más disolventes líquidos.
Normalmente las etapas se llevan a cabo sumergiendo los artículos intermedios en un no disolvente con agitación para facilitar la extracción del disolvente y el agente porógeno durante tiempos que pueden variar desde 5 minutos hasta 120 minutos, o varias horas. La temperatura de extracción máxima es aquélla a la que el artículo todavía no se ve afectado. La temperatura mínima es aquélla a la que la extracción se produce a una tasa razonable. Por tanto las temperaturas pueden estar comprendidas dentro de un amplio intervalo, comprendidas normalmente entre 0QC y 80QC, y más preferiblemente a temperatura ambiental.
En una realización particular al menos dos no disolventes diferentes, tales como etanol y agua destilada, se usan uno después de otro, de manera alternante. Cada no disolvente puede usarse más de una vez.
Finalmente el artículo poroso resultante puede recuperarse entonces. Dicha recuperación del artículo comprende por ejemplo una etapa de liofilización para retirar completamente el agua destilada dando el artículo poroso de la invención.
Según el procedimiento de la invención la porosidad, la distribución de poros y el tamaño de poro y la forma de los poros que corresponden a los macroporos pueden diseñarse y controlarse seleccionando y determinando variables tales como la razón de agente porógeno/polímero de tipo PEEK, la concentración de PEEK, el tamaño y la forma de partícula del agente porógeno, y la temperatura de enfriamiento.
La porosidad se refiere al volumen de huecos del artículo y se define como la fracción del volumen de huecos con respecto al volumen total de una muestra. La porosidad de los artículos de la presente invención se ha medido con un porosímetro de mercurio (AutoPore IV 9500 V1 .09,
Micrometrics). La porosidad puede variar dentro de intervalos amplios, aunque normalmente se han determinado porosidades entre el 75-90% (véanse los ejemplos 1 a 3). El tamaño de poro de un artículo puede estimarse mediante varias técnicas incluyendo la microscopía electrónica de barrido (SEM, scanning electrón microscopy).
Las distribuciones de poros también se han determinado con un porosímetro de mercurio. Las distribuciones de poros A dentro del intervalo de 50 μηπ y 500 μηπ pueden reducirse o ampliarse dependiendo de las características de las partículas de agente porógeno usadas. Las distribuciones de poros obtenidas fueron según los resultados observados en las imágenes de SEM (véase por ejemplo la figura 5).
La distribución de poros A y el tamaño de poro que corresponde a los poros A pueden controlarse y variarse según lo desee el experto en la técnica que ponga en práctica la presente invención dentro de un artículo. En este sentido la distribución de poros A y el tamaño de poro que corresponde a los poros A pueden ser sustancialmente homogéneos dentro de un artículo poroso producido completo debido al uso de un tamaño de partícula del agente porógeno sustancialmente homogéneo que se distribuye homogéneamente dentro de la mezcla de polímero de tipo PEEK y agente porógeno obtenida tras la etapa c). Alternativamente la distribución de poros A y el tamaño de poro A pueden ser sustancialmente heterogéneos dentro de dicho artículo completo, debido al uso simultáneo en el procedimiento de al menos dos partículas de agente porógeno diferentes que difieren al menos en sus distribuciones de tamaños. Dichas al menos dos partículas de agente porógeno diferentes que presentan diferentes tamaños, pueden usarse en el procedimiento distribuidas homogéneamente dentro del artículo completo que va a obtenerse o pueden distribuirse heterogéneamente dentro del artículo. Según la última realización, pueden distribuirse partículas que tienen un cierto tamaño en una primera zona del artículo que va a obtenerse, y pueden distribuirse partículas del tamaño diferente en una segunda zona diferente. Según una realización diferente, se distribuyen partículas que tienen un cierto tamaño en una cierta zona del artículo que va a obtenerse, por ejemplo la parte inferior de un artículo, se ubican partículas del tamaño diferente en una zona diferente, por ejemplo la parte superior de dicho artículo, y se ubican mezclas de ambas partículas en un zona todavía diferente (en la parte central). De esta manera puede diseñarse un gradiente de porosidad dentro de un artículo. Las diferentes zonas a las que se hizo referencia anteriormente pueden ser también al menos una primera parte interna y una segunda parte externa. Por tanto, debe entenderse que todas las diferentes posibilidades de combinar todos los diferentes tamaños de partículas y usarlos distribuyéndolos en ciertas zonas del artículo obtenido están contempladas según la presente invención. También debe entenderse que el procedimiento de la presente invención contempla controlar y variar la distribución de poros A y el tamaño de poro que corresponde a los poros A tal como se explica dentro de un artículo, en combinación con el uso simultáneo de al menos una cerámica bioactiva tal como se expuso anteriormente.
En una realización particular y sólo a modo de ejemplo, se consigue un gradiente de distribución de poros dentro de un artículo cilindrico que presenta una primera distribución de tamaños de poro A de aproximadamente 300 μηπ en su parte inferior y una segunda distribución de tamaños de poro A' de aproximadamente 50 μηπ en su parte superior. Por consiguiente, el procedimiento de la presente invención proporciona artículos con distribuciones de tamaños de poro homogéneas y/o heterogéneas dentro del artículo completo.
La variedad resultante de artículos porosos de polímero de tipo PEEK de la presente invención puede usarse para muchas aplicaciones diferentes, tales como estructuras de apoyo para ingeniería de tejidos, debido a la biocompatibilidad del polímero de tipo PEEK, matrices de cultivo celular, matrices de liberación controlada, apositos para heridas, membranas de separación, rellenos de columna de cromatografía, filtros, materiales de envasado y aislamiento, entre otros.
Los artículos pueden presentar, según su uso pretendido, diferentes formas tales como membranas, cilindros, prismas, etc. Además, una vez obtenidos, los artículos porosos pueden procesarse adicionalmente si es necesario, según técnicas convencionales, tales como corte, para ajustar adicionalmente su forma o tamaño a la aplicación concreta deseada.
Según una realización particular los artículos porosos se usan en aplicaciones tales como estructuras de apoyo para ingeniería de tejidos debido a su morfología ventajosa. Los poros A y B facilitan la entrada de células y el crecimiento de tejido óseo, y los poros C facilitan la absorción de proteínas, facilitan el transporte de nutrientes, y potencian la adhesión, proliferación y diferenciación celular debido a la topografía nanométrica, que es similar a la que presenta el hueso. La combinación de al menos estas distribuciones de poros diferentes ha demostrado ser esencial para el éxito del artículo poroso de la invención como estructura de apoyo y/o implante poroso.
Dependiendo del uso pretendido de un artículo, se diseñan bien y se controlan parámetros tales como porosidad, distribución de tamaños de poro, tamaño y forma de dicho artículo, su composición, por ejemplo la presencia y la concentración de una cierta cerámica bioactiva, entre otros.
Por tanto en otro aspecto, la presente invención se refiere al uso del artículo poroso de la invención como estructura de apoyo y/o implante poroso.
Lo anterior es ilustrativo de la presente invención. Esta invención sin embargo no se limita a las siguientes realizaciones precisas descritas en el presente documento, sino que abarca todas las modificaciones equivalentes dentro del alcance de las reivindicaciones a continuación.
EJEMPLOS
Procedimiento para la producción de un artículo que comprende polieteretercetona y su caracterización
La caracterización de los artículos se llevó a cabo tal como sigue:
Se midieron la porosidad, el tamaño de poro promedio y la distribución de tamaños de poro con un porosímetro de mercurio (AutoPore IV 9500 V1 .09, Micromeritics).
Se evaluaron las microestructuras de las muestras mediante microscopía electrónica de barrido (SEM). Se fracturaron los artículos en nitrógeno líquido y entonces se pulverizaron con oro para observar la morfología de la sección transversal mediante SEM. (JEOL JSM 5910-LV (20 kV)).
Se aplicó el análisis de imágenes acoplado con análisis mediante espectrometría de energía dispersiva (EDS, Energy Dispersive Spectrometry) en un SEM a la caracterización de la composición elemental de las partículas observadas en las imágenes de SEM.
Ejemplo 1 :
En primer lugar, se tamizaron partículas de cloruro de sodio (Sigma Aldrich) de tamaño entre 80-120 μηπ con tamices convencionales y se recogieron para obtener los tamaños deseados.
A continuación, se añadieron 800 mg de polieteretercetona (PEEK) (VESTAKEEP, LATI) y 3200 mg de benzofenona (BF) (Panreac) a un vial de vidrio de 10 mi. Se burbujeó N2 al vial durante 5 min. y entonces se selló el vial con un tapón roscado. Se introdujo el vial de vidrio en un baño de aceite y se calentó hasta 285QC. Se agitó vigorosamente la mezcla hasta que se disolvió completamente la PEEK en BF, formando una disolución homogénea y transparente. Una vez que se disolvió el polímero, se añadieron 2 g de partículas de sal tamizadas a la disolución de PEEK/BF y se mantuvo la dispersión con agitación a 285QC durante 30 minutos.
Tras este procedimiento, se retiró el vial de vidrio del baño de aceite y se mantuvo a temperatura ambiente durante la noche sin agitación. Se sumergió el producto intermedio de PEEK/BF/sal solidificado en 50 mi de etanol en un agitador a 100 r.p.m. a temperatura ambiente durante 24 h (se cambió el etanol cada 12 h) para lixiviar el BF. Entonces, se retiró el etanol y se sumergió la muestra en 50 mi de agua destilada en un agitador a 100 r.p.m. a temperatura ambiente durante 24 h (se cambió el agua cada 12 h) para lixiviar la sal. Estos dos procedimientos se llevaron a cabo alternativamente durante 8 días. Finalmente, se liofilizó la muestra de PEEK porosa para retirar completamente el agua destilada y se obtuvo el artículo de PEEK poroso. Los espacios ocupados originariamente por el disolvente y las partículas porógenas pasaron a ser los poros A, B y C en el artículo de PEEK.
Resultados
Los resultados del porosímetro mostraron que la porosidad del artículo era del 84%. Presentaba una distribución de poros multimodal (trimodal). Una distribución de tamaños de poro A estaba centrada a 95 μηπ debido a la extracción de partículas porógenas; otra distribución de tamaños de poro B estaba centrada a 5 μηπ debido a la abertura creada por la unión de dos partículas de sal adyacentes. Y una distribución de tamaños de poro
C, menor de 1 μιη, debido a la extracción de benzofenona.
Estos resultados eran muy acordes con los observados en las imágenes de SEM (figura 1 ). Se observaron poros A más grandes que conservaban las formas de las partículas porógenas originales. Además, en la pared de esos poros, se detectaron micro- y nanoporos C debido a la eliminación de benzofenona. Y finalmente, se apreciaron poros B de aproximadamente 5 μηπ que coincidían con el tamaño de las aberturas entre los poros A. Ejemplo 2:
En primer lugar, se tamizaron partículas de cloruro de sodio (Sigma Aldrich) de tamaño entre 120-180 μηπ con tamices convencionales y se recogieron para obtener los tamaños deseados.
A continuación, se añadieron 80 mg de hidroxiapatita (HA) (Plasma Biotal) y 3200 mg de benzofenona (BF) (Panreac) a un vial de vidrio de 10 mi, se burbujeó N2 al vial durante 5 min. y entonces se selló el vial con un tapón roscado y se sónico la mezcla a 60QC durante 30 minutos. Una vez que la HA se había dispersado en BF, se añadieron 800 mg de polieteretercetona (PEEK) (VESTAKEEP, LATI) y se transfirió el vial de vidrio a un baño de aceite y se calentó a 285QC. Se agitó vigorosamente la mezcla hasta que se disolvió completamente la PEEK. Cuando se había disuelto el polímero, se añadieron 2 g de partículas de sal tamizadas a la dispersión de PEEK/HA/BF y se mantuvo la disolución con agitación a 285QC durante 30 minutos.
Tras este procedimiento, se retiró el vial de vidrio del baño de aceite y se mantuvo a temperatura ambiente durante la noche sin agitación. Se sumergió el artículo intermedio de PEEK/HA/BF/sal solidificado en 50 mi etanol en un agitador a 100 r.p.m. a temperatura ambiente durante 24 h (se cambió el etanol cada 12 h) para lixiviar el BF. Entonces, se retiró el etanol y se sumergió la muestra en 50 mi de agua destilada en un agitador a 100 r.p.m. a temperatura ambiente durante 24 h (se cambió el agua cada 12 h) para lixiviar la sal. Estos dos procedimientos se llevaron a cabo de manera alterna durante 8 días. Finalmente, se liofilizó el artículo de PEEK/HA poroso para retirar completamente el agua destilada dando un artículo según la invención.
Resultados
Los resultados del porosímetro mostraron que la porosidad del artículo era del 86%. Presentaba una distribución de poros multimodal (trimodal). Una distribución de tamaños de poro A estaba centrada a 187 μηπ debido a la extracción de partículas porógenas; otra B estaba centrada a 62 μηπ debido a la abertura creada por la unión de dos partículas de sal adyacentes. Y una distribución de tamaños de poro C, menor de 1 μηπ, debido a la extracción de benzofenona.
Pueden observarse poros A más grandes que conservan las formas de las partículas porógenas originales, (figura 2a). Se detectó un tamaño de abertura de entre poros de aproximadamente 60 μηπ en la unión de los poros A. Además, en la pared de estos poros, se detectaron micro- y nanoporos C debido a la eliminación de benzofenona (figuras 2b, c, d).
También pueden apreciarse partículas de HA, con un tamaño de aproximadamente 3 μηπ, distribuidas homogéneamente por todo el artículo
(figuras 2b, c, e). Estas partículas se integraron satisfactoriamente en la matriz sin formación de aglomeración visible.
A partir de la caracterización por EDS (figura 3) puede confirmarse que las partículas observadas en las imágenes de SEM estaban compuestas, básicamente, por los elementos calcio y fósforo, dos de los principales componentes de la HA.
Ejemplo 3:
En primer lugar, se tamizaron partículas de cloruro de sodio (Sigma Aldrich) de tamaño entre 80-120 μηπ con tamices convencionales y se recogieron para obtener los tamaños deseados.
A continuación, se añadieron 400 mg de polieteretercetona (PEEK) (VESTAKEEP, LATI) y 3600 mg de pentafluorofenol (PF) (Panreac) a un vial de vidrio de 10 mi. Se burbujeó N2 al vial durante 5 min. y entonces se selló el vial con un tapón roscado. Se introdujo el vial de vidrio en un baño de aceite y se calentó hasta 150QC. Se agitó la mezcla vigorosamente hasta que la PEEK se disolvió completamente en PF, formando una disolución homogénea y transparente. Una vez que se disolvió el polímero, se añadieron 2 g de partículas de sal tamizadas a la disolución de PEEK/PF y se mantuvo la dispersión con agitación a 150QC durante 30 minutos.
Tras este procedimiento, se retiró el vial de vidrio del baño de aceite y se mantuvo a temperatura ambiente durante la noche sin agitación. Se sumergió el producto intermedio de PEEK/PF/sal solidificado en 50 mi de agua destilada en un agitador a 100 r.p.m. a temperatura ambiente durante 8 días (se cambió el agua destilada cada 12 h) para lixiviar el PF y las partículas porógenas. Finalmente, se liofilizó la muestra de PEEK porosa para retirar completamente el agua destilada. Los espacios ocupados originariamente por el disolvente y las partículas porógenas pasaron a ser los poros en el artículo de PEEK poroso.
Resultados
Los resultados del porosímetro mostraron que la porosidad del artículo era del 83%. Presentaba una distribución de poros multimodal (trimodal). Una distribución de tamaños de poro A estaba centrada a 73 μηπ debido a la extracción de partículas porogenas; otra distribución de tamaños de poro B estaba centrada a 1 ,5 μι ι que correspondía a las zonas de unión entre las partículas porogenas. Y la última distribución de poros C era <1 μηπ debido a la extracción de benzofenona.
Estos resultados eran muy acordes con los observados en las imágenes de SEM (figura 4). Se observaron poros A más grandes que conservaban las formas de las partículas porogenas originales. Además, en la pared de estos poros A y B, se detectaron micro- y nanoporos C debido al tamaño de la abertura entre los poros A y la eliminación de benzofenona.

Claims

REIVINDICACIONES
Un artículo de polímero de tipo PEEK poroso que comprende una estructura de polímero de tipo PEEK porosa y que presenta al menos una distribución de poros trimodal tal como sigue:
(i) . - una distribución de poros A que corresponde a poros A de un tamaño promedio entre 50 μηπ y 500 μηπ que están interconectados por todo el artículo;
(ii) . - una distribución de poros B que corresponde a los huecos entre poros A adyacentes de un tamaño promedio entre 5 μηπ y 70 μηπ denominados poros B;
(iii) . - una distribución de poros C que corresponde a poros C de un tamaño promedio de aproximadamente 5 μηι o inferior que están ubicados en las paredes de los poros A y poros B.
Un artículo según la reivindicación 1 , que presenta una distribución de poros adicional A' que corresponde a poros A' de un tamaño promedio entre 50 μηπ y 500 μηπ y diferentes de los poros A, que están interconectados por todo el artículo.
Un artículo según la reivindicación 1 ó 2, en el que los poros ocupan entre el 75% y el 90% del volumen total del artículo.
Un artículo según una cualquiera de las reivindicaciones 1 a 3, que comprende además partículas de cerámica bioactiva integradas en la estructura de polímero de tipo PEEK porosa y distribuidas por todo el artículo.
Un procedimiento para la producción de un artículo de polímero de tipo PEEK poroso según una cualquiera de las reivindicaciones 1 a 4, que comprende las etapas siguientes:
a) poner en contacto un polímero de tipo PEEK con una composición que comprende al menos un disolvente orgánico, b) calentar a una temperatura a la que se disuelve el polímero de tipo PEEK,
c) añadir al menos un agente porógeno, en una cantidad comprendida entre el 50% en peso y el 90% en peso con respecto al peso de la mezcla de polímero de tipo PEEK- disolvente,
d) enfriar la mezcla obtenida en c) a una temperatura al menos igual o menor que la temperatura a la que precipita el polímero de tipo PEEK,
e) conformar dicha mezcla enfriada para dar un artículo intermedio conformado,
f) retirar el disolvente orgánico y el agente porógeno,
g) recuperar el artículo que comprende un polímero de tipo PEEK.
Un procedimiento según la reivindicación 5, en el que el disolvente orgánico presenta al menos una estructura de anillo de seis miembros y una temperatura de ebullición entre 150QC y 400QC y puede disolver al menos el 10% del polímero de tipo PEEK presente a la temperatura de conformación del artículo.
Un procedimiento según la reivindicación 6, en el que el disolvente orgánico se selecciona del grupo constituido por benzofenona, pentafluorofenol, fenilsulfona, 2-fenilfenol, ftalato de dimetilo, benzoato de fenilo, 4-hidroxibezoato de etilo, n-ciclohexil-2- pirrolidona, preferiblemente benzofenona o pentafluorofenol.
Un procedimiento según una cualquiera de las reivindicaciones 5 a 7, en el que la composición que comprende al menos un disolvente orgánico comprende además una cerámica bioactiva.
Un procedimiento según la reivindicación 8, en el que dicha cerámica bioactiva se selecciona del grupo constituido por fosfatos de calcio, preferiblemente fosfato de tricalcio, hidroxiapatita, fosfato de calcio bifásico, y sus mezclas.
Un procedimiento según cualquiera de las reivindicaciones 5 a 9, en el que dicho agente porógeno se selecciona del grupo de agentes porógenos de tipo azúcar, agentes porógenos de tipo sal y sus mezclas.
1 1 . Un procedimiento según la reivindicación 10, en el que dicho agente porogeno es un agente porogeno de tipo sal seleccionado preferiblemente de cloruro de sodio, citrato de sodio, tartrato de sodio, cloruro de potasio y sus mezclas.
12. Un procedimiento según la reivindicación 10, en el que dicho agente porogeno es un agente porogeno de tipo azúcar seleccionado preferiblemente de sacarosa, galactosa y sus mezclas.
13. Un procedimiento según una cualquiera de las reivindicaciones 5 a 12, en el que la conformación de la mezcla enfriada se lleva a cabo colocando dicha mezcla en un molde que presenta la forma y las dimensiones del artículo que va a obtenerse.
14. Uso del artículo según una cualquiera de las reivindicaciones 1 a 4, como estructura de apoyo y/o implante poroso.
PCT/ES2010/070867 2009-12-23 2010-12-23 Artículo de peek poroso como implante WO2011076971A2 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/518,669 US20120323339A1 (en) 2009-12-23 2010-12-23 Porous peek article as an implant
CA2785571A CA2785571A1 (en) 2009-12-23 2010-12-23 Porous peek article as an implant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP09382298 2009-12-23
EP09382298.9 2009-12-23
EP10382243.3 2010-09-10
EP10382243.3A EP2338532B1 (en) 2009-12-23 2010-09-10 Porous PEEK article as an implant

Publications (2)

Publication Number Publication Date
WO2011076971A2 true WO2011076971A2 (es) 2011-06-30
WO2011076971A3 WO2011076971A3 (es) 2011-10-06

Family

ID=42144854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070867 WO2011076971A2 (es) 2009-12-23 2010-12-23 Artículo de peek poroso como implante

Country Status (5)

Country Link
US (1) US20120323339A1 (es)
EP (1) EP2338532B1 (es)
CA (1) CA2785571A1 (es)
ES (1) ES2664944T3 (es)
WO (1) WO2011076971A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749300A1 (en) 2012-12-26 2014-07-02 Universidad Del Pais Vasco-Euskal Herriko Unibertsitatea Modified polyaryletherketone polymer (PAEK) and process to obtain it

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179243B2 (en) 2007-02-28 2021-11-23 Happe Spine Llc Implantable devices
WO2008106625A2 (en) 2007-02-28 2008-09-04 University Of Notre Dame Du Lac Porous composite biomaterials and related methods
BR112012012603B1 (pt) 2009-11-25 2019-03-19 Difusion Technologies, Inc. Método de pós-carregamento de partículas de cerâmica com cátions metálicos antimicrobianos e método de conferir atividade antimicrobiana a um dispositivo através do controle da liberação de cátions antimicrobianos a partir do referido dispositivo por meio de troca iônica
BR112012016027B1 (pt) 2009-12-11 2019-01-15 Difusion Technologies, Inc. método de produção de implantes antimicrobianos de polieteretercetona
BR112012026636B1 (pt) 2010-05-07 2019-01-15 Difusion Technologies, Inc. implantes médicos com hidrofilicidade aumentada e método para minimizar a formação de biofilme em um paciente
GB201117633D0 (en) * 2011-10-12 2011-11-23 Invibio Ltd Polymeric materials
ES2692653T3 (es) 2012-08-21 2018-12-04 Avery Dennison Corporation Sistemas y métodos para fabricar películas, fibras, esferas y otros artículos porosos
CN102973983B (zh) * 2012-12-02 2015-01-07 复旦大学 一种水溶性致孔剂、多孔支架及其制备方法
JP2016511415A (ja) * 2013-03-15 2016-04-14 アイデックス ヘルス アンド サイエンス エルエルシー 改良された生体適合性フィルタ
US9295565B2 (en) 2013-10-18 2016-03-29 Spine Wave, Inc. Method of expanding an intradiscal space and providing an osteoconductive path during expansion
US9504550B2 (en) 2014-06-26 2016-11-29 Vertera, Inc. Porous devices and processes for producing same
US9085665B1 (en) 2014-12-31 2015-07-21 Vertera, Inc. Method for producing porous material
WO2015200896A1 (en) * 2014-06-26 2015-12-30 Vertera, Inc. Porous devices and processes for producing same
US9498922B2 (en) 2014-06-26 2016-11-22 Vertera, Inc. Apparatus and process for producing porous devices
US9517593B2 (en) 2014-06-26 2016-12-13 Vertera, Inc. Apparatus and process for producing porous devices
USD815281S1 (en) 2015-06-23 2018-04-10 Vertera, Inc. Cervical interbody fusion device
EP3187196A1 (en) * 2015-12-29 2017-07-05 Fundacíon Tecnalia Research & Innovation Uhmwpe-type polymer article, process for its production and implantand/or scaffold made thereof
US10251752B2 (en) 2015-12-31 2019-04-09 DePuy Synthes Products, Inc. Modular femoral prosthesis system for hip arthroplasty
CN106178104B (zh) * 2016-08-29 2019-12-10 上海交通大学 一种医用可载药多孔聚醚醚酮及其制造方法和应用
EP3523365B1 (en) * 2016-10-06 2021-04-07 Solvay Specialty Polymers USA, LLC Porous article comprising a polymer and an additive, processes for their preparation and use thereof
CN107961398B (zh) * 2017-11-29 2020-05-26 南宁越洋科技有限公司 可增强骨结合的骨组织工程支架材料人工牙根的制备方法
CA3119549A1 (en) * 2018-11-12 2020-05-22 Groupe Ppd Inc. Porous material and process
CN109432494B (zh) * 2018-11-20 2021-04-23 中国科学院长春应用化学研究所 一种表面具有特殊拓扑形貌的peek微球及其制备方法和应用
EP3937858A1 (en) 2019-03-12 2022-01-19 Happe Spine LLC Implantable medical device with thermoplastic composite body and method for forming thermoplastic composite body
CN110724300B (zh) * 2019-09-24 2021-09-21 西南交通大学 一种在聚醚醚酮支架表面构建多孔结构的方法
US11351034B2 (en) 2019-09-30 2022-06-07 DePuy Synthes Products, Inc. Patient specific femoral prosthesis
US11576787B2 (en) 2019-09-30 2023-02-14 DePuy Synthes Products, Inc. Patient specific femoral prosthesis
CN112941656B (zh) * 2021-02-03 2022-11-15 中山大学 热诱导相分离法制备聚芳醚酮纳米纤维及其衍生物
CN113754918B (zh) * 2021-09-29 2022-11-08 复旦大学 一种表面改性的聚醚醚酮材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320224A (en) 1977-09-07 1982-03-16 Imperial Chemical Industries Limited Thermoplastic aromatic polyetherketones
US4331798A (en) 1979-01-18 1982-05-25 Imperial Chemical Industries Limited Production of aromatic polyethers with infusible particulate substance
EP0407684A1 (en) 1989-07-14 1991-01-16 The Dow Chemical Company Process for the preparation of microporous film or hollow fibre membranes from polyetheretherketones dissolved in high boiling point polar organic solvents
JP2006241363A (ja) 2005-03-04 2006-09-14 Ntn Corp 芳香族ポリエーテルケトン樹脂製多孔体およびその製造方法
WO2007051307A2 (en) 2005-11-04 2007-05-10 Ppd Meditech Porous material and method for fabricating same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819704B1 (es) * 1970-04-13 1973-06-15
GB1486867A (en) * 1976-04-23 1977-09-28 Chloride Group Ltd Porous sheet materials
US20050119742A1 (en) * 2001-06-30 2005-06-02 Richter Paul W. Orbital implant
JP2007512874A (ja) * 2003-11-18 2007-05-24 スパイナル・エレメンツ・インコーポレーテッド 骨伝導性の一体化された脊椎ケージおよびそれを作る方法
US9220595B2 (en) * 2004-06-23 2015-12-29 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof
EP2896411B1 (en) * 2006-06-29 2023-08-30 Orthovita, Inc. Bioactive bone graft substitute
WO2009095960A1 (ja) * 2008-01-28 2009-08-06 Ngk Spark Plug Co., Ltd. 表面発泡体、生体インプラント及びそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320224A (en) 1977-09-07 1982-03-16 Imperial Chemical Industries Limited Thermoplastic aromatic polyetherketones
US4331798A (en) 1979-01-18 1982-05-25 Imperial Chemical Industries Limited Production of aromatic polyethers with infusible particulate substance
EP0407684A1 (en) 1989-07-14 1991-01-16 The Dow Chemical Company Process for the preparation of microporous film or hollow fibre membranes from polyetheretherketones dissolved in high boiling point polar organic solvents
JP2006241363A (ja) 2005-03-04 2006-09-14 Ntn Corp 芳香族ポリエーテルケトン樹脂製多孔体およびその製造方法
WO2007051307A2 (en) 2005-11-04 2007-05-10 Ppd Meditech Porous material and method for fabricating same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAUER TW; SMITH ST: "Bioactive materials in orthopaedic surgery. Overview and regulatory considerations", CLIN ORTHOP, vol. 395, 2002, pages 11 - 22
TAN, K. H. ET AL., BIO-MEDICAL MATERIALS AND ENGINEERING, vol. 15, no. 1,2, 2005, pages 113 - 124

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749300A1 (en) 2012-12-26 2014-07-02 Universidad Del Pais Vasco-Euskal Herriko Unibertsitatea Modified polyaryletherketone polymer (PAEK) and process to obtain it
WO2014102435A2 (es) 2012-12-26 2014-07-03 Universidad Del Pais Vasco/Euskal Herriko Unibertsitatea Polímero de poliariletercetona modificado (paek) y procedimiento para obtenerlo

Also Published As

Publication number Publication date
EP2338532A2 (en) 2011-06-29
WO2011076971A3 (es) 2011-10-06
US20120323339A1 (en) 2012-12-20
EP2338532A3 (en) 2013-03-20
CA2785571A1 (en) 2011-06-30
EP2338532B1 (en) 2018-01-10
ES2664944T3 (es) 2018-04-24

Similar Documents

Publication Publication Date Title
ES2664944T3 (es) Artículo de PEEK poroso como un implante
Wang et al. Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration
ES2291189T3 (es) Procedimiento para la preparacion de armazones polimericos, porosos, biodegradables y biocompatibles para ingenieria tisular.
ES2256273T3 (es) Injerto oseo sintetico poroso y metodo de fabricacion del mismo.
Choudhury et al. Effect of different solvents in solvent casting of porous PLA scaffolds—In biomedical and tissue engineering applications
Zare-Harofteh et al. The effective role of akermanite on the apatite-forming ability of gelatin scaffold as a bone graft substitute
ES2214887T5 (es) Espumas de ceramica.
Ghosh et al. The double porogen approach as a new technique for the fabrication of interconnected poly (L-lactic acid) and starch based biodegradable scaffolds
KR100794174B1 (ko) 하이드록시아파타이트를 함유한 조직공학용 다공성 생분해고분자 지지체 및 이의 제조방법
Salerno et al. Macroporous and nanometre scale fibrous PLA and PLA–HA composite scaffolds fabricated by a bio safe strategy
KR100941374B1 (ko) 생분해성 3중 기공 세라믹-고분자 지지체 및 이의 제조방법
Salerno et al. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation
ES2681726B1 (es) Articulo polimerico poroso de uhmwpe, proceso para su produccion e implante y/o armazon fabricados a partir de los mismos
Refifi et al. Salt leaching using powder (SLUP) process for glass/chitosan scaffold elaboration for biomaterial applications
WO2009101228A1 (es) Estructura híbrida co-continua para la regeneración de defectos óseos
US8277829B2 (en) Nano/macroporous bone tissue scaffolds for regenerative medicine
WO2006082270A1 (es) Nuevo scaffold polimérico 3d para la regeneración de tejidos y su técnica de preparación
Govindaraj et al. Synthesis of morphology tuning multi mineral substituted apatite nanocrystals by novel natural deep eutectic solvents
ES2378044A1 (es) Fabricación de andamios tridimensionales con vidrios mesoporosos bioactivos mediante prototipado rápido.
KR101803179B1 (ko) pH 민감성 3차원 스캐폴드 제조방법 및 이를 이용한 세포배양용 스캐폴드
US20050147686A1 (en) Method for preparing a porous polymer structure
ES2331678B2 (es) Soportes macroporosos tridimensionales para ingenieria tisular.
KR20120045480A (ko) 염침출법을 이용한 세포구조체의 제조 방법
CN116637233A (zh) 一种合成骨修复材料及其制备方法和使用方法
Mortera et al. Drug Delivery from Ordered Mesoporous Matrices for Bone Tissue Engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2785571

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518669

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10818062

Country of ref document: EP

Kind code of ref document: A2