WO2011071090A1 - 結晶方位分布の偏りの解析方法 - Google Patents
結晶方位分布の偏りの解析方法 Download PDFInfo
- Publication number
- WO2011071090A1 WO2011071090A1 PCT/JP2010/072054 JP2010072054W WO2011071090A1 WO 2011071090 A1 WO2011071090 A1 WO 2011071090A1 JP 2010072054 W JP2010072054 W JP 2010072054W WO 2011071090 A1 WO2011071090 A1 WO 2011071090A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal orientation
- crystal
- deviation
- analyzing
- distribution
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000002245 particle Substances 0.000 claims abstract description 74
- 238000004458 analytical method Methods 0.000 claims abstract description 36
- 239000002131 composite material Substances 0.000 claims abstract description 31
- 238000001887 electron backscatter diffraction Methods 0.000 claims abstract description 14
- 229920005989 resin Polymers 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 25
- 238000003384 imaging method Methods 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 67
- 238000006243 chemical reaction Methods 0.000 description 39
- 238000005259 measurement Methods 0.000 description 37
- 239000000463 material Substances 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 6
- 238000005498 polishing Methods 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical group [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/203—Measuring back scattering
Definitions
- the present invention relates to a method for analyzing the deviation of the crystal orientation distribution. More specifically, the present invention relates to a method for analyzing a deviation in crystal orientation distribution of crystalline particles blended in a composite member.
- a technique for sealing a semiconductor chip with a composite member in order to protect the semiconductor device from moisture in the environment is widely known.
- An example of such a semiconductor device is a white light emitting diode.
- White light emitting diodes are also called white LEDs.
- the white light emitting diode is composed of a blue light emitting diode chip and a phosphor. Specifically, a blue light emitting diode chip is coated with a composite member in which a phosphor that is a crystalline particle is blended with a resin or the like.
- An example of a phosphor is a material that generates yellow fluorescence when blue light is irradiated from a blue light emitting diode.
- the composite member is also called a wavelength conversion member because it converts blue light into yellow.
- White light is obtained by mixing the blue light generated from the blue light emitting diode with the yellow light that is excited and emitted by the blue light emission.
- FIG. 5 is a cross-sectional view showing the structure of a known light emitting diode.
- the light emitting diode 60 includes a light emitting diode chip 66, a first lead frame 62 on which the light emitting diode chip is mounted, a second lead frame 68, a light emitting diode chip 66, and a first lead. It is composed of a translucent resin material 78 that covers the frame 62 and the second lead frame 68. A recess for mounting the light emitting diode chip 66 is formed in the upper part 62 a of the first lead frame 62.
- the concave portion has a substantially funnel shape in which the hole diameter gradually increases upward from the bottom surface, and the inner surface of the concave portion is a reflecting surface 64.
- One electrode on the lower surface side of the light emitting diode chip 66 is die-bonded to the bottom surface of the reflecting surface 64.
- the other electrode formed on the upper surface of the light-emitting diode chip 66 is connected to the surface 68 a of the second lead frame via the bonding wire 70.
- the upper surface and the side surface of the light emitting diode chip 66 are covered with a wavelength conversion member filled in the reflection surface 64.
- the wavelength conversion member is composed of a resin 72 such as a translucent epoxy and a phosphor 74.
- a resin 72 such as a translucent epoxy
- a phosphor 74 that convert light emitted from the light-emitting diode chip 66 into yellow visible light are mixed in a dispersed state. ing.
- Examples of such phosphors 74 include YAG phosphors whose base material is made of yttrium aluminate (Y 3 A 15 O 12 ) and whose emission center is cerium (Ce).
- the light emitting diode chip 66 When a voltage is applied between the first lead frame 62 and the second lead frame 68, the light emitting diode chip 66 emits light. As described above, yellow visible light is emitted from the YAG phosphor 74 by the blue light emission of the light emitting diode chip 66 and the blue light emission. The blue visible light and yellow visible light emitted from the YAG phosphor 74 are mixed to obtain white light. The white light is collected by the convex lens portion 76 of the translucent resin material 78 and emitted to the outside.
- a white light emitting diode that emits mixed color light such as white light other than a single color light emitting diode
- a light emitting diode 60 having a wavelength conversion member for converting the wavelength of light emitted from the light emitting diode chip 66 is widely used.
- the phosphor 74 used for the wavelength conversion member is composed of a base material such as silicate, phosphate, aluminate, or sulfide and a light emission center contained in these base materials.
- the resin 72 in addition to the epoxy resin described in FIG. 5 (see Patent Document 1), an acrylic resin, a silicone resin, or the like is used.
- Patent Documents 2 to 4 disclose various configurations when a phosphor is sealed in a resin as a wavelength conversion member in order to reduce color unevenness from a light emitting diode.
- Patent Document 2 discloses a structure in which a phosphor is uniformly dispersed in a wavelength conversion member.
- Patent Document 3 discloses a structure in which a phosphor is precipitated in a wavelength conversion member.
- Patent Document 4 discloses a structure in which phosphors are separated into layers according to emission colors.
- White light is obtained by mixing the near-ultraviolet to blue light emitted from the light emitting diode and the light converted in wavelength by the phosphor. To obtain white light with high brightness and reduced color unevenness, the phosphor It is necessary to uniformly disperse or settle the phosphor in the wavelength conversion member composed of the sealing resin.
- the phosphor particle shape has a high aspect ratio such as columnar or needle-like
- the phosphor particles in the sealing resin are like columnar or needle-like particles collapsed, that is, the short axis is against gravity.
- the crystal orientation distribution in which the directions are biased so as to be parallel is shown.
- the phosphor in the wavelength conversion member is unevenly sealed.
- the optical path length of the light passing through the phosphor crystal varies.
- control of the crystal orientation distribution of the phosphor particles in the wavelength conversion member is indispensable in order to provide a light-emitting diode having no color unevenness and high brightness. That is, in order to produce a high-performance light emitting diode, it is necessary to control the dispersion state of the phosphor particles in the wavelength conversion member.
- an object of the present invention is to provide a crystal orientation distribution bias analysis method for analyzing the crystal orientation distribution bias of crystalline particles in a composite member.
- Non-Patent Document 1 the crystal orientation of the crystalline particles by the electron backscatter diffraction image method
- the method for analyzing the deviation of the crystal orientation distribution of the present invention includes an imaging step for imaging a cross section of crystalline particles in a composite member, and the above-described image among the images created by the imaging step.
- a determination step for determining individual crystal orientations of crystal grains, an analysis step for specifying the distribution of crystal orientations determined in the determination step, and analyzing the distribution obtained in the analysis step to analyze the bias of the crystal orientation distribution An analysis step.
- the determination step and the analysis step are preferably performed using an electron backscatter diffraction image method.
- the electron backscatter diffraction image method in the determination step, the crystal orientation of the crystalline particles appearing in the cross section of the sealing resin is specified, and in the analysis step, the cross sectional area of the crystalline particles in which the crystal orientation serving as an index of bias is recognized. May be obtained by dividing the cross-sectional area of all the crystalline particles and further multiplying by 100 to obtain the orientation index as a deviation of the crystal orientation distribution.
- the crystalline particles may have a columnar crystal surface composed of a bottom surface and a column surface, and the crystal orientation that serves as an index of deviation may be the normal direction of the crystal surface corresponding to the bottom surface or the column surface.
- the crystalline particles have a hexagonal crystal shape, and the crystal orientation that serves as an index of deviation may be within a predetermined angle range with respect to the normal direction of the crystal plane corresponding to the bottom surface or the column surface.
- the present invention it is possible to analyze the deviation of the crystal orientation distribution of the crystalline particles in the composite member that could not be achieved conventionally, and therefore, it comprises crystalline particles and resins in various industrial fields such as the semiconductor field.
- the present invention can be effectively applied to a composite member.
- the deviation of the crystal orientation distribution of the phosphor in the wavelength conversion member can be measured.
- the relationship between the luminous intensity of the light emitting diode and the deviation of the crystal orientation distribution of the phosphor in the wavelength conversion member, and the light emitting diode having no deviation in the crystal orientation distribution of the phosphor in the wavelength conversion member That is, a light-emitting diode with higher brightness and no color unevenness can be provided.
- FIG. It is a figure which shows the bias
- Light-emitting device 2 Light-emitting light source 3: First lead frame 4: Second lead frame 5: Wavelength conversion member 6: Bonding wire 7: Resin 8: Phosphor 9: Cap
- FIG. 1 shows the procedure of a method for analyzing the deviation of the crystal orientation distribution of the crystalline particles in the composite member of the present invention.
- the imaging step ST1 the cross section of the crystalline particles in the composite member is imaged.
- the determination step ST2 the individual orientations of crystal grains in the image created in the imaging step ST1 are determined.
- the analysis step ST3 an analysis for specifying the distribution of individual orientations determined in the determination step ST2 is performed.
- the composite member which is a measurement object of the present invention may be anything as long as it is a dispersed phase in which crystalline particles as a dispersoid are dispersed in a solid as a medium.
- the composite member may be a wavelength conversion member used for a white light-emitting diode, and the wavelength conversion member is composed of at least one kind of phosphor and resin, and the crystalline particles are phosphor, and the medium Is resin or glass.
- the composite member will be described as a wavelength conversion member.
- imaging step ST1 a cross section of a wavelength conversion member, which is a composite member of a sealing resin and crystalline particles, is prepared by mechanical polishing and ion polishing, and then this cross section is imaged.
- This imaging can be performed using an apparatus that can observe the crystalline particles exposed in the cross section. For example, an image can be formed by introducing a cross section into a sample chamber of a scanning electron microscope and observing a secondary electron image of the cross section.
- the crystal orientation of the crystalline particles observed in the cross section is acquired and determined by an analyzer.
- an apparatus for analyzing the crystal orientation an apparatus using an electron backscatter diffraction image method (also called EBSD) is cited.
- An example of such an apparatus is obtained by adding a detector capable of acquiring an electron backscatter diffraction image to a scanning electron microscope apparatus.
- the electron backscatter diffraction image method is performed with a scanning electron microscope, the spatial resolution is about 0.1 ⁇ m, and the resolution for determining the orientation of the observation sample is about 1 °.
- a two-dimensional geometric pattern called a Kikuchi pattern corresponding to the crystal structure and crystal orientation of crystal grains is obtained.
- the analysis is performed using an analysis program that can analyze the crystal orientation based on the Kikuchi pattern acquired in the determination step ST2. That is, the crystal orientation distribution can be obtained by acquiring the Kikuchi pattern of crystal grains, specifying the crystal orientation using an analysis program, and repeating this with a plurality of crystal grains.
- the greater the number of crystalline particles specifying the crystal orientation the better the statistical analysis accuracy. However, if the number of crystalline particles is 50 or more, sufficient data for analysis can be obtained.
- the analysis step ST4 for analyzing the deviation of the crystal orientation distribution will be described.
- the analysis step ST4 can also be executed using the electron backscatter diffraction image method.
- the following orientation index can be used.
- the orientation index is defined by the following formula (1). That is, the orientation index can be obtained by dividing the cross-sectional area of the crystalline particles in which the crystal orientation serving as a bias index is recognized by the cross-sectional area of all the crystalline particles and multiplying by 100.
- Orientation index (%) ((cross-sectional area of crystalline particles in which the crystal orientation serving as a bias index is recognized) / (cross-sectional area of all crystalline particles)) ⁇ 100 (%) (1)
- the crystal orientation serving as an index of deviation when the crystalline particles have a columnar shape or a needle shape, the orientation of the normal direction of the crystal plane corresponding to the bottom surface or the column surface of the columnar or acicular particles is used as the crystal orientation serving as an index of deviation. Can do.
- the crystal orientation that serves as an indicator of the deviation may be within a predetermined angle range with respect to the normal direction of the crystal plane.
- Examples of the phosphor having a columnar shape include ⁇ -type sialon and ⁇ -type sialon.
- the crystal orientation that serves as an index of crystal deviation is, for example, a predetermined angular range with respect to the normal direction of the bottom [0001] plane It can be.
- the predetermined angle range is, for example, ⁇ 30 °.
- the orientation index defined by the above equation (1) indicates the deviation of the crystal orientation distribution of the crystalline particles in the composite member, and the deviation of the crystal orientation distribution of the crystalline particles in the composite member can be evaluated.
- the composite member is a wavelength conversion member in a light-emitting diode and the crystalline particles in the wavelength conversion member are phosphor particles
- the above-described technique can be used to offset the crystal orientation distribution of the phosphor in the wavelength conversion member. It becomes possible to evaluate.
- FIG. 2 is a cross-sectional view showing the structure of a light-emitting device 1 such as a light-emitting diode to which the method for analyzing the deviation of the crystal orientation distribution of the present invention is applied.
- the light emitting device 1 of the present invention includes a light emitting light source 2, a first lead frame 3 on which the light emitting light source 2 is mounted, a second lead frame 4, a light emitting light source 2 and a first lead.
- a wavelength conversion member 5 that covers the frame 3 is included.
- a recess 3b for mounting a light emitting diode chip as the light emitting light source 2 is formed in the upper part 3a of the first lead frame 3.
- the recess 3b has a substantially funnel shape in which the hole diameter gradually increases upward from the bottom surface, and the inner surface of the recess 3b is a reflecting surface.
- One electrode on the lower surface side of the light emitting diode chip 2 is die-bonded to the bottom surface of the reflecting surface.
- the other electrode formed on the upper surface of the light emitting diode chip 2 is connected to the surface of the second lead frame 4 via the bonding wire 6.
- the light emitting device 1 is covered with a cap 9 made of resin or glass as a whole, the light emitting light source 2, the first and second lead frames 3, 4, the wavelength conversion member 5, and the bonding wire 6. Configured.
- a light emitting diode chip that generates light having a wavelength of 300 nm to 500 nm of blue light 3 from near ultraviolet can be used.
- the wavelength conversion member 5 is composed of, for example, a resin material 7 such as a silicone resin and at least one kind of phosphor 8, and the phosphor 8 is dispersed in the resin material.
- the type of the phosphor 8 may be selected according to the color tone obtained by the color mixture of the light from the light emitting light source 2 and the light generated from the phosphor 8 that absorbs and excites the light from the light emitting light source 2. In order to obtain a desired mixed color light, one or a plurality of types of phosphors 8 can be used in combination.
- the phosphor 8 has a particulate shape.
- Examples of such phosphor particles 8 include ⁇ -type sialon, ⁇ -type sialon, and CaAlSiN 3 activated with Eu. These phosphors 8 have a columnar crystal shape such as a hexagon.
- the ⁇ -type sialon phosphor 8 represented by the general formula: Si 6-z Al z O z N 8-z : Eu 2+ has a columnar shape, and the emission characteristics are green with a peak wavelength of 520 to 550 nm Exhibits luminescence.
- ⁇ -sialon phosphor 8 represented by Eu 2+ likewise has a columnar shape, 550 nm as a light emitting property It exhibits yellow to orange light emission with a peak wavelength of ⁇ 610 nm.
- CaAlSiN 3 : Eu also has a columnar shape, and exhibits red light emission having a peak wavelength of 630 to 650 nm as light emission characteristics.
- the present invention it is possible to analyze the deviation of the crystal orientation distribution of the crystalline particles in the composite member, which has been difficult in the past.
- the crystal orientation distribution control of the crystalline particles in the composite member is necessary, it becomes possible to analyze the deviation of the crystal orientation distribution. Therefore, it can be used in various industrial fields such as the semiconductor field.
- the crystal orientation distribution of the phosphor 8 in the wavelength conversion member 5 can be controlled. .
- the light-emitting diode 1 in which the crystal orientation distribution of the phosphor in the wavelength conversion member is not biased that is, the light-emitting diode 1 having higher luminance and no color unevenness.
- Such a high-performance light-emitting diode 1 can be used for an image display device or a lighting device typified by a white light-emitting diode 1 for backlight of a liquid crystal display panel.
- the wavelength conversion member 5 includes a CaAlSiN 3 : Eu phosphor as a red phosphor 8 and a ⁇ -sialon phosphor 8 manufactured in-house as a green phosphor with a silicone resin layer 7 (manufactured by Dow Co., Toray, model number EG6301). ) And coated on a blue light emitting diode chip.
- the CaAlSiN 3 : Eu phosphor 8 was synthesized by the manufacturing method disclosed in Patent Document 5. As shown in Table 1 below, in the measurement examples 1 to 8, the particle form of the phosphor 8 was adjusted so that the crystal orientation distribution of the phosphor 8 in the wavelength conversion member 5 was different.
- White light was emitted by applying a forward voltage to the manufactured light emitting diode 1 and flowing a predetermined current.
- White light is generated by a color mixture of blue light from the blue light emitting diode 1 and red and green light emitted when the blue light is applied to the two phosphors 8.
- the luminous intensity of white light was measured using an ultrasensitive instantaneous multi-photometry system (manufactured by Otsuka Electronics Co., Ltd., MCPD-7000).
- the luminous intensity of the light-emitting diode 1 was calculated as a relative value with the luminous intensity of the light-emitting diode 1 in Measurement Example 1 as 100%.
- the deviation of the crystal orientation distribution of the phosphor 8 in the wavelength conversion member 5 was analyzed by the method shown in FIG.
- the cross section of the light emitting diode 1 was exposed by mechanical polishing and Ar + ion polishing.
- the cross section of the light-emitting diode 1 was observed with a field emission scanning electron microscope (FE-SEM, JEOL Ltd., JSM-700IF type), and under the condition of an acceleration voltage of 15 kV, the sealing resin layer 7 An image of a cross section of the crystalline particles blended in was obtained.
- an electron backscatter diffraction image measurement device (EDAX-TSL, type OIM) was added to the field emission scanning electron microscope. A device was used. The crystal orientation was measured by this crystal orientation analysis system.
- the crystal orientation measurement conditions are shown below. Accelerating voltage: 15kV Working distance 15mm Sample tilt angle: 70 ° Measurement area: 80 ⁇ m ⁇ 200 ⁇ m Step width: 0.2 ⁇ m Measurement time: 50 msec / step Number of data points: about 400,000 points Note that the measurement conditions are not limited to this, and can be appropriately determined according to the sample form and the apparatus performance.
- analysis software that can analyze the crystal orientation from the Kikuchi pattern obtained by electron backscatter diffraction imaging The crystal orientation was analyzed using OIM TM Ver5.2).
- the orientation index defined by the above equation (1) was analyzed.
- the analysis was conducted focusing on the ⁇ -type sialon phosphor 8 as the crystalline particles.
- the crystal orientation serving as a bias index was set as follows.
- the orientation in the direction perpendicular to the crystal plane having an inclination of ⁇ 30 ° to + 30 ° with respect to the normal direction of the bottom surface ([0001] plane) of the ⁇ -type sialon particles was used as an indicator of the bias. That is, the desired orientation index can be expressed by the following equation (2).
- Orientation index (%) ((cross-sectional area of particles having a ⁇ -type sialon [0001] crystal plane and a crystal orientation of ⁇ 30 ° in the normal direction) / (cross-sectional area of ⁇ -type sialon particles)) ⁇ 100% ( 2)
- the crystal plane that serves as an index of the crystal orientation deviation can be set to an appropriate crystal plane and range in the properties of the composite member to be analyzed.
- Measurement Example 1 The luminous intensity of the light emitting diode 1 of Measurement Example 1 was measured. With this value as 100%, the luminous intensity of other measurement examples 2 to 8 was measured.
- FIG. 3 shows the deviation of the crystal orientation distribution of the ⁇ -type sialon phosphor 8 in Measurement Example 1.
- a cross-section in which a region indicated by hatching is a ⁇ -type sialon [0001] crystal plane and a crystal plane of ⁇ 30 degrees with respect to the normal direction thereof, and a ⁇ -type in which other crystal planes are exposed in a region without hatching A sialon phosphor 8.
- the orientation index calculated from the above equation (2) was 22.0%.
- Measurement example 2 The luminous intensity of the light-emitting diode 1 of Measurement Example 2 was 98.2%.
- Measurement Example 3 The luminous intensity of the light-emitting diode 1 of Measurement Example 3 was 102.8%.
- Measurement Example 4 The luminous intensity of the light-emitting diode 1 of Measurement Example 4 was 100.9%.
- the orientation index indicating the deviation of the crystal orientation distribution of the ⁇ -type sialon phosphor 8 analyzed by the same method as in Measurement Example 1 was 3.3%.
- Measurement Example 5 The luminous intensity of the light-emitting diode 1 of Measurement Example 5 was 106.5%.
- Measurement Example 6 The luminous intensity of the light-emitting diode 1 of Measurement Example 6 was 103.8%.
- Measurement Example 7 The luminous intensity of the light-emitting diode 1 of Measurement Example 7 was 108.9%.
- FIG. 4 shows the deviation of the crystal orientation distribution of the ⁇ -type sialon phosphor 8 in Measurement Example 7, and the method for displaying the crystal orientation and the like is the same as in FIG.
- the orientation index indicating the deviation of the crystal orientation distribution of the ⁇ -type sialon phosphor 8 analyzed by the same method as in Measurement Example 1 was 11.3%.
- Measurement Example 8 The luminous intensity of the light-emitting diode 1 of Measurement Example 8 was 104.1%.
- Table 1 summarizes the results of the luminous intensity and orientation index of the light-emitting diodes 1 measured in Measurement Examples 1-8.
- the present invention can be applied not only to the deviation of the crystal orientation distribution of the ⁇ -type sialon phosphor 8 in the wavelength conversion layer but also to the analysis of the deviation of the crystal orientation of the crystalline particles in the general resin layer 7 material.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Led Device Packages (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
複合部材中の結晶性粒子の結晶方位分布の偏りを解析する、結晶方位分布の偏りの解析方法を提供する。結晶方位分布の偏りの解析方法は、複合部材中の結晶性粒子の断面を画像化する画像化工程ST1と、画像化工程ST1によって作成された画像のうちの上記結晶粒子の個々の結晶方位を判定する判定工程ST2と、判定工程ST2によって判定された結晶方位の分布を特定する分析工程ST3と、分析工程ST3で得られた分布を解析して結晶方位分布の偏りを解析するST4解析工程と、を有している。判定工程ST2と解析工程ST4とは、電子後方散乱回折像法を用いて行うことができる。
Description
本発明は結晶方位分布の偏りを解析する方法に関する。さらに、詳しくは、本発明は、複合部材中に配合された結晶性粒子の結晶方位分布の偏りを解析する方法に関する。
半導体分野など様々な産業分野において、結晶性粒子を樹脂等に配合した複合部材が広く用いられている。例えば、半導体装置を環境中の水分などから保護するために半導体チップを複合部材で封止する技術が広く知られている。このような半導体装置として、白色発光ダイオードが挙げられる。白色発光ダイオードは白色LEDとも呼ばれている。白色発光ダイオードは、青色発光ダイオードチップと蛍光体とから構成されている。具体的には、結晶性粒子である蛍光体を樹脂等に配合した複合部材が青色発光ダイオードチップ上に被覆されている。蛍光体の一例は、青色発光ダイオードから青色の光が照射されると黄色の蛍光を発生する材料である。複合部材は、青色の光を黄色に変換するので波長変換部材とも呼ばれている。青色発光ダイオードから発生する青色の光とこの青色発光によって励起されて発光する黄色の光とが混色することにより白色光が得られる。
従来の発光ダイオードを例にとってさらに説明する。
図5は公知の発光ダイオードの構造を示す断面図である。この図に示すように、発光ダイオード60は、発光ダイオードチップ66と、この発光ダイオードチップを搭載した第1のリードフレーム62と、第2のリードフレーム68と、発光ダイオードチップ66と第1のリードフレーム62と第2のリードフレーム68とを被覆する透光性樹脂材78とから構成されている。第1のリードフレーム62の上部62aには発光ダイオードチップ66搭載用の凹部が形成されている。この凹部は、その底面から上方に向かって孔径が徐々に拡大する略漏斗形状を有していると共に、凹部内面が反射面64となっている。この反射面64の底面に発光ダイオードチップ66の下面側の一方の電極がダイボンディングされている。発光ダイオードチップ66の上面に形成されている他方の電極は、ボンディングワイヤ70を介して第2のリードフレームの表面68aと接続されている。
図5は公知の発光ダイオードの構造を示す断面図である。この図に示すように、発光ダイオード60は、発光ダイオードチップ66と、この発光ダイオードチップを搭載した第1のリードフレーム62と、第2のリードフレーム68と、発光ダイオードチップ66と第1のリードフレーム62と第2のリードフレーム68とを被覆する透光性樹脂材78とから構成されている。第1のリードフレーム62の上部62aには発光ダイオードチップ66搭載用の凹部が形成されている。この凹部は、その底面から上方に向かって孔径が徐々に拡大する略漏斗形状を有していると共に、凹部内面が反射面64となっている。この反射面64の底面に発光ダイオードチップ66の下面側の一方の電極がダイボンディングされている。発光ダイオードチップ66の上面に形成されている他方の電極は、ボンディングワイヤ70を介して第2のリードフレームの表面68aと接続されている。
上記発光ダイオードチップ66の上面及び側面は、反射面64内に充填された波長変換部材で被覆されている。波長変換部材は、透光性エポキシ等の樹脂72と蛍光体74とからなり、樹脂72中には、発光ダイオードチップ66の発光を黄色可視光に変換する蛍光体74が分散状態で多数混入されている。このような蛍光体74としては、母材がアルミン酸イットリウム(Y3Al5O12)からなり、発光中心がセリウム(Ce)であるYAG蛍光体等が挙げられる。第1のリードフレーム62と第2のリードフレーム68との間に電圧が印加されると、発光ダイオードチップ66が発光する。上述したように、発光ダイオードチップ66の青色発光と、この青色発光によってYAG蛍光体74から黄色可視光が放射される。これらの青色可視光とYAG蛍光体74から放射される黄色可視光とが混色することにより白色光が得られる。この白色光は、透光性樹脂材78の凸レンズ部76によって集光されて外部へ放射される。
単色の発光ダイオード以外の白色光等の混色光を発光する白色発光ダイオードとして、発光ダイオードチップ66から発光される光の波長を変換するための波長変換部材を有する発光ダイオード60が広く用いられている。波長変換部材に使用される蛍光体74は、ケイ酸塩、リン酸塩、アルミン酸塩、硫化物等の母材とこれらの母材に含有されている発光中心とから構成されている。樹脂72としては、図5で説明したエポキシ樹脂(特許文献1参照)の他には、アクリル樹脂、シリコーン樹脂などが使用されている。
特許文献2~4には、発光ダイオードからの色むらを低減するために波長変換部材として、樹脂中に蛍光体を封止する際の種々の構成が開示されている。特許文献2には、蛍光体を波長変換部材中に均一に分散させた構造が開示されている。特許文献3には、蛍光体を波長変換部材中に沈降させた構造が開示されている。特許文献4には、蛍光体を発光色別に層分離させた構造が開示されている。
樹脂中に結晶性粒子を封止する場合、結晶性粒子を均一に分散させる、又は沈降させる技術は一般的である。発光ダイオードから発光される近紫外から青色の光と蛍光体により波長変換された光との混色によって白色光が得られるが、高輝度かつ色むらを低減した白色光を得るためには、蛍光体と封止樹脂より構成される波長変換部材中の蛍光体を均一に分散させ又は沈降させることが必要である。
しかしながら、蛍光体の粒子形状が柱状あるいは針状のように高いアスペクト比を有する場合、封止樹脂中の蛍光体粒子は柱状あるいは針状粒子が倒れたように、すなわち短軸が重力に対して平行になるように、方向が偏った結晶方位分布を示す。
従って、結晶方位を考慮すると波長変換部材中の蛍光体は偏って封止されたことになる。この場合、蛍光体結晶内を通過する光の光路長にばらつきが生じる。このため、色むらがなく、かつ、高輝度の発光ダイオードを提供するには、波長変換部材中の蛍光体粒子の結晶方位分布の制御が不可欠である。すなわち、高性能な発光ダイオードを作製するには、波長変換部材中の蛍光体粒子の分散状態を制御する必要がある。
Electron Backscatter Diffraction in Materials Science,Edited by A.J. Schwartz,M. Kumar and B. L. Adams,Kluwer Academic/Plenum Publishers,New York(2000)
しかしながら、波長変換部材等の複合部材中に分散する蛍光体粒子のような結晶性粒子の結晶方位を解析して、結晶方位分布の偏りを算出する測定手段及び解析手法、すなわち複合部材中の結晶性粒子の結晶方位分布の偏りを評価する測定及び解析手法は従来存在しなかった。
本発明は、上記課題に鑑み、複合部材中の結晶性粒子の結晶方位分布の偏りを解析する、結晶方位分布の偏り解析方法を提供することを目的としている。
本発明者らは、複合部材中の結晶性粒子の結晶方位分布の偏りを解析するために、電子後方散乱回折像法(非特許文献1)により結晶性粒子の結晶方位を特定し、さらにその結果を解析することで結晶方位分布の偏りの解析が可能であるという知見を得て、本発明に至った。
上記目的を達成するため、本発明の結晶方位分布の偏りの解析方法は、複合部材中の結晶性粒子の断面を画像化する画像化ステップと、画像化ステップによって作成された画像のうちの上記結晶粒子の個々の結晶方位を判定する判定ステップと、判定ステップによって判定された結晶方位の分布を特定する分析ステップと、分析ステップで得られた分布を解析して結晶方位分布の偏りを解析する解析ステップと、を有することを特徴とする。
上記構成において、判定ステップと解析ステップとは、好ましくは、電子後方散乱回折像法を用いて行われる。
電子後方散乱回折像法において、判定ステップでは、封止樹脂の断面に現れる結晶性粒子の結晶方位を特定し、解析ステップでは、偏りの指標となる結晶方位が認められた結晶性粒子の断面積を、全結晶性粒子の断面積で除して、さらに100を乗じた配向指数を算出することで、配向指数を結晶方位分布の偏りとして求めるようにしてもよい。
結晶性粒子が底面及び柱面からなる柱状の結晶面を有しており、偏りの指標となる結晶方位を、底面又は柱面に相当する結晶面の法線方向としてもよい。
結晶性粒子が六方晶形を有しており、偏りの指標となる結晶方位を、底面又は柱面に相当する結晶面の法線方向に対して所定の角度範囲内としてもよい。
電子後方散乱回折像法において、判定ステップでは、封止樹脂の断面に現れる結晶性粒子の結晶方位を特定し、解析ステップでは、偏りの指標となる結晶方位が認められた結晶性粒子の断面積を、全結晶性粒子の断面積で除して、さらに100を乗じた配向指数を算出することで、配向指数を結晶方位分布の偏りとして求めるようにしてもよい。
結晶性粒子が底面及び柱面からなる柱状の結晶面を有しており、偏りの指標となる結晶方位を、底面又は柱面に相当する結晶面の法線方向としてもよい。
結晶性粒子が六方晶形を有しており、偏りの指標となる結晶方位を、底面又は柱面に相当する結晶面の法線方向に対して所定の角度範囲内としてもよい。
本発明により、従来なし得なかった複合部材中の結晶性粒子の結晶方位分布の偏りを解析することが可能となり、このため、半導体分野など様々な産業分野における、結晶性粒子と樹脂とからなる複合部材に本発明を有効に適用可能となる。
本発明を発光ダイオードにおける波長変換部材中の蛍光体の結晶方位分布解析に適用することで、波長変換部材中の蛍光体の結晶方位分布の偏りが測定できるようになる。これにより、発光ダイオードの発光光度と波長変換部材中の蛍光体の結晶方位分布の偏りとの関係を把握することが可能となり、波長変換部材中の蛍光体の結晶方位分布に偏りがない発光ダイオード、すなわちより高輝度で、色むらのない発光ダイオードが提供されることができる。
本発明により、色むらのない高強度の発光ダイオードを作製できることになる結果、液晶ディスプレイパネルのバックライト用白色発光ダイオード光源に代表される画像表示装置や照明装置など、多様な用途の発光ダイオードとして適用又は応用可能になる。
1:発光装置
2:発光光源
3:第1のリードフレーム
4:第2のリードフレーム
5:波長変換部材
6:ボンディングワイヤ
7:樹脂
8:蛍光体
9:キャップ
2:発光光源
3:第1のリードフレーム
4:第2のリードフレーム
5:波長変換部材
6:ボンディングワイヤ
7:樹脂
8:蛍光体
9:キャップ
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の複合部材中の結晶性粒子の結晶方位分布の偏りの解析方法の手順を示す。
図1に示すように、本発明により複合部材中の結晶性粒子の結晶方位分布の偏りを解析する方法では、まず、画像化ステップST1において、複合部材中の結晶性粒子の断面を画像化する。
判定ステップST2では、画像化ステップST1によって作成された画像の結晶粒子の個々の方位を判定する。
分析ステップST3においては、判定ステップST2によって判定された個々の方位の分布を特定する分析を行う。
最後に、解析ステップST4において、分析ステップST3による分析の結果得られた方位分布を解析して結晶方位分布の偏りを解析する。
なお、本発明の測定対象である複合部材は、分散質である結晶性粒子を、媒質となる固体に分散させた分散相であれば何でもよい。複合部材の一例としては、白色発光ダイオードに使用される波長変換部材であってよく、波長変換部材は少なくとも1種類以上の蛍光体と樹脂とからなり、上記結晶性粒子が蛍光体で、上記媒質が樹脂やガラスである。以下の記載では、複合部材を波長変換部材として説明する。
図1は、本発明の複合部材中の結晶性粒子の結晶方位分布の偏りの解析方法の手順を示す。
図1に示すように、本発明により複合部材中の結晶性粒子の結晶方位分布の偏りを解析する方法では、まず、画像化ステップST1において、複合部材中の結晶性粒子の断面を画像化する。
判定ステップST2では、画像化ステップST1によって作成された画像の結晶粒子の個々の方位を判定する。
分析ステップST3においては、判定ステップST2によって判定された個々の方位の分布を特定する分析を行う。
最後に、解析ステップST4において、分析ステップST3による分析の結果得られた方位分布を解析して結晶方位分布の偏りを解析する。
なお、本発明の測定対象である複合部材は、分散質である結晶性粒子を、媒質となる固体に分散させた分散相であれば何でもよい。複合部材の一例としては、白色発光ダイオードに使用される波長変換部材であってよく、波長変換部材は少なくとも1種類以上の蛍光体と樹脂とからなり、上記結晶性粒子が蛍光体で、上記媒質が樹脂やガラスである。以下の記載では、複合部材を波長変換部材として説明する。
画像化ステップST1において、封止樹脂と結晶性粒子の複合部材である波長変換部材を機械研磨及びイオン研磨によりその断面を調製し、次にこの断面を画像化する。この画像化には、上記断面に露出させた結晶性粒子を観察できる装置を用いて行うことができる。例えば、走査電子顕微鏡の試料室内に断面を導入し、断面の二次電子像を観察することで画像化することができる。
次に、判定ステップST2においては、断面で観察される結晶性粒子の結晶方位を分析装置で取得して判定する。このような結晶方位の分析装置としては、電子後方散乱回折像法(Electron backscatter diffraction、EBSDとも呼ばれている。)を用いた装置が挙げられる。このような装置の一例は、電子後方散乱回折像が取得可能な検出器を走査電子顕微鏡装置に付加したものである。電子後方散乱回折像法を走査電子顕微鏡で実施した場合、空間分解能は、0.1μm程度、観察試料の方位決定の分解能は1°程度である。
なお、電子後方散乱回折像法では、結晶粒子の結晶構造と結晶方位に対応した菊池パターンと呼ばれる二次元の幾何学模様が得られる。
なお、電子後方散乱回折像法では、結晶粒子の結晶構造と結晶方位に対応した菊池パターンと呼ばれる二次元の幾何学模様が得られる。
分析ステップST3の一例は、判定ステップST2で取得した菊池パターンによって結晶方位を解析できる解析プログラムを用いて分析する。つまり、結晶粒子の菊池パターンを取得して解析プログラムを用いて結晶方位を特定し、これを複数の結晶粒子で繰り返し行うことによって結晶方位分布を得ることができる。
ここで、結晶方位を特定する結晶性粒子の数が多ければ多いほど統計的な解析精度が向上するが、結晶性粒子の数が50個以上であれば解析に十分なデータが得られる。
ここで、結晶方位を特定する結晶性粒子の数が多ければ多いほど統計的な解析精度が向上するが、結晶性粒子の数が50個以上であれば解析に十分なデータが得られる。
次に、結晶方位分布の偏りを解析する解析ステップST4について説明する。解析ステップST4も電子後方散乱回折像法を用いて実行することができる。
分析ステップST3で得られた結晶方位分布によって結晶方位分布の偏りを解析する場合、下記の配向指数を使用することができる。配向指数は下記(1)式で定義される。即ち、配向指数は、偏りの指標となる結晶方位が認められた結晶性粒子の断面積を、全結晶性粒子の断面積で除して、さらに100を乗じて得られる。
配向指数(%)=((偏りの指標となる結晶方位が認められた結晶性粒子の断面積)/(全結晶性粒子の断面積))×100(%) (1)
ここで、結晶性粒子の形態が柱状及び針状を示す場合、偏りの指標となる結晶方位として、柱状あるいは針状粒子の底面あるいは柱面に相当する結晶面の法線方向の方位を用いることができる。偏りの指標となる結晶方位は、上記の結晶面の法線方向に対して所定の角度範囲内としてもよい。柱状の形状を有する蛍光体としては、例えば、α型サイアロンやβ型サイアロンが挙げられる。
分析ステップST3で得られた結晶方位分布によって結晶方位分布の偏りを解析する場合、下記の配向指数を使用することができる。配向指数は下記(1)式で定義される。即ち、配向指数は、偏りの指標となる結晶方位が認められた結晶性粒子の断面積を、全結晶性粒子の断面積で除して、さらに100を乗じて得られる。
配向指数(%)=((偏りの指標となる結晶方位が認められた結晶性粒子の断面積)/(全結晶性粒子の断面積))×100(%) (1)
ここで、結晶性粒子の形態が柱状及び針状を示す場合、偏りの指標となる結晶方位として、柱状あるいは針状粒子の底面あるいは柱面に相当する結晶面の法線方向の方位を用いることができる。偏りの指標となる結晶方位は、上記の結晶面の法線方向に対して所定の角度範囲内としてもよい。柱状の形状を有する蛍光体としては、例えば、α型サイアロンやβ型サイアロンが挙げられる。
α型サイアロンやβ型サイアロンの結晶構造は、六方晶形を有しているので、結晶の偏りの指標となる結晶方位としては、例えば底面[0001]面の法線方向に対して所定の角度範囲とすることができる。所定の角度範囲は、例えば±30°である。
上記(1)式で定義した配向指数は、複合部材中の結晶性粒子の結晶方位分布の偏りを示しており、複合部材中の結晶性粒子の結晶方位分布の偏りを評価することができる。
従って、複合部材が発光ダイオードにおける波長変換部材であって、波長変換部材中の結晶性粒子が蛍光体粒子である場合、上述の手法により、波長変換部材中の蛍光体の結晶方位分布の偏りを評価することが可能になる。
図2は、本発明の結晶方位分布の偏りの解析方法が適用される発光ダイオードのような発光装置1の構造を示す断面図である。図2に示すように、本発明の発光装置1は、発光光源2と、発光光源2を搭載する第1のリードフレーム3と、第2のリードフレーム4と、発光光源2と第1のリードフレーム3とを被覆する波長変換部材5とを含んで構成されている。
第1のリードフレーム3の上部3aには発光光源2として発光ダイオードチップを搭載するための凹部3bが形成されている。この凹部3bは、その底面から上方に向かって孔径が徐々に拡大する略漏斗形状を有していると共に、凹部3bの内面が反射面となっている。この反射面の底面に発光ダイオードチップ2の下面側の一方の電極がダイボンディングされている。発光ダイオードチップ2の上面に形成されている他方の電極は、ボンディングワイヤ6を介して第2のリードフレーム4の表面と接続されている。
さらに発光装置1は、図1に示すように、発光光源2と第1及び第2のリードフレーム3,4と波長変換部材5とボンディングワイヤ6の全体が樹脂或いはガラスからなるキャップ9で被覆されて構成されている。
発光光源2としては、近紫外から青色光3の300nm~500nmの波長の光を発生する発光ダイオードチップを使用することができる。
波長変換部材5は、例えばシリコーン樹脂のような樹脂材7と少なくとも1種類以上の蛍光体8とからなり、樹脂材中に蛍光体8が分散されている。蛍光体8の種類は、発光光源2の光と、この発光光源2の光を吸収し励起される蛍光体8から発生する光との混色によって得られる色調によって選定すればよい。所望の混色光を得るためには、蛍光体8の種類を1つ又は複数で組み合わせて使用することができる。
蛍光体8は、粒子状の形状を有している。このような蛍光体粒子8としては、β型サイアロン、α型サイアロン、Euが付活されたCaAlSiN3等が挙げられる。これらの蛍光体8は六角形等の柱状の結晶形状を有している。
一般式:Si6-zAlzOzN8-z:Eu2+で表されるβ型サイアロン蛍光体8は、柱状の形状を有し、発光特性としては520nm~550nmをピーク波長とする緑色発光を呈する。
一般式:Cam/2Si12-(m+n)Al(m+n)N16-nOn:Eu2+で表されるα型サイアロン蛍光体8も同様に柱状の形状を有し、発光特性としては550nm~610nmをピーク波長とする黄色から橙色の発光を呈する。
CaAlSiN3:Euは同じく柱状の形状を有し、発光特性としては630nm~650nmをピーク波長とする赤色発光を呈する。
本発明によれば、従来困難であった複合部材中の結晶性粒子の結晶方位分布の偏りの解析が可能となる。複合部材中結晶性粒子の結晶方位分布制御が必要な産業分野で、結晶方位分布の偏りを解析することができるようになる。よって、例えば半導体分野など様々な産業分野において利用可能である。
特に、本発明を発光ダイオード1における波長変換部材5中の蛍光体8粒子の結晶方位の偏り解析に適用することで、波長変換部材5中の蛍光体8の結晶方位分布の制御が可能になる。これにより、波長変換部材中の蛍光体の結晶方位分布に偏りがない発光ダイオード1、即ちより高輝度で、色むらのない発光ダイオード1を提供することが可能である。このような高性能の発光ダイオード1は、液晶ディスプレイパネルのバックライト用白色発光ダイオード1に代表される画像表示装置や照明装置などに使用することができる。
次に、実施例に基づいて、本発明を更に詳細に説明する。
実施例では、複合部材の結晶性粒子として、発光ダイオード1における蛍光体粒子8とそれを封止する樹脂層7とで構成される波長変換部材5における、蛍光体粒子8の結晶方位分布の偏りを評価した。
実施例では、複合部材の結晶性粒子として、発光ダイオード1における蛍光体粒子8とそれを封止する樹脂層7とで構成される波長変換部材5における、蛍光体粒子8の結晶方位分布の偏りを評価した。
市販の発光ダイオードパッケージ(I-CHIUN PRECISl0N INDUSTRY CO.,LTD製,型番SMD5050)と青色発光ダイオードチップ2(Genesis Photonics Inc.製、MODEL RIS45A19)と、波長変換部材5とを用意し、発光ダイオード1を製作した。波長変換部材5は、赤色蛍光体8としてCaAlSiN3:Eu蛍光体と、緑色蛍光体として自社製のβ型サイアロン蛍光体8とをシリコーン樹脂層7(東レ・ダウコ一二ング社製、型番EG6301)に配合することで調製し、青色発光ダイオードチップに被覆した。CaAlSiN3:Eu蛍光体8は、特許文献5に開示されている製造方法によって合成した。下記の表1に示すように、測定例1~8では、それぞれ、波長変換部材5中の蛍光体8の結晶方位分布が異なるように、蛍光体8の粒子形態を調整した。
作製した発光ダイオード1に順方向電圧を印加し、所定の電流を流すことによって白色光を発光させた。白色光は、青色発光ダイオード1からの青い光と、この青い光が上記の2つの蛍光体8に照射されて発光する赤及び緑の光との混色によって発生する。白色光の発光光度は、超高感度瞬間マルチ測光システム(大塚電子(株)社製、MCPD-7000)を用いて測定した。
なお、発光ダイオード1の発光光度は測定例1における発光ダイオード1の発光光度を100%とした相対数値として算出した。
なお、発光ダイオード1の発光光度は測定例1における発光ダイオード1の発光光度を100%とした相対数値として算出した。
次に、波長変換部材5中の蛍光体8の結晶方位分布の偏りを、図1に示した方法で解析した。
複合部材中の結晶性粒子の断面を画像化する画像化工程として、発光ダイオード1の断面を機械研麿とAr+イオン研磨とにより露出させた。
次に、発光ダイオード1の断面を、電界放射型走査電子顕微鏡(FE-SEM、日本電子(株)製、JSM-700IF型)で観察し、加速電圧15kVの条件にて、封止樹脂層7に配合された結晶性粒子の断面の画像を得た。
複合部材中の結晶性粒子の断面を画像化する画像化工程として、発光ダイオード1の断面を機械研麿とAr+イオン研磨とにより露出させた。
次に、発光ダイオード1の断面を、電界放射型走査電子顕微鏡(FE-SEM、日本電子(株)製、JSM-700IF型)で観察し、加速電圧15kVの条件にて、封止樹脂層7に配合された結晶性粒子の断面の画像を得た。
得られた画像のうちの結晶粒子の個々の方位を判定する判定工程では、上記電界放射型走査電子顕微鏡に、電子後方散乱回折像法測定装置(EDAX-TSL社製、形式OIM)を付加した装置を用いた。この結晶方位解析システムにより結晶方位の測定を行った。
結晶方位の測定条件を以下に示す。
加速電圧:15kV
作動距離15mm
試料傾斜角度:70°
測定領域:80μm×200μm
ステップ幅:0.2μm
測定時間:50msec/ステップ
データポイント数:約400,000ポイント
なお、測定条件はこれに限定されるものではなく、試料形態、装置性能に応じて適宜に決定することができる。
加速電圧:15kV
作動距離15mm
試料傾斜角度:70°
測定領域:80μm×200μm
ステップ幅:0.2μm
測定時間:50msec/ステップ
データポイント数:約400,000ポイント
なお、測定条件はこれに限定されるものではなく、試料形態、装置性能に応じて適宜に決定することができる。
次に、判定工程によって判定された方位の分布を分析して特定する分析工程として、電子後方散乱回折像法で得られた菊池パターンから結晶方位を解析することのできる解析ソフトウエア(EDAX-TSL社製、OIM Ver5.2)を使用して、結晶方位の分析を行った。
分析工程で得られた結晶方位分布を解析して結晶方位分布の偏りを解析する解析工程として、上記(1)式で定義される配向指数の解析を実施した。ここでは、結晶性粒子としてβ型サイアロン蛍光体8に注目して解析を行った。
β型サイアロン蛍光体8の結晶粒子は六角柱状の形状を示すことから、偏りの指標となる結晶方位は次のようにした。β型サイアロン粒子の底面([0001]面)の法線方向に対して-30°~+30°までの傾きを持った結晶面に垂直な方向の方位を、偏りの指標として用いた。すなわち、求める配向指数は下記(2)式によって表すことができる。
配向指数(%)=((β型サイアロン[0001]結晶面とその法線方向に±30°の結晶方位を有する粒子の断面積)/(β型サイアロン粒子の断面積))×100% (2)
配向指数(%)=((β型サイアロン[0001]結晶面とその法線方向に±30°の結晶方位を有する粒子の断面積)/(β型サイアロン粒子の断面積))×100% (2)
以上の手順にて、封止樹脂層7中の結晶性粒子の結晶方位の偏り、ここでは発光ダイオード1における波長変換部材5中の蛍光体8の粒子の結晶方位の偏りを測定した。
このように、結晶方位の偏りの指標となる結晶面の設定は、解析する複合部材の性質において適当な結晶面及び範囲を設定することができる。
(測定例1)
測定例1の発光ダイオード1の発光光度を計測した。この値を100%として他の測定例2~8の発光光度を計測した。
測定例1の発光ダイオード1の発光光度を計測した。この値を100%として他の測定例2~8の発光光度を計測した。
図3は、測定例1におけるβ型サイアロン蛍光体8の結晶方位分布の偏りを示す。斜線で表示されている領域がβ型サイアロン[0001]結晶面とその法線方向に対して±30度の結晶面を呈する断面、斜線のない領域がその他の結晶面が露出しているβ型サイアロン蛍光体8である。上記(2)式から計算した配向指数は22.0%となった。
(測定例2)
測定例2の発光ダイオード1の発光光度は98.2%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は19.10%であった。
測定例2の発光ダイオード1の発光光度は98.2%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は19.10%であった。
(測定例3)
測定例3の発光ダイオード1の発光光度は102.8%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は16.3%であった。
測定例3の発光ダイオード1の発光光度は102.8%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は16.3%であった。
(測定例4)
測定例4の発光ダイオード1の発光光度は100.9%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は3.3%であった。
測定例4の発光ダイオード1の発光光度は100.9%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は3.3%であった。
(測定例5)
測定例5の発光ダイオード1の発光光度は106.5%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は13.3%であった。
測定例5の発光ダイオード1の発光光度は106.5%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は13.3%であった。
(測定例6)
測定例6の発光ダイオード1の発光光度は103.8%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は14.1%であった。
測定例6の発光ダイオード1の発光光度は103.8%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は14.1%であった。
(測定例7)
測定例7の発光ダイオード1の発光光度は108.9%であった。
図4は、測定例7におけるβ型サイアロン蛍光体8の結晶方位分布の偏りを示し、結晶方位等の表示方法は図3と同様である。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は11.3%であった。
測定例7の発光ダイオード1の発光光度は108.9%であった。
図4は、測定例7におけるβ型サイアロン蛍光体8の結晶方位分布の偏りを示し、結晶方位等の表示方法は図3と同様である。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は11.3%であった。
(測定例8)
測定例8の発光ダイオード1の発光光度は104.1%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は7.3%であった。
測定例8の発光ダイオード1の発光光度は104.1%であった。測定例1と同様の方法で解析したβ型サイアロン蛍光体8の結晶方位分布の偏りを示す配向指数は7.3%であった。
本発明により、波長変換部材5中のβ型サイアロン蛍光体8の結晶方位分布の偏りを求めることが可能であった。
さらに、本発明は波長変換層中のβ型サイアロン蛍光体8の結晶方位分布の偏りだけでなく、一般的な樹脂層7材料中の結晶性粒子の結晶方位の偏り解析に適用可能である。
本発明は、上記実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。
Claims (5)
- 複合部材中の結晶性粒子の断面を画像化する画像化工程と、
上記画像化工程によって作成された画像のうちの上記結晶粒子の個々の結晶方位を判定する判定工程と、
上記判定工程によって判定された結晶方位の分布を特定する分析工程と、
上記分析工程で得られた分布を解析して結晶方位分布の偏りを解析する解析工程と、を有することを特徴とする、結晶方位分布の偏りの解析方法。 - 前記判定工程と解析工程とが、電子後方散乱回折像法を用いて行われることを特徴とする、請求項1に記載の結晶方位分布の偏りの解析方法。
- 前記判定工程により、前記封止樹脂の断面に現れる前記結晶性粒子の結晶方位を特定し、前記解析工程により、偏りの指標となる結晶方位が認められた前記結晶性粒子の断面積を、全結晶性粒子の断面積で除して、さらに100を乗じた配向指数を算出し、該配向指数を結晶方位分布の偏りとして求めることを特徴とする、請求項2に記載の結晶方位分布の偏りの解析方法。
- 前記結晶性粒子が底面及び柱面からなる柱状の結晶面を有しており、前記偏りの指標となる結晶方位を、上記底面又は上記柱面に相当する結晶面の法線方向とすることを特徴とする、請求項3に記載の結晶方位分布の偏りの解析方法。
- 前記結晶性粒子が六方晶形を有しており、前記偏りの指標となる結晶方位を、前記底面又は前記柱面に相当する結晶面の法線方向に対して所定の角度範囲内とすることを特徴とする、請求項4に記載の結晶方位分布の偏りの解析方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-281016 | 2009-12-10 | ||
JP2009281016A JP2011122947A (ja) | 2009-12-10 | 2009-12-10 | 結晶方位分布の偏りの解析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011071090A1 true WO2011071090A1 (ja) | 2011-06-16 |
Family
ID=44145635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072054 WO2011071090A1 (ja) | 2009-12-10 | 2010-12-08 | 結晶方位分布の偏りの解析方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2011122947A (ja) |
TW (1) | TW201131162A (ja) |
WO (1) | WO2011071090A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113053466A (zh) * | 2021-03-03 | 2021-06-29 | 华南农业大学 | 三元特征向量方法表征双乳液体系中脂肪晶体分布位点的方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6781893B2 (ja) * | 2016-03-15 | 2020-11-11 | 住友金属鉱山株式会社 | 結晶方位の解析方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296257A (ja) * | 2000-04-11 | 2001-10-26 | Nippon Steel Corp | 結晶方位分布測定方法 |
JP2002005857A (ja) * | 2000-06-19 | 2002-01-09 | Semiconductor Energy Lab Co Ltd | 半導体装置及び半導体装置の検査方法 |
JP2002333410A (ja) * | 2001-05-08 | 2002-11-22 | Sony Corp | 結晶配向の評価方法及びそれに用いる評価装置 |
JP2007057240A (ja) * | 2005-08-22 | 2007-03-08 | Ishikawajima Harima Heavy Ind Co Ltd | 破壊原因推定装置及び破壊原因推定方法 |
JP2009052993A (ja) * | 2007-08-27 | 2009-03-12 | Genshiryoku Anzen Syst Kenkyusho:Kk | 結晶方位の方位差分布の測定方法及び塑性ひずみの局所分布の測定方法 |
JP2009098008A (ja) * | 2007-10-17 | 2009-05-07 | Toyota Motor Corp | 単結晶試料の結晶方位測定方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5417736B2 (ja) * | 2008-04-21 | 2014-02-19 | 新日鐵住金株式会社 | 多結晶固体の材料特性解析システム、多結晶固体の材料特性解析方法、多結晶固体の材料特性解析プログラム、及び記録媒体 |
-
2009
- 2009-12-10 JP JP2009281016A patent/JP2011122947A/ja active Pending
-
2010
- 2010-12-08 WO PCT/JP2010/072054 patent/WO2011071090A1/ja active Application Filing
- 2010-12-09 TW TW99143011A patent/TW201131162A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296257A (ja) * | 2000-04-11 | 2001-10-26 | Nippon Steel Corp | 結晶方位分布測定方法 |
JP2002005857A (ja) * | 2000-06-19 | 2002-01-09 | Semiconductor Energy Lab Co Ltd | 半導体装置及び半導体装置の検査方法 |
JP2002333410A (ja) * | 2001-05-08 | 2002-11-22 | Sony Corp | 結晶配向の評価方法及びそれに用いる評価装置 |
JP2007057240A (ja) * | 2005-08-22 | 2007-03-08 | Ishikawajima Harima Heavy Ind Co Ltd | 破壊原因推定装置及び破壊原因推定方法 |
JP2009052993A (ja) * | 2007-08-27 | 2009-03-12 | Genshiryoku Anzen Syst Kenkyusho:Kk | 結晶方位の方位差分布の測定方法及び塑性ひずみの局所分布の測定方法 |
JP2009098008A (ja) * | 2007-10-17 | 2009-05-07 | Toyota Motor Corp | 単結晶試料の結晶方位測定方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113053466A (zh) * | 2021-03-03 | 2021-06-29 | 华南农业大学 | 三元特征向量方法表征双乳液体系中脂肪晶体分布位点的方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201131162A (en) | 2011-09-16 |
JP2011122947A (ja) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI518029B (zh) | α型矽鋁氮氧化物、發光裝置及其用途 | |
US20120313507A1 (en) | beta-SIALON, METHOD FOR MANUFACTURING THE SAME, AND LIGHT-EMITTING DEVICE | |
WO2015166782A1 (ja) | 発光装置 | |
JP6541638B2 (ja) | 蛍光体含有多層膜シート、並びに発光装置 | |
WO2011071090A1 (ja) | 結晶方位分布の偏りの解析方法 | |
WO2011071089A1 (ja) | 発光装置及びそれを用いた照明装置並びに画像表示装置 | |
US20060001034A1 (en) | RGB light emitting diode package with improved color mixing properties | |
JP5916409B2 (ja) | 蛍光体及び発光装置 | |
JP5886069B2 (ja) | 蛍光体及び発光装置 | |
JP5937837B2 (ja) | 蛍光体及び発光装置 | |
JP5697765B2 (ja) | 蛍光体及び発光装置 | |
JP5919014B2 (ja) | 蛍光体及び発光装置 | |
JP5916410B2 (ja) | 蛍光体及び発光装置 | |
JP5916413B2 (ja) | 蛍光体及び発光装置 | |
JP5901987B2 (ja) | 蛍光体及び発光装置 | |
JP5919015B2 (ja) | 蛍光体及び発光装置 | |
JP5916408B2 (ja) | 蛍光体及び発光装置 | |
JP5886070B2 (ja) | 蛍光体及び発光装置 | |
JP5901985B2 (ja) | 蛍光体及び発光装置 | |
JP5901986B2 (ja) | 蛍光体及び発光装置 | |
JP5916411B2 (ja) | 蛍光体及び発光装置 | |
JP6083050B2 (ja) | 蛍光体及び発光装置 | |
JP2016039231A (ja) | 発光装置 | |
JP2013163723A (ja) | 蛍光体及び発光装置 | |
JP2016039228A (ja) | 発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10836010 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10836010 Country of ref document: EP Kind code of ref document: A1 |