WO2011076028A1 - 一种电动机的永磁转子 - Google Patents
一种电动机的永磁转子 Download PDFInfo
- Publication number
- WO2011076028A1 WO2011076028A1 PCT/CN2010/077259 CN2010077259W WO2011076028A1 WO 2011076028 A1 WO2011076028 A1 WO 2011076028A1 CN 2010077259 W CN2010077259 W CN 2010077259W WO 2011076028 A1 WO2011076028 A1 WO 2011076028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- permanent magnet
- rotor
- electric motor
- motor according
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
- H02K1/2773—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
- H02K1/30—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
Definitions
- the invention relates to a permanent magnet rotor for an electric motor.
- the magnetic tile of the permanent magnet rotor is usually embedded in the inner core of the iron core 1.
- the two ends of the groove 2 are provided with a narrow edge 21 at the outer edge of the rotor, and the magnetic circuit is used to reduce the magnetic saturation.
- Short circuit but can not completely eliminate the magnetic short circuit, and because the narrow side used to overcome the magnetic short circuit is as small as possible, the rotor punching sheet is difficult in the manufacturing process, and the narrow side 21 is easily deformed to cause the slot originally used for inserting the magnetic tile. It is difficult to install the magnetic tile.
- the magnetic tile needs fine grinding to be placed in the slot. If it is too small, it cannot be placed. If there is a gap in the assembly, the magnetic pressure drop is increased, the production process is poor, and the assembly speed is slow. It is difficult to unify and guarantee that the electromagnetic performance is not good.
- the object of the present invention is to provide a permanent magnet rotor for an electric motor, which has a simple structure, good processability, is convenient for production assembly, has low manufacturing cost, good electromagnetic performance, and is structurally strong and not easily deformed.
- a permanent magnet rotor of an electric motor comprising a rotor core and a permanent magnet, wherein the permanent magnet is embedded in the rotor core, the rotor core comprises a central iron core, a plurality of divided iron cores, and the divided iron core and the central iron core are connected into one The connecting mechanism of the integral iron core, the permanent magnet is clamped in the groove formed between the divided iron core and the central iron core.
- the plurality of grooves and permanent magnets described above are radially arranged, and a plurality of grooves are evenly distributed along the circumference of the rotor.
- the central iron core described above comprises an annular center seat and a plurality of fixed iron core blocks extending from the annular center seat, a cavity is formed between the adjacent two fixed iron core blocks, and the divided iron core is embedded in the cavity.
- a groove for mounting a permanent magnet is formed between the split core and the fixed core block.
- the split core and the fixed core block described above are fan-shaped structures, the N-pole surface or the S-pole of the permanent magnet
- the surface is a planar structure.
- Both ends of the groove described above are slits, so that the N pole and the S pole of the permanent magnet embedded in the groove are completely separated.
- the central core described above is a magnetic pole, and all of the divided cores are opposite magnetic poles.
- the magnetic polarity of the divided iron core and the fixed iron core block described above are arranged in a phase between the S poles, and the N pole or the S pole surface of the permanent magnet is attached to the side of the split iron core or the fixed iron core block.
- a hole is provided in the annular center seat described above.
- the connecting mechanism described above includes end rings installed at both ends of the rotor core, and the through holes are arranged at corresponding positions on the end rings and the split cores, and the rivets are connected through the through holes to connect the end rings, the split cores and the center core.
- the rotating shaft and the annular center seat are connected together by a damper device, and the damper device comprises a pin and a damper ring, an outer core of the outer sleeve outside the rotating shaft, and the inner iron core is nested in the annular center seat
- the damper device comprises a pin and a damper ring, an outer core of the outer sleeve outside the rotating shaft, and the inner iron core is nested in the annular center seat
- a gap is formed between the inner iron core and the center seat, and a plurality of pits are formed in the outer surface of the inner core and the inner wall of the hole, and the shock absorbing ring is nested in the gap and the pit, and the shock absorption inside the pit
- the hole is opened and the pin is nested inside the hole.
- the two ends of the permanent magnet described above are respectively provided with steps and bumps.
- a permanent magnet rotor of an electric motor comprising a rotor core and a permanent magnet, wherein the permanent magnet is embedded in the rotor core, the rotor core comprises a central iron core, a plurality of divided iron cores, and the divided iron core and the central iron core are connected into one
- the connecting mechanism of the integral iron core, the central iron core comprises an annular central seat and a plurality of fixed iron core blocks protruding from the annular central seat, a cavity is formed between the adjacent two fixed iron core blocks, and the divided iron core is embedded in the air Inside the cavity, a groove for mounting a permanent magnet is formed between the split core and the fixed core block, and the permanent magnet is nested inside the groove.
- the connecting mechanism described above includes end rings installed at both ends of the rotor core, and the through holes are arranged at corresponding positions on the end rings and the split cores, and the rivets are connected through the through holes to connect the end rings, the split cores and the center core.
- Both ends of the groove described above are slits, so that the N pole and the S pole of the permanent magnet embedded in the groove are completely separated.
- the magnetic poles on both sides of the same split core described above have the same magnetic polarity, that is, N poles at the same time or S poles at the same time, and the permanent magnets on both sides of the same fixed iron core block have the same magnetic polarity, that is, N poles at the same time or Same
- the time is S pole
- the magnetic polarities formed by all the divided iron cores are the same, and the magnetic polarities of the split iron core and the fixed iron core block are arranged at the N and S poles.
- the invention has the following advantages:
- the rotor core comprises a central iron core, a plurality of divided iron cores, and a connecting mechanism connecting the split iron core and the central iron core into a single iron core, and the permanent magnets are clamped between the split iron core and the central iron core.
- the structure is simple, the process is good, the production and assembly are convenient, and the manufacturing cost is low.
- a number of grooves and permanent magnets are radially arranged, and several grooves are evenly distributed along the circumference of the rotor.
- the structure is firm and not easily deformed, and the electromagnetic performance is better.
- the two ends of the groove are slits, so that the permanent magnets embedded in the grooves are The N pole is completely separated from the S pole, and there is no magnetic short circuit phenomenon, which improves the utilization rate of the magnet and further improves the electromagnetic performance.
- the center iron core in the rotor core is the same pole in the whole magnetic circuit. All the separated iron cores are opposite poles, the structure is simple, the layout is reasonable, the processing is easy, the production process is good, and the operation is reliable.
- the height of the outer edge of the core can be changed to form the desired magnetic field waveform.
- the radial layout of the permanent magnets, the induced magnetic field generated by the stator windings is closed by the iron core, and the magnetic resistance is reduced without passing through the permanent magnets.
- the structure can also increase the torque. This way of embedding permanent magnets avoids the conventional use of short-circuited narrow sides and improves electromagnetic performance.
- the connecting mechanism comprises an end ring installed at both ends of the rotor core, and a through hole is arranged at a corresponding position on the end ring and the split iron core, and the rivet connects the end ring, the split iron core and the center iron core through the through hole.
- the structure is simple, the whole body is strong, the structure is firm and not easy to be deformed, and the entire rotor portion is not too weak, and the reliability is improved.
- the annular center seat of the rotating shaft and the center iron core is connected by a shock absorbing device, and the shock absorbing device comprises a pin and a shock absorbing ring, which effectively reduces vibration and makes the rotor run smoothly.
- FIG. 1 is a schematic structural view of a permanent magnet rotor of a conventional motor
- Fig. 2 is a front elevational view showing the first embodiment of the present invention.
- Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
- Figure 4 is a perspective view of the first embodiment of the present invention with the end ring removed;
- Figure 5 is an orthographic view of Figure 4;
- Figure 6 is a schematic view showing the structure of Figure 5 after removing the permanent magnet
- Figure 7 is an enlarged view of B-B of Figure 6;
- Figure 8 is a schematic view showing the assembly of a split core and a center core of the first embodiment of the present invention.
- Figure 9 is a perspective view of a first embodiment of the present invention.
- Figure 10 is a cross-sectional view showing a second embodiment of the present invention.
- Figure 11 is a perspective view showing the second embodiment of the present invention with the components such as the anti-vibration apron and the pin removed. detailed description:
- a permanent magnet rotor of an electric motor includes a rotor core and a permanent magnet 3, and the permanent magnet 3 is embedded in a rotor core, and the rotor core includes a center core 1.
- a plurality of grooves 18 and permanent magnets 3 are radially arranged, and a plurality of grooves 18 are evenly distributed along the circumference of the rotor.
- the center iron core 1 includes an annular center seat 11 and a plurality of fixed iron core blocks 12 projecting from the annular center base 11, a cavity 13 is formed between the adjacent two fixed iron core blocks 12, and the divided iron core 2 is embedded in the air.
- a recess 18 for mounting the permanent magnet 3 is formed between the split core 2 and the fixed core block 12.
- the split core 2 and the fixed core block 12 are sector-shaped structures, and the N-pole surface or the S-pole surface of the permanent magnet 3 is a planar structure. Both ends of the groove 18 are slits 14, 15, so that the N pole and the S pole of the permanent magnet 3 embedded in the groove 18 are completely separated.
- the entire center core 1 is a magnetic pole, and all of the divided cores 2 are opposite magnetic poles.
- the magnetic polarities of the split core 2 and the fixed core block 12 are arranged in phase between the N and S poles, and the N pole or S pole surface of the permanent magnet 3 is attached to the side of the split core 2 or the fixed core block 12.
- a hole 16 is provided in the annular center seat 11.
- the connecting mechanism includes an end ring 4 installed at both ends of the rotor core, and a through hole 21 is disposed at a corresponding position on the end ring 4 and the divided iron core 2, and the rivet 5 passes through the through hole 21 to end the end ring 4, the divided iron core 2 and the center iron The cores 1 are connected.
- the rotating shaft 6 is directly fitted over the hole 16 in the annular center seat 11.
- this embodiment is an improvement of Embodiment 1, mainly for adding a damper device, and the rotating shaft 6 and the annular center seat 11 are connected by a damper device, and the damper is shocked.
- the device comprises a pin 8 and a damper ring 9, an outer core 7 on the outside of the shaft 6, the inner core 7 is nested in the hole 16 of the annular center seat 11, and a gap is formed between the inner core 7 and the center seat 11.
- the outer surface of the inner core 7 and the inner wall of the hole 16 are correspondingly opened with a plurality of dimples 101, and the damper ring 9 is nested inside the gap 10 and the dimple 101, and the damper ring 9 inside the dimple 101 is provided with a hole.
- the pin 8 is nested inside the hole.
- the structural principle of the present invention is:
- the rotor core comprises a central core 1, a plurality of divided cores 2, and a connecting mechanism for connecting the divided iron core 2 and the central iron core 1 into a single iron core, and the permanent magnet 3 is clamped to the divided iron
- the inside of the groove 18 formed between the core 2 and the central core 1 has a simple structure, good processability, convenient production and assembly, low manufacturing cost, radial arrangement of the groove 18 and the permanent magnet 3, and a plurality of grooves 18 along the circumference of the rotor Evenly distributed, the structure is firm and not easy to deform, and the electromagnetic performance is better.
- the two ends of the groove 18 are slits, so that the N pole and the S pole of the permanent magnet 3 embedded in the groove 18 are completely separated, and the magnetic non-short circuit is completely eliminated, thereby improving the utilization of the magnet.
- the rate further enhances the electromagnetic performance.
- the center iron core 1 in the rotor core is the same pole in the whole magnetic circuit, and all the separated block irons 2 are opposite poles, the structure is simple, the layout is reasonable, the processing is easy, the production process is good, and the operation is reliable.
- the height of the outer edge of the core can be changed to form the desired magnetic field waveform.
- the connecting mechanism includes an end ring 4 mounted at both ends of the rotor core, and the rivet 5 passes through the through hole to connect the end ring 4, the divided core 2 and the center core 1.
- the structure is simple, the integrity is strong, the structure is firm and not easily deformed, and the entire rotor portion is not too weak, and the reliability is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Description
一种电动机的永磁转子 技术领域 :
本发明涉及一种电动机的永磁转子。
背景技术 :
如图 1所示, 永磁转子的磁瓦内嵌通常采用的是在铁芯 1内部开槽 2, 槽 2 两端与转子外缘设置很窄的边 21, 通过磁路饱和来减小磁短路, 但不能完全消 除磁短路, 且由于用于克服磁短路采用的窄边越小越好, 转子冲片在制作工艺 上困难, 且窄边 21易变形导致原本用于插入磁瓦的狭槽安装磁瓦时放入困难, 另外, 磁瓦需要精磨才能放入狭槽内, 过小不能放入, 过大会有间隙, 增大磁 压降, 生产工艺差, 这样装配速度慢, 产品质量难以统一和保证, 电磁性能不 好。
发明内容 :
本发明的目的是提供一种电动机的永磁转子, 结构简单, 工艺性好便于生 产装配, 制造成本较低、 电磁性能好, 结构牢固不易变形。
本发明的目的是通过下述技术方案予以实现的。
一种电动机的永磁转子, 包括转子铁芯和永磁体, 永磁体嵌入安装在转子 铁芯里面, 转子铁芯包括中心铁芯、 若干分铁芯和将分铁芯与中心铁芯连接成 一个整体铁芯的连接机构, 永磁体夹装在分铁芯与中心铁芯之间形成的凹槽里 面。
上述所述的若干个凹槽和永磁体径向布局, 若干个凹槽沿转子圆周均匀分 布。
上述所述的中心铁芯包括环状中心座和从环状中心座伸出若干个固定铁芯 块, 在相邻两固定铁芯块之间形成空腔, 分铁芯嵌入到空腔里面, 分铁芯与固 定铁芯块之间形成安装永磁体的凹槽。
上述所述的分铁芯和固定铁芯块是扇形结构, 永磁体的 N极表面或者 S极
表面是平面结构。
上述所述的凹槽的两端是缝隙, 使嵌入到凹槽的永磁体的 N极与 S极完全 分离。
上述所述的中心铁芯的为一个磁极, 所有分铁芯为相反磁极。
上述所述的分铁芯与固定铁芯块的磁极性按^ S极相间布局, 永磁体的 N 极或者 S极表面贴在分铁芯或固定铁芯块的侧面。
上述所述的环状中心座里面设置孔。
上述所述的连接机构包括安装在转子铁芯两端的端环, 端环和分铁芯上对 应的位置设置通孔, 铆钉穿过通孔将端环、 分铁芯和中心铁芯连接起来。
上述所述的转轴与环状中心座通过减震装置连接在一起, 所述的减震装置 包括销钉和减震圈, 转轴外面的外套装内铁芯, 内铁芯嵌套在环状中心座的孔 内, 内铁芯与中心座之间形成空隙, 内铁芯外表面和孔内壁对应位置开有若干 凹坑, 减震圈嵌套在空隙和凹坑里面, 在凹坑里面的减震圈开有孔, 销钉嵌套 在孔里面。
上述所述的永磁体的两端分别设置台阶和凸块。
一种电动机的永磁转子, 包括转子铁芯和永磁体, 永磁体嵌入安装在转子铁 芯里面, 转子铁芯包括中心铁芯、 若干分铁芯和将分铁芯与中心铁芯连接成一 个整体铁芯的连接机构, 中心铁芯包括环状中心座和从环状中心座伸出若干个 固定铁芯块, 在相邻两固定铁芯块之间形成空腔, 分铁芯嵌入到空腔里面, 分 铁芯与固定铁芯块之间形成安装永磁体的凹槽, 永磁体嵌套在凹槽里面。
上述所述的连接机构包括安装在转子铁芯两端的端环, 端环和分铁芯上对 应的位置设置通孔, 铆钉穿过通孔将端环、 分铁芯和中心铁芯连接起来。
上述所述的凹槽的两端是缝隙, 使嵌入到凹槽的永磁体的 N极与 S极完全 分离。
上述所述的同一分铁芯两侧的永磁体的磁极性相同, 即同时为 N极或者同 时为 S极, 同一固定铁芯块两侧的永磁体的磁极性相同, 即同时为 N极或者同
时为 S极, 所有分铁芯形成的磁极性相同, 分铁芯与固定铁芯块的磁极性按 N、 S极相间布局。
本发明与现有技术相比具有如下优点:
1 . 转子铁芯包括中心铁芯、 若干分铁芯和将分铁芯与中心铁芯连接成一个整体 铁芯的连接机构, 永磁体夹装在分铁芯与中心铁芯之间形成的凹槽里面, 结 构简单, 工艺性好便于生产装配, 制造成本较低。
2. 若干个凹槽和永磁体径向布局, 若干个凹槽沿转子圆周均匀分布, 结构牢固 不易变形, 电磁性能更佳, 凹槽的两端是缝隙, 使嵌入到凹槽的永磁体的 N 极与 S极完全分离, 完全无磁短路现象, 提高磁体利用率, 进一步提升了电 磁性能。
3.转子铁芯中有中心铁芯在整个磁路中同为一个极, 所有分离的分铁芯为相反 的极, 结构简单, 布局合理, 加工容易, 生产工艺性好, 运转可靠。 铁芯外 缘高度可通过改变形状来形成所需要的磁场波形。
4、 永磁体径向布局, 定子绕组产生的感应磁场通过铁芯闭合, 不经过永磁体, 减小一部分磁阻, 另外这种结构也可增大转矩。 这种内嵌永磁体的方式避免 了常规采用短路窄边, 提高电磁性能。
5、 连接机构包括安装在转子铁芯两端的端环, 端环和分铁芯上对应的位置设 置通孔, 铆钉穿过通孔将端环、 分铁芯和中心铁芯连接起来。 结构简单, 整 体性强, 结构牢固不易变形, 整个转子部分没有太脆弱的部位, 可靠性提高。
6、 转轴与中心铁芯的环状中心座通过减震装置连接在一起, 所述的减震装置包 括销钉和减震圈, 有效减少振动, 使转子自运转平稳。
附图说明:
图 1 是传统电动机的永磁转子的结构示意图;
图 2是本发明的第一种实施结构的主视图。
图 3是图 2的 A-A剖视图。
图 4是本发明的第一种实施结构拆去端环后的立体图;
图 5是图 4的正投影视图;
图 6是图 5拆去永磁体后的结构示意图;
图 7是图 6的 B-B放大图;
图 8是本发明的第一种实施结构分铁芯与中心铁芯装配示意图;
图 9是本发明的第一种实施结构的立体图;
图 10是本发明的第二种实施结构的剖视图;
图 11是本发明的第二种实施结构拆开防震胶圈和销钉等零件后的立体图。 具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一: 如图 2至图 9所示, 一种电动机的永磁转子, 包括转子铁芯和 永磁体 3, 永磁体 3嵌入安装在转子铁芯里面, 转子铁芯包括中心铁芯 1、 若干 分铁芯 2和将分铁芯 2与中心铁芯 1连接成一个整体铁芯的连接机构,永磁体 3 夹装在分铁芯 2与中心铁芯 1之间形成的凹槽 18里面。 若干个凹槽 18和永磁 体 3径向布局, 若干个凹槽 18沿转子圆周均匀分布。 中心铁芯 1包括环状中心 座 11和从环状中心座 11伸出若干个固定铁芯块 12, 在相邻两固定铁芯块 12之 间形成空腔 13, 分铁芯 2嵌入到空腔 13里面, 分铁芯 2与固定铁芯块 12之间 形成安装永磁体 3的凹槽 18。 分铁芯 2和固定铁芯块 12是扇形结构, 永磁体 3 的 N极表面或者 S极表面是平面结构。 凹槽 18的两端是缝隙 14、 15, 使嵌入到 凹槽 18的永磁体 3的 N极与 S极完全分离。 整个中心铁芯 1的为一个磁极, 所 有分铁芯 2为相反磁极。 分铁芯 2与固定铁芯块 12的磁极性按 N、 S极相间布 局, 永磁体 3的 N极或者 S极表面贴在分铁芯 2或固定铁芯块 12的侧面。 环状 中心座 11里面设置孔 16。 连接机构包括安装在转子铁芯两端的端环 4, 端环 4 和分铁芯 2上对应的位置设置通孔 21, 铆钉 5穿过通孔 21将端环 4、 分铁芯 2 和中心铁芯 1连接起来。 转轴 6直接套装在环状中心座 11里面设置孔 16上。 永磁体 3的两端分别设置台阶 17和凸块 22、 121,对永磁体 3的径向移动进行限
实施例二、 如图 10、 图 11, 本实施例是对实施例 1的改进, 主要是增加 减震装置, 转轴 6与环状中心座 11通过减震装置连接在一起, 所述的减震装置 包括销钉 8和减震圈 9, 转轴 6外面的外套装内铁芯 7, 内铁芯 7嵌套在环状中 心座 11的孔 16内, 内铁芯 7与中心座 11之间形成空隙 10, 内铁芯 7外表面和 孔 16内壁对应位置开有若干凹坑 101,减震圈 9嵌套在空隙 10和凹坑 101里面, 在凹坑 101里面的减震圈 9开有孔, 销钉 8嵌套在孔里面。 通过转轴与定子铁 芯之间的减震装置可有效减少振动, 使转子自运转平稳。
本发明的结构原理是: 转子铁芯包括中心铁芯 1、 若干分铁芯 2和将分铁 芯 2与中心铁芯 1连接成一个整体铁芯的连接机构, 永磁体 3夹装在分铁芯 2 与中心铁芯 1之间形成的凹槽 18里面, 结构简单, 工艺性好便于生产装配, 制 造成本较低, 凹槽 18和永磁体 3径向布局, 若干个凹槽 18沿转子圆周均匀分 布, 结构牢固不易变形, 电磁性能更佳, 凹槽 18的两端是缝隙, 使嵌入到凹槽 18的永磁体 3的 N极与 S极完全分离, 完全无磁短路现象, 提高磁体利用率, 进一步提升了电磁性能。 转子铁芯中有中心铁芯 1 在整个磁路中同为一个极, 所有分离的分块铁 2 为相反的极, 结构简单, 布局合理, 加工容易, 生产工艺 性好, 运转可靠。 铁芯外缘高度可通过改变形状来形成所需要的磁场波形。 连 接机构包括安装在转子铁芯两端的端环 4, 铆钉 5穿过通孔将端环 4、 分铁芯 2 和中心铁芯 1 连接起来。 结构简单, 整体性强, 结构牢固不易变形, 整个转子 部分没有太脆弱的部位, 可靠性提高。
Claims
1、 一种电动机的永磁转子, 包括转子铁芯和永磁体 (3), 永磁体 (3) 嵌 入安装在转子铁芯里面, 其特征在于: 转子铁芯包括中心铁芯 (1)、 若干分铁 芯 (2) 和将分铁芯 (2) 与中心铁芯 (1) 连接成一个整体铁芯的连接机构, 永 磁体 (3) 夹装在分铁芯 (2) 与中心铁芯 (1) 之间形成的凹槽 (18) 里面。
2、 根据权利要求 1所述的一种电动机的永磁转子, 其特征在于: 若干个凹 槽 (18) 和永磁体 (3) 径向布局, 若干个凹槽 (18) 沿转子圆周均匀分布。
3、 根据权利要求 1或 2所述的一种电动机的永磁转子, 其特征在于: 中心 铁芯 (1) 包括环状中心座 (11) 和从环状中心座 (11) 伸出若干个固定铁芯块
(12) , 在相邻两固定铁芯块 (12) 之间形成空腔 (13), 分铁芯 (2) 嵌入到 空腔 (13) 里面, 分铁芯 (2) 与固定铁芯块 (12) 之间形成安装永磁体 (3) 的凹槽 (18)。
4、 根据权利要求 3所述的一种电动机的永磁转子,其特征在于:分铁芯(2) 和固定铁芯块 (12) 是扇形结构, 永磁体 (3) 的 N极表面或者 S极表面是平面
5、 根据权利要求 3所述的一种电动机的永磁转子, 其特征在于: 凹槽(18) 的两端是缝隙(14、 15), 使嵌入到凹槽 (18) 的永磁体 (3) 的 N极与 S极完全 分离。
6、 根据权利要求 3所述的一种电动机的永磁转子, 其特征在于: 中心铁芯
(1) 的为一个磁极, 所有分铁芯 (2) 为相反磁极。
7、 根据权利要求 6所述的一种电动机的永磁转子,其特征在于:分铁芯(2) 与固定铁芯块 (12) 的磁极性按 N、 S极相间布局, 永磁体 (3) 的 N极或者 S 极表面贴在分铁芯 (2) 或固定铁芯块 (12) 的侧面。
8、 根据权利要求 6所述的一种电动机的永磁转子, 其特征在于: 环状中心 座 (11) 里面设置孔 (16)。
9、 根据权利要求 5所述的一种电动机的永磁转子, 其特征在于: 连接机构 包括安装在转子铁芯两端的端环 (4), 端环 (4) 和分铁芯 (2) 上对应的位置 设置通孔 (21), 铆钉 (5) 穿过通孔 (21) 将端环 (4)、 分铁芯 (2) 和中心铁 芯 (1) 连接起来。
10、 根据权利要求 3所述的一种电动机的永磁转子, 其特征在于: 永磁体
(3) 的两端分别设置台阶 (17) 和凸块 (22、 121)。
11、 根据权利要求 3所述的一种电动机的永磁转子, 其特征在于: 转轴(6) 与环状中心座 (11) 通过减震装置连接在一起, 所述的减震装置包括销钉 (8) 和减震圈 (9), 转轴 (6) 外面的外套装内铁芯 (7), 内铁芯 (7) 嵌套在环状 中心座(11)的孔(16)内, 内铁芯(7)与中心座(11)之间形成空隙(10), ·内 铁芯 (7) 外表面和孔 (16) 内壁对应位置开有若干凹坑 (101), 减震圈 (9) 嵌套在空隙 (10) 和凹坑 (101) 里面, 在凹坑 (101) 里面的减震圈 (9) 开有 孔, 销钉 (8) 嵌套在孔里面。
12、 一种电动机的永磁转子, 包括转子铁芯和永磁体 (3), 永磁体 (3) 嵌 入安装在转子铁芯里面, 其特征在于: 转子铁芯包括中心铁芯 (1)、 若干分铁 芯 (2) 和将分铁芯 (2) 与中心铁芯 (1) 连接成一个整体铁芯的连接机构, 中 心铁芯 (1) 包括环状中心座 (11) 和从环状中心座 (11) 伸出若干个固定铁芯 块 (12) , 在相邻两固定铁芯块 (12) 之间形成空腔 (13), 分铁芯 (2) 嵌入 到空腔 (13) 里面, 分铁芯 (2) 与固定铁芯块 (12) 之间形成安装永磁体 (3) 的凹槽 (18), 永磁体 (3) 嵌套在凹槽 (18) 里面。
13、 根据权利要求 12所述的一种电动机的永磁转子, 其特征在于: 连接机 构包括安装在转子铁芯两端的端环 (4), 端环 (4) 和分铁芯 (2) 上对应的位 置设置通孔 (21), 铆钉 (5) 穿过通孔 (21) 将端环 (4)、 分铁芯 (2) 和中心 铁芯 (1) 连接起来。
14、 根据权利要求 12所述的一种电动机的永磁转子,其特征在于:凹槽(18) 的两端是缝隙(14、 15), 使嵌入到凹槽 (18) 的永磁体 (3) 的 N极与 S极完全 分离。
15、 根据权利要求 12或 13所述的一种电动机的永磁转子, 其特征在于: 同一分铁芯(2)两侧的永磁体(3) 的磁极性相同, 即同时为 N极或者同时为 极, 同一固定铁芯块 (12) 两侧的永磁体 (3) 的磁极性相同, 即同时为 N极 ΐ 者同时为 S极, 所有分铁芯 (2) 形成的磁极性相同, 分铁芯 (2) 与固定铁 块 (12) 的磁极性按 N、 S极相间布局。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/406,516 US8633630B2 (en) | 2009-12-25 | 2012-02-27 | Permanent magnet rotor of motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910214416.2 | 2009-12-25 | ||
CN200910214416.2A CN102111025B (zh) | 2009-12-25 | 2009-12-25 | 一种电动机的永磁转子 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/406,516 Continuation US8633630B2 (en) | 2009-12-25 | 2012-02-27 | Permanent magnet rotor of motor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011076028A1 true WO2011076028A1 (zh) | 2011-06-30 |
Family
ID=44175088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/077259 WO2011076028A1 (zh) | 2009-12-25 | 2010-09-25 | 一种电动机的永磁转子 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8633630B2 (zh) |
CN (1) | CN102111025B (zh) |
WO (1) | WO2011076028A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9099905B2 (en) | 2012-10-15 | 2015-08-04 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
US9246364B2 (en) | 2012-10-15 | 2016-01-26 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
US9362792B2 (en) | 2012-10-15 | 2016-06-07 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor having magnet retention features and methods thereof |
US9831727B2 (en) | 2012-10-15 | 2017-11-28 | Regal Beloit America, Inc. | Permanent magnet rotor and methods thereof |
US9882440B2 (en) | 2012-10-15 | 2018-01-30 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102364844B (zh) * | 2011-10-27 | 2013-08-28 | 华瑞科学仪器(上海)有限公司 | 聚磁盘式发电机 |
CN102412644B (zh) * | 2011-11-21 | 2015-10-07 | 沈阳工业大学 | 一种永磁电机用转子磁极结构 |
KR101310489B1 (ko) * | 2012-02-10 | 2013-09-24 | 삼성전기주식회사 | 전동기용 로터 조립체 및 이의 제작방법 |
CN105179289B (zh) * | 2012-05-31 | 2017-03-22 | 中山大洋电机股份有限公司 | 一种变速风机系统的控制方法 |
CN103855824B (zh) * | 2012-11-30 | 2016-06-22 | 中山大洋电机股份有限公司 | 一种电机转子组件 |
WO2014082839A2 (en) | 2012-11-30 | 2014-06-05 | Arcelik Anonim Sirketi | A spoke permanent magnet rotor |
US10177616B2 (en) | 2012-11-30 | 2019-01-08 | Arcelik Anonim Sirketi | Spoke permanent magnet rotor |
WO2014082837A2 (en) | 2012-11-30 | 2014-06-05 | Arcelik Anonim Sirketi | A spoke permanent magnet rotor |
JP6417665B2 (ja) * | 2013-03-21 | 2018-11-07 | 株式会社ジェイテクト | 磁石埋込型ロータ、磁石埋込型ロータの製造方法、及び配向着磁装置 |
FR3018009B1 (fr) * | 2014-02-27 | 2017-10-20 | Moteurs Leroy-Somer | Rotor de machine electrique tournante |
DE102014212807A1 (de) * | 2014-07-02 | 2016-02-04 | Continental Automotive Gmbh | Verfahren zur Herstellung eines Rotors für einen permanenterregten Synchronmotor |
US20160056676A1 (en) * | 2014-08-25 | 2016-02-25 | GM Global Technology Operations LLC | Partially segmented wound rotor assembly for high copper fill and method |
CN105863566A (zh) * | 2015-01-23 | 2016-08-17 | 宁波天安磁性传动科技有限公司 | 永磁复合电机直驱游梁式抽油机 |
JP6476385B2 (ja) * | 2015-05-25 | 2019-03-06 | 多摩川精機株式会社 | レゾルバロータ位置決め構造及び方法 |
DE102016208692A1 (de) * | 2016-05-20 | 2017-11-23 | Zf Friedrichshafen Ag | Rotor einer elektrischen Maschine mit einem Blechpaket |
US9936440B2 (en) | 2016-07-12 | 2018-04-03 | Coco Communications Corp. | Systems and methods for automatic transmission rate control in a vehicle-based wireless network |
TWI605667B (zh) * | 2016-09-01 | 2017-11-11 | 建準電機工業股份有限公司 | 內轉子馬達及其轉子 |
WO2021253767A1 (zh) * | 2020-06-16 | 2021-12-23 | 广东威灵电机制造有限公司 | 转子组件和具有它的电机 |
CN111969747A (zh) * | 2020-09-28 | 2020-11-20 | 珠海格力电器股份有限公司 | 转子结构及具有其的电机 |
CN112072816B (zh) * | 2020-09-28 | 2022-03-15 | 珠海格力电器股份有限公司 | 转子结构及具有其的电机 |
CN112615446A (zh) * | 2020-11-18 | 2021-04-06 | 广东威灵电机制造有限公司 | 转子冲片、转子组件和电机 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002369425A (ja) * | 2001-06-12 | 2002-12-20 | Nishishiba Electric Co Ltd | 永久磁石回転子 |
CN2852499Y (zh) * | 2005-10-13 | 2006-12-27 | 中山大洋电机股份有限公司 | 一种电机的转子与转轴的径向连接装置 |
CN101092225A (zh) * | 2006-04-24 | 2007-12-26 | 因温特奥股份公司 | 电梯牵引驱动装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5959054A (ja) * | 1982-09-27 | 1984-04-04 | Fanuc Ltd | 永久磁石界磁回転子構造 |
JPS59230454A (ja) * | 1983-06-10 | 1984-12-25 | Fanuc Ltd | 永久磁石界磁回転子の製造方法 |
JPS6464548A (en) * | 1987-09-03 | 1989-03-10 | Fanuc Ltd | Rotor construction of synchronous motor |
JPH0332333A (ja) * | 1989-06-26 | 1991-02-12 | Fanuc Ltd | ラジアルタイプのロータ構造 |
FR2655784B1 (fr) * | 1989-12-08 | 1992-01-24 | Alsthom Gec | Moteur a aimants a concentration de flux. |
JP2795576B2 (ja) * | 1992-02-28 | 1998-09-10 | ファナック株式会社 | 同期電動機のロータ |
JP3224890B2 (ja) * | 1993-02-15 | 2001-11-05 | ファナック株式会社 | 同期電動機のロータ |
JP2930556B2 (ja) * | 1997-01-16 | 1999-08-03 | ファナック株式会社 | 同期電動機の機種拡張方法及び該拡張方法により製造される同期電動機 |
-
2009
- 2009-12-25 CN CN200910214416.2A patent/CN102111025B/zh active Active
-
2010
- 2010-09-25 WO PCT/CN2010/077259 patent/WO2011076028A1/zh active Application Filing
-
2012
- 2012-02-27 US US13/406,516 patent/US8633630B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002369425A (ja) * | 2001-06-12 | 2002-12-20 | Nishishiba Electric Co Ltd | 永久磁石回転子 |
CN2852499Y (zh) * | 2005-10-13 | 2006-12-27 | 中山大洋电机股份有限公司 | 一种电机的转子与转轴的径向连接装置 |
CN101092225A (zh) * | 2006-04-24 | 2007-12-26 | 因温特奥股份公司 | 电梯牵引驱动装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9099905B2 (en) | 2012-10-15 | 2015-08-04 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
US9246364B2 (en) | 2012-10-15 | 2016-01-26 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
US9362792B2 (en) | 2012-10-15 | 2016-06-07 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor having magnet retention features and methods thereof |
US9831727B2 (en) | 2012-10-15 | 2017-11-28 | Regal Beloit America, Inc. | Permanent magnet rotor and methods thereof |
US9882440B2 (en) | 2012-10-15 | 2018-01-30 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
US9923423B2 (en) | 2012-10-15 | 2018-03-20 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
US10608488B2 (en) | 2012-10-15 | 2020-03-31 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
US11277045B2 (en) | 2012-10-15 | 2022-03-15 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
Also Published As
Publication number | Publication date |
---|---|
US8633630B2 (en) | 2014-01-21 |
CN102111025A (zh) | 2011-06-29 |
CN102111025B (zh) | 2013-03-27 |
US20120181895A1 (en) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011076028A1 (zh) | 一种电动机的永磁转子 | |
CN105281456B (zh) | 旋转电机的转子 | |
KR100624381B1 (ko) | 영구자석 매립형 전동기의 회전자와 그 제조방법 | |
CN102570659B (zh) | 旋转电机的转子 | |
CN103997144A (zh) | 旋转电机的转子 | |
JP2010236453A (ja) | 電動機ロータ | |
CN206575252U (zh) | 无刷电机的转子及无刷电机 | |
CN204481659U (zh) | 马达 | |
CN103795166B (zh) | 转子和具有该转子的旋转电机 | |
JP5340904B2 (ja) | 永久磁石を用いた電気モーター用回転子 | |
JP5342593B2 (ja) | 回転子、磁石モータおよび洗濯機 | |
CN105703508A (zh) | 一种磁钢内置式的盘式电机转子 | |
JP2006157995A (ja) | 永久磁石形モータ及び洗濯機 | |
US20170155294A1 (en) | Interior permanent magnet motor with flux strengthening | |
CN101594014A (zh) | 电动机 | |
JP5954279B2 (ja) | 回転電機 | |
CN100385773C (zh) | 凸极转子电机的圆柱凸极复合型转子 | |
WO2015051571A1 (zh) | 一种直流无刷电机磁路结构及其永磁体内嵌式转子 | |
CN208835853U (zh) | 电机转子和永磁电机 | |
JP2013009541A (ja) | 磁石モータ及び磁石モータを備えたドラム式洗濯機 | |
JP5852418B2 (ja) | ロータ及びモータ | |
JP2014212599A (ja) | 誘導同期電動機 | |
JP2006157996A (ja) | 永久磁石形モータ及び洗濯機 | |
KR102390035B1 (ko) | 자속 집중형 모터 | |
JP2003235229A (ja) | モールドモータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10838591 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10838591 Country of ref document: EP Kind code of ref document: A1 |