WO2011071894A1 - Invention permettant un suivi de phase d'un dispositif de communication - Google Patents

Invention permettant un suivi de phase d'un dispositif de communication Download PDF

Info

Publication number
WO2011071894A1
WO2011071894A1 PCT/US2010/059250 US2010059250W WO2011071894A1 WO 2011071894 A1 WO2011071894 A1 WO 2011071894A1 US 2010059250 W US2010059250 W US 2010059250W WO 2011071894 A1 WO2011071894 A1 WO 2011071894A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
pilot
symbols
pilot symbols
rank
Prior art date
Application number
PCT/US2010/059250
Other languages
English (en)
Inventor
Vincent Knowles Jones Iv
Hemanth Sampath
Didier Johannes Richard Van Nee
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to DK10795132.9T priority Critical patent/DK2510657T3/en
Priority to KR1020167004453A priority patent/KR101647811B1/ko
Priority to JP2012543200A priority patent/JP2013513340A/ja
Priority to CN201080055463.8A priority patent/CN102640469B/zh
Priority to ES10795132.9T priority patent/ES2554632T3/es
Priority to PL10795132T priority patent/PL2510657T3/pl
Priority to KR1020127017702A priority patent/KR101782033B1/ko
Priority to EP10795132.9A priority patent/EP2510657B1/fr
Publication of WO2011071894A1 publication Critical patent/WO2011071894A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding

Definitions

  • the present disclosure relates generally to communication systems. More specifically, the present disclosure relates to enabling phase tracking for a communication device.
  • the plurality of pilot symbols may be received during a training period.
  • the training period may include Very High Throughput-Long Training Field (VHT-LTF) symbols transmitted according to Institute of Electrical and Electronics Engineers (IEEE) 802.1 lac specifications.
  • VHT-LTF Very High Throughput-Long Training Field
  • a computer-program product for tracking phase includes a non-transitory tangible computer-readable medium with instructions.
  • the instructions include code for causing a communication device to receive a plurality of pilot symbols from a sending communication device.
  • the pilot symbols conform to a rank-deficient pilot mapping matrix.
  • the instructions also include code for causing the communication device to determine a phase estimate based on the pilot symbols.
  • the instructions further include code for causing the communication device to estimate a channel based on the phase estimate and the pilot symbols.
  • the instructions additionally include code for causing the communication device to receive data from the sending communication device using the channel estimate.
  • Figure 4 is a flow diagram illustrating one configuration of a method for enabling phase tracking for a communication device
  • Figure 10 is a diagram illustrating another example of a rank-deficient pilot mapping matrix that may be used according to the systems and methods disclosed herein;
  • the term "base station” generally denotes a communication device that is capable of providing access to a communications network.
  • communications networks include, but are not limited to, a telephone network (e.g., a "land-line” network such as the Public-Switched Telephone Network (PSTN) or cellular phone network), the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), a Metropolitan Area Network (MAN), etc.
  • PSTN Public-Switched Telephone Network
  • LAN Local Area Network
  • WAN Wide Area Network
  • MAN Metropolitan Area Network
  • Examples of a base station include cellular telephone base stations or nodes, access points, wireless gateways and wireless routers, for example.
  • a transmission using four spatial streams may use a pilot mapping matrix R as illustrated in Equation (2).
  • FIG. 1 is a block diagram illustrating one configuration of communication devices 102, 114 in which systems and methods for enabling phase tracking for a communication device may be implemented.
  • Examples of communication devices 102, 114 include a wireless communication device, base station, User Equipment (UE), station (STA), access terminal, access point, wireless router, desktop computer, laptop computer, smartphone, cellular phone, Personal Digital Assistant (PDA), tablet device, e-reader, gaming system, etc.
  • One or more "sending" communication devices 102 may include one or more antennas HOa-b used to communicate with a "receiving" communication device 114.
  • the symbol phase estimation module 118 may use rank-deficient pilot mapping matrix B 106b to track symbol phase during a training period.
  • the phase and/or frequency error reduction module 116 may use the tracked phase to compute a channel estimate with reduced phase and/or frequency errors that may be used to demodulate and/or decode received symbols 126.
  • the phase and/or frequency error reduction module 116 and/or the symbol phase estimation module 118 may be implemented in software, hardware or a combination of both.
  • the pilot symbol generation module 104 may generate pilot symbols that conform to a rank-deficient pilot mapping matrix 106.
  • the pilot symbol generation module 104 generates rank-deficient pilot mapping matrix A 106a.
  • the rank-deficient pilot mapping matrix A 106a may have a rank that is less than the number of spatial streams 124. For instance, assuming that there are four spatial streams 124a-d, rank-deficient pilot mapping matrix A 106a may be generated such that it is rank 2 or has rank 2.
  • the one or more sending communication devices 102 may send or transmit rank-deficient pilot mapping matrix A 106a to the receiving communication device 114.
  • the receiving communication device 114 may receive rank-deficient pilot mapping matrix A 106a as rank-deficient pilot mapping matrix B 106b.
  • a full rank pilot mapping matrix would allow the receiving communication device 114 to estimate a phase offset for each spatial stream 124.
  • the full rank pilot mapping matrix may not allow the receiving communication device 114 to estimate the phase offset during a training period (e.g., during a sequence of pilot symbols or pilot mapping matrix).
  • a pilot mapping matrix may comprise a sequence of pilot symbols over a training period for a number of spatial streams 124.
  • the training period comprises a sequence of four pilot symbols.
  • FIG. 2 is a diagram illustrating an example of a training period and/or channel estimation period 444.
  • a training period 444 may be a range of time 446 in which several training symbols are received.
  • the training period 444 may comprise Very High Throughput-Long Training Field (VHT-LTF) symbols transmitted according to Institute of Electrical and Electronics Engineers (IEEE) 802.1 lac specifications.
  • VHT-LTF Very High Throughput-Long Training Field
  • a channel estimate may be generated during the training and/or channel estimation 444 period.
  • the symbols received during the training period 444 may be long training symbols or comprise Long Training Fields (LTFs), for example.
  • a set of symbols for multiple spatial streams may be received by a receiving communication device 1 14 at each symbol receipt 448.
  • the receiving communication device 1 14 may be able to determine a phase estimate during the training and/or channel estimation period 444 for use in determining a channel estimate.
  • the pilot mapping matrix 106 comprised of the sets of pilot symbols received at symbol receipt A 448a, B 448b, C 448c and D 448d may be a rank- deficient pilot mapping matrix 106.
  • the number of pilot sequences that have a non-zero singular value (e.g., eigenvalue) or that are linearly independent is fewer than the number of spatial streams.
  • the rank-deficient pilot mapping matrix 106 may include one or more repeated sets of the same (e.g., identical) pilot symbols.
  • the number of OFDM pilot symbol sequences generated 702 that have non-zero singular values (e.g., eigenvalues) or the number of OFDM pilot symbol sequences generated 702 that are linearly independent are fewer than the number of spatial streams 124.
  • a sequence of pilot symbols (e.g., OFDM pilot symbols) may correspond to a row in the rank-deficient pilot mapping matrix 106.
  • the receiving communication device 114 may determine a correlation (e.g., cross-correlation) or phase differential of the original and repeated pilot symbols to determine 806 the phase estimate.
  • the receiving communication device 114 may determine a correlation (e.g., cross-correlation) or phase differential between the 1 st and 3 rd pilot symbols (e.g., 1 st and 3 rd sets or columns) and between the 2 nd and 4 th pilot symbols (e.g., 2 nd and 4 th sets or columns) to determine 806 one or more phase estimates.
  • the number of rows e.g., sequences of OFDM pilot symbols
  • non-zero singular values e.g., eigenvalues
  • linearly independent may be less than the number of spatial streams or columns, indicating a pilot mapping matrix that is rank-deficient or less than full rank.
  • the base station 114 may estimate 908 a channel based on the one or more phase estimates. For example, the base station 114 may use the one or more phase estimates to obtain a channel estimate.
  • the channel estimate may be more accurate (e.g., with reduced phase and/or frequency offsets), since it is based on the one or more phase estimates that may be more accurate (e.g., with reduced phase and/or frequency offsets).
  • the one or more phase estimates may be more accurate since they were determined during or based on symbols received during a training period 444.
  • the base station 114 may receive 910 data from the one or more wireless communication devices 102, using the channel estimate to demodulate and/or decode received symbols (e.g., data symbols).
  • the full rank pilot mapping matrix 1054 may allow a receiving communication device (e.g., base station, access point, etc.) to compute a phase (e.g., phase offset) for all of the spatial streams (corresponding to the pilot symbol sequences 1056a-d). Because each of the pilot symbol sets 1058a-d are different, however, one pilot symbol set 1058 cannot be easily compared to another pilot symbol set 1058 in order to determine a phase drift or phase estimate during the training period 444.
  • a receiving communication device e.g., base station, access point, etc.
  • a phase e.g., phase offset
  • a receiving communication device 114 may use pairs (or multiples, for example) of identical pilot symbols 1166 to determine one or more phase estimates. For example, the receiving communication device 114 may use the pair of identical pilot symbols A 1166a to determine one or more phase estimates. More specifically, the receiving communication device 114 may determine a correlation (e.g., cross- correlation) or phase differential between pilot symbol set A 1164a and pilot symbol set C 1164c to determine a phase estimate. The receiving communication device 114 may also determine a correlation (e.g., cross-correlation) or phase differential between pilot symbol set B 1164b and pilot symbol set C 1164c (e.g., identical pilot symbols B 1166b) to determine one or more phase estimates.
  • a correlation e.g., cross-correlation
  • pilot symbol set B 1164b and pilot symbol set C 1164c e.g., identical pilot symbols B 1166b
  • the phase of the repeated pilot symbols may be compared to the phase of the original pilot symbols (using correlation or a phase differential, for example) in order to determine a phase estimate.
  • a receiving communication device 114 may not determine a phase (e.g., phase offset) for all of the spatial streams (corresponding to the pilot symbol sequences 1162a- d).
  • the rank-deficient pilot mapping matrix 1160 illustrated in Figure 9 is rank 2, and thus only two independent phase estimates may be determined (instead of four for a full rank pilot mapping matrix 1054, for example).
  • pilot symbol sets A 1264a and E 1264e, B 1264b and F 1264f, C 1264c and G 1264g and D 1264d and H 1264h are respectively pairs of identical pilot symbols A 1266a, B 1266b, C 1266c and D 1266d.

Abstract

Cette invention se rapporte à un dispositif de communication destiné à permettre un suivi de phase. Le dispositif de communication comprend un processeur et des instructions stockées dans une mémoire. Le dispositif de communication génère une pluralité de symboles pilotes. Les symboles pilotes se conforment à une matrice de mappage pilote déficiente en rang. Le dispositif de communication émet également la pluralité de symboles pilotes.
PCT/US2010/059250 2009-12-07 2010-12-07 Invention permettant un suivi de phase d'un dispositif de communication WO2011071894A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK10795132.9T DK2510657T3 (en) 2009-12-07 2010-12-07 PHASE TRACKING FOR A COMMUNICATION DEVICE
KR1020167004453A KR101647811B1 (ko) 2009-12-07 2010-12-07 통신 디바이스에 대한 위상 트래킹의 인에이블
JP2012543200A JP2013513340A (ja) 2009-12-07 2010-12-07 通信デバイスのための位相トラッキングを可能にすること
CN201080055463.8A CN102640469B (zh) 2009-12-07 2010-12-07 用于使能相位跟踪的通信设备、方法和装置
ES10795132.9T ES2554632T3 (es) 2009-12-07 2010-12-07 Seguimiento de fase para un dispositivo de comunicación
PL10795132T PL2510657T3 (pl) 2009-12-07 2010-12-07 Śledzenie fazy dla urządzenia telekomunikacyjnego
KR1020127017702A KR101782033B1 (ko) 2009-12-07 2010-12-07 위상 추적을 가능하게 하기 위한 통신 디바이스, 방법 및 장치, 위상을 추적하기 위한 통신 디바이스, 방법 및 장치, 그리고 컴퓨터 판독가능 매체
EP10795132.9A EP2510657B1 (fr) 2009-12-07 2010-12-07 Suivi de phase pour un dispositif de communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US26730009P 2009-12-07 2009-12-07
US61/267,300 2009-12-07
US12/961,000 2010-12-06
US12/961,000 US9288096B2 (en) 2009-12-07 2010-12-06 Enabling phase tracking for a communication device

Publications (1)

Publication Number Publication Date
WO2011071894A1 true WO2011071894A1 (fr) 2011-06-16

Family

ID=44081945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/059250 WO2011071894A1 (fr) 2009-12-07 2010-12-07 Invention permettant un suivi de phase d'un dispositif de communication

Country Status (12)

Country Link
US (2) US9288096B2 (fr)
EP (2) EP2961119A1 (fr)
JP (2) JP2013513340A (fr)
KR (2) KR101782033B1 (fr)
CN (1) CN102640469B (fr)
DK (1) DK2510657T3 (fr)
ES (1) ES2554632T3 (fr)
HU (1) HUE025760T2 (fr)
PL (1) PL2510657T3 (fr)
PT (1) PT2510657E (fr)
TW (1) TWI478523B (fr)
WO (1) WO2011071894A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122757A (ja) * 2009-12-10 2015-07-02 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおけるトレーニング信号送信方法及び装置
US10820291B2 (en) 2015-06-15 2020-10-27 Qualcomm Incorporated Phase tracking in training fields

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009012446A2 (fr) 2007-07-18 2009-01-22 Marvell World Trade Ltd. Point d'accès à transmission en liaison descendante simultanée de données indépendantes pour de multiples stations clients
JP5054193B2 (ja) 2007-07-18 2012-10-24 マーベル ワールド トレード リミテッド 複数のクライアント局から独立したデータを同時アップリンク伝送する無線ネットワーク
US8867653B2 (en) * 2011-01-28 2014-10-21 Marvell World Trade Ltd. Physical layer frame format for long range WLAN
US8982889B2 (en) 2008-07-18 2015-03-17 Marvell World Trade Ltd. Preamble designs for sub-1GHz frequency bands
US9077594B2 (en) 2009-07-23 2015-07-07 Marvell International Ltd. Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
US9288096B2 (en) 2009-12-07 2016-03-15 Qualcomm Incorporated Enabling phase tracking for a communication device
US20110194655A1 (en) * 2010-02-10 2011-08-11 Qualcomm Incorporated Methods and apparatus to perform residual frequency offset estimation and correction in ieee 802.11 waveforms
JP6057435B2 (ja) 2011-02-04 2017-01-11 マーベル ワールド トレード リミテッド 無線lanの制御モードphy
US9178745B2 (en) 2011-02-04 2015-11-03 Marvell World Trade Ltd. Control mode PHY for WLAN
KR102029272B1 (ko) 2011-08-29 2019-10-07 마벨 월드 트레이드 리미티드 무선 네트워크에서 노멀 속도 물리 계층과 저속 물리 계층의 공존
KR20140135157A (ko) 2012-02-07 2014-11-25 마벨 월드 트레이드 리미티드 장거리 wlan을 위한 파일럿 시퀀스 설계
US8995588B2 (en) * 2012-06-12 2015-03-31 Intel Corporation Systems and methods for implementing improved frequency estimation
US8781008B2 (en) 2012-06-20 2014-07-15 MagnaCom Ltd. Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
US8565363B1 (en) 2012-06-20 2013-10-22 MagnaCom Ltd. Fine phase estimation for highly spectrally efficient communications
CN104769875B (zh) 2012-06-20 2018-07-06 安华高科技通用Ip(新加坡)公司 采用正交频分复用的高频谱效率传输
US9166834B2 (en) 2012-06-20 2015-10-20 MagnaCom Ltd. Method and system for corrupt symbol handling for providing high reliability sequences
US8811548B2 (en) 2012-11-14 2014-08-19 MagnaCom, Ltd. Hypotheses generation based on multidimensional slicing
US9088400B2 (en) 2012-11-14 2015-07-21 MagnaCom Ltd. Hypotheses generation based on multidimensional slicing
US9295016B2 (en) * 2013-06-12 2016-03-22 Microsoft Technology Licensing, Llc Cooperative phase tracking in distributed multiple-input multiple-output system
WO2015038647A2 (fr) 2013-09-10 2015-03-19 Marvell World Trade Ltd. Intervalle de garde étendu pour wlan extérieur
EP3061219B1 (fr) 2013-10-25 2020-04-08 Marvell World Trade Ltd. Mode d'extension de plage wifi
US10218822B2 (en) 2013-10-25 2019-02-26 Marvell World Trade Ltd. Physical layer frame format for WLAN
US10194006B2 (en) 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
US9118519B2 (en) 2013-11-01 2015-08-25 MagnaCom Ltd. Reception of inter-symbol-correlated signals using symbol-by-symbol soft-output demodulator
US8804879B1 (en) 2013-11-13 2014-08-12 MagnaCom Ltd. Hypotheses generation based on multidimensional slicing
US9130637B2 (en) 2014-01-21 2015-09-08 MagnaCom Ltd. Communication methods and systems for nonlinear multi-user environments
US11855818B1 (en) 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
US9496900B2 (en) 2014-05-06 2016-11-15 MagnaCom Ltd. Signal acquisition in a multimode environment
US8891701B1 (en) 2014-06-06 2014-11-18 MagnaCom Ltd. Nonlinearity compensation for reception of OFDM signals
US9246523B1 (en) 2014-08-27 2016-01-26 MagnaCom Ltd. Transmitter signal shaping
US10154476B2 (en) * 2014-09-04 2018-12-11 Qualcomm Incorporated Tone plan for LTF compression
US9276619B1 (en) 2014-12-08 2016-03-01 MagnaCom Ltd. Dynamic configuration of modulation and demodulation
US9191247B1 (en) 2014-12-09 2015-11-17 MagnaCom Ltd. High-performance sequence estimation system and method of operation
US10050750B2 (en) * 2014-12-09 2018-08-14 Qualcomm Incorporated Training field tone plans for mixed-rate wireless communication networks
US9509540B1 (en) * 2015-02-13 2016-11-29 Marvell International Ltd. Methods and apparatus for increasing the number of training and data tones in wireless communications systems
JP2016201448A (ja) 2015-04-09 2016-12-01 トヨタ自動車株式会社 ダイオード及びダイオードの製造方法
US10230556B2 (en) * 2015-06-25 2019-03-12 Marvell World Trade Ltd. Systems and methods for implementing an OFDMA LTF design for wireless network communication
CN106850483B (zh) * 2016-08-31 2020-03-10 上海无疆信息科技有限公司 一种用于无线通信系统的相位误差估计方法及装置
CN108242984B (zh) * 2016-12-23 2021-01-15 普天信息技术有限公司 一种多子带系统的导频序列的生成方法
CN112654089B (zh) 2017-01-06 2022-02-25 华为技术有限公司 一种参考信号的配置方法、装置及系统
JP2020057825A (ja) * 2017-02-02 2020-04-09 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN109150444B (zh) * 2017-06-16 2022-01-11 华为技术有限公司 资源单元的设置、传输方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005067247A1 (fr) * 2003-12-30 2005-07-21 Intel Corporation (A Delaware Corporation) Systemes de transmission a antennes multiples et procedes de transmission dans des reseaux locaux sans fil comportant des dispositifs de transmission a antenne unique
US20080159424A1 (en) * 2005-07-20 2008-07-03 Broadcom Corporation, A California Corporation Angle estimation for space-time block code (STBC) modulated signal

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510434B1 (ko) * 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
JP3590008B2 (ja) 2001-08-15 2004-11-17 日本電信電話株式会社 Ofdm信号送信装置およびofdm信号受信装置
US6996380B2 (en) * 2001-07-26 2006-02-07 Ericsson Inc. Communication system employing transmit macro-diversity
WO2004088914A1 (fr) 2003-03-31 2004-10-14 Matsushita Electric Industrial Co., Ltd. Appareil de synchronisation de frequence et procede de synchronisation de frequence
JP2005260337A (ja) 2004-03-09 2005-09-22 Renesas Technology Corp 復調回路および無線通信システム
US7372913B2 (en) 2004-07-22 2008-05-13 Qualcomm Incorporated Pilot tones in a multi-transmit OFDM system usable to capture transmitter diversity benefits
WO2006013858A1 (fr) 2004-08-04 2006-02-09 Nippon Telegraph And Telephone Corporation Procédé d’émission/réception de signal ofdm et appareil d’émission/réception de signal ofdm
JP4604659B2 (ja) 2004-11-04 2011-01-05 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
KR100633743B1 (ko) 2004-12-11 2006-10-13 한국전자통신연구원 Ofdm 시스템을 위한 잔여 주파수 오차, 위상 오차,시간 오차 및 크기 변화 추적 장치 및 그 방법
JP5313506B2 (ja) 2005-02-09 2013-10-09 アギア システムズ インコーポレーテッド マルチアンテナ通信システムにおける短縮されたロングトレーニングフィールドによるプリアンブルトレーニングの方法及び装置
US9520972B2 (en) * 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
JP2006295629A (ja) 2005-04-12 2006-10-26 Sony Corp 無線通信システム、無線通信装置及び無線通信方法
JP4595667B2 (ja) 2005-05-17 2010-12-08 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7480497B2 (en) * 2005-06-29 2009-01-20 Intel Corporation Multicarrier receiver and method for carrier frequency offset correction and channel estimation for receipt of simultaneous transmissions over a multi-user uplink
US20070087749A1 (en) * 2005-08-12 2007-04-19 Nokia Corporation Method, system, apparatus and computer program product for placing pilots in a multicarrier mimo system
US8027373B2 (en) 2005-09-15 2011-09-27 Qualcomm Incorporated Quick detection of signaling in a wireless communication system
CA2569286A1 (fr) * 2005-11-25 2007-05-25 Queen's University At Kingston Systeme et methode faisant appel a la dispersion lineaire en fonction de l'espace, du temps et de la frequence
WO2008036834A2 (fr) * 2006-09-20 2008-03-27 Alcatel Lucent Systèmes et procédés de mise en oeuvre d'un service de conférence généralisée
US20080101492A1 (en) 2006-10-31 2008-05-01 Jean-Philippe Gregoire Method for Tracking Phase Noise in an OFDM System
KR101370916B1 (ko) 2007-08-22 2014-03-10 엘지전자 주식회사 다수의 부 반송파를 이용하는 다중 안테나 시스템에서의,데이터 송수신 방법
JP5377083B2 (ja) 2009-06-03 2013-12-25 三菱電機株式会社 光通信用送信機、光通信用受信機
US9288096B2 (en) 2009-12-07 2016-03-15 Qualcomm Incorporated Enabling phase tracking for a communication device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005067247A1 (fr) * 2003-12-30 2005-07-21 Intel Corporation (A Delaware Corporation) Systemes de transmission a antennes multiples et procedes de transmission dans des reseaux locaux sans fil comportant des dispositifs de transmission a antenne unique
US20080159424A1 (en) * 2005-07-20 2008-07-03 Broadcom Corporation, A California Corporation Angle estimation for space-time block code (STBC) modulated signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHMADI S: "An overview of next-generation mobile WiMAX technology", IEEE COMMUNICATIONS MAGAZINE, IEEE SERVICE CENTER, PISCATAWAY, US, vol. 47, no. 6, 1 June 2009 (2009-06-01), pages 84 - 98, XP011281828, ISSN: 0163-6804, DOI: DOI:10.1109/MCOM.2009.5116805 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122757A (ja) * 2009-12-10 2015-07-02 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおけるトレーニング信号送信方法及び装置
US9716574B2 (en) 2009-12-10 2017-07-25 Lg Electronics Inc. Method and apparatus of transmitting training signal in wireless local area network system
US10530543B2 (en) 2009-12-10 2020-01-07 Lg Electronics Inc. Method and apparatus of transmitting training signal in wireless local area network system
US10820291B2 (en) 2015-06-15 2020-10-27 Qualcomm Incorporated Phase tracking in training fields

Also Published As

Publication number Publication date
KR20120103692A (ko) 2012-09-19
JP2015080217A (ja) 2015-04-23
US20110134899A1 (en) 2011-06-09
EP2510657B1 (fr) 2015-09-30
EP2961119A1 (fr) 2015-12-30
EP2510657A1 (fr) 2012-10-17
KR20160027235A (ko) 2016-03-09
TW201126950A (en) 2011-08-01
JP5934327B2 (ja) 2016-06-15
HUE025760T2 (en) 2016-04-28
PT2510657E (pt) 2015-12-18
PL2510657T3 (pl) 2016-01-29
KR101647811B1 (ko) 2016-08-11
US20160197710A1 (en) 2016-07-07
US9288096B2 (en) 2016-03-15
CN102640469B (zh) 2015-01-21
ES2554632T3 (es) 2015-12-22
JP2013513340A (ja) 2013-04-18
US10057026B2 (en) 2018-08-21
KR101782033B1 (ko) 2017-10-23
CN102640469A (zh) 2012-08-15
TWI478523B (zh) 2015-03-21
DK2510657T3 (en) 2015-11-02

Similar Documents

Publication Publication Date Title
US10057026B2 (en) Enabling phase tracking for a communication device
US8982686B2 (en) Communication devices for generating and using a matrix-mapped sequence
US8717865B2 (en) Method and apparatus for constructing very high throughput short training field sequences
JP5378609B2 (ja) データパケットの無線送信を同期化する方法およびシステム
KR101597634B1 (ko) 데이터 심볼 수 결정을 위한 가드 간격 시그널링
US20130322563A1 (en) Communication device, method, computer-program product and apparatus for transmitting a pilot sequence with a reduced peak-to-average power ratio contribution
US20180131540A1 (en) Estimating timing and angle information of wireless signals
EP2719091A1 (fr) Dispositif de communication pour les communications en groupes multiples
CN101510869A (zh) 一种整数频偏估计方法和装置
US9031122B2 (en) Reducing phase errors on a communication device
CN109274620B (zh) 一种频率偏移确定方法及装置
US9948546B2 (en) Efficient auto detection for next generation WLAN

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055463.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10795132

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10795132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4552/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012543200

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010795132

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127017702

Country of ref document: KR

Kind code of ref document: A