WO2011075873A1 - 胰腺癌标记物及其检测方法、试剂盒和生物芯片 - Google Patents

胰腺癌标记物及其检测方法、试剂盒和生物芯片 Download PDF

Info

Publication number
WO2011075873A1
WO2011075873A1 PCT/CN2009/001547 CN2009001547W WO2011075873A1 WO 2011075873 A1 WO2011075873 A1 WO 2011075873A1 CN 2009001547 W CN2009001547 W CN 2009001547W WO 2011075873 A1 WO2011075873 A1 WO 2011075873A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir
seq
serum
plasma
pancreatic cancer
Prior art date
Application number
PCT/CN2009/001547
Other languages
English (en)
French (fr)
Inventor
张辰宇
刘锐
王成
巴一
张春妮
曾科
Original Assignee
北京命码生科科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京命码生科科技有限公司 filed Critical 北京命码生科科技有限公司
Priority to DK16188494.5T priority Critical patent/DK3150721T3/da
Priority to EP16188494.5A priority patent/EP3150721B1/en
Priority to PCT/CN2009/001547 priority patent/WO2011075873A1/zh
Priority to US13/518,801 priority patent/US9637793B2/en
Priority to EP09852423.4A priority patent/EP2518158B1/en
Publication of WO2011075873A1 publication Critical patent/WO2011075873A1/zh
Priority to IL220619A priority patent/IL220619A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention is in the field of biotechnology and relates to the separation, qualitative and quantitative analysis of microRNA molecules in human serum/plasma, as well as various clinical indications for pancreatic cancer. Specifically, the present invention relates to a method for detecting micro-d and ribonucleic acid in serum/plasma of a patient with pancreatic cancer, and in vitro diagnosis of pancreatic cancer and chronic pancreatitis by detecting changes in microRNA in serum/plasma of pancreatic cancer patients
  • the pathogenesis of pancreatic cancer predicts the incidence of pancreatic cancer complications and the risk of pancreatic cancer recurrence, as well as the prognosis of pancreatic cancer, and analyzes the efficacy and efficacy. Background technique
  • Pancreatic cancer is a tumor with a very high mortality rate ( ⁇ 99.9%, diagnosed). Incidence in the United States: 32,180 new cases were estimated in 2005, accounting for 2% of all new cancers; US mortality: 31,800 estimated deaths in 1 year in 2005, respectively, 4th and 5th, respectively, for all cancer-related causes of death in men and women Position, accounting for 5%-6% of all cancer deaths. EU incidence rate: In 2005, an estimated 55,100 new cases were reported. EU mortality rate: In 2003, there were 59,300 estimated deaths. The difference was not obvious among different genders and races. Generally, the patient's prognosis was poor. The statistics on the incidence and mortality of pancreatic cancer in the world in 2002 are shown in Table 1. The number of cases refers to the number of people with pancreatic cancer found in 2002. The number of deaths refers to the number of people who were diagnosed with pancreatic cancer until 2002 and died in 2002.
  • pancreatic cancer markers have become an extremely urgent and important prerequisite for the early diagnosis and treatment of pancreatic cancer.
  • disease markers have been discovered and applied to the screening, diagnosis and efficacy monitoring of clinical diseases, their clinical application effects are still insufficient.
  • tumor markers abortion proteins, lactate dehydrogenase, carcinoembryonic antigens, etc. have been widely used in clinical practice, but these disease markers are far from meeting the needs for early diagnosis of cancer.
  • MicroRNA known in English as microRNA, is a non-coding single-stranded small RNA molecule of about 19 to 23 nucleotides in length. They are highly conserved in evolution and closely related to many normal physiological activities of animals, such as biological individual development, tissue differentiation, apoptosis, and energy metabolism, and are also closely related to the occurrence and development of many diseases. Recent studies have found that the expression levels of several microRNAs in chronic lymphocytic leukemia and Burkitt lymphoma are downregulated to varying degrees (Lawrie CH, Gal S, Dunlop HM et al. Detection of elevated levels of tumor-associated microRNAs). In serum of patients with diffuse large B-cell lymphoma.
  • micro-d and ribonucleic acid play an important role in the regulation of gene expression after transcription, it has the following correlation with disease:
  • the change of micro-ribonucleic acid may be the cause, because the disease is inhibited.
  • Both the factor and the promoting factor may be the target sites of the tiny ribonucleic acid.
  • the disease-promoting factor is originally inhibited.
  • microRNA The expression level of microRNA is decreased, or the expression of microRNA is inhibited by the disease inhibitor, and the final result will lead to changes in the expression of a series of downstream genes and the overall disorder of some pathways, thereby inducing disease occurrence; Changes in microRNAs may also be the result of disease, because when a disease (such as cancer) occurs, it can lead to the loss of chromosome fragments, mutations in genes, or dramatic amplification of chromosome fragments, if the tiny RNA is located right here. Within the changing segment, then the amount of expression will undergo an extremely significant change. Therefore, in theory, tiny ribonucleic acid molecules can be used as a new class of disease markers, and its specific changes must be related to the development of disease. At the same time, microRNA can also be used as a potential drug target. By inhibiting the up-regulation of microRNA or over-regulating microRNA, it is possible to greatly alleviate the occurrence and development of the disease.
  • the inventors will study the blood that can be easily obtained, even in a conventional physical examination. Since blood circulates to all tissues of the body and transports nutrients to the cells and removes waste, the blood can reflect the physiological and pathological conditions of the whole body, and the test results have guiding significance for human health.
  • microribonucleic acid molecules are composed of 19 to 23 nucleotide units, which are structurally specific and relatively stable, they are highly likely to be present in serum/plasma. Previous studies by the present inventors have confirmed that microRNAs are stably present in serum/plasma, and each disease has its specificity. Chen et al: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008 Oct; 18 (10): 997 ).
  • a specific microRNA as a pancreatic cancer detection marker stably in serum/plasma to establish an in vitro test for serum/plasma.
  • a method for stabilizing the presence of specific microRNAs for early diagnosis of pancreatic cancer by detecting specific changes in specific microRNAs, differential diagnosis of chronic pancreatitis, disease identification and disease monitoring, prediction of recurrence and prognosis, and complications At the same time, further research on drug efficacy, medication guidelines, individualized treatment, screening of effective components of traditional Chinese medicine, and population classification can be carried out.
  • pancreatic cancer marker it is an object of the present invention to provide a pancreatic cancer marker.
  • Another object of the invention is to provide a probe combination for detecting pancreatic cancer marker. It is still another object of the present invention to provide the use of the above-described pancreatic cancer marker, which comprises preparing a corresponding kit and a biochip.
  • Another object of the present invention is to provide a method of detecting the aforementioned pancreatic cancer marker.
  • the invention first provides a pancreatic cancer detection marker comprising one or more of the following: a mature microRNA that is stably present and detectable in human serum/plasma, For example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 , 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36 species: miR-27a, miR-27b, miR-29a, miR-29c, miR-30a, miR-30d, miR-33a, miR-92a, miR-100, miR-101, miR-103, miR-125b, miR-130b, miR-140-3p , miR-148a , miR-192 , miR-199a , miR-199a-3p , miR- 222, miR-210, miR-215, miR-223, miR-320, miR-361-5p, miR-378, miR-411, miR-483-5p, miR-20a,
  • the marker comprises one or more of the following microRNA ribosomes that are stably present and detectable in human serum/plasma, such as 2, 3, 4, 5, 6 or 7 species: miR- 20a, miR-21, miR-24, miR-25, miR-99, miR-185 and miR-191.
  • the present invention also provides a pancreatic cancer marker comprising two or more of the following micronuclear acid mature bodies stably present and detectable in human serum/plasma, for example, 3, 4, 5 , 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 , 31, 32, 33, 34, 35 or 36 species: miR-27a, miR-27b, miR-29a, miR-29c, miR-30a, miR-30d, miR-33a, miR-92a, miR- 100, miR-101 , miR- 103 , miR- 125b, miR- 13 Ob, miR-140-3p, miR- 148a, miR- 192, miR- 199a, miR-199a-3p, miR-222, miR-210, miR -215 , miR-223 , miR-320, miR-361-5p, miR-378, miR-411 , miR-483-5p,
  • the marker comprises two or more of the following microRNA ribosomes that are stably present and detectable in human serum/plasma, such as 3, 4, 5, 6 or 7 species: miR-20a , miR-21, miR-24, miR-25, miR-99, miR-185 and miR-191.
  • the above serum/plasma may be derived from living bodies, tissues, organs and/or corpses.
  • the present invention provides a method for detecting the above-mentioned label, which is selected from the group consisting of reverse transcription polymerase chain reaction (RT-PCR) and real-time fluorescence quantitative polymerase chain reaction ( Real- One or more of time PCR), Northern blotting, RNase protection assay, Solexa sequencing technology, and biochip methods.
  • RT-PCR reverse transcription polymerase chain reaction
  • Real-time fluorescence quantitative polymerase chain reaction Real- One or more of time PCR
  • Northern blotting blotting
  • RNase protection assay RNase protection assay
  • Solexa sequencing technology Solexa sequencing technology
  • the detection method is an RT-PCR method, for example, an RT-PCR method comprising the following steps: 1) extracting serum/plasma total RNA of a subject, obtaining a cDNA sample by RNA reverse transcription reaction; or collecting the subject a serum/plasma sample, which is subjected to a reverse transcription reaction using serum/plasma as a buffer to prepare a cDNA sample;
  • PCR primers are designed using microribonucleic acid design primers
  • the detection method is a Real-time PCR method, for example, a Real-time PCR method including the following steps: 1) extracting serum/plasma total RNA of the subject, obtaining a cDNA sample by reverse transcription reaction of RNA; or collecting serum/plasma samples of the subject, and performing reverse transcription reaction using serum/plasma as a buffer to prepare a cDNA sample;
  • the method for detecting the above-mentioned 36 kinds of microribonucleotides in serum/plasma of a subject provided by the present invention can further evaluate the state of human pancreatic cancer.
  • the method for detecting stable and detectable 36 microRNAs in human serum/plasma comprises: reverse transcription polymerase chain reaction (RT-PCR), real-time fluorescence quantitative polymerase chain reaction (Real- Time PCR), one or more of Northern blotting, RNase protection assay, Solexa sequencing technology, and biochip methods.
  • the RT-PCR method comprises the following steps: (1) collecting serum/plasma samples, specifically, extracting human serum/plasma total RNA using, for example, Trizol reagent, obtaining a cDNA sample by RNA reverse transcription reaction; or collecting the subject's Serum/plasma samples, reverse transcription reaction using serum/plasma as a buffer to prepare cDNA samples; (2) PCR reactions using microRNA design primers; (3) agarose gel electrophoresis of PCR products; (4) After EB staining, the results were observed under UV light and photographed.
  • the Real-time PCR method comprises the following steps: (1) collecting serum/plasma samples, specifically, extracting serum/plasma total RNA of a subject using, for example, Trizol reagent, and obtaining a cDNA sample by reverse transcription reaction of RNA; or collecting and receiving The serum/plasma sample of the tester is subjected to reverse transcription reaction using serum/plasma as a buffer to prepare a cDNA sample; (2) designing a primer with a microribonucleic acid; (3) adding a fluorescent probe such as EVA GREEN for a PCR reaction; (4) The data was analyzed and the results were compared, specifically, changes in the amount of serum/plasma samples relative to the amount of microRNA in normal serum/plasma were detected and compared.
  • the Northern blotting method comprises the following steps: (1) collecting serum/plasma samples; (2) extracting serum/plasma total RNA by Trizol reagent; (3) performing denaturing PAGE electrophoresis and membrane transfer experiments; (4) preparing isotope labeled micro Ribonucleic acid probe; (5) performing membrane hybridization reaction; (6) isotope signal detection, such as phosphor screen scanning detection results.
  • the RNase protection assay method comprises the following steps: (1) performing antisense RNA probes Synthesis of needles, isotope labeling and purification; (2) collecting serum/plasma samples and extracting RNA; (3) dissolving the extracted RNA in hybridization buffer and adding antisense RNA probes for hybridization; (4) adding RNase digestive juice is reacted; (5) electrophoresis and autoradiography are performed; (6) analysis results.
  • the Solexa sequencing technology method comprises the following steps: (1) collecting serum/plasma samples; (2) extracting serum/plasma total RNA by Trizol reagent; (3) recovering 17-27 nt RNA molecules by PAGE; (4) adaptor Prime is enzyme-linked at the 3' and 5' ends of small RNA molecules; (5) after RT-PCR reaction and sequencing; (6) data analysis and processing.
  • the biochip method comprises the following steps: (1) arranging all of the more than 500 microRNA ribonuclear libraries and preparing biochips; (2) collecting serum/plasma samples; (3) extracting serum/plasma total RNA; (4) Separation of tiny ribonucleic acid by column separation; (5) Fluorescent labeling of microribonucleotides using T4 RNA ligase; (6) Hybridization reaction with biochip; (7) Data detection and analysis.
  • the present invention analyzes the trend and variation of serum/plasma microRNA in the development of limb adenocarcinoma by the above-mentioned methods of RT-PCR, Real-time PCR, Northern blotting, RNase protection assay, Solexa sequencing technology and biochip, and They are related to pancreatic cancer.
  • the serum/plasma used in the above methods is derived from the living organism, tissue, organ and/or cadaver of the subject.
  • the invention also provides a method of predicting, diagnosing, identifying and/or evaluating pancreatic cancer, the method comprising detecting the marker, preferably the method comprising detecting the marker using the detection method described above.
  • the present invention provides the use of the above non-small cell lung cancer markers for the preparation of a reagent or a tool for predicting, diagnosing, identifying and/or evaluating pancreatic cancer.
  • the invention also provides a microRNA probe combination for detecting a pancreatic cancer marker, That is, a small ribonucleotide probe combination for predicting, diagnosing, and/or evaluating pancreatic cancer, the probe combination comprising one or more of the probes shown by the following nucleotide sequences, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36; preferably, the probe combination comprises two or more of the probes shown by the following nucleotide sequences, such as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36:
  • the present invention also provides a microRNA probe combination for detecting pancreatic cancer markers, ie, prediction, diagnosis and / or evaluation of a small ribonucleic acid probe combination of pancreatic cancer, the probe combination comprising one or more of the following nucleotide sequences, for example 2, 3, 4, 5, 6 or 7 :
  • the present invention provides a kit for detecting a pancreatic cancer marker, that is, a kit for predicting, diagnosing, identifying and/or evaluating pancreatic cancer, the kit comprising a tool for detecting the above marker.
  • the tool comprises the above-described microribonucleotide probe combination for detecting a pancreatic cancer marker; more preferably, the tool further comprises a polymerase, deoxyribonucleotides.
  • a pancreatic cancer diagnostic kit can be prepared by collecting the selected microRNA primers for specific changes associated with pancreatic cancer or their corresponding probe sequences into a PCR kit (RT-PCR or Real-time PCR).
  • the present invention also provides a biochip for detecting a pancreatic cancer marker, i.e., a biochip for predicting, diagnosing, identifying and/or evaluating pancreatic cancer, the biochip comprising an element for detecting the above marker.
  • said element comprises a microribonucleotide probe combination as described above for detecting a pancreatic cancer marker.
  • a serum/plasma microribonucleic acid detection biochip specifically for pancreatic cancer was prepared by using the reverse complement of the microRNA of the specific change in pancreatic cancer as a probe spot.
  • the evaluation of the pancreatic cancer state of the subject is to determine the state of the pancreatic cancer after the subject is administered the test substance, specifically for screening the test substance (for treating pancreatic cancer)
  • the drug for preventing and/or treating the activity of pancreatic cancer is for diagnosing and/or differentially diagnosing the disease of the subject
  • the evaluating the pancreatic cancer status of the subject is evaluating the subject
  • the evaluation of the pancreatic cancer status of the subject is to predict the occurrence of pancreatic cancer in the subject, which occurs specifically for the occurrence of pancreatic cancer complications and/or pancreatic cancer relapse.
  • pancreatic cancer Risk factors for pancreatic cancer include chronic pancreatitis, etc.
  • Pathological evidence also reveals the progression of normal pancreatic tissue-proliferation-pancreatic cancer. The earlier the patient with pancreatitis, such as hereditary pancreatitis or tropical pancreatitis, the higher the risk of canceration, that is, the duration of exposure to chronic inflammation is the most important risk factor.
  • Pancreatic cancer and chronic pancreatitis with chronic pancreatitis have a certain misjudgment rate. Therefore, it is particularly important to differentially diagnose pancreatic cancer and chronic pancreatitis in vitro. Trivial and rough. New technologies that have been developed in recent years and are likely to be used for disease diagnosis include gene chip and protein (antibody) chip technology.
  • Serum/plasma microribonucleic acid detection technology serum/plasma microRNA-based biochips and diagnostic kits subtly combine the unique properties of serum/plasma microRNAs with conventional molecular biology detection techniques, which can be quickly High-throughput analysis of the composition of microRNA in serum/plasma of pancreatic cancer is highly clinically applicable. Since changes in the physiological state of organ tissues can cause changes in serum/plasma microribonucleic acid composition, serum/plasma microribonucleic acid can be used as a "disease fingerprint" to achieve early diagnosis of pancreatic cancer.
  • the present invention has the following advantages:
  • Serum/plasma microribonucleic acid as a novel pancreatic cancer marker with wide detection spectrum, high sensitivity, low detection cost, convenient material selection, easy storage of samples (serum/plasma storage at -20 °C) This method can be widely used in related work such as disease screening, and is an effective means for early diagnosis of diseases.
  • Serum/plasma microribonucleic acid as a new disease marker will improve the low specificity and low sensitivity brought about by individual differences that are difficult to overcome with a single marker, significantly improve the clinical detection rate of disease and achieve disease Early diagnosis and treatment.
  • serum/plasma microribonucleic acid detection technology detects a series of disease-related markers, thus overcoming the differences between individual patients (ie age, sex, race, diet, environment, etc.). This is a major problem that cannot be overcome by a single disease marker.
  • the present invention can be further applied to the early diagnosis of pancreatic cancer.
  • This new serum/plasma pancreatic cancer marker not only provides a material basis for the comprehensive understanding of the mechanism of pancreatic cancer at the molecular level, but also accelerates the diagnosis of clinical diseases and Progress in therapeutics.
  • serum/plasma microribonucleic acid Based on the superiority of serum/plasma microribonucleic acid, it is believed that in the near future, serum/plasma microribonucleic acid diagnostic techniques for severe diseases such as cancer will become part of routine physical examination, and micro-d, ribonucleic acid-related gene therapy will also Widely applied, conquering these diseases is no longer a dream.
  • Figure 1 shows the RT-PCR results of a portion of microRNAs directly detected in normal human serum.
  • Figure 1 shows the results of RT-PCR for extracting RNA from normal human serum and detecting microRNAs.
  • U6 is a snOORNA with a molecular weight of lOObp, which serves as an internal reference molecule for microRNA experiments.
  • the remaining 12 codes represent blood cell-specific microRNAs miR-181a ( 181a ) and miR-181b, respectively. (181b), miR-223 (223), miR-142-3p (142-3p), miR-142-5p (142-5p), miR-150 (150), microRNAs from the myocardium and skeletal muscle miR -1 (1), miR-133a (133a), miR-206 (206), microRNAs miR-9 (9), miR-124a (124a) from brain tissue, and microRNA miR- from liver 122a ( 122a ).
  • Figure 3 shows the results of partially stable expression of microRNAs directly detected in mouse, rat, fetal bovine, calf and horse serum, respectively.
  • Figures 4A through 4D show the results of cluster analysis of seven specific serum/plasma microRNAs in normal population, chronic pancreatitis and pancreatic cancer patients.
  • Figures 5A to 5C show schematic diagrams of the sensitivity and specificity of seven miRNAs for detecting pancreatic cancer.
  • Figure 6 shows the results of the accuracy of seven miRNAs for detecting pancreatic cancer. The best way to implement the invention
  • RNA samples Preparation of cDNA samples. There are two options for this procedure, one is to directly reverse the transcription of 10 ⁇ M serum/plasma, and the other is to extract serum/plasma total RNA first using Trizol reagent (Invitrogen) (10 ml serum/plasma is usually rich) Aggregate about 10 ⁇ g of RNA), and then obtain cDNA by reverse transcription reaction of RNA.
  • the reverse transcription reaction system includes 4 ⁇ 15 AMV buffer, 2 ⁇ 1 lOmM each dNTP mixture ( Takara), 0.5 ⁇ 1 RNase Inhibitor ( Takara), 2 ⁇ 1 AMV ( Takara), and 1.5 ⁇ 1 gene specificity. Reverse primer mix.
  • the reaction step was 15 minutes at 16 ° C, 1 hour at 42 ° C, and 5 minutes at 85 ° C; (3) PCR and electrophoresis.
  • Dilute the cDNA by 1/50 take 1 ⁇ l of the diluted cDNA, add 0.3 ⁇ l of Taq enzyme ( Takara), 0.2 ⁇ ⁇ 10 ⁇ ⁇ forward primer, 0 ⁇ 2 ⁇ 1 10 ⁇ ⁇ universal counter PCR was carried out to primers, 1 ⁇ 2 ⁇ 1 25 mM MgC12 , 1.6 ⁇ ⁇ 2.5 mM each dNTP mixture ( Takara), 2 ⁇ ⁇ 10 x PCR buffer, 13.5 ⁇ 1 ⁇ 20, 20 ⁇ l system.
  • the reaction conditions for PCR were: 95 ° C, 5 minutes for 1 cycle ⁇ 95 ° C, 15 seconds, 60 ° C, 1 minute for 40 cycles.
  • the PCR product was subjected to 3% agarose gel electrophoresis after 10 ⁇ M, and stained with sputum and observed under an ultraviolet lamp.
  • Fig. 1 is a result of an experiment in which serum is directly subjected to RT-PCR using serum taken from a normal human body as a research object. All of the more than 500 micro-ribonucleic acid matures were used for PCR reactions.
  • Figure 1 shows 12 microRNAs. They are blood cell-specific microRNAs miR-181a, miR-181b, miR-223, miR-142-3p, miR-142-5p, miR-150, microRNAs miR-l from myocardium and skeletal muscle , miR-133a, miR-206, microRNAs miR-9, miR-124a from brain tissue, and tiny ribonucleosides from the liver Acid miR-122a.
  • tissue-derived microribonucleic acids can be detected in the blood, and not all of the more than 500 micro-ribonucleic acid matures have high abundance expression in serum/plasma, and some microRNAs are Very small, not even detectable.
  • RNA in normal human serum was first extracted, and then all of the more than 500 microRNA ribonucleases were used for PCR experiments. The results are shown in Fig. 2.
  • the results in Figure 2 are in good agreement with the results in Figure 1.
  • the single PCR product indicates that both methods can detect the expression and abundance of human serum/plasma ribonucleic acid, demonstrating a stable presence in human serum/plasma.
  • Tissues are derived from microRNAs.
  • ⁇ CT CT sample - CT internal reference.
  • the patient serum/plasma sample is directly subjected to a reverse transcription reaction with a normal human serum/plasma sample, and the amount of the microribonucleic acid contained therein is compared by a quantitative PCR reaction.
  • Serum samples were selected from aplastic anemia, breast cancer, osteosarcoma, central nervous system lymphoma, and diabetic patients, and PCR experiments were performed on all of the more than 500 microRNA ribosomes.
  • the above-mentioned blood cell-specific miR-181a, miR-181b, miR-223, miR-142-3p, miR-142-5p, miR-150, myocardial and skeletal muscle microRNAs miR-l, miR-133a , miR-206, microRNAs from brain tissue miR-9, miR-124a, and microRNAs from the liver miR-122a were used for quantitative PCR experiments in normal human and patient serum.
  • the ratio of the amount of microRNA in the serum of aplastic anemia, breast cancer, osteosarcoma, central nervous system lymphoma, and diabetic patients to the amount of normal humans is up-regulated and down-regulated, respectively, and the same tissue source of microRNA in different diseases Different degrees of change indicate that serum/plasma microRNAs have specific changes in different diseases, and they can be used as markers for a new type of disease diagnosis. Things.
  • the chip operation flow is:
  • Fluorescent labeling of small ribonucleic acid samples fluorescent labeling by T4 RNA ligase labeling method, followed by precipitation with absolute ethanol, and drying for chip hybridization;
  • Hybridization and washing Dissolve RNA in 16 ⁇ L of hybridization solution (15% guanidinamide; 0.2% SDS;
  • Chip scanning The chip is scanned with LuxScan 10K/A dual-channel laser scanner; (6) Data extraction and analysis: The image of the chip is analyzed by LuxScan3.0 image analysis software, and the image signal is converted into digital signal. Differentially expressed genes were selected by SAM analysis.
  • a type of serum/plasma microRNA probe that is differentially expressed in pancreatic cancer and normal physiological conditions which is dually verified by quantitative PCR technology and biochip technology, is used for preparing a biochip, and the method is the same as above.
  • the manufacturing process and operation flow of the chip are not greatly improved, but the chip is used to compress the probe library, thereby greatly reducing the manufacturing cost and production time of the chip, and is easy to prepare. At the same time, it also increases the pertinence and practicality of the chip. Putting this chip into practice requires only the patient's serum/plasma without any other tissue to detect the disease early and help guide diagnosis and treatment.
  • Example 4 Small ribonucleic acid kit for diagnosis and prediction of pancreatic cancer
  • ribonucleic acid kit For the diagnosis of pancreatic cancer, the prediction of the occurrence and recurrence of disease complications, the evaluation of efficacy, and the screening of drug active ingredients, the micro-d of drug efficacy evaluation, the manufacturing process and operation procedure of ribonucleic acid kit are based on quantitative and semi-quantitative PCR technology and biochip technology.
  • the number of serum/plasma microRNAs for each disease is 36, which is an optimized cartridge based on the chip probe library.
  • the kit includes a batch of reagents such as serum/plasma microRNA primers, Taq enzymes, dNTPs and the like.
  • test samples in this example were from a patient diagnosed with pancreatic cancer in the hospital, a patient with chronic pancreatitis, and a normal person of the same age and sex (control).
  • Serum iRNA lung cancer patients in the control group mean P-value (Mean's SE) miRNA concentration (Mean's SE)
  • the text on the right side of Figure 4C is the detected miRNAs.
  • This figure further expands the sample test and verifies that patients with chronic pancreatitis and pancreatic cancer can be distinguished by detection of 7 miRNA expression levels.
  • Figure 4D shows a collection of samples taken from Figure 4B and Figure 4C.
  • the text on the right side of the figure is the seven miRNAs detected.
  • the risk scores are analyzed for Figures 4A, 4B and 4D.
  • the specific results are shown in Table 5.
  • the first row of the table represents the risk score for the sample being evaluated; the second to eighth rows represent the training set, validation set, and pancreatic cancer patients with high risk factors in a risk score.
  • SAS statistical analysis software
  • the specific statistical methods are as follows: In addition to controlling each step of the variable in the whole process, all data are further normalized to zero mean and one standard deviation before data clustering.
  • K-Nearest Neighbors KN, a method-based missing data imputation
  • KN K-Nearest Neighbors
  • Hierarchical clustering with full association mode in cluster 3.0 is used here.
  • 95% of the upper limit of each miRNA value reference interval in the control group was set to t as a threshold for encoding the miRNA expression level corresponding to each sample.
  • the risk score for each miRNA is recorded as S, expressed as: Where i represents the ith sample and J represents the jth miRNA.
  • i represents the ith sample
  • J represents the jth miRNA.
  • a linear score of miRNA expression levels is used to establish a risk score for each patient.
  • the risk score function of the i sample is:
  • sij is the risk score for miRNA J in sample i.
  • Ws is the weight of the risk score for miRNA j.
  • 10 univariate logistic regression models were fitted to various disease states marked with a risk score. The regression coefficient in each risk score is used as the weight indicating each miRNA in the risk score function, and the sign in the regression coefficient determines the sign in the risk assessment function. Then, the frequency table and the ROC curve are used to evaluate the diagnostic effect in the sample population. Table 5 Risk assessment of patients and controls (normal) ⁇
  • J set episode 5 S wood set cause, "pancreatic cancer 0 0 2 6 6 4 6
  • pancreatic pancreatic pancreas pancreatic pancreas
  • pancreatic cancer 0 0 3 12 18 22 20 glandular glands
  • the miRNA detection sensitivity and specificity of pancreatic cancer are shown in Fig. 5A-C.
  • the total area (that is, the total number of samples to be tested) is one. It can be seen that the area under the curve (that is, the reliability) corresponds to the training set of Fig. 4A. 5A), the validation set corresponding to Figure 4B ( Figure 5B) and the high risk factor set corresponding to Figure 4D (i.e., including pancreatic cancer, normal human and chronic pancreatitis samples, Figure 5C) reached 0.995, 0.987, and 0.993, respectively.
  • Figure 6 shows the results of the above seven miRNAs for detecting the accuracy of pancreatic cancer.
  • the abscissa is the type of miRNA detected, and the ordinate is the area under the curve, which represents the accuracy of detecting miRNAs for non-small cell lung cancer.
  • the total area ie the total number of samples tested. It can be seen that the area under the curve (ie the accuracy) is >0.98.
  • Atgccctttc atcattgcac tg 22

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

胰腺癌标记物及其检测方法、 试剂盒和生物芯片 技术领域
本发明属于生物技术领域, 涉及人血清 /血浆中微小核糖核酸分子的分 离、 定性和定量分析, 同时也涉及胰腺癌的各种临床指征。 具体来说, 本发 明是一种检测胰腺癌病人血清 /血浆中微 d、核糖核酸的方法,通过胰腺癌病人 血清 /血浆中微小核糖核酸的变化,在体外诊断胰腺癌与慢性胰腺炎,判断胰 腺癌发病过程, 预测胰腺癌并发症的发生和胰腺癌复发的几率、 以及胰腺癌 的预后, 并分析药效和疗效。 背景技术
胰腺癌是一种死亡率极高(~99.9%,确诊后)的肿瘤。美国发病率: 2005 年估计新发病例 32,180例, 占所有新发癌症的 2%; 美国死亡率: 2005年 1 年估计死亡病例 31,800例, 分别占男女所有癌症相关死亡原因的第 4和第 5 位,占所有癌症死亡原因的 5%-6%。欧盟发病率: 2002年估计新发病例 55100 例, 欧盟死亡率: 2002年 1年估计死亡病例 59300例, 在不同性别和种族中 差异不明显,通常来说患者的预后较差。 2002年全球胰腺癌发病和死亡的统 计如表 1所示, 其中发病人数是指 2002年发现患胰腺癌的人数, 死亡人数 是指直至 2002年为止确诊为胰腺癌并且在 2002年死亡的人数。
表 1 2002年全球胰腺癌发病和死亡的统计
Figure imgf000002_0001
因此, 寻找胰腺癌标记物并对其进行准确检测已经成为胰腺癌的早期诊 断和治疗的极其紧迫和重要的前提条件。尽管越来越多的疾病标记物已经被 发现并应用于临床疾病的普查、 诊断和疗效的监控, 但是它们的临床应用效 果还存在着明显不足。 例如, 肿瘤标记物曱胎蛋白, 乳酸脱氢酶, 癌胚抗原 等已被广泛应用于临床,但是这些疾病标记物还远远不能满足对癌症早期诊 断的需要, 其主要原因有两个方面: ( 1 )上述疾病标记物的灵敏度和特异性 相对较低, 它们的检测结果还不能作为疾病确诊的指标; (2 )疾病的早期诊 断率应与治疗的效果呈现正相关, 而上述任何一种疾病标记物还难以满足疾 病早期诊断的这种要求。以癌症为例,由于存在着肿瘤分化类别特异性过强、 肿瘤整体敏感性较低、送检标本难以反复采取、标本保存要求条件高等缺陷, 同时价格昂贵, 因此在现有条件下难以广泛推广应用现有的肿瘤标记物。 而 一些传统医学手段, 如组织细胞检测存在着其固有的缺陷, 取材位置不当、 组织细胞标本材料不足或人为经验不足等都将导致误诊。其它技术例如影像 学虽然已被广泛应用于疾病的检查和诊断,但其在疾病程度的定性上仍存在 着 4艮大的局限性。 因此目前非常有必要寻找能够弥补现有标记物的上述缺陷 的新型、 灵敏并且应用方便的疾病检测标记物。
微小核糖核酸, 英文名为 microRNA, 是一类长约 19至 23个核苷酸的 非编码单链小核糖核酸分子。 它们在进化上高度保守, 并与动物的许多正常 生理活动,如生物个体发育、组织分化、细胞调亡以及能量代谢等密切相关, 同时也与许多疾病的发生及发展存在着紧密的联系。 最近的研究发现慢性淋 巴细胞性白血病以及 Burkitt淋巴瘤中的几种微小核糖核酸的表达水平均有 不同程度的下调 (Lawrie CH, Gal S, Dunlop HM et al. Detection of elevated levels of tumor-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141 :672-675 ); 分析比较人肺癌、 乳腺 癌组织中的微小核糖核酸表达时,发现有若干组织特异性微小核糖核酸的表 达水平相对于正常组织发生了变化( Garofalo M, Quintavalle C, Di Leva G et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 2008 )。也有研究证明微小核糖核酸影响了心肌肥厚、心衰、 动脉粥样硬化等心血管疾病的发生和发展,并且与 II型糖尿病等代谢性疾病 有密切关联 ( Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog. 2008 Oct 21 )。 这些实验结果提示微小核糖核酸表达及特异性变化与疾病发生和发展 之间存在着必然联系。
由于微 d、核糖核酸在基因转录后的表达调控中起着超乎想象的重要作 用, 因此它与疾病存在以下的关联性: 首先, 微小核糖核酸的变化可能是病 因, 这是因为疾病的抑制因子以及促进因子都可能是微小核糖核酸的靶位 点, 当微小核糖核酸本身先发生了紊乱表达, 比如本来抑制疾病促进因子的 微小核糖核酸表达量降低了, 或者抑制疾病抑制因子的微小核糖核酸表达量 升高了,其最终结果都会导致下游一系列基因表达的变化以及某些通路的整 体紊乱, 进而诱发疾病发生; 其次, 微小核糖核酸的变化也可能是疾病的结 果, 这是因为当疾病(如癌症)发生时, 会导致染色体片段的丟失、 基因的 突变或者染色体片段的剧烈扩增, 若微小核糖核酸正好位于这一变化区段 内, 那么其表达量将发生极其显著的变化。 因此, 理论上微小核糖核酸分子 完全可以作为一类新的疾病标记物, 它的特异性变化必然与疾病产生发展相 关联。 同时微小核糖核酸还可以作为潜在的药物作用靶点, 通过抑制疾病过 程中上调的微小核糖核酸或过表达下调的微小核糖核酸,将有可能极大地緩 解疾病的发生和发展。
国内目前已有以微小核糖核酸作为疾病标记物的相关研究,如中国专利 申请 CN100999765A和 CN101298630A, 它们均选取占恶性肿瘤发病率第 4 位的结肠癌作为研究对象, 经研究发现, 在结肠良性息肉发展成恶性肿瘤期 间, 一些微小核糖核酸分子都存在着特异性变化, 并据此通过测定微小核糖 核酸的特异性变化已经建立起一种更敏感、 更精确的早期确诊结肠癌的方 法。 然而由于组织标本的取材不容易使这种方法在临床上的广泛应用受到了 限制。 发明内容
为克服此缺陷, 本发明人将研究目光投向较易获得, 甚至常规体检中就 可以收集到的血液。 由于血液会循环至全身所有组织, 并向细胞输送营养并 清除废物, 因此血液能够反映出整个机体的生理病理状况, 其检测结果对人 体健康具有指导意义。已知血清 /血浆中存在着多种蛋白,如总蛋白、白蛋白、 球蛋白等, 多种脂质, 如 HDL胆固醇、 三甘油脂等, 多种糖质, 色素, 电 解质和无机盐, 多种酶, 如淀粉酶、 碱性磷酸酶、 酸性磷酸酶、 胆素脂酶、 醛缩酶等, 同时还汇集了来自全身组织器官的多种信号分子, 如细胞因子, 激素等。 目前, 对疾病的诊断仅仅局限于血清 /血浆中的上述生化指标, 尚无 血清 /血浆微小核糖核酸的报道。 人们传统观念中认为血清 /血浆中没有核糖 核酸分子, 即使有也会很快被核糖核酸酶降解为小分子片段而检测不到。 但 是, 由于微小核糖核酸分子是 19至 23个核苷酸单元组成, 具有结构上的特 殊性和相对稳定性, 它们极有可能存在于血清 /血浆中。本发明人的前期研究 已经证实,血清 /血浆中稳定地存在微小核糖核酸,且每一种疾病有其特异性 的更化图普 ( Chen et al: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008 Oct; 18 (10):997 )。
为寻找胰腺癌检测标记物并对其进行准确检测, 本发明人基于已有的研 究成果, 进行了以下几个方面的研究:
( 1 )研究胰腺癌发病过程中血清 /血浆微小核糖核酸的特异性变化; ( 2 )通过用于检测血清 /血浆微小核糖核酸的生物芯片和测序技术测定 胰腺癌血清 /血浆微小核糖核酸的变化;
( 3 )将筛选到的在胰腺癌、 慢性胰腺炎及正常生理状态下表达差异程 度大的一类血清 /血浆微小核糖核酸分子应用于血清 /血浆微小核糖核酸检测 技术, 制备应用于胰腺癌诊断等领域的生物芯片和诊断试剂盒。
通过上述对血清 /血浆微小核糖核酸与胰腺癌的相关性的研究,申请人提 出了以血清 /血浆中稳定存在的特定微小核糖核酸作为胰腺癌检测标记物,建 立一种体外检测血清 /血浆中稳定存在的特定微小核糖核酸的方法,通过检测 特定微小核糖核酸的特异性变化来进行胰腺癌的早期诊断,慢性胰腺炎的鉴 别诊断, 疾病鉴定和病程监控, 复发及预后、 并发症发生的预测, 同时可以 进一步进行药效判定, 用药指南, 个体化治疗, 中药有效成份筛选, 种群分 类等研究。
因此, 本发明的目的是提供一种胰腺癌标记物。
本发明的另一个目的是提供一种用于检测胰腺癌癌标记物的探针组合。 本发明的又一个目的是提供上述胰腺癌标记物的用途, 包括制备相应的 试剂盒和生物芯片。
本发明的另一个目的是提供检测上述胰腺癌癌标记物的方法。
本发明的目的是采用以下技术方案来实现的。
一方面, 本发明首先提供一种胰腺癌检测标记物, 所述标记物包括以下 在人体血清 /血浆中稳定存在且可检测的微小核糖核酸成熟体 ( Mature microRNA ) 中的一种或多种, 例如 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、 22、 23、 24、 25、 26、 27、 28、 29、 30、 31、 32、 33、 34、 35或 36种: miR-27a, miR-27b, miR-29a, miR-29c, miR-30a, miR-30d, miR-33a, miR-92a, miR-100, miR-101 , miR-103 , miR-125b, miR-130b , miR-140-3p , miR-148a , miR-192 , miR-199a , miR-199a-3p , miR-222, miR-210, miR-215 , miR-223 , miR-320, miR-361-5p, miR-378, miR-411 , miR-483-5p, miR-20a, miR-21 , miR-24, miR-25 , miR-26a, miR-99, miR-122, miR-185和 miR-191。其中 miR-320包括例如 miR-320a、 miR-320b。
优选地,所述标记物包括以下在人体血清 /血浆中稳定存在且可检测的微 小核糖核酸成熟体中的一种或多种, 例如 2、 3、 4、 5、 6或 7种: miR-20a, miR-21 , miR-24, miR-25 , miR-99 , miR-185和 miR- 191。
本发明还提供了一种胰腺癌标记物, 所述标记物包括以下在人体血清 / 血浆中稳定存在且可检测的微小核糖核酸成熟体中的两种或两种以上, 例如 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、 22、 23、 24、 25、 26、 27、 28、 29、 30、 31、 32、 33、 34、 35或 36种: miR-27a, miR-27b, miR-29a, miR-29c, miR-30a, miR-30d, miR-33a, miR-92a, miR- 100, miR-101 , miR- 103 , miR- 125b, miR- 13 Ob, miR-140-3p, miR- 148a, miR- 192, miR- 199a, miR-199a-3p, miR-222, miR-210, miR-215 , miR-223 , miR-320, miR-361-5p, miR-378, miR-411 , miR-483-5p, miR-20a, miR-21 , miR-24, miR-25 , miR-26a, miR-99, miR-122, miR-185和 miR-191。
优选地,所述标记物包括以下在人体血清 /血浆中稳定存在且可检测的微 小核糖核酸成熟体中的两种或两种以上, 例如 3、 4、 5、 6或 7种: miR-20a, miR-21 , miR-24, miR-25 , miR-99 , miR-185和 miR-191。
上述血清 /血浆可以来源于人体活体、 组织、 器官和 /或尸体。
另一方面, 本发明提供了一种上述标记物的检测方法, 所述检测方法选 自反转录聚合酶链式反应方法(RT-PCR )、 实时荧光定量聚合酶链式反应方 法( Real-time PCR )、 Northern印迹杂交方法( Northern blotting )、 核糖核酸 酶保护分析方法( RNase protection assay )、 Solexa测序技术( Solexa sequencing technology )和生物芯片方法中的一种或几种。
优选地, 所述检测方法为 RT-PCR方法, 例如包括以下步骤的 RT-PCR 方法: 1 )提取受试者的血清 /血浆总 RNA,通过 RNA逆转录反应得到 cDNA 样品; 或者收集受试者的血清 /血浆样本, 以血清 /血浆作为緩沖液进行逆转 录反应来制备 cDNA样品;
2 )用微小核糖核酸设计引物进行 PCR反应;
3 )进行 PCR产物的琼脂糖凝胶电泳;
4 ) EB染色后在紫外灯下观察结果;
或者优选地, 所述检测方法为 Real-time PCR方法, 例如包括以下步骤 的 Real-time PCR方法: 1 )提取受试者的血清 /血浆总 RNA, 通过 RNA逆转录反应得到 cDNA 样品; 或者收集受试者的血清 /血浆样本, 以血清 /血浆作为緩沖液进行逆转 录反应来制备 cDNA样品;
2 )用微小核糖核酸设计引物;
3 )加入荧光探针进行 PCR反应;
4 )检测并比较血清 /血浆样本相对于正常血清 /血浆中微小核糖核酸的量 的变化。
具体来说, 本发明提供的检测受试者血清 /血浆中上述 36种微小核糖核 酸的方法,可以进一步评价人体胰腺癌的状态。所述检测人体血清 /血浆中稳 定存在且可检测的 36种微小核糖核酸的方法包括: 反转录聚合酶链式反应 方法 (RT-PCR )、 实时荧光定量聚合酶链式反应方法 (Real-time PCR ), Northern印迹杂交方法( Northern blotting )、核糖核酸酶保护分析方法( RNase protection assay )、 Solexa测序技术 ( Solexa sequencing technology )和生物芯 片方法中的一种或几种。
所述 RT-PCR方法包括以下步骤: ( 1 )收集血清 /血浆样本, 具体地, 使 用例如 Trizol试剂提取人体的血清 /血浆总 RNA,通过 RNA逆转录反应得到 cDNA样品; 或者收集受试者的血清 /血浆样本, 以血清 /血浆作为緩沖液进 行逆转录反应来制备 cDNA样品; (2 )用微小核糖核酸设计引物进行 PCR 反应; (3 )进行 PCR产物的琼脂糖凝胶电泳; (4 ) EB染色后在紫外灯下观 察结果并拍照。
所述 Real-time PCR方法包括以下步骤: ( 1 )收集血清 /血浆样本, 具体 地,使用例如 Trizol试剂提取受试者的血清 /血浆总 RNA, 通过 RNA逆转录 反应得到 cDNA样品; 或者收集受试者的血清 /血浆样本, 以血清 /血浆作为 緩沖液进行逆转录反应来制备 cDNA样品; (2 )用微小核糖核酸设计引物; ( 3 )加入荧光探针例如 EVA GREEN进行 PCR反应; ( 4 )分析处理数据并 比较结果, 具体地, 检测并比较血清 /血浆样本相对于正常血清 /血浆中微小 核糖核酸的量的变化。
所述 Northern blotting方法包括以下步骤: ( 1 )收集血清 /血浆样本; ( 2 ) 通过 Trizol试剂提取血清 /血浆总 RNA; ( 3 )进行变性 PAGE电泳和膜转移 实验; (4 )制备同位素标记微小核糖核酸探针; (5 )进行膜杂交反应; ( 6 ) 同位素信号检测, 如磷屏扫描检测结果。
所述 RNase protection assay方法包括如下步骤: ( 1 )进行反义 RNA探 针的合成, 同位素标记与纯化; ( 2 )收集血清 /血浆样本并提取 RNA; ( 3 ) 将提取后的 RNA溶解在杂交緩沖液中并加入反义 RNA探针进行杂交反应; ( 4 )加入 RNase消化液进行反应; ( 5 )进行电泳与放射自显影; ( 6 )分析 结果。
所述 Solexa sequencing technology方法包括如下步骤: ( 1 )收集血清 /血 浆样本; ( 2 )通过 Trizol试剂提取血清 /血浆总 RNA; ( 3 )进行 PAGE电泳 回收 17-27nt RNA分子; ( 4 )将 adaptor prime酶联在小 RNA分子的 3'与 5' 端; (5 )进行 RT-PCR反应后并进行测序; (6 )数据分析与处理。
所述生物芯片方法包括如下步骤: ( 1 )将全部五百多个微小核糖核酸成 熟体库点阵并制备生物芯片; (2 ) 收集血清 /血浆样本; (3 )提取血清 /血浆 总 RNA; ( 4 )通过柱分离来分离微小核糖核酸; (5 ) 利用 T4 RNA连接酶 进行微小核糖核酸荧光标记; (6 )与生物芯片进行杂交反应; (7 )数据检测 与分析。
本发明通过上述的 RT-PCR, Real-time PCR, Northern blotting, RNase protection assay, Solexa sequencing technology和生物芯片等方法分析在肢腺 癌发生中血清 /血浆微小核糖核酸的变化趋势及变化量,以及它们与胰腺癌的 相关性。其中,首先检测分析 miR-27a, miR-27b, miR-29a, miR-29c, miR-30a, miR-30d, miR-33a, miR-92a, miR-100 , miR-101 , miR-103 , miR-125b , miR-130b , miR-140-3p , miR-148a , miR-192 , miR-199a , miR-199a-3p , miR-222, miR-210, miR-215 , miR-223 , miR-320, miR-361-5p, miR-378, miR-411 , miR-483-5p, miR-20a, miR-21 , miR-24, miR-25 , miR-26a, miR-99, miR-122, miR-185 , miR-191在胰腺癌中的变化, 制备血清 /血浆微小核糖核 酸生物芯片测定不同疾病中血清 /血浆微小核糖核酸的变化,同时对不同疾病 血清 /血浆中微小核糖核酸进行 Solexa测序分析。
上述方法中所使用的血清 /血浆来源于受试者活体、 组织、 器官和 /或尸 体。
本发明也提供一种预测、 诊断、 鉴别和 /或评价胰腺癌的方法, 该方法 包括检测上述标记物, 优选地, 该方法包括采用上述检测方法检测上述标记 物。
本发明提供了上述非小细胞肺癌标记物在制备预测、 诊断、 鉴别和 /或 评价胰腺癌的试剂或工具中的用途。
本发明还提供了一种用于检测胰腺癌标记物的微小核糖核酸探针组合, 也即预测、诊断和 /或评价胰腺癌的小核糖核酸探针组合,所述探针组合包括 以下核苷酸序列所示的探针中的一种或多种, 例如 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、 22、 23、 24、 25、 26、 27、 28、 29、 30、 31、 32、 33、 34、 35或 36种; 优选地, 所述探针组合包 括以下核苷酸序列所示的探针中的两种或两种以上, 例如 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、 22、 23、 24、 25、 26、 27、 28、 29、 30、 31、 32、 33、 34、 35或 36种:
miRNA 对应的探针序列 序列编号
miR-27a GCGGAACTTAGCCACTGTGAA SEQ ID NO. 1 miR-27b GCAGAACTTAGCCACTGTGAA SEQ ID NO. 2 miR-29a AACCGATTTCAGATGGTGCTA SEQ ID NO. 3 miR-29c ACCGATTTCAAATGGTGCTA SEQ ID NO. 4 miR-30a CTTCCAGTCGAGGATGTTTACA SEQ ID NO. 5 miR-30d CTTCCAGTCGGGGATGTTTACA SEQ ID NO. 6 miR-33a CAATGCAACTACAATGCAC SEQ ID NO. 7 miR-92a CAGGCCGGGACAAGTGCAATA SEQ ID NO. 8 miR-100 CACAAGTTCGGATCTACGGGTT SEQ ID NO. 9 miR-101 CTTCAGTTATCACAGTACTGTA SEQ ID NO.10 miR-103 TCATAGCCCTGTACAATGCTGCT SEQ ID NO.11 miR-125b TCACAAGTTAGGGTCTCAGGGA SEQ ID NO. 12 miR-130b ATGCCCTTTCATCATTGCACTG SEQ ID NO.13 miR-140-3p CTACCATAGGGTAAAACCACT SEQ ID NO. 14 miR-148a ACAAAGTTCTGTAGTGCACTGA SEQ ID NO. 15 miR-192 GGCTGTCAATTCATAGGTCAG SEQ ID NO. 16 miR-199a GAACAGGTAGTCTGAACACTGGG SEQ ID NO. 17 miR-199a-3p AACCAATGTGCAGACTACTGTA SEQ ID NO. 18 miR-222 GAGACCCAGTAGCCAGATGTAGCT SEQ ID NO. 19 miR-210 TCAGCCGCTGTCACACGCACAG SEQ ID NO.20 miR-215 GTCTGTCAATTCATAGGTCAT SEQ ID N0.21 miR-223 GGGGTATTTGACAAACTGACA SEQ ID NO. 22 miR-320 TTCGCCCTCTCAACCCAGCTTTT SEQ ID N0.23 miR-361-5p GTACCCCTGGAGATTCTGATAA SEQ ID NO. 24 miR-378 ACACAGGACCTGGAGTCAGGAG SEQ ID NO. 25 miR-411 CGTACGCTATACGGTCTACTA SEQ ID NO. 26 miR-483-5p AGAAGACGGGAGGAGAGGAGTGA SEQ ID NO. 27 miR-20a CTACCTGCACTATAAGCACTTTA SEQ ID NO. 28 miR-21 TCAACATCAGTCTGATAAGCTA SEQ ID NO. 29 miR-24 CTGTTCCTGCTGAACTGAGCCA SEQ ID NO. 30 miR-25 TCAGACCGAGACAAGTGCAATG SEQ ID NO. 31 miR-26a GCCTATCCTGGATTACTTGAA SEQ ID NO. 32 miR-99 CACAAGATCGGATCTACGGGTT SEQ ID NO. 33 miR-122 ACAAACACCATTGTCACACTCCA SEQ ID NO. 34 miR-185 GAACTGCCTTTCTCTCCA SEQ ID NO. 35 miR-191 AGCTGCTTTTGGGATTCCGTTG SEQ ID NO. 36 本发明还提供了一种用于检测胰腺癌标记物的微小核糖核酸探针组合, 也即预测、诊断和 /或评价胰腺癌的小核糖核酸探针组合,所述探针组合包括 以下核苷酸序列所示的探针中的一种或多种, 例如 2、 3、 4、 5、 6或 7种:
Figure imgf000010_0001
本发明提供了一种用于检测胰腺癌标记物的试剂盒, 也即预测、 诊断、 鉴别和 /或评价胰腺癌的试剂盒, 该试剂盒包括检测上述标记物的工具。 优 选地, 其中所述工具包括上述用于检测胰腺癌标记物的微小核糖核酸探针组 合; 更优选地, 所述工具还包括聚合酶、 脱氧核糖核苷酸。 将 选出来的 与胰腺癌相关的特异性变化的微小核糖核酸引物或其相应的探针序列收集 到 PCR试剂盒( RT-PCR或 Real-time PCR ) 中即可制备胰腺癌诊断试剂盒。
本发明还提供了一种用于检测胰腺癌标记物的生物芯片, 也即预测、 诊 断、 鉴别和 /或评价胰腺癌的生物芯片, 该生物芯片包括检测上述标记物的 元件。 优选地, 其中所述元件包括上述用于检测胰腺癌标记物的微小核糖核 酸探针组合。将筛选出来的与胰腺癌相关的特异性变化的微小核糖核酸的反 向互补序列作为探针点在芯片,就制成了专门针对胰腺癌的血清 /血浆微小核 糖核酸检测生物芯片。
具体而言, 在上述任何含有以上 1种到 36种 小核糖核酸标记物的组 合、 方法、 试剂盒或生物芯片中, 所述评价受试者的胰腺癌状态为测定受试 者给予待测物后的胰腺癌状态, 具体用于筛选待测物(用于治疗胰腺癌的药 物 )的预防和 /或治疗胰腺癌的活性;所述评价受试者的胰腺癌状态为诊断和 /或鉴别诊断受试者的疾病;所述评价受试者的胰腺癌状态为评价对受试者的 疾病进行治疗的有效性; 所述评价受试者的胰腺癌状态为对受试者发生胰腺 癌进行预测, 所述发生胰腺癌具体为胰腺癌并发症的发生和 /或胰腺癌的复 发。 胰腺癌的危险因素包括慢性胰腺炎等, 病理学证据也发现了正常胰腺组 织一增生一胰腺癌的进渐的过程。发生胰腺炎越早的患者如遗传性胰腺炎或 热带性胰腺炎, 癌变的危险性也越高, 也即暴露于慢性炎症状态下的持续时 间是最主要的危险因素。有慢性胰腺炎背景的胰腺癌和慢性胰腺炎有一定的 误判率, 因此, 在体外鉴别诊断胰腺癌与慢性胰腺炎显得尤为重要。 瑣和粗糙。近年来发展起来的有可能用于疾病诊断的新型技术有基因芯片和 蛋白质 (抗体) 芯片技术等。 基因芯片所测量的 mRNA水平变化并不能完 全反映真正的蛋白质水平的改变。 因为蛋白质的生物活性与转录后修饰如糖 基化, 磷酸化等密切相关。 并且, 对于许多疾病检测而言, 基因芯片技术无 法检测体液和血液中标记物分子。 蛋白质 (抗体)芯片技术和蛋白质组学技术 也有其局限性。 人体内特别是血清 /血浆中含有数以万计的蛋白和多肽片断, 它们浓度分布广, 明确报道的蛋白 4艮少, 定量化的就更少了。 在这数量庞大 的蛋白质组中找寻与特定疾病有密切关联的蛋白质, 并理解其在组织病变中 的作用仍然是一项极其艰巨的工作, 而且, 缺乏完善的抗体资源将会是制约 抗体芯片技术发展的一个瓶颈问题。血清 /血浆微小核糖核酸检测技术,基于 血清 /血浆微小核糖核酸的生物芯片和诊断试剂盒巧妙地将血清 /血浆微小核 糖核酸的独特性质和常规分子生物学检测技术结合为一体, 它们可以快速地 高通量地分析胰腺癌血清 /血浆中微小核糖核酸的组成, 临床适用性极强。 由 于器官组织的生理状态变化会引起血清 /血浆微小核糖核酸组成的改变,因此 血清 /血浆微小核糖核酸可以作为 "疾病指纹", 实现胰腺癌的早期诊断。
综上所述, 本发明具有如下优点:
( 1 )将筛选出的特定血清 /血浆微小核糖核酸作为新型的胰腺癌标记物, 具有检出谱系广、 灵敏度高、 检测成本低、 取材方便、 样本易存放(血清 / 血浆 -20°C存放即可)等优点, 该方法可广泛用于疾病普查等相关工作, 成 为早期诊断疾病的有效手段。 ( 2 )血清 /血浆微小核糖核酸作为新的疾病标记物, 将改进单一的标记 物所难以克服的个体差异所带来的低特异性和低灵敏度,显著提高疾病的临 床检出率和实现疾病的早期诊疗。
( 3 )血清 /血浆微小核糖核酸检测技术的优势在于, 其检测的是一系列 疾病相关标记物, 因而能够克服病人个体之间的差异 (即年龄、 性别、 种族、 饮食和环境等), 而这正是单一疾病标记物所无法逾越的一个主要问题。
总之,本发明可以进一步应用于早期确诊胰腺癌,这种新的血清 /血浆胰 腺癌标记物不仅为人们在分子水平上全面了解胰腺癌的机理提供了物质基 础,也加速了临床疾病诊断学和治疗学的进步。基于血清 /血浆微小核糖核酸 的优越性,相信不久的将来,对重症疾病如癌症的血清 /血浆微小核糖核酸诊 断技术将会成为常规体检的一部分, 而且微 d、核糖核酸相关的基因治疗也会 广泛地应用, 征服这些疾病不再是梦想。 附图的简要说明
以下, 结合附图来详细说明本发明的实施例, 其中:
图 1显示正常人血清中直接检测到的部分微小核糖核酸的 RT-PCR结 果。
图 1显示提取正常人血清中 RNA并检测其中微小核糖核酸的 RT-PCR 结果。
在图 1和图 2中, U6是分子量为 lOObp的 snRNA, 作为微小核糖核 酸实验的内参照分子, 其余的 12 个代号分别代表血细胞特异性的微小核 糖核酸 miR-181a ( 181a ) 、 miR-181b ( 181b )、 miR-223 ( 223 ) 、 miR-142-3p ( 142-3p ) 、 miR-142-5p ( 142-5p ) 、 miR-150 ( 150 ) , 来自心肌及骨 肌的微小核糖核酸 miR-1 ( 1 ) 、 miR-133a ( 133a ) 、 miR-206 ( 206 ) , 来 自脑组织的微小核糖核酸 miR-9 ( 9 ) 、 miR-124a ( 124a ) , 以及来自肝脏 的微小核糖核酸 miR-122a ( 122a ) 。
图 3分别显示小鼠、 大鼠、 胎牛、 小牛和马血清中直接检测到的部分 稳定表达的微小核糖核酸 RT-PCR结果。
图 4A至 4D显示 7种特异性血清 /血浆微小核糖核酸在正常人群、 慢性 胰腺炎和胰腺癌患者聚类分析的结果示意图。
图 5A至 5C显示 7种 miRNA检测胰腺癌的灵敏性和特异性示意图。 图 6显示 7种 miRNA检测胰腺癌的准确率的结果图。 实施发明的最佳方式
可以理解的是, 在此描述的特定实施方式通过举例的方式来表示, 其并 不作为对本发明的限制。 在不偏离于本发明范围的情况下, 本发明的主要特 征可以用于各种实施方式。 本领域的技术人员将会意识到或能够确认, 仅仅 使用常规实验, 许多等同物都能应用于本文所描述的特定步骤中。 这些等同 物被认为处在本发明的范围之内, 并且被权利要求所覆盖。 实施例 1 血清 /血浆中微小核糖核酸的 RT-PCR实验
使用 RT-PCR技术发现并证明人和动物血清 /血浆中稳定存在各种微小 核糖核酸, 而且其表达量相当丰富。 具体步骤为:
( 1 )收集小鼠、 大鼠、 正常人及某些病人的血清 /血浆;
( 2 )制备 cDNA样品。 该操作有两种方案, 一种方案为将 10 μ ΐ血清 / 血浆直接进行逆转录反应, 另一种为使用 Trizol试剂 (Invitrogen公司 )先 提取血清 /血浆总 RNA ( 10ml血清 /血浆通常能富集约 10 μ g左右的 RNA ), 然后通过 RNA逆转录反应得到 cDNA。逆转录的反应体系包括 4 μ 1 5 AMV buffer, 2 μ 1 lOmM each dNTP mixture ( Takara公司 )、 0.5 μ 1 RNase Inhibitor ( Takara公司)、 2 μ 1 AMV ( Takara公司 ) 以及 1.5 μ 1基因特异性反向引物 混和物。反应步骤为 16°C孵育 15分钟, 42°C反应 1小时, 85°C孵育 5分钟; ( 3 ) PCR及电泳观察。将 cDNA按 1/50稀释,取 1 μ 1稀释后的 cDNA, 加人 0.3 μ 1 Taq酶( Takara公司;), 0.2 μ ΐ 10 μ Μ正向引物, 0·2 μ 1 10 μ Μ通 用反向引物, 1 ·2 μ 1 25mM MgC12 , 1.6 μ ΐ 2.5mM each dNTP mixture ( Takara 公司), 2 μ ΐ 10 x PCR buffer, 13.5 μ 1Η20, 20 μ 1体系进行 PCR。 PCR的反 应条件是: 95°C、 5分钟进行 1个循环→ 95°C、 15秒, 60°C、 1分钟进行 40个循环。 PCR产物取 10 μ ΐ进行 3%琼脂糖凝胶电泳, ΕΒ染色后在紫外灯 下观察。
具体实验结果见图 1。 图 1是以取自正常人的血清为研究对象, 将血清 直接进行 RT-PCR的实验结果。 选用人全部五百多个微小核糖核酸成熟体进 行 PCR反应, 图 1为其中的 12种微小核糖核酸。 它们分别是血细胞特异性 的微小核糖核酸 miR-181a、 miR-181b、 miR-223、 miR-142-3p、 miR-142-5p、 miR-150, 来自心肌及骨骼肌的微小核糖核酸 miR-l、 miR-133a、 miR-206, 来自脑组织的微小核糖核酸 miR-9、 miR-124a, 以及来自肝脏的微小核糖核 酸 miR-122a。从结果可以看出上述四种组织来源的微小核糖核酸在血液中都 能检测到,并非全部五百多个微小核糖核酸成熟体在血清 /血浆中都有高丰度 表达, 有些微小核糖核酸是很微量的, 甚至不能正常检测到。
为了进一步验证血清 /血浆中稳定存在这些微小核糖核酸,先提取正常人 血清中的 RNA, 然后选用人全部五百多个微小核糖核酸成熟体进行 PCR实 验, 结果如图 2所示。 图 2的结果与图 1的结果很吻合, PCR产物单一, 表 明这两种实验方法都能检测到人血清 /血浆微小核糖核酸的表达和丰度,证明 在人血清 /血浆中稳定地存在多种组织来源微小核糖核酸。此外,用同样的方 法检测了小鼠、 大鼠、 胎牛、 小牛和马血清中五百多个微小核糖核酸的表达 和丰度, 同样发现不同组织来源的微小核糖核酸在小鼠、 大鼠、 胎牛、 小牛 和马血清中有稳定表达, 结果如图 3所示。 实施例 2 血清 /血浆中微小核糖核酸的 real-time PCR实验
为了研究胰腺癌疾病过程中血清 /血浆微小核糖核酸的特异变化,进行了 血清 /血浆微小核糖核酸的定量 PCR实验。定量 PCR实验原理及实验步骤同 RT-PCR一样, 唯一不同是在 PCR的时候加入了荧光染料 EVA GREEN。 仪 器使用的是 ABI Prism 7300荧光定量 PCR仪, 反应条件为 95 °C、 5分钟进 行 1个循环→ 95 °C、 15秒, 60°C、 1分钟进行 40个循环。 数据处理方法为 Δ A CT 法, CT设为反应达到域值时的循环数,则每个微小核糖核酸相对于 标准内参的表达量可以用方程 2- Δ CT表示, 其中△ CT = CT样品 -CT内参。 将病人血清 /血浆样本与正常人血清 /血浆样本直接进行逆转录反应, 通过定 量 PCR反应比较其中所含微小核糖核酸的量。
选取再生障碍性贫血、 乳腺癌、 骨肉瘤、 中枢神经系统淋巴瘤、 糖尿病 病人血清样品, 同时用人全部五百多个微小核糖核酸成熟体进行 PCR实验。 上述提及的血细胞特异性 miR-181a、 miR-181b、 miR-223、 miR-142-3p、 miR-142-5p、 miR-150, 心肌及骨骼肌的微小核糖核酸 miR-l、 miR-133a、 miR-206, 来自脑组织的微小核糖核酸 miR-9、 miR-124a, 以及来自肝脏的 微小核糖核酸 miR-122a在正常人和病人血清中进行定量 PCR的实验结果。 再生障碍性贫血、 乳腺癌、 骨肉瘤、 中枢神经系统淋巴瘤、 糖尿病病人血清 中微小核糖核酸的量相对于正常人的量的比值分别有上调和下调, 而且同一 组织来源微小核糖核酸在不同疾病中变化程度不同,表明血清 /血浆微小核糖 核酸在不同疾病中有特异性变化, 它们可以作为一类新的疾病诊断的标记 物。 实施例 3 用于诊断胰腺癌的血清 /血浆微小核糖核酸芯片
芯片操作流程为:
( 1 )提取血清 /血浆中总 RNA, 曱醛变性胶电泳检测总 RNA的质量;
( 2 )微小核糖核酸的分离: 取 50-100 μ g总 RNA用 Ambion's miRNA Isolation Kit ( Cat #. 1560 )分离 小核糖核酸;
( 3 )微小核糖核酸样品的荧光标记: 利用 T4 RNA连接酶标记方法进 行荧光标记, 然后再用无水乙醇沉淀, 吹干后用于芯片杂交;
( 4 )杂交与清洗:将 RNA溶于 16 μ L杂交液中( 15%曱酰胺; 0.2% SDS;
3 X SSC; 50 X Denhardt's solution ), 于 42 °C杂交过夜。 杂交结束后, 先在 42 °C左右含 0.2% SDS, 2 SSC的液体中洗 4分钟, 而后在 0.2 SSC液体中 室温洗 4分钟, 玻片甩干后即可用于扫描;
( 5 ) 芯片扫描: 芯片用 LuxScan 10K/A双通道激光扫描仪进行扫描; ( 6 )数据提取及分析: 采用 LuxScan3.0图像分析软件对芯片图像进行 分析, 把图像信号转化为数字信号, 最后用 SAM分析挑选差异表达基因。
将定量 PCR技术和生物芯片技术双重验证的在胰腺癌及正常生理状态 下差异表达程度大的一类血清 /血浆微小核糖核酸探针, 用于制备生物芯片, 方法同上。 此芯片与传统芯片相比, 制作工艺和操作流程没有很大改进, 但 是此芯片筒化了探针库, 由此将大大减少芯片的制作成本和生产时间, 易于 制备。 同时也增加了芯片的针对性和实用性。 将此芯片投入实践, 仅仅需要 病人的血清 /血浆而不需要任何其它组织就可以在早期发现疾病,帮助指导诊 断和治疗。 实施例 4 用于胰腺癌诊断与预测的微小核糖核酸试剂盒
用于胰腺癌的诊断、 疾病并发症的发生和复发的预测, 疗效评价, 以及 药物活性成分的筛选、 药效评价的微 d、核糖核酸试剂盒的制作工艺和操作流 程是基于定量和半定量 PCR技术和生物芯片技术。
首先通过测序的方法或 PCR方法确定正常血清 /血浆中有一个以上拷贝 的微小核糖核酸。 然后通过定量 PCR技术和生物芯片技术筛选在非小细胞 肺癌及正常生理状态下表达量和差异程度大的一类血清 /血浆微小核糖核酸, 作为预测是否发生非小细胞肺癌以及诊断病变程度的指标。 最后筛选出的对 应每种疾病的血清 /血浆微小核糖核酸的数量为 36种, 这是在芯片探针库的 基础上做出的最优化的精筒。 此试剂盒包括一批血清 /血浆微小核糖核酸引 物、 Taq酶、 dNTP等试剂。
本实施例中所有检测样本均来自在医院确诊为胰腺癌患者、慢性胰腺炎 患者以及对等年龄和相同性别的正常人(对照)。
首先, 采用 Solexa测序的方法确定正常血清 /血浆中有一个以上拷贝的 微小核糖核酸, 通过检测血清 /血浆中 miRNA的变化, 筛选出与正常人(对 照组)相比,胰腺癌患者血清样本中变化的 63种 miRNA,其中 44个 miRNA 上调, 19个 miRNA下调, 具体结果如表 2所示。
表 2 胰腺癌患者血清样本与对照组血清样本中 miRNA的差异表达测序结果 上调的 miR As 下降的 miRNAs
miRNA拷贝数 miRNA拷贝数 床 床
miRNA
号 正常 非小细胞 miRNA
号 正常 非小细胞 样本 肺癌样本 样本 肺癌样本
1 let- 7 a 649 1566 1 miR-1 229 15
2 let-7b 381 2454 2 miR-107 35 3
3 let-7c 202 3808 3 miR-125b 21 0
4 let-7d 119 875 4 miR-139-3p 68 0
5 let-7f 126 2092 5 miR-146b-5p 26 5
6 let-7g 33 458 6 miR-150 151 0
7 let-7i 19 962 7 miR-197 49 0
8 miR-100 11 624 8 miR-206 203 0
9 miR-101 5 844 9 miR-22 481 0
10 miR-103 55 476 10 miR-221 41 0
11 miR-122 1438 31232 11 miR-222 30 2
12 miR-125a-5p 19 134 12 miR-28-3p 38 0
13 miR-128 16 59 13 miR-339-5p 78 0
14 miR-140-3p 48 266 14 miR-423-5p 585 152
15 miR-148a 1 193 15 miR-484 53 0
16 miR-185 362 873 16 miR-486-3p 24 0
17 miR-185* 0 135 17 miR-486-5p 1640 9
18 miR-191 29 846 18 miR-532-3p 26 0
19 miR-192 14 14894 19 miR-584 22 0
20 miR-193b* 0 185
21 miR-199a-3p 16 1604
22 miR-20a 0 245
23 miR-21 38 1571
24 miR-210 2 81
25 miR-215 0 368
26 miR-24 21 172
27 miR-25 21 237
28 miR-26a 14 227
29 miR-27a 7 240
30 miR-27b 4 462 31 miR-29a 47 1800
32 miR-29c 7 232
33 miR-30a 4 1679
34 miR-30d 187 926
35 miR-320a 361 1193
36 miR-320b 9 188
37 miR-361-5p 1 322
38 miR-378 26 382
39 miR-451 14 34
40 miR-483-5p 70 1130
41 miR-92a 115 331
42 miR-95 0 99
43 miR-99 40 413
44 miR-532-5p 0 377 通过定量 PCR技术和生物芯片技术, 筛选出在疾病及正常生理状态下 表达量和差异程度大的一类血清 /血浆微小核糖核酸, 参考表 2, 选取其中平 均变化倍数超过 5并且拷贝数大于 10,并且结合实验室前期研究结果,选定 了 36个 miRNA检测指标,作为预测是否发生胰腺癌以及诊断病变程度的指 标, 具体结果见表 3。
表 3 选定的 36种 miRNA
序号 miRNA 平均变化倍数 P值(t检验)
1 miR-27a 1.2960753 0.008085
2 miR-27b 1.07 0.7567261
3 miR-29a 1.1431785 0.3623874
4 miR-29c 1.320792 0.1492103
5 miR-30a 1.4954582 0.0731187
6 miR-30d 0.8956235 0.5688125
7 miR-33a 1.04576 0.93872
8 miR-92a 1.2414502 0.3052584
9 miR-100 1.0234521 0.9108538
10 miR-101 1.079218 0.7229841
11 miR-103 1.0661197 0.7972754
12 miR-125b 1.3597159 0.2975648
13 miR-130b 1.058926 0.817821
14 miR-140-3p 1.042287 0.7037122
15 miR-148a 1.0481299 0.8971156
16 miR-192 1.3246894 0.2644458
17 miR-199a 1.5767 0.0386
18 miR-199a-3p 1.363585 0.2153148
19 miR-222 0.9764046 0.8690469
20 miR-210 1.3872444 0.3868377 21 miR-215 0.9732919 0.9444299
22 miR-223 1.08 0.613
23 miR-320a 1.493328 0.0640379
24 miR-361-5p 1.5194114 0.3374292
25 miR-378 1.2340253 0.4139875
26 miR-411 1.796262 0.007805
27 miR-483-5p 5.632765 0.1209546
28 miR-20a 3.08 1.99E-06
29 miR-21 3.9 4.23E-05
30 miR-24 2.54 0.002696
31 miR-25 4.72 1.89E-08
32 miR-26a 4.16 6.34E-07
33 miR-99 2.62 5.79E-05
34 miR-122 3.26 0.000102
35 miR-185 2.3 0.00055
36 miR-191 2.91 0.000282 从表 3中表达上调的 36种 miRNA中, 根据平均变化倍数 >2并且 ρ值 <0.01的选择标准,进一步优选出 7种 miRNA作为胰腺癌检测的分子标 记物, 具体为 miR-20a, miR-21 , miR-24, miR-25, miR-99, miR-185和 miR-191 , 具体结果见表 4。
表 4选定的 7种 miRNA
对照组血清 iRNA 肺癌患者血清 平均变 P值 浓度 (Mean士 SE) miRNA浓度(Mean士 SE) 化倍数
( fmo l /L ) ( fmo l /L )
iR-20a 68. 44 ± 9. 46 214. 68 ± 23· 29 3. 13 3. 64E-07 miR-21 8. 82 ± 1· 66 37. 37 ± 5· 87 4. 24 2. 28E-05 miR-24 29. 45 ± 4. 64 78. 78 ± 13· 57 2. 67 0. 001255 miR-25 5. 02 ± 0· 91 25. 51 ± 2. 54 5. 08 8. 18E-10 miR-99 16. 16 ± 3· 64 43. 09 ± 4. 64 2. 67 2. 61E-05 miR-185 22. 08 ± 4. 91 46. 48 ± 6. 74 2. 10 0. 007051 miR-191 50. 38 ± 11· 85 144. 70 ± 21· 82 2. 87 0. 000372 通过对上述 7种 miRNA进行聚类分析, 再次表明它们在胰腺癌、 慢性 胰腺炎与正常对照血清样本之间的表达存在差异。上述 7种在血清 /血浆中微 小核糖核酸作为胰腺癌的特异性指纹在正常人群和胰腺癌患者变化特异性 的分析结果见图 4A-D。 由该图可知, 可以依据此 7种 miRNA组合明确区分 胰腺癌样本和正常样本, 并可以区分胰腺癌样本和慢性胰腺炎样本。 即 7种 miRNA组合明确区分胰腺癌样本和对照(包含正常人和慢性胰腺炎)样本。 聚类分析具体的数据处理如下: 对于训练集(图 4A为 25例胰腺癌患者 和 25个对照 ), 险证集(图 4B为 95例胰腺癌患者和 81个对照 ), 高危因素 组(图 4C为 95例胰腺癌患者和 82例慢性胰腺炎患者; 图 4D为 95例胰腺 癌患者、 81 个对照和 82 例慢性胰腺炎患者), 分别将胰腺癌样本中血清 miRNA 的绝对表达值转换为与正常样本比照的倍数比, 并将其归一化、 聚 类且绘制成图 4A-D (采用 cluster 3.0软件作图而成), 即该 Ί种血清 /血浆中 微小核糖核酸作为胰腺癌的特异性指纹变化的分析结果。 对图 4A-D详细说 明如下。
在图 4A中, 右方标注文字均为所检测的 7个 miRNA, 上方标注文字分 别为检测样本个体, normal代表正常人(n=25 ), 集中在图右侧; T代表胰 腺癌病人(n=25 ), 集中在图左侧。 该图证实了通过 7个 miRNA表达水平的 检测可以将正常人和胰腺癌患者区分。
在图 4B中, 右方标注文字均为所检测的 7个 miRNA, 上方标注文字分 别为检测样本个体, normal (代表正常人(n=81 ): 集中在图右侧; T代表胰 腺癌患者 (n=95 ), 集中在图左侧。 该图进一步扩大样本检测, 验证了通过 7个 miRNA表达水平的检测可以将正常人和胰腺癌患者区分。
图 4C右方标注文字均为所检测的 Ί个 miRNA,上方标注文字分别为检 测样本个体, ch pan (代表慢性胰腺炎患者(n=82 ): 集中在图右侧; T代表 胰腺癌患者(n=120 ), 集中在图左侧。 该图进一步扩大样本检测, 验证了通 过 7个 miRNA表达水平的检测可以将慢性胰腺炎患者和胰腺癌患者区分。
图 4D所示为图 4B和图 4C所取样本的集合,该图右侧标注文字均为所 检测的 7个 miRNA, 上侧标注文字分别为检测样本个体, nor代表正常人 ( n=81 )和 ch pan (代表慢性胰腺炎患者(n=82 ), 正常人和慢性胰腺炎样 本集中在图左侧区域; T代表胰腺癌病人(n=120 ), 胰腺癌样本集中在图右 侧区域。 可以看出, 7个 miRNA可以将胰腺癌样本和对照 (包含正常人和 慢性胰腺炎样本)样本区分开。
对图 4A、 4B和 4D进行风险打分的分析, 具体结果见表 5。 在表 5中, 表格的第一行表示的是所评估样本的风险评分分数; 第二至八行分别表示在 某个风险评分分数下的训练集、验证集以及高风险因素集中的胰腺癌患者数 目, 慢性胰腺炎患者数目或正常人数目; 采用统计分析软件 ( SAS )进行统 计分析,设定风险评分数值为 6,若样本风险评分> 6,则划分为胰腺癌患者, 若样本风险评分<6, 划分为正常人。 具体的统计方法如下: 除了控制整个过程中的每一步变量, 进一步在数 据聚类前将所有的数据标准化为零均值和一个标准差。 为了最小化缺失值的 影响并辅助分层聚类和风险评分, 采用 K最近邻域法 K-Nearest Neighbors ( KN , 一种基于缺失数据归咎的方法 ( a method-based missing data imputation ) )估算了 19至 20区间的缺失值。例如,如果样本 A中的 miRNA 有一个缺失值, 会在样本 A中发现同样表达的其他 K个 miRNA, 然后找到 包含与病例 A 中其他 miRNA表达最相似的样本。 可以从 K个最接近的 miRNA 在样本 A 中的加权平均值估算出缺失值。 在加权平均值中, 每个 miRNA的加权值以其与 miRNA中表达的相似度计算。在这里设定 K等于 9, 即使用 9个近邻的 miRNA进行估算。 此外, 由 K最近邻域法 KNN得出的 估算结果对于目前研究结果的影响微乎其微。 所有的标记物调用率都大于 97.6%, 且没有样本缺失多于两个及两个以上的标记物。
在此使用了 cluster 3.0中带有完全关联模式的分层聚类。 为了进行风险 评分,将对照组中每个 miRNA数值参考区间上限的 95%设为 t,作为对每个 样本对应的 miRNA表达水平进行编码的阈值。 将每个 miRNA的风险评分 记为 S, 用计算公式表达为:
Figure imgf000020_0001
其中, i表示第 i个样本, J来表示第 j个 miRNA。 考虑到每个 miRNA 评估非小细胞肺癌风险的权重不同, 根据对 miRNA的表达水平的线性组合 给每个病人建立了一个风险评分的函数。 依据 K个 miRNA的相关资料, i 样本的风险评分函数是:
rsfi =∑k siSnj - wj - sij 在上面的公式中, sij是对于样本 i中 miRNA J的风险评分。 Ws是 miRNA j.的风险评分的权重。 为了决定 sign和 Ws, 将 10个单变量逻辑斯蒂回归模 型拟合应用于标有风险评分的各种疾病状况。用每个风险评分中的回归系数 作为表示每个 miRNA在风险评分函数中的权重, 而回归系数中的 sign则决 定了风险评估函数中的 sign。 然后, 使用频率表和 ROC曲线来评价样本群 体中的诊断效果。 表 5 患者与对照 (正常人) 的风险评^
风险评分 0 0^3 3^6 6^9 9-12 12-15 15-18
S高图图图:素
正常 19 2 4 0 0 0 0
^危危正练东 4444
J集集集 5 S木集隹因, " 胰腺癌 0 0 2 6 6 4 6
正常 60 5 10 4 2 0 0
^胰^胰^胰胰,,胰腺癌 0 0 3 12 18 22 20 腺腺腺腺常常常
正癌癌癌常炎 79 7 14 4 2 0 0 素集 胰腺癌 0 0 5 18 24 26 26 (图 4D) 胰腺炎 70 3 2 0 2 3 0
风险打分 18-21 21-24 >24 总数 PPV* NPV**
0 0 0 25 0 0.93
1 0 0 25 1 0
0 0 0 81 0 0.96
12 8 0 95 0.93 0
0 0 0 106 0 0.94
13 8 0 120 0.96 0
0 1 1 82 0 0.91
表中, *阳性预测率, **阴性预测率
miRNA检测胰腺癌灵敏性和特异性示意图见图 5A-C, 设总面积(即检 测样本总体数) 为一, 可看出曲线下面积 (即可信度)对应于图 4A的训练 集(图 5A ), 对应于图 4B的验证集(图 5B ) 以及对应于图 4D的高危因素 集(即包括胰腺癌,正常人和慢性胰腺炎样本, 图 5C )分别达到 0.995、 0.987 和 0.993 。
图 6所示为上述 7种 miRNA检测胰腺癌准确率的结果图, 其中横坐标 为所检测的 miRNA种类, 纵坐标为曲线下面积, 代表采用 Ί种 miRNA检 测非小细胞肺癌的准确率(设总面积(即检测样本总数)为 1 )。 可看出曲线 下面积 (即准确率) >0.98。
序 列 表
北京命码生科科技有限公司
<120> 胰腺癌标记物及其检测方法、 试剂盒和生物芯片
<130> EIC09310025P
<160> 36
<170> Patentln version
<210> 1
<211> 21
<212> DNA
<213> 人工序列
<權> 1
gcggaactta gccactgtga a
<210> 2
<211> 21
<212> DNA
<213> 人工序列
<400> 2
gcagaactta gccactgtga a
<210> 3
<211> 21
<212> DNA
<213> 人工序列 <400> 3
aaccgatttc agatggtgct a 21
<210> 4
<211> 20
<212> DNA
<213> 人工序列 <400> 4
accgatttca aatggtgcta 20
<210> 5
<211> 22
<212> DNA
<213> 人工序列
<400> 5
cttccagtcg aggatgttta ca 22
<210> 6
<211> 22
<212> DNA
<213> 人工序列
<400> 6
cttccagtcg gggatgttta ca 22
<210> 7
<211> 19
<212> DNA
<213> 人工序列 <400> 7
caatgcaact acaatgcac 19
<210> 8
<211> 21
<212> DNA
<213> 人工序列 <400> 8
caggccggga caagtgcaat a 21
<210> 9
<211> 22
<212> DNA
<213> 人工序列
<400> 9
cacaagttcg gatctacggg tt 22
<210> 10
<211> 22
<212> DNA
<213> 人工序列
<400> 10
cttcagttat cacagtactg ta 22
<210> 11
<211> 23
<212> DNA
<213> 人工序列 <400> 11
tcatagccct gtacaatgct get
<210> 12
<211> 22
<212> DNA
<213> 人工序列
<400> 12
tcacaagtta gggtctcagg ga 22
<210> 13
<211> 22
<212> DNA
<213> 人工序列
<400> 13
atgccctttc atcattgcac tg 22
<210> 14
<211> 21
<212> DNA
<213> 人工序列
<400> 14
ctaccatagg gtaaaaccac t 21
<210> 15
<211> 22
<212> DNA
<213> 人工序列 <400> 15
acaaagttct gtagtgcact ga 22
<210> 16
<211> 21
<212> DNA
<213> 人工序列 <400> 16
ggctgtcaat tcataggtca g 21
<210> 17
<211> 23
<212> DNA
<213> 人工序列
<400> 17
gaacaggtag tctgaacact ggg 23
<210> 18
<211> 22
<212> DNA
<213> 人工序列
<400> 18
aaccaatgtg cagactactg ta 22
<210> 19
<211> 24
<212> DNA
<213> 人工序列 <400> 19
gagacccagt agccagatgt agct 24
<210> 20
<211> 22
<212> DNA
<213> 人工序列
<400> 20
tcagccgctg tcacacgcac ag 22
<210> 21
<211> 21
<212> DNA
<213> 人工序列
<400> 21
gtctgtcaat tcataggtca t 21
<210> 22
<211> 21
<212> DNA
<213> 人工序列
<400> 22
ggggtatttg acaaactgac a 21
<210> 23
<211> 23
<212> DNA
<213> 人工序列 o O
Figure imgf000028_0001
t t t t t
ggccccc caacccac ttttt ttt 00342 <> <
Figure imgf000029_0001
213> 人工序列
10 <400> 28
ctacctgcac tataagcact tta 23
<210> 29
<211> 22
15 <212> DNA
<213> 人工序列
<400> 29
tcaacatcag tctgataagc ta 22
20
<210> 30
<211> 22
Figure imgf000030_0001
10 <400> 32
gcctatcctg gattacttga a 21
<210> 33
<211> 22
15 <212> DNA
<213> 人工序列
<400> 33
cacaagatcg gatctacggg tt 22
20
<210> 34
<211> 23
o
Figure imgf000031_0001
ggggg gg 22acc t acctttttttt
gg 81cccaaaccccttttt t 00354 <>

Claims

权 利 要 求
1、 一种胰腺癌标记物, 其特征在于, 所述标记物包括以下在人体血清 / 血浆中稳定存在且可检测的 小核糖核酸成熟体中的一种或多种: miR-27a, miR-27b, miR-29a, miR-29c, miR-30a, miR-30d, miR-33a, miR-92a, miR-100, miR-101 , miR-103 , miR-125b, miR-130b, miR-140-3p, miR-148a, miR-192, miR-199a, miR-199a-3p, miR-222, miR-210, miR-215 , miR-223 , miR-320, miR-361-5p, miR-378, miR-411 , miR-483-5p, miR-20a, miR-21 , miR-24, miR-25 , miR-26a, miR-99, miR-122, miR-185和 miR-191。
2、 根据权利要求 1 所述的标记物, 其特征在于, 所述标记物包括以下 在人体血清 /血浆中稳定存在且可检测的微小核糖核酸成熟体中的一种或多 种: miR-20a, miR-21 , miR-24, miR-25 , miR-99, miR-185和 miR-191。
3、 一种胰腺癌标记物, 其特征在于, 所述标记物包括以下在人体血清 / 血浆中稳定存在且可检测的微小核糖核酸成熟体中的两种或两种以上: miR-27a, miR-27b , miR-29a, miR-29c, miR-30a, miR-30d, miR-33a, miR-92a, miR-100, miR-101 , miR-103 , miR-125b, miR-130b, miR-140-3p, miR-148a, miR-192, miR-199a, miR-199a-3p, miR-222, miR-210, miR-215 , miR-223 , miR-320, miR-361-5p, miR-378, miR-411 , miR-483-5p, miR-20a, miR-21 , miR-24, miR-25 , miR-26a, miR-99 , miR-122, miR-185和 miR-191。
4、 根据根据权利要求 3所述的标记物, 其特征在于, 所述标记物包括 以下在人体血清 /血浆中稳定存在且可检测的 小核糖核酸成熟体中的两种 或两种以上: miR-20a, miR-21 , miR-24, miR-25 , miR-99, miR-185和 miR-191。
5、 根据权利要求 1至 4中任一项所述的标记物, 其特征在于, 所述血 清 /血浆来源于人体活体、 组织、 器官和 /或尸体。
6、 权利要求 1至 5中任一项所述的标记物的检测方法, 其特征在于, 所述检测方法选自反转录聚合酶链式反应方法、实时荧光定量聚合酶链式反 应方法、 Northern印迹杂交方法、 核糖核酸酶保护分析方法、 Solexa测序技 术和生物芯片方法中的一种或多种;
优选地, 所述检测方法为 RT-PCR方法, 例如包括以下步骤的 RT-PCR 方法:
1 )提取受试者的血清 /血浆总 RNA, 通过 RNA逆转录反应得到 cDNA 样品; 或者收集受试者的血清 /血浆样本, 以血清 /血浆作为緩沖液进行逆转 录反应来制备 cDNA样品;
2 )用微小核糖核酸设计引物进行 PCR反应;
3 )进行 PCR产物的琼脂糖凝胶电泳;
4 ) EB染色后在紫外灯下观察结果;
或者优选地, 所述检测方法为 Real-time PCR方法, 例如包括以下步骤 的 Real-time PCR方法:
1 )提取受试者的血清 /血浆总 RNA, 通过 RNA逆转录反应得到 cDNA 样品; 或者收集受试者的血清 /血浆样本, 以血清 /血浆作为緩沖液进行逆转 录反应来制备 cDNA样品;
2 )用微小核糖核酸设计引物;
3 )加入荧光探针进行 PCR反应;
4 )检测并比较血清 /血浆样本相对于正常血清 /血浆中微小核糖核酸的量 的变化。
7、 一种预测、 诊断和 /或评价胰腺癌的方法, 其特征在于, 所述方法包 括检测权利要求 1至 5中任一项所述的标记物; 优选地, 该方法包括采用权 利要求 6所述的检测方法检测权利要求 1至 5中任一项所述的标记物。
8、权利要求 1至 5中任一项所述的标记物在制备预测、诊断、 鉴别和 /或评价胰腺癌的试剂或工具中的用途。
9、 一种用于检测胰腺癌标记物的微小核糖核酸探针组合, 其特征在于, 所述组合包括以下核苷酸序列所示的探针中的一种或多种:
Figure imgf000033_0001
miR-29c ACCGATTTCAAATGGTGCTA SEQ ID NO. 4 miR-30a CTTCCAGTCGAGGATGTTTACA SEQ ID NO. 5 miR-30d CTTCCAGTCGGGGATGTTTACA SEQ ID NO. 6 miR-33a CAATGCAACTACAATGCAC SEQ ID NO. 7 miR-92a CAGGCCGGGACAAGTGCAATA SEQ ID NO. 8 miR-100 CACAAGTTCGGATCTACGGGTT SEQ ID NO. 9 miR-101 CTTCAGTTATCACAGTACTGTA SEQ ID NO.10 miR-103 TCATAGCCCTGTACAATGCTGCT SEQ ID NO.11 miR-125b TCACAAGTTAGGGTCTCAGGGA SEQ ID NO. 12 miR-130b ATGCCCTTTCATCATTGCACTG SEQ ID NO.13 miR-140-3p CTACCATAGGGTAAAACCACT SEQ ID NO. 14 miR-148a ACAAAGTTCTGTAGTGCACTGA SEQ ID NO. 15 miR-192 GGCTGTCAATTCATAGGTCAG SEQ ID NO. 16 miR-199a GAACAGGTAGTCTGAACACTGGG SEQ ID NO. 17 miR-199a-3p AACCAATGTGCAGACTACTGTA SEQ ID NO. 18 miR-222 GAGACCCAGTAGCCAGATGTAGCT SEQ ID NO. 19 miR-210 TCAGCCGCTGTCACACGCACAG SEQ ID NO.20 miR-215 GTCTGTCAATTCATAGGTCAT SEQ ID N0.21 miR-223 GGGGTATTTGACAAACTGACA SEQ ID NO. 22 miR-320 TTCGCCCTCTCAACCCAGCTTTT SEQ ID N0.23 miR-361-5p GTACCCCTGGAGATTCTGATAA SEQ ID NO. 24 miR-378 ACACAGGACCTGGAGTCAGGAG SEQ ID NO. 25 miR-411 CGTACGCTATACGGTCTACTA SEQ ID NO. 26 miR-483-5p AGAAGACGGGAGGAGAGGAGTGA SEQ ID NO. 27 miR-20a CTACCTGCACTATAAGCACTTTA SEQ ID NO. 28 miR-21 TCAACATCAGTCTGATAAGCTA SEQ ID NO. 29 miR-24 CTGTTCCTGCTGAACTGAGCCA SEQ ID NO. 30 miR-25 TCAGACCGAGACAAGTGCAATG SEQ ID NO. 31 miR-26a GCCTATCCTGGATTACTTGAA SEQ ID NO. 32 miR-99 CACAAGATCGGATCTACGGGTT SEQ ID NO. 33 miR-122 ACAAACACCATTGTCACACTCCA SEQ ID NO. 34 miR-185 GAACTGCCTTTCTCTCCA SEQ ID NO. 35 miR-191 AGCTGCTTTTGGGATTCCGTTG SEQ ID NO. 36
10、 根据权利要求 9所述的探针组合, 其特征在于, 所述所述组合包括 以下核苷酸序列所示的探针中的一种或多种: miRNA 对应的探针序列 序列编号
miR-20a CTACCTGCACTATAAGCACTTTA SEQ ID NO. 28 miR-21 TCAACATCAGTCTGATAAGCTA SEQ ID NO. 29 miR-24 CTGTTCCTGCTGAACTGAGCCA SEQ ID NO. 30 miR-25 TCAGACCGAGACAAGTGCAATG SEQ ID NO. 31 miR-99 CACAAGATCGGATCTACGGGTT SEQ ID NO. 33 miR-185 GAACTGCCTTTCTCTCCA SEQ ID NO. 35 miR-191 AGCTGCTTTTGGGATTCCGTTG SEQ ID NO. 36
11、 一种用于检测胰腺癌标记物的试剂盒, 其特征在于, 所述试剂盒包 含检测权利要求 1至 5中任一项所述的标记物的工具。
12、 根据权利要求 11 所述的试剂盒, 其特征在于, 所述工具包括权利 要求 9或 10所述的探针组合; 优选地, 所述工具还包括聚合酶和 /或脱氧核 糖核苷酸。
13、 一种用于检测胰腺癌标记物的生物芯片, 其特征在于, 所述生物芯 片包含检测权利要求 1至 5中任一项所述的标记物的元件。
14、 根据权利要求 13所述的生物芯片, 其特征在于, 所述生物芯片的 元件包括权利要求 9或 10所述的探针组合。
PCT/CN2009/001547 2009-12-24 2009-12-24 胰腺癌标记物及其检测方法、试剂盒和生物芯片 WO2011075873A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK16188494.5T DK3150721T3 (da) 2009-12-24 2009-12-24 Pankreascancermarkører og detekteringsfremgangsmåder
EP16188494.5A EP3150721B1 (en) 2009-12-24 2009-12-24 Pancreatic cancer markers and detecting methods
PCT/CN2009/001547 WO2011075873A1 (zh) 2009-12-24 2009-12-24 胰腺癌标记物及其检测方法、试剂盒和生物芯片
US13/518,801 US9637793B2 (en) 2009-12-24 2009-12-24 Pancreatic cancer markers, and detecting methods, kits, biochips thereof
EP09852423.4A EP2518158B1 (en) 2009-12-24 2009-12-24 Pancreatic cancer markers and detecting methods
IL220619A IL220619A (en) 2009-12-24 2012-06-24 Pancreatic cancer markers, detection methods, kits and their biological chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001547 WO2011075873A1 (zh) 2009-12-24 2009-12-24 胰腺癌标记物及其检测方法、试剂盒和生物芯片

Publications (1)

Publication Number Publication Date
WO2011075873A1 true WO2011075873A1 (zh) 2011-06-30

Family

ID=44194890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001547 WO2011075873A1 (zh) 2009-12-24 2009-12-24 胰腺癌标记物及其检测方法、试剂盒和生物芯片

Country Status (5)

Country Link
US (1) US9637793B2 (zh)
EP (2) EP3150721B1 (zh)
DK (1) DK3150721T3 (zh)
IL (1) IL220619A (zh)
WO (1) WO2011075873A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344962A (zh) * 2011-10-10 2012-02-08 北京市肿瘤防治研究所 荧光定量PCR检测血清miR-21试剂盒及其应用
WO2012083969A3 (en) * 2010-12-22 2012-08-09 Herlev Hospital Microrna for diagnosis of pancreatic cancer
WO2013095941A1 (en) 2011-12-19 2013-06-27 Valley Health System Methods and kits for detecting subjects at risk of having cancer
WO2013107459A3 (en) * 2012-01-16 2013-09-19 Herlev Hospital Microrna for diagnosis of pancreatic cancer and/or prognosis of patients with pancreatic cancer by blood samples
CN105102637A (zh) * 2013-04-17 2015-11-25 Lg电子株式会社 提取胰腺癌诊断生物标志物的方法、用于该方法的计算装置、胰腺癌诊断生物标志物以及包含该生物标志物的胰腺癌诊断装置
CN106459961A (zh) * 2014-05-30 2017-02-22 东丽株式会社 胰腺癌的检测试剂盒或装置以及检测方法
CN109295233A (zh) * 2018-12-10 2019-02-01 复旦大学附属中山医院 一种联合检测miRNA诊断结直肠癌的试剂盒
US12098430B2 (en) 2016-03-31 2024-09-24 Toray Industries, Inc. Kit or device for detecting early stage pancreatic cancer or pancreatic cancer precursor lesions and detection method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058996B1 (ko) * 2013-04-17 2019-12-24 엘지전자 주식회사 췌장암 진단용 바이오마커, 이를 위한 컴퓨팅 장치 및 이의 제어 방법
WO2015091963A2 (en) * 2013-12-19 2015-06-25 Comprehensive Biomarker Center Gmbh Determination of platelet-mirnas in acute myocardial infarction
JP6489583B2 (ja) * 2014-03-04 2019-03-27 国立大学法人広島大学 膵がんの検出を補助する方法
CN104212895B (zh) * 2014-09-03 2017-07-28 复旦大学附属中山医院 miR‑361‑5p作为内参miRNA在肿瘤诊断和监测中的应用
EP3239303A1 (en) * 2016-04-26 2017-11-01 Advanced Marker Discovery, S.L. In vitro method for identifying pancreatic cancer or intraductal papillary mucinous neoplasm of the pancreas
TWI758670B (zh) * 2018-12-24 2022-03-21 奎克生技光電股份有限公司 健康風險評估方法
CN111440800B (zh) * 2020-04-20 2023-04-28 南通大学附属医院 靶向Galectin-3基因的miRNA-128-3p及其抗胰腺癌的用途
CN114540493B (zh) * 2022-01-29 2023-01-13 中国医学科学院北京协和医院 一种用于胰腺癌早期诊断的生物标志物及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999765A (zh) 2006-12-20 2007-07-18 南京大学 以微小核糖核酸的变化鉴定结肠癌化程度的生物芯片
CN101298630A (zh) 2008-06-11 2008-11-05 南京大学 一种Solexa技术鉴定结肠癌病人血清中微小核糖核酸的方法
CN101384273A (zh) * 2006-01-05 2009-03-11 俄亥俄州立大学研究基金会 胰腺内分泌和腺泡肿瘤中的微小rna表达异常
CN101389770A (zh) * 2006-01-05 2009-03-18 俄亥俄州立大学研究基金会 用于诊断和治疗实体癌的基于微小rna的方法和组合物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1033364T3 (da) * 1999-03-01 2005-06-06 Pfizer Prod Inc Cyanholdige oxamidsyrer og -derivater som thyroideareceptorligander
EP1784501B1 (en) 2004-05-14 2015-11-18 Rosetta Genomics Ltd VIRAL AND VIRUS ASSOCIATED MicroRNAS AND USES THEREOF
US7635563B2 (en) * 2004-06-30 2009-12-22 Massachusetts Institute Of Technology High throughput methods relating to microRNA expression analysis
US20100286044A1 (en) 2005-12-29 2010-11-11 Exiqon A/S Detection of tissue origin of cancer
CA2811486A1 (en) * 2006-01-05 2007-07-19 The Ohio State University Research Foundation Microrna-based methods and compositions for the diagnosis and treatment of solid cancers
EP2487240B1 (en) * 2006-09-19 2016-11-16 Interpace Diagnostics, LLC Micrornas differentially expressed in pancreatic diseases and uses thereof
AU2008231393A1 (en) 2007-03-27 2008-10-02 Rosetta Genomics Ltd. Gene expression signature for classification of cancers
CN101424640B (zh) 2007-11-02 2012-07-25 江苏命码生物科技有限公司 血清中微小核糖核酸的检测方法和用于检测的试剂盒、生物芯片及其制作和应用方法
EP2225396A4 (en) 2007-11-30 2011-03-02 Univ Ohio State Res Found PROFILING AND SCREENING OF MICRO-RNA EXPRESSION IN PERIPHERAL BLOOD IN LUNG CANCER
CN101307361A (zh) 2008-07-15 2008-11-19 南京大学 一种Solexa技术鉴定肺癌病人血清中微小核糖核酸的方法
CN101475984A (zh) 2008-12-15 2009-07-08 江苏命码生物科技有限公司 一种非小细胞肺癌检测标记物及其检测方法、相关生物芯片和试剂盒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384273A (zh) * 2006-01-05 2009-03-11 俄亥俄州立大学研究基金会 胰腺内分泌和腺泡肿瘤中的微小rna表达异常
CN101389770A (zh) * 2006-01-05 2009-03-18 俄亥俄州立大学研究基金会 用于诊断和治疗实体癌的基于微小rna的方法和组合物
CN100999765A (zh) 2006-12-20 2007-07-18 南京大学 以微小核糖核酸的变化鉴定结肠癌化程度的生物芯片
CN101298630A (zh) 2008-06-11 2008-11-05 南京大学 一种Solexa技术鉴定结肠癌病人血清中微小核糖核酸的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEN ET AL.: "Characterization of microRNAs in serum: a novel class of markers for diagnosis of cancer and other diseases", CELL RES., vol. 18, no. 10, October 2008 (2008-10-01), pages 997
GAROFALO M; QUINTAVALLE C; DI LEVA G ET AL.: "MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer", ONCOGENE, 2008
LAWRIE CH; GAL S; DUNLOP HM ET AL.: "Detection of elevated levels of tumor-associated miRNAs in serum of patients with diffuse large B-cell lymphoma", BR J HAEMATOL, vol. 141, 2008, pages 672 - 675
LIU, JUN ET AL.: "Research advancement of microRNA on pancreatic carcer", PROGRESS IN MODERN BIOMEDICINE, vol. 9, no. 23, 15 December 2009 (2009-12-15), pages 4560 - 4564 *
QIN, YIYU ET AL.: "Research advances in the detection of m icroRNA", JOURNAL OFMEDICAL POSTGRADUATES, vol. 20, no. 11, November 2007 (2007-11-01), pages 1198 - 1201 *
See also references of EP2518158A4 *
TRYNDYAK VP; ROSS SA; BELAND FA; POGRIBNY IP: "Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet", MOL CARCINOG, 21 October 2008 (2008-10-21)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083969A3 (en) * 2010-12-22 2012-08-09 Herlev Hospital Microrna for diagnosis of pancreatic cancer
CN102344962A (zh) * 2011-10-10 2012-02-08 北京市肿瘤防治研究所 荧光定量PCR检测血清miR-21试剂盒及其应用
WO2013095941A1 (en) 2011-12-19 2013-06-27 Valley Health System Methods and kits for detecting subjects at risk of having cancer
EP2800820A4 (en) * 2011-12-19 2016-03-30 Valley Health System METHOD AND KITS FOR RECOGNIZING CANCER RISK IN PATIENTS
US9850541B2 (en) 2011-12-19 2017-12-26 Valley Health System Methods and kits for detecting subjects at risk of having cancer
WO2013107459A3 (en) * 2012-01-16 2013-09-19 Herlev Hospital Microrna for diagnosis of pancreatic cancer and/or prognosis of patients with pancreatic cancer by blood samples
CN105102637B (zh) * 2013-04-17 2018-05-22 Lg电子株式会社 提取胰腺癌诊断生物标志物的方法、用于该方法的计算装置、胰腺癌诊断生物标志物以及包含该生物标志物的胰腺癌诊断装置
CN105102637A (zh) * 2013-04-17 2015-11-25 Lg电子株式会社 提取胰腺癌诊断生物标志物的方法、用于该方法的计算装置、胰腺癌诊断生物标志物以及包含该生物标志物的胰腺癌诊断装置
CN106459961A (zh) * 2014-05-30 2017-02-22 东丽株式会社 胰腺癌的检测试剂盒或装置以及检测方法
US10370722B2 (en) 2014-05-30 2019-08-06 Toray Industries, Inc. Pancreatic cancer detection kit or device, and detection method
US10920282B2 (en) 2014-05-30 2021-02-16 Toray Industries, Inc. Pancreatic cancer detection kit or device, and detection method
US11788150B2 (en) 2014-05-30 2023-10-17 Toray Industries, Inc. Pancreatic cancer detection kit or device, and detection method
US12098430B2 (en) 2016-03-31 2024-09-24 Toray Industries, Inc. Kit or device for detecting early stage pancreatic cancer or pancreatic cancer precursor lesions and detection method therefor
CN109295233A (zh) * 2018-12-10 2019-02-01 复旦大学附属中山医院 一种联合检测miRNA诊断结直肠癌的试剂盒

Also Published As

Publication number Publication date
DK3150721T3 (da) 2019-07-01
IL220619A (en) 2017-08-31
US20130072393A1 (en) 2013-03-21
EP3150721B1 (en) 2019-05-15
US9637793B2 (en) 2017-05-02
EP2518158A1 (en) 2012-10-31
EP2518158A4 (en) 2013-05-29
EP2518158B1 (en) 2016-09-14
EP3150721A1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
EP2518158B1 (en) Pancreatic cancer markers and detecting methods
US10774386B2 (en) Serum or plasma microRNA as biomarkers for non-small cell lung cancer
CN101942502B (zh) 胰腺癌标记物及其检测方法、试剂盒和生物芯片
US20110160290A1 (en) Use of extracellular rna to measure disease
CA2833389C (en) Mirna-based universal screening test (ust)
EP2559773B1 (en) Methods for determining a hepatocellular carcinoma subtype
WO2011012074A1 (zh) 肝癌检测标记物及其检测方法、试剂盒和生物芯片
CN101988060A (zh) 结直肠癌检测标记物及其检测方法、试剂盒和生物芯片
AU2017213457B2 (en) Micro-RNA biomarkers and methods of using same
US20130157886A1 (en) Methods of detecting lung cancer
CN107660234A (zh) 使用二代测序预测器官移植排斥的方法
CN101988059B (zh) 胃癌检测标记物及其检测试剂盒和生物芯片
CN108676872B (zh) 一种与哮喘相关的生物标志物及其应用
CN101988061A (zh) 乳腺癌检测标记物及其检测方法、试剂盒和生物芯片
US20110312516A1 (en) Diagnostic and prognostic use of human bladder cancer-associated micro rnas
CN107299129B (zh) 循环核酸作为乳腺癌生物标志物的应用
CN101988062A (zh) 宫颈癌检测标记物及其检测方法、试剂盒和生物芯片
CN104694534B (zh) 非小细胞肺癌标记物,其检测方法及应用
CN109652529A (zh) 骨质疏松特异性miRNA、组合物及其诊疗用途
CN112029864B (zh) 一种乳腺癌miRNA检测试剂盒及其应用
US20140221506A1 (en) Methods of Diagnosing Neuropathic Pain
Ahmed Importance of Micrornas in Human Cancer Development: A Molecular Analytical Approach
CN111518895A (zh) Linc00423在冠心病诊断中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852423

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009852423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009852423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 220619

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518801

Country of ref document: US