WO2011070919A1 - 自動分析装置用分注ノズル及びそれを搭載した自動分析装置 - Google Patents

自動分析装置用分注ノズル及びそれを搭載した自動分析装置 Download PDF

Info

Publication number
WO2011070919A1
WO2011070919A1 PCT/JP2010/071079 JP2010071079W WO2011070919A1 WO 2011070919 A1 WO2011070919 A1 WO 2011070919A1 JP 2010071079 W JP2010071079 W JP 2010071079W WO 2011070919 A1 WO2011070919 A1 WO 2011070919A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispensing nozzle
sample
automatic analyzer
dispensing
nozzle
Prior art date
Application number
PCT/JP2010/071079
Other languages
English (en)
French (fr)
Inventor
谷口伸一
野島彰紘
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to EP10835841.7A priority Critical patent/EP2511709B1/en
Priority to CN201080055689.8A priority patent/CN102652263B/zh
Priority to US13/515,017 priority patent/US8802008B2/en
Publication of WO2011070919A1 publication Critical patent/WO2011070919A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/026Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having blocks or racks of reaction cells or cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1004Cleaning sample transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/163Biocompatibility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00277Special precautions to avoid contamination (e.g. enclosures, glove- boxes, sealed sample carriers, disposal of contaminated material)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/102Preventing or detecting loss of fluid by dripping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers

Definitions

  • the present invention relates to a dispensing nozzle for an automatic analyzer and an automatic analyzer equipped with the same.
  • This type of biochemical analyzer includes a container for storing a specimen and a reagent, a reaction cell for injecting the specimen and the reagent, a dispensing mechanism having a dispensing nozzle for automatically injecting the specimen and the reagent into the reaction cell, and a reaction Automatic stirring mechanism with a stirring bar that mixes the sample and reagent in the cell, mechanism to measure the absorbance of the sample during or after the reaction, and automatic cleaning of the reaction cell by aspirating and discharging the reaction solution after the measurement is completed
  • a cleaning mechanism or the like is provided (for example, Patent Document 1).
  • a sample dispensing nozzle dispenses a predetermined amount of sample from a container for storing a sample such as a blood collection tube and discharges the sample to a reaction cell in which a reagent is reacted.
  • the reagent dispensing nozzle discharges a predetermined amount of reagent dispensed from the reagent storage container to the reaction cell.
  • the measurement result may be affected. This is called carryover.
  • the carry-over problem is deeply related to the recent demand for small amounts of specimens and reagents in the field of automatic analyzers. As the number of analysis items increases, the amount of sample that can be allocated to one analysis item decreases. There are cases where the specimen itself is valuable and cannot be prepared in large quantities, and there is also a demand for higher sensitivity. In addition, as the analysis content becomes more sophisticated, reagents are generally more expensive, and there is a demand for reducing the amount of reagents in terms of cost. Due to the increasing demand for a small amount of specimens and reagents, the diameter of the dispensing nozzle is reduced, and the outer diameter of the tube is about 0.5 mm. Miniaturization of the nozzle diameter increases the ratio of the surface area to the volume of the solution to be dispensed. For this reason, it is important to control substance adsorption on the surface of the dispensing nozzle and reduce carryover.
  • Patent Document 2 In order to reduce carry-over, conventionally, cleaning with a detergent containing pure water or a surfactant has been performed (Patent Document 2). A method is also known in which the residue of the attached specimen is deactivated with active oxygen (Patent Document 3). A method using a disposable disposable nozzle (disposable tip) is also known as one of the solutions for carryover.
  • An object of the present invention is to provide a sample dispensing nozzle of an automatic analyzer that improves surface cleanliness and reduces carryover without using a disposable nozzle, and an automatic analyzer using the same. is there.
  • the chemical solution of the polyethylene glycol (PEG) derivative is applied to the surface of the dispensing nozzle and coated to suppress the adsorption of biological macromolecules such as proteins, thereby solving the above problems.
  • the chemical adsorption means an adsorption mode on a solid surface having a heat of adsorption of about 20 to 100 kcal / mol due to a chemical bond such as a covalent bond or an ionic bond.
  • a distinction is made from physical adsorption with a van der Waals force whose adsorption heat is usually 10 kcal / mol or less as a binding force.
  • the polyethylene glycol derivative is hydrophilic and suppresses adsorption of biopolymers such as proteins by its steric repulsion.
  • the molecular weight of the PEG derivative should be 100 or more because of the requirement that the number of ethylene oxide (—C 2 H 4 O—) groups required is 2 or more and that the intermolecular interaction for arranging the molecules is sufficient. desirable. On the other hand, if the steric repulsive force between molecules is too large, the amount of adsorption of the PEG derivative on the surface is reduced. Therefore, the molecular weight of the PEG derivative is desirably 20000 or less.
  • the chemical structure of the PEG derivative to be coated need not be a single structure, and may be a mixture.
  • the automatic analyzer of the present invention includes a plurality of sample containers each storing a sample, a plurality of reagent containers each storing a reagent, a plurality of reaction cells into which the sample and the reagent are injected, and a sample dispensing nozzle.
  • a sample dispensing mechanism that dispenses the sample in the sample container into the reaction cell
  • a reagent dispensing mechanism that includes a reagent dispensing nozzle and dispenses the reagent in the reagent container into the reaction cell.
  • the injection nozzle has a silicon oxide layer on the surface, and the silicon oxide layer has the following general formula: Si—R 1 — (OCH 2 CH 2 ) n —O—R 2 (n is a positive integer of 2 or more) , R 1 is a hydrocarbon group, R 2 is H or CH 3 ) A silicon derivative having polyethylene glycol represented by the formula is chemically adsorbed.
  • adsorption of biopolymers such as proteins to the dispensing nozzle can be suppressed. Therefore, it is possible to reduce the carry-over during the dispensing operation, and the analysis reliability of the automatic analyzer is improved. In addition, this contributes to the miniaturization of specimens and reagents, and also contributes to reducing the running cost of the automatic analyzer.
  • Figure 1 shows a schematic diagram of the dispensing nozzle.
  • Stainless steel is widely used for the dispensing nozzle body 101 as a material having high corrosion resistance and good workability.
  • the nozzle material is not limited to stainless steel, and may be a resin such as polydimethylsiloxane (PDMS), polyvinyl chloride, polyacrylate, glass, other metal materials (gold, platinum, copper), or ceramic.
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • polyvinyl chloride polyacrylate
  • glass other metal materials (gold, platinum, copper), or ceramic.
  • an example of a stainless steel dispensing nozzle is shown.
  • the dispensing nozzle is bent at a corner 102 and connected to a suction / discharge mechanism. When the sample or reagent is aspirated, a predetermined amount is aspirated into the hollow portion 103.
  • the outer surface of the dispensing nozzle is also immersed in the specimen or reagent.
  • the area where the polyethylene glycol (PEG) derivative is chemically adsorbed and coated is the inner surface, the outer surface, and the end portion 105 in the case of the dispensing nozzle having the hollow portion 103, and the dispensing nozzle separates the specimen or the reagent. It is sufficiently larger than the region 104 to be immersed in the specimen or reagent when pouring.
  • a molecule represented by the general formula (1) is generally called a silane coupling agent, and can be immobilized by chemical bonding with a surface hydroxyl group. By using an asymmetric molecule in this way, it can be fixed as a monolayer on the surface of the dispensing nozzle.
  • silane coupling agent By using an asymmetric molecule in this way, it can be fixed as a monolayer on the surface of the dispensing nozzle.
  • both ends are silanol group precursors, the polyethylene glycol chain is immobilized on the surface at both ends, and the degree of freedom of movement may be lost, and the inherent non-specific adsorption suppression effect may not be exhibited.
  • R 1 , R 2 , and R 3 are silicon (Si) substituents.
  • ether groups such as methoxy group (MeO), ethoxy group (EtO), propyloxy group (PrO) or halogens such as fluorine (F), chlorine (Cl), bromine (Br), iodine (I) Among them, those selected from these are silicon substituents.
  • R 4 is a hydrocarbon group.
  • R 5 is preferably H or CH 3 from the viewpoint of hydrophilicity.
  • n is a positive integer of 2 or more.
  • Silanol (SiOH) groups have a high affinity with silicon oxide (SiO 2 ). Glass generally has a SiOH group or a SiO 2 layer. Therefore, a silane coupling agent can be fixed as it is by producing a dispensing nozzle with glass. Alternatively, in the case of a dispensing nozzle made of a material other than glass, chemical adsorption and covalent bonding with a silane coupling agent can be realized by providing a silicon oxide layer, a glass layer, or the like in advance on the nozzle surface.
  • stainless steel is widely used for dispensing nozzles of automatic analyzers in view of good workability and corrosion resistance. Therefore, in the embodiment, an example in which a silicon oxide layer is provided in advance on the outermost surface of stainless steel will be described. However, a hydroxyl group is formed on the stainless steel surface, and it is possible to directly fix the silane coupling agent using the hydroxyl group as a reaction point.
  • FIG. 2 is a cross-sectional view of the processing section at the position indicated by the dotted line in FIG. 1 of the dispensing nozzle thus processed.
  • Dispensing nozzle 111 is a main body and is made of stainless steel or the like.
  • the SiO 2 layer 112 is formed on the nozzle 111 by sputtering, CVD film formation, or coating and drying of a chemical solution (SOG: Spin On Glass, coated glass).
  • the PEG derivative layer 113 is chemically bonded to the SiO 2 layer 112 and plays a role of suppressing adsorption of biopolymers such as proteins.
  • the dispensing nozzle includes a hollow portion 114.
  • the formed SiO 2 layer is cleaned with alcohol or acid.
  • the SiO 2 layer is formed only on the outer wall of the nozzle and the PEG derivative layer is formed on the outermost surface.
  • an SiO 2 layer and a PEG derivative layer may be formed on the inner wall of the nozzle.
  • Verification of the adsorption suppression effect was carried out by measuring the amount of protein adsorption by XPS. Specifically, the adsorption amount of BSA (bovine serum albumin) was estimated from the peak area of N1s (nitrogen 1s) XPS. BSA is suitable as a model for serum albumin, which accounts for about 50-65% of serum proteins. In the above surface-treated substrate, it was confirmed that the N1s peak area was below the detection limit even after the BSA adsorption experiment, and a conventional stainless steel or stainless steel formed with a SiO 2 layer. A significant difference was observed.
  • BSA bovine serum albumin
  • the dispensing nozzle of the present invention helps integrate an immunoassay device that is more sensitive to contamination between specimens with an automated biochemical analyzer.
  • the substrate used is a SUS substrate having a silicon oxide (SiO 2 ) layer having a thickness of 10 nm as the outermost surface layer.
  • the size of the substrate was 10 mm ⁇ 10 mm ⁇ 0.5 mm, and the measurement surface for verifying the effect was a 10 mm ⁇ 10 mm surface.
  • Step 1 A SiO 2 layer is formed on the SUS surface.
  • SiO 2 oxygen
  • Ar oxygen
  • the film formation conditions for SiO 2 are as follows.
  • the ultimate vacuum in the chamber was 5 ⁇ 10 ⁇ 5 Torr, and the heater set temperature was 423K.
  • the deposition rate of SiO 2 is 0.2 nm / second.
  • a 10 nm SiO 2 layer was formed on the SUS surface.
  • the SiO 2 layer can be formed not by sputtering but also by applying and drying a chemical solution (SOG: Spin On Glass, coated glass).
  • Step 2 The SiO 2 layer formed in step 1 is washed.
  • the substrate was ultrasonically cleaned in ethanol for 15 minutes.
  • the contact angle with water was measured with a Drop Master 500 manufactured by Kyowa Interface Science.
  • 0.5 ⁇ L of pure water was dropped onto the surface of the substrate using a syringe, and the static contact angle 1 second after the landing was measured by the three-point method.
  • the contact angle of the substrate was 10 ⁇ 1 °. This confirmed that the surface was clean.
  • Step 3 Immerse in a solution containing a polyethylene glycol derivative.
  • the substrate cleaned up to step 2 was subjected to silane coupling treatment with 2-methoxypolyethyleneoxypropyltrimethoxysilane (2- [METHOXY (POLYETHYLENEOXY) PROPYL] TRIMETHOXYSILANE).
  • 2-methoxypolyethyleneoxypropyltrimethoxysilane (2- [METHOXY (POLYETHYLENEOXY) PROPYL] TRIMETHOXYSILANE).
  • a 3 mM toluene solution of 2-methoxypolyethyleneoxypropyltrimethoxysilane was prepared, and concentrated hydrochloric acid (about 35%) was added dropwise to a concentration of 0.8 mL / L and stirred.
  • the substrate prepared in step 2 was immersed in the solution of the silane coupling agent thus prepared for 30 minutes.
  • 2-Methoxypolyethyleneoxypropyltrimethoxysilane (2- [METHOXY (POLYETHYLENEOXY) PROPYL] TRIMETHOXYSILANE) has a molecular weight of 460 to 590 and has 6 to 9 units of ethylene glycol chain.
  • the chemical formula of 2-methoxypolyethyleneoxypropyltrimethoxysilane is shown below.
  • Step 4 Washing and drying The substrate was lifted from the solution, washed once with toluene, washed twice with ethanol, then washed twice with water, and ultrasonically washed in water for 2 minutes. Then, it dried with nitrogen blow.
  • the substrate thus prepared is also referred to as a PEG solution immersion substrate.
  • BSA adsorption test The biopolymer adsorption inhibition effect was verified by an adsorption test of BSA (bovine serum albumin).
  • BSA bovine serum albumin
  • a 2.5 g / L solution of BSA was prepared.
  • Dulbecco's phosphate buffer solution was used as the solvent.
  • the prepared substrate was immersed in the prepared solution for 30 minutes. After lifting the substrate, it was first thoroughly washed with Dulbecco's phosphate buffer solution. Subsequently, it was thoroughly washed with pure water. Finally, it was dried by nitrogen blowing.
  • XPS measurement was performed on the three substrates subjected to the BSA adsorption test, and the surface composition was quantitatively analyzed.
  • XPS measurement was performed with QuanteraSXM manufactured by PHI. Monochromatic Al (1486.6 eV) was used as the X-ray source. The detection region was ⁇ 100 ⁇ m, and the extraction angle was 45 °.
  • the results after the BSA adsorption test are compared.
  • the measurement results of the PEG solution immersion substrate and the reference substrate 1 are shown in FIG.
  • the measurement result of the PEG solution immersion substrate is indicated by a broken line 310.
  • the range of the arrow 311 is a C—C, C—H bond
  • the range of the arrow 312 is a C—O bond
  • the arrow 313 is a range where C ⁇ O, O ⁇ C—O, and CO 3 bonds are detected.
  • the range of the arrow 314 is a peak of potassium 2p derived from glass.
  • FIG. 4 in addition to the CC and C—H bond peaks, a peak attributed to the C—O bond was strongly observed. This reflects the C—O bond derived from the ethylene glycol chain in the molecule.
  • the measurement result of the reference substrate 1 is indicated by a solid line 315.
  • the range of the arrow 316 is the C—C, C—H bond
  • the range of the arrow 317 is the C—O bond
  • the range of the arrow 318 is the range where the C ⁇ O, O ⁇ C—O, and CO 3 bonds are detected.
  • the range of the arrow 319 is a peak of potassium 2p derived from glass.
  • the C—O bond detected in the range of the arrow 312 is sufficiently larger than that of the reference substrate 1 in which the SiO 2 film is formed. Therefore, it was confirmed that the PEG derivative was properly fixed on the PEG solution immersion substrate.
  • the adsorption of BSA on the stainless steel surface can be quantitatively analyzed by XPS and the N1s peak corresponding to the nitrogen atom (N) in BSA.
  • N1s peak is attributed to amines and amides contained in BSA. Therefore, in this example, the relative adsorption amount of each BSA substrate was quantified based on the N1s amount, and the inhibitory effect on protein adsorption on the substrate surface was verified.
  • the thin line 321 is the spectrum of the PEG solution immersion substrate
  • the thick line 322 is the spectrum of the reference substrate 1
  • the broken line 323 is the spectrum of the reference substrate 2.
  • the analysis of the peak area of N1s was performed by subtracting the background from 395 eV to 405 eV with a straight line.
  • Table 1 shows the surface element concentration (atomic%) of N1s obtained from the peak area of each element.
  • the substrate immersed in a 2-methoxypolyethyleneoxypropyltrimethoxysilane solution was a PEG solution immersion substrate
  • the reference substrate 1 having only SiO 2 was an SiO 2 / SUS substrate
  • the reference substrate 2 was a stainless steel substrate.
  • the molecule represented by the chemical formula (2) is used as an example of the silane coupling agent having an ethylene glycol chain.
  • the chemical formula (2) is a mixture having 6 to 9 ethylene glycol chains (ethylene oxide groups).
  • the molecular weight of the PEG derivative is desirably 100 or more from the request that the number of necessary ethylene oxide groups is 2 or more and that the intermolecular interaction for arranging the molecules is sufficient.
  • the molecular weight of the PEG derivative is desirably 20000 or less.
  • the chemical structure of the PEG derivative to be coated need not be single, and may be a mixture.
  • the terminal of the molecule opposite to the silanol group may be a hydroxyl group (OH) or an ether group (O—R, R: alkyl group).
  • the propyl group (C 3 H 6 ) is generally a hydrocarbon group. Therefore, what is effective on the nozzle surface of the present invention is a molecule represented by the following general formula (3).
  • R 1 , R 2 , and R 3 are silicon (Si) substituents.
  • ether groups such as methoxy group (MeO), ethoxy group (EtO), propyloxy group (PrO) or halogens such as fluorine (F), chlorine (Cl), bromine (Br), iodine (I) Among them, those selected from these are silicon substituents.
  • R 4 is a hydrocarbon group.
  • R 5 is preferably H or CH 3 from the viewpoint of hydrophilicity.
  • R 4 may be an ether group, a carboxyl group, a carbonyl group, an ester group, an amide group, etc. in addition to a hydrocarbon group.
  • R 4 may be an ether group, a carboxyl group, a carbonyl group, an ester group, an amide group, etc. in addition to a hydrocarbon group.
  • n is a positive integer of 2 or more.
  • Example 1 In the present embodiment, a case where the same processing as that in the experimental example is performed on the dispensing nozzle will be described.
  • a SiO 2 layer was formed on the surface of a stainless steel dispensing nozzle by sputtering in the same manner as in the experimental example.
  • the region to be processed was the end portion 105 of the dispensing nozzle in FIG. 1 and the region 104 immersed in the specimen.
  • the treated nozzle tip had an outer diameter of 0.5 mm and an inner diameter of 0.3 mm, and a SiO 2 layer having a thickness of 10 nm was formed in the region of the tip of 10 mm.
  • the cost can be reduced by limiting the area to be processed to the part to be immersed.
  • the surface of the dispensing nozzle on which the SiO 2 layer was formed was ultrasonically cleaned with ethanol for 15 minutes.
  • a support base was provided so as not to contact the container.
  • the dispensing nozzle that had been cleaned was immersed in the PEG derivative solution. Specifically, a 3 mM toluene solution of 2-methoxypolyethyleneoxypropyltrimethoxysilane was prepared, and concentrated hydrochloric acid (about 35%) was added dropwise to a concentration of 0.8 mL / L. The washed dispensing nozzle was immersed in the silane coupling agent solution thus adjusted for 30 minutes. The dispensing nozzle was lifted from the solution, washed once with toluene, washed twice with ethanol, then washed twice with water, and ultrasonically washed in water for 2 minutes. Then, it dried with nitrogen blow.
  • the verification of the effect was carried out by measuring the surface residual amount of BSA by XPS as in the experimental example.
  • the protein remaining on the surface of the dispensing nozzle after dispensing is reduced to 1/50 or less (below the detection limit of XPS measurement described in the experimental example) compared to the conventional stainless steel nozzle. confirmed.
  • FIG. 6 is a diagram showing an example of the configuration of the automatic analyzer according to the present invention.
  • One or more sample containers 25 are arranged in the sample storage unit mechanism 1.
  • a sample disk mechanism that is a sample storage unit mechanism mounted on a disk-shaped mechanism unit will be described.
  • a sample generally used in an automatic analyzer It may be in the form of a rack or specimen holder.
  • the specimen here refers to a solution to be inspected used for reacting in a reaction vessel, and may be a collected specimen stock solution or a solution obtained by subjecting it to a processing such as dilution or pretreatment. .
  • the sample in the sample container 25 is extracted by the sample dispensing nozzle 27 of the sample supply dispensing mechanism 2 and injected into a predetermined reaction container.
  • the sample dispensing nozzle was surface-treated with 2-methoxypolyethyleneoxypropyltrimethoxysilane (2- [METHOXY (POLYETHYLENEOXY) PROPYL] TRIMETHOXYSILANE) by the method described in Example 1.
  • the reagent disk mechanism 5 includes a large number of reagent containers 6.
  • the mechanism 5 is provided with a reagent supply dispensing mechanism 7, and the reagent is sucked and injected into a predetermined reaction cell by the reagent dispensing nozzle 28 of the mechanism 7.
  • Reference numeral 10 denotes a spectrophotometer
  • 26 denotes a light source with a condensing filter.
  • a reaction disk 3 that accommodates a measurement target is disposed.
  • 120 reaction cells 4 are installed on the outer periphery of the reaction disk 3. Further, the entire reaction disk 3 is held at a predetermined temperature by a thermostatic chamber 9.
  • a reaction cell cleaning mechanism 11 is supplied with a cleaning agent from a cleaning agent container 13, and suction in the cell is performed by a suction nozzle 12.
  • 19 is a computer, 23 is an interface, 18 is a Log converter and A / D converter, 17 is a reagent pipettor, 16 is a washing water pump, and 15 is a sample pipettor.
  • Reference numeral 20 denotes a printer, 21 denotes a CRT, 22 denotes a flexible disk or hard disk as a storage device, and 24 denotes an operation panel.
  • the sample disk mechanism is controlled and driven by the drive unit 200, the reagent disk mechanism is driven by the drive unit 201, and the reaction disk is driven and driven by the drive unit 202, respectively.
  • Each part of the automatic analyzer is controlled by a computer 19 through an interface.
  • the operator inputs analysis request information using the operation panel 24.
  • the analysis request information input by the operator is stored in a memory in the microcomputer 19.
  • the sample to be measured which is placed in the sample container 25 and set at a predetermined position in the sample storage unit mechanism 1, is stored in the sample pipettor 15 and the sample supply dispensing mechanism 2 according to the analysis request information stored in the memory of the microcomputer 19.
  • a predetermined amount is dispensed into the reaction cell by the sample dispensing nozzle 27 subjected to the surface treatment.
  • the surface-treated specimen dispensing nozzle 27 is washed with water and used for dispensing the next specimen.
  • the sample dispensing nozzle 27 coated with 2-methoxypolyethyleneoxypropyltrimethoxysilane is used to suppress the adsorption of biopolymers typified by proteins, and the carryover between samples is made of conventional stainless steel. Compared to the dispensing nozzle, it could be reduced to 1/2 or less. Carryover is a comparison after cleaning. Therefore, although it is difficult to further reduce the carry-over, it is a remarkable progress that the carry-over rate can be reduced by surface-treating the nozzle.
  • the liquid level is detected using the change in capacitance. I can do it.
  • a predetermined amount of reagent is dispensed into the reaction cell by the reagent dispensing nozzle 28 of the reagent supply dispensing mechanism 7. After the reagent dispensing nozzle 28 is washed with water, the reagent dispensing nozzle 28 dispenses a reagent for the next reaction cell.
  • the liquid mixture of the specimen and the reagent is stirred by the stirring rod 29 of the stirring mechanism 8.
  • the stirring mechanism 8 sequentially stirs the liquid mixture in the next reaction cell.
  • the electrostatic capacity method is adopted for the principle of on-board liquid level detection.
  • the capacitance method the capacitance value between the nozzle and the ground (corresponding to the cell bottom in this embodiment) is measured. It utilizes the fact that the capacitance is larger than that in air when it comes into contact with a substance having a high dielectric constant.
  • FIG. 7 shows a conceptual diagram of liquid level detection by the electrostatic capacity method. This is a case where a metal nozzle that is not surface-modified is used.
  • the metal nozzle 410 does not touch the sample 413 in the sample container 412.
  • the electrostatic capacitance between the nozzle and the ground is determined by the electrostatic capacitance C 0 of air and the electrostatic capacitance C 1 of water.
  • FIG. 8 shows a conceptual diagram when the nozzle touches the liquid surface.
  • the metal nozzle 410 touches the liquid 413 in the sample container 412. If the specimen container has a ground of the apparatus body 411, the electrostatic capacitance between the nozzle and the ground is C 1.
  • FIG. 9 shows an example of liquid level detection with a nozzle coated with silicon oxide.
  • the case where the metal nozzle 410 having the silicon oxide layer 414 is not in contact with the liquid 413 in the specimen container 412 is shown.
  • the apparatus main body 411 in contact with the sample container is set as the ground.
  • FIG. 10 shows a case where the metal nozzle 410 having the silicon oxide layer 414 is in contact with the liquid 413 in the specimen container 412.
  • the apparatus main body 411 in contact with the sample bottle is set as the ground.
  • the liquid level can be detected.
  • the SiO 2 layer of this nozzle breaks due to some impact or contact, the metal nozzle directly contacts air, so the capacitance C 2 of the SiO 2 layer can be ignored. Then, since the electrostatic capacitance changes greatly, it is possible to detect scratches and cracks in the SiO 2 layer on the nozzle. When the SiO 2 layer is scratched or cracked, the carry-over may increase as a result. Therefore, it is important to be able to detect scratches and cracks in the SiO 2 layer.
  • a storage medium 32 that stores a change in the initial value due to nozzle replacement when the deviation of the capacitance from the initial value exceeds a certain threshold.
  • the automatic analyzer of the present embodiment is equipped with a detection mechanism 31 that detects this change in capacitance, and an indicator 30 that informs the nozzle replacement timing and analysis accuracy.
  • This indicator is blue when it is normal, and the change in capacitance is constantly measured.When an abnormality such as a crack or scratch occurs in the silicon oxide layer on the nozzle surface, the abnormality is detected from the change in capacitance.
  • the indicator 30 is displayed and notified in red, for example, via the interface.
  • the sample analyzed at this time is stored on the apparatus, and a program for re-acquisition of analysis data after nozzle replacement is incorporated.
  • FIG. 11 shows a schematic diagram of an automatic analyzer used in this embodiment.
  • a first processing liquid tank 401 and a second processing liquid tank 402 are added to the configuration of the automatic analyzer shown in FIG.
  • the dispensing nozzle 27 in FIG. 11 is a stainless steel dispensing nozzle having a SiO 2 layer of 10 nm formed on the surface.
  • the specimen dispensing nozzle 27 is rotationally moved to the first processing liquid tank 401, descends and is immersed in the first processing liquid.
  • the immersion area at this time is sufficiently larger than the area where the specimen dispensing nozzle 27 is immersed in the specimen during dispensing.
  • 2-methoxypolyethyleneoxypropyltrimethoxysilane as a PEG derivative or a solution of at least one molecule selected from a series of molecular groups represented by the general formula (1) in an experimental example can be used.
  • a 2 mM toluene solution of 2-methoxypolyethyleneoxypropyltrimethoxysilane was used.
  • the soaking time varies depending on the soaking frequency.
  • the dispensing nozzle 27 is rotated and moved to the second processing liquid tank 402, and is lowered and immersed in the second processing liquid. At this time, the immersion area is sufficiently larger than the area immersed in the first treatment liquid.
  • toluene used as a solvent for the treatment liquid in the first treatment liquid tank 401 is used as a solution used in the second treatment liquid tank 402 toluene used as a solvent for the treatment liquid in the first treatment liquid tank 401 is used.
  • the PEG derivative requires two or more ethylene oxide groups and the requirement that the intermolecular interaction for arranging the molecules is sufficient.
  • the molecular weight is desirably 100 or more.
  • the molecular weight of the PEG derivative is desirably 20000 or less.
  • the chemical structure of the PEG derivative to be coated need not be single, and may be a mixture.
  • the carry-over in the sample dispensing nozzle is considered as a problem, but the same effect can be obtained by performing the processing of the present invention on all members that can cause a carry-over, such as a stirring rod.
  • the non-specific adsorption of biopolymers such as proteins on the surface of the dispensing nozzle is dramatically reduced, and the carryover is suppressed, thereby contributing to the improvement of the reliability of the automatic analyzer. I can do it. In addition, this contributes to a small amount of sample and a small amount of reagent, and can reduce running cost and environmental load.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

尿や血液などの検体を分析する自動分析装置において、分析測定値が繰り返し使用する分注ノズルによるキャリーオーバの影響を受けないようにする。分注ノズルの表面を化学吸着したポリエチレングリコール誘導体で被覆することで、生体高分子の吸着を抑制する分子層を形成し、分注ノズルによるキャリーオーバを低減する。

Description

自動分析装置用分注ノズル及びそれを搭載した自動分析装置
 本発明は、自動分析装置用分注ノズル及びそれを搭載した自動分析装置に関する。
 医療診断用の臨床検査においては、血液や尿などの生体検体中のタンパク、糖、脂質、酵素、ホルモン、無機イオン、疾患マーカー等の生化学分析や免疫学的分析を行う。臨床検査では、複数の検査項目を信頼度高くかつ高速に処理する必要があるため、その大部分を自動分析装置で実行している。自動分析装置としては、例えば、血清等の検体に所望の試薬を混合して反応させた反応溶液を分析対象とし、その吸光度を測定することで生化学分析を行う生化学分析装置が知られている。この種の生化学分析装置は、検体や試薬を収納する容器、検体及び試薬を注入する反応セルを備え、検体及び試薬を反応セルに自動注入する分注ノズルを備えた分注機構と、反応セル内の検体及び試薬を混合する攪拌棒を持つ自動攪拌機構、反応中又は反応が終了した検体の吸光度を計測する機構、計測終了後の反応溶液を吸引・排出し、反応セルを洗浄する自動洗浄機構等を備えている(例えば特許文献1)。
 こうした自動分析装置では、分注ノズルにより多数の検体及び試薬を次々と分注することが一般的である。例えば検体分注ノズルは、採血管などの検体を収納する容器から所定量の検体を分取して、試薬を反応させる反応セルに検体を吐出する。試薬分注ノズルは、試薬を収納する容器から分取した所定量の試薬を反応セルへ吐出する。この際、分注ノズル表面に残留した被分注液体の成分が次の被分注液体に混入すると、測定結果に影響を及ぼす場合がある。これをキャリーオーバと呼ぶ。
 キャリーオーバの問題は、近年の自動分析装置の分野における検体及び試薬の微量化の要求と深く関連している。分析項目数の増大に伴い、1つの分析項目に割くことのできる検体量が少量化する。検体自体が貴重で多量に準備できない場合もあり、高感度化への要求もある。また、分析内容が高度化するにつれて、一般に試薬が高価となり、コスト面からも試薬微量化への要請がある。こうした検体及び試薬の微量化への要求の高まりにより分注ノズルの細径化が進み、管の外径は0.5mm程度となっている。ノズル径の微小化は、分注される溶液の体積に対しての表面積の割合を増大させる。このため、分注ノズル表面への物質吸着を制御し、キャリーオーバを低減することの重要性が増している。
 また、生化学項目と測定濃度範囲の広い免疫項目の分析のための検体を同一容器から採取して測定する場合、分注ノズルによる検体間のキャリーオーバを極力低減することが求められている。
 キャリーオーバを低減するために、従来は、純水や界面活性剤を含む洗剤による洗浄が実施されてきた(特許文献2)。活性酸素により、付着した検体の残渣を失活させるという方法も知られている(特許文献3)。使い捨て可能なディスポーザブルノズル(ディスポーザブルティップ)を用いる方法も、キャリーオーバに対する解決法の一つとして知られている。
 なお、表面上に吸着した化学物質の定量や組成解析にはXPS(X線光電子分光法)などが広く用いられており、例えば自己組織化膜などの単分子膜の組成や化学種の定量について解析が行われている(非特許文献1,2)。これと同様に、表面上に残存したタンパク質の定量もXPSにより定量することが可能である(非特許文献3)。
特許第1706358号公報 特開2007-85930号公報 特許第3330579号公報
Chemical Reviews, 96, pp.1533-1554(1996) Journal of the American Chemical Society, 115, pp.10714-10721 (1993) The Journal of Physical Chemistry B, 107, pp.6766-6773 (2003)
 純水や界面活性剤を含む洗剤による洗浄では、タンパク質に代表される生体高分子の洗浄が困難な場合がある。活性酸素により付着した検体の残渣を失活させる方法では、失活した検体の残渣が表面に堆積してしまうため、長期間の使用には耐えられない。また、ディスポーザブルノズルは強度、加工精度の観点から、微細な構造を形成することは難しい。また、ディスポーザブルノズルの使用は大量の廃棄物を出し、環境負荷を増大させてしまうという問題点もある。
 本発明の目的は、ディスポーザブルノズルを使用せずに、表面の清浄度を上げ、キャリーオーバの低減を図った自動分析装置の検体分注ノズル、及びそれを用いた自動分析装置を提供することである。
 キャリーオーバを回避する必要性の高い分析項目は、分析成分がタンパク質などの生体高分子であることが多い。よってキャリーオーバ低減のためには、分注ノズルの表面にタンパク質など生体高分子が残存するのを抑制することが解決策となる。本発明では、そのために、検体などの生体分子による非特異吸着を抑制する分子をノズル表面へ固定化した。また、上記分子の固定化に際しては、表面への化学吸着、特に共有結合を利用した。この際、非特異吸着を抑制する分子をノズルの最表面へ固定化できれば、ノズルの材質は限定されない。
 分注ノズル表面にポリエチレングリコール(PEG)誘導体を化学吸着させ、被覆することでタンパク質など生体由来高分子の吸着を抑制し、上記の課題を解決する。ここで化学吸着とは、共有結合やイオン結合などの化学結合を原因とする、吸着熱が20~100kcal/mol程度の固体表面での吸着様式のことを意味する。吸着熱が通常10kcal/mol以下のファンデルワールス力を結合力とする物理吸着とは区別される。ポリエチレングリコール誘導体は親水性であり、その立体斥力によりタンパク質などの生体高分子の吸着を抑制する。PEG誘導体は蛋白質の吸着抑制効果が最も高い。これは、一般に非イオン性の水溶性高分子を材料表面にコートすると、物質表面の親水性は向上しながら表面電荷も抑えられるからである。また、このような性質に加えて、PEGは毒性が全くといってよいほどないことも臨床応用に重要である。
 必要なエチレンオキシド(-C24O-)基の数が2以上であること及び分子が配列するための分子間相互作用が十分であるという要請からPEG誘導体の分子量は100以上であることが望ましい。また、逆に分子間の立体的な斥力が大きすぎると表面へのPEG誘導体の吸着量が低減してしまう。このためPEG誘導体の分子量は20000以下であることが望ましい。被覆するPEG誘導体の化学構造は単一である必要はなく、混合物であっても良い。
 本発明の自動分析装置は、それぞれが検体を収納する複数の検体容器と、それぞれが試薬を収納する複数の試薬容器と、検体と試薬が注入される複数の反応セルと、検体分注ノズルを備え、検体容器中の検体を反応セルに分注する検体分注機構と、試薬分注ノズルを備え、試薬容器中の試薬を反応セルに分注する試薬分注機構とを有し、検体分注ノズルは、表面に酸化ケイ素層を有し、その酸化ケイ素層に対して、下記一般式
     Si-R1-(OCH2CH2n-O-R2(nは2以上の正の整数、R1は炭化水素基、R2はH又はCH3
で示されるポリエチレングリコールを有するケイ素誘導体が化学吸着しているものである。
 また、本発明による自動分析装置用分注ノズルの製造方法は、
(a) スパッタリング又は薬液塗布及び乾燥を用いて分注ノズルの表面に酸化ケイ素層を形成する工程、
(b) 分注ノズルの表面に形成した酸化ケイ素層を洗浄する工程、
(c) 洗浄した分注ノズルを下記一般式
     RSi-R-(OCH2CH2n-O-R5(R1、R2、R3はケイ素の置換基、R4は炭化水素基、R5はH又はCH3、nは2以上の正の整数)
で表されるシラノール基前駆体を有するポリエチレングリコール誘導体の溶液に浸漬する工程、
(d) 分注ノズルの処理された表面を溶媒で洗浄する工程、
(e) 洗浄した前記分注ノズルの表面を乾燥する工程を有する。
 本発明によれば、分注ノズルへのタンパク質などの生体高分子の吸着を抑制することが出来る。そのため分注動作時のキャリーオーバを低減することが可能となり、自動分析装置の分析信頼性が向上する。また、それにより検体や試薬の微量化に寄与し、自動分析装置のランニングコスト低減にも貢献する。
分注ノズルの概略図。 分注ノズルの断面図。 工程フロー。 XPSの結果を示す図。 XPSの結果を示す図。 自動分析装置の構成例を示す図。 液面検知の概念図。 液面検知の概念図。 液面検知の概念図。 液面検知の概念図。 表面処理を行う機構を有する自動分析装置の構成例を示す図。
 図1に分注ノズルの概略図を示す。分注ノズル本体部101には、耐腐食性が高く加工性の良い材料としてステンレススチールが広く用いられている。しかし、ノズルの材料はステンレススチールに限定されず、樹脂例えばポリジメチルシロキサン(PDMS)、ポリ塩化ビニル、ポリアクリレートや、ガラス、その他金属材料(金、プラチナ、銅)、セラミックであれば良い。ここでは、ステンレススチールの分注ノズルの例を示す。分注ノズルは角102で曲げられ、吸引・吐出機構へと接続されている。検体や試薬の吸引時は、中空部103に所定量を吸引する。分注時には検体や試薬に対して分注ノズルの外面も浸漬される。このためポリエチレングリコール(PEG)誘導体が化学吸着し被覆する領域としては、中空部103を持つ分注ノズルの場合、内面、外面及び端部105であり、また、分注ノズルが検体又は試薬を分注する際に検体又は試薬に浸漬する領域104よりも十分に大きい。
 分注ノズルの表面に対してPEG誘導体を化学吸着させる方法としては、下記一般式(1)で示されるような片末端にシラノール基前駆体を有するPEG誘導体を用いる方法がある。一般式(1)のような分子は、一般にシランカップリング剤と呼ばれ、表面水酸基と化学結合により分子を固定化できる。このように非対称な分子を用いることで、分注ノズルの表面上に、整然と単分子膜として固定化できる。両末端が、シラノール基前駆体である場合、両末端で表面にポリエチレングリコール鎖が固定化され、運動の自由度を失い、本来持つ非特異吸着抑制の効果を発揮できない場合があるので好ましくない。
     R123Si-R4-(OCH2CH2n-O-R5   …(1)
 R1、R2、R3は、ケイ素(Si)の置換基である。一般的に、メトキシ基(MeO)、エトキシ基(EtO)、プロピルオキシ基(PrO)などのエーテル基や又はフッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)などのハロゲンからなり、これらのうちから選ばれたものがケイ素の置換基である。加水分解により、シラノール基に変換され、固体表面の水酸基と結合する。R4は炭化水素基である。R5は親水性の観点からH又はCH3が適する。nは2以上の正の整数である。
 シラノール(SiOH)基は、酸化ケイ素(SiO2)との親和性が高い。ガラスは、一般的にSiOH基やSiO2層を有している。よって、ガラスで分注ノズルを作製することで、そのままシランカップリング剤を固定化できる。又は、ガラス以外を材料とする分注ノズルの場合には、ノズル表面に酸化ケイ素層やガラス層などをあらかじめ設けることで、シランカップリング剤との化学吸着、共有結合を実現できる。
 先にも述べたように、自動分析装置の分注ノズルには加工性の良さ、耐食性などの観点を踏まえて、ステンレススチールが広く用いられている。従って、実施の形態ではステンレススチールの最表面に酸化ケイ素層をあらかじめ設けた例を示す。しかし、ステンレススチール表面には水酸基が形成されており、そこを反応点としてシランカップリング剤を直接固定化することも可能である。
 このように処理された分注ノズルの図1に点線で示した位置での処理部断面図を図2に示す。分注ノズル111は本体部であり、ステンレススチールなどからなる。SiO2層112はノズル111上にスパッタリング又はCVD成膜又は薬液(SOG:Spin On Glass、塗布ガラス)の塗布乾燥により形成される。PEG誘導体層113はSiO2層112に対して化学結合しており、タンパク質などの生体高分子の吸着を抑制する役割を果たす。分注ノズルは中空部114を備えている。形成されたSiO2層に対してアルコールや酸により洗浄を行う。その後、片末端にシラノール基前駆体を有するPEG誘導体の溶液に十分な時間浸漬する。こうして処理された表面ではエチレングルコール鎖に由来する炭素-酸素の1重(C-O)結合の存在をC1s(炭素1s)のXPSの測定結果から確認できた。
 本発明のノズルでは、ノズル外壁のみにSiO2層を形成し、その最表面にPEG誘導体層を形成した例を示した。なお、ノズル内壁にも同様にSiO2層とPEG誘導体層を形成しても良い。
 吸着の抑制効果の検証は、タンパク質の吸着量をXPSで測定することにより実施した。具体的にはBSA(ウシ血清アルブミン)の吸着量をN1s(窒素1s) XPSのピーク面積から見積もった。BSAは血清タンパク質の約50~65%を占める血清アルブミンのモデルとして適している。上記の表面処理を行った基板ではBSAの吸着実験を行った後でもN1sのピーク面積が検出限界以下となることが確認され、従来のステンレススチールやステンレススチールに対してSiO2層を形成したものとは有意な差が認められた。
 分注ノズルで液面を検知する際には、その静電容量の変化を指標とする電気的計測法が広く用いられている。従って、ステンレススチール製分注ノズル表面に絶縁性のSiO2薄膜層とその表面の有機膜層が形成されていても、液面検知の静電容量変化を検出できた。なお、液面を検知した高さ位置から3mm程度下側でノズルが止まり、液体を吸引する設定とした。本発明では、SiO2層の厚さが約10nmであり、静電容量の変化を容易に検出できる。ノズル表面に何らかの機械的なダメージが加わった場合に、ノズル表面に形成したSiO2層が割れや傷を形成する場合がある。この酸化ケイ素層の割れや傷を静電容量の変化として検出することで、ノズル表面の定期的なメンテナンス実施時期を知らせるセンサを搭載できる。また、上記の表面処理法では簡便にPEG誘導体を化学吸着させることが出来るので、PEG誘導体を化学吸着させる機構を自動分析装置への組み込むことも可能である。本発明の分注ノズルを使用すれば、検体間の汚染に、より敏感である免疫分析装置を生化学自動分析装置と統合することにも役立つ。
 次に、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。
<実験例>
 最初に、解析の信頼性を高めるため、平面基板を用いて効果の検証を行った。用いた基板は、10nmの厚さの酸化ケイ素(SiO2)層を最表面層に有するSUS基板である。基板の大きさは10mm×10mm×0.5mmで、効果の検証のための測定面は10mm×10mmの面を用いた。
(PEG誘導体が吸着した基板の作成)
 実験の工程フローを図3に示す。
工程1.SUS表面にSiO2層を形成。
 まず、ステンレススチール(SUS)表面に残存する油脂を除去するため、アルカリ性の溶剤で脱脂した。その後、酸素(O)を反応性ガス、Arを放電ガスとする、DCマグネトロンスパッタリング装置を用い、Siをスパッタリングした。SiO2の成膜条件は以下の通りである。チャンバ内の到達真空度は、5×10-5Torrであり、ヒーター設定温度は423Kとした。その結果、SiO2の成膜速度は、0.2nm/秒である。こうして、SUS表面にSiO2層を10nm形成した。なお、スパッタリングでなく、薬液(SOG:Spin On Glass、塗布ガラス)の塗布乾燥によってもSiO2層は形成できる。
工程2.工程1にて形成されたSiO2層を洗浄。
 具体的には、基板をエタノール中で15分間超音波洗浄した。この状態で、水に対する接触角を協和界面科学製Drop Master 500により測定した。基板表面にシリンジを利用して純水0.5μLを滴下し、着滴から1秒後の静的接触角を3点法で測定した。その結果、基板の接触角は10±1°であった。これにより表面が清浄となっていることを確認した。
工程3.ポリエチレングリコール誘導体を含む溶液に浸漬。
 具体的には、工程2までで清浄化処理された基板を2-メトキシポリエチレンオキシプロピルトリメトキシシラン(2-[METHOXY(POLYETHYLENEOXY)PROPYL]TRIMETHOXYSILANE)により、シランカップリング処理した。2-メトキシポリエチレンオキシプロピルトリメトキシシランの3mMトルエン溶液を調整し、そこに濃塩酸(約35%)を0.8mL/Lの濃度になるよう滴下し攪拌した。こうして調整したシランカップリング剤の溶液に工程2で調整した基板を30分間浸漬した。
 2-メトキシポリエチレンオキシプロピルトリメトキシシラン(2-[METHOXY(POLYETHYLENEOXY)PROPYL]TRIMETHOXYSILANE)は、分子量460から590のものを含み、エチレングリコール鎖が6から9ユニット備わっている。ここで、2-メトキシポリエチレンオキシプロピルトリメトキシシランの化学式を以下に示す。
   (CH3O)3Si-C36-(OCH2CH26-9-OCH3  …(2)
工程4.洗浄及び乾燥
 基板を溶液から引き上げ、トルエンで1回洗浄、エタノールで2回洗浄後、水洗を2回行い、2分間、水中で超音波洗浄した。その後、窒素ブローで乾燥した。以下、このようにして作製された基板をPEG溶液浸漬基板ともいう。
 本発明による表面処理の効果を検証するために、参照用として以下の2枚の基板を用意した。
(参照基板1. SiO2膜を形成したSUS基板の作成)
 まず、1枚目の参照基板の処理手順について説明する。先に述べた工程1の方法で、ステンレススチール基板にスパッタリングによりSiO2膜を形成した。このSiO2層の膜厚は10nmとした。次に、この板をエタノール中で15分間超音波洗浄した。この状態で水に対する接触角を上記と同様の方法により測定した。その結果、基板の水に対する接触角は10±1°であった。これにより表面が清浄となっていることを確認した。このSiO2膜を形成した基板を参照基板1とした。
(参照基板2. ステンレススチール基板の作成)
 2枚目の参照基板としてステンレススチール基板を用意し、1%NaOH水溶液で15分間超音波洗浄し、その後にエタノールで15分間超音波洗浄を行った。この洗浄を行ったステンレススチール基板を参照基板2とした。
BSA吸着試験
 生体高分子の吸着抑制効果の検証は、BSA(ウシ血清アルブミン)の吸着試験によって行った。まずBSAの2.5g/L溶液を用意した。溶媒としてはダルベッコリン酸緩衝溶液を用いた。作成した溶液に、準備した基板を30分間浸漬した。基板を引き上げ後、まずダルベッコリン酸緩衝溶液で十分に洗浄した。次いで、純水で十分に洗浄した。最後に窒素ブローにより乾燥させた。
 こうしてBSAを吸着試験した3枚の基板についてXPS測定を行い、表面組成を定量分析した。XPSの測定はPHI社製QuanteraSXMで行った。X線源としては単色化Al(1486.6eV)を用いた。検出領域はΦ100μmとし、取り出し角は45°とした。
 ワイドスキャン(結合エネルギー(Biding Energy)0~1275eV、エネルギーステップ1.0eV)で測定した結果、参照基板2からはFe(鉄)及びCr(クロム)が検出された。PEG溶液浸漬基板及び参照基板1からは、ケイ素(Si)及び酸素(O)が検出された。これにより、SiO2の薄膜を形成した2枚の基板では、いずれも表面が酸化ケイ素によりコーティングされていることを確認した。
 炭素の結合状態を検討するためにC1s(炭素1s)のナロースキャンを、結合エネルギーが278eVから296eVの範囲をエネルギーステップ0.1eVで測定した。
 BSA吸着試験後の結果を比較する。PEG溶液浸漬基板及び参照基板1の測定結果を図4に示す。PEG溶液浸漬基板の測定結果は、破線310で示す。矢印311の範囲はC-C、C-H結合、矢印312の範囲はC-O結合、矢印313の範囲はC=O、O=C-O、CO3結合の検出される範囲である。また、矢印314の範囲は、ガラスに由来するカリウム2pのピークである。図4に示されるように、C-C,C-H結合のピークの他に、C-O結合に帰属されるピークが強く観測された。これは分子内のエチレングリコール鎖に由来するC-O結合を反映している。
 一方、参照基板1の測定結果は、実線315で示す。矢印316の範囲はC-C、C-H結合、矢印317の範囲はC-O結合、矢印318の範囲はC=O、O=C-O、CO3結合の検出される範囲である。また、矢印319の範囲は、ガラスに由来するカリウム2pのピークである。
 図から明らかな通り、PEG溶液浸漬基板では、矢印312の範囲で検出されるC-O結合がSiO2膜を形成しただけの参照基板1よりも十分に大きいことがわかる。したがって、PEG溶液浸漬基板には、PEG誘導体がきちんと固定化されていることが確認できた。
 次に、基板ごとのBSA吸着量比較について説明する。BSAのステンレススチール表面への吸着についてはXPSにより、BSA中の窒素原子(N)に対応するN1sピークにより定量分析が可能である。ここでN1sピークはBSAに含まれているアミン、アミドに帰属される。そこで本実施例ではBSAの基板ごとの相対吸着量をN1s量により定量し、基板表面へのタンパク質吸着に対する抑制効果を検証した。
 結果を図5に示す。細線321がPEG溶液浸漬基板のスペクトル、太線322が参照基板1のスペクトル、破線323が参照基板2のスペクトルである。BSAが吸着した、SiO2層を有する基板(参照基板1)の表面及びステンレススチール基板(参照基板2)の表面では、結合エネルギー400eV付近にピークを持つ対称形のN1sのピークが観察された。
 N1sのピーク面積の解析は、バックグラウンドを395eVから405eVまでを直線で差し引くことで行った。各元素のピーク面積から求まるN1sの表面元素濃度(原子%)を表1に示す。表1では、2-メトキシポリエチレンオキシプロピルトリメトキシシラン溶液に浸漬した基板をPEG溶液浸漬基板、SiO2のみを有する参照基板1をSiO2/SUS基板、参照基板2はステンレススチール基板とした。
Figure JPOXMLDOC01-appb-T000001
 SiO2膜を形成したSUS基板での窒素比率は5.0%であり、PEG溶液浸漬基板ではN1sは検出限界以下となった。また、ステンレススチール基板では、窒素の表面元素濃度が3.0%であった。本測定での検出限界(窒素の含有量で0.1%)を考慮すると、PEG溶液浸漬基板では、SiO2膜を形成した基板に対してBSAの吸着量が1/50以下となり、BSAの吸着を抑制できることを確認した。また、PEG溶液浸漬基板では、ステンレススチール基板に対してBSAの吸着量が1/30以下となり、BSAの吸着を抑制できることを確認した。
 以上の結果から、ステンレススチール上にSiO2層を形成し、2-メトキシポリエチレンオキシプロピルトリメトキシシラン(2-[METHOXY(POLYETHYLENEOXY)PROPYL]TRIMETHOXYSILANE)分子を化学吸着させることで、分注ノズル表面のタンパク質に代表される生体高分子の吸着が大幅に抑制されることが示された。
 エチレングリコール鎖を有するシランカップリング剤の一例として、上記化学式(2)で表される分子を利用したが、本発明で利用できる分子は上記化学式(2)に限定されるものではない。化学式(2)は、エチレングリコール鎖(エチレンオキシド基)の数が6から9の混合物である。必要なエチレンオキシド基の数が2以上であること及び分子が配列するための分子間相互作用が十分であるという要請から、PEG誘導体の分子量は100以上であることが望ましい。また、逆に分子間の立体的な斥力が大きすぎると表面へのPEG誘導体の吸着量が低減してしまう。このためPEG誘導体の分子量は20000以下であることが望ましい。被覆するPEG誘導体の化学構造は単一である必要はなく混合物であっても良い。
 また、この分子のシラノール基と逆側の末端は、水酸基(OH)でも、エーテル基(O-R、R:アルキル基)でもよい。プロピル基(C36)は一般に炭化水素基で良。従って、本発明のノズル表面に有効なのは、以下の一般式(3)で示される分子である。
     R123Si-R4-(OCH2CH2n-O-R5   …(3)
 R1、R2、R3は、ケイ素(Si)の置換基である。一般的に、メトキシ基(MeO)、エトキシ基(EtO)、プロピルオキシ基(PrO)などのエーテル基や又はフッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)などのハロゲンからなり、これらのうちから選ばれたものがケイ素の置換基である。加水分解により、シラノール基に変換され、固体表面の水酸基と結合する。R4は炭化水素基である。R5は親水性の観点からH又はCH3が適する。蛋白質の吸着抑制には、ポリエチレングリコール鎖を有していることが有用であり、その他の部分、例えばR4は炭化水素基以外にエーテル基、カルボキシル基、カルボニル基、エステル基、アミド基などでもよい。nは2以上の正の整数である。
<実施例1>
 本実施例では、分注ノズルに実験例と同様の処理を行う場合について説明する。まずステンレススチール製分注ノズルの表面に、実験例と同様の方法でスパッタリングによりSiO2層を形成した。処理する領域は、図1の分注ノズルの端部105及び検体に浸漬される領域104とした。本実施例では、処理されたノズル先端部の外径は0.5mm、内径は0.3mmであり、先端10mmの領域にSiO2層を10nmの厚さに形成した。分注ノズル全面を処理することも可能であるが、処理する領域を浸漬される部分に限定することでコストを低減することが出来る。
 次に、SiO2層を形成した分注ノズルの表面をエタノールで15分間超音波洗浄した。この際、超音波によりノズルが損傷しないように、支持台を設けて容器と接しない配置にした。
 清浄化処理を終えた分注ノズルを、PEG誘導体の溶液に浸漬した。具体的には、2-メトキシポリエチレンオキシプロピルトリメトキシシランの3mMトルエン溶液を調整し、そこに濃塩酸(約35%)を0.8mL/Lの濃度になるよう滴下した。こうして調整したシランカップリング剤溶液に洗浄した分注ノズルを30分間浸漬した。分注ノズルを溶液から引き上げ、トルエンで1回洗浄、エタノールで2回洗浄後、水洗を2回し、2分間の水中で超音波洗浄した。その後、窒素ブローで乾燥した。
 効果の検証は、実験例と同様に、BSAの表面残存量の測定をXPSで行った。その結果、分注後の分注ノズル表面に残存するタンパク質が従来のステンレススチール製のノズルと比較して1/50以下(実験例で述べたXPS測定の検出限界以下)に低減されることを確認した。
<実施例2>
 図6は、本発明による自動分析装置の構成例を示す図であり、次にその基本構成を述べる。検体収納部機構1には、一つ以上の検体容器25が配置されている。ここでは、ディスク状の機構部に搭載された検体収納部機構である検体ディスク機構の例で説明するが、検体収納部機構の他の形態としては自動分析装置で一般的に用いられている検体ラック又は検体ホルダー状の形態であってもよい。またここで言う検体とは、反応容器で反応させるために使用する被検査溶液のことを指し、採集検体原液でもよく、またそれを希釈や前処理等の加工処理をした溶液であってもよい。検体容器25内の検体は、検体供給用分注機構2の検体分注ノズル27によって抽出され、所定の反応容器に注入される。検体分注ノズルは、実施例1に記述した方法で2-メトキシポリエチレンオキシプロピルトリメトキシシラン(2-[METHOXY(POLYETHYLENEOXY)PROPYL]TRIMETHOXYSILANE)により表面処理した。試薬ディスク機構5は、多数の試薬容器6を備えている。また、機構5には、試薬供給用分注機構7が配置されており、試薬は、この機構7の試薬分注ノズル28によって、吸引され所定の反応セルに注入される。10は分光光度計、26は集光フィルタつき光源であり、分光光度計10と集光フィルタつき光源26の間に、測定対象を収容する反応ディスク3が配置される。この反応ディスク3の外周上には、例えば、120個の反応セル4が設置されている。また、反応ディスク3の全体は、恒温槽9によって、所定の温度に保持されている。11は反応セル洗浄機構であり、洗浄剤容器13から洗浄剤が供給され、セル内の吸引は吸引ノズル12で行う。
 19はコンピュータ、23はインターフェース、18はLog変換器及びA/D変換器、17は試薬用ピペッタ、16は洗浄水ポンプ、15は検体用ピペッタである。また、20はプリンタ、21はCRT、22は記憶装置としてのフレキシブルディスクやハードディスク、24は操作パネルである。検体ディスク機構は駆動部200により、試薬ディスク機構は駆動部201により、反応ディスクは駆動部202により、それぞれインターフェースを介して制御並びに駆動されている。また自動分析装置の各部はインターフェースを介してコンピュータ19により制御される。
 上述の構成において、操作者は、操作パネル24を用いて分析依頼情報の入力を行う。操作者が入力した分析依頼情報は、マイクロコンピュータ19内のメモリに記憶される。検体容器25に入れられ、検体収納部機構1の所定の位置にセットされた測定対象検体はマイクロコンピュータ19のメモリに記憶された分析依頼情報に従って、検体ピペッタ15及び検体供給用分注機構2の表面処理された検体分注ノズル27によって、反応セルに所定量分注される。表面処理された検体分注ノズル27は水洗浄され、次の検体の分注に使用される。
 この時、2-メトキシポリエチレンオキシプロピルトリメトキシシランで被覆された検体分注ノズル27を用いることでタンパク質に代表される生体高分子の吸着を抑制し、検体間のキャリーオーバを従来のステンレススチール製分注ノズルに比較して1/2以下に低減することができた。キャリーオーバは洗浄した後での比較である。したがって、キャリーオーバをさらに低下させることは難しいにもかかわらず、ノズルに表面処理することで、キャリーオーバ率を低下できたことは著しい進歩である。またこの時、2-メトキシポリエチレンオキシプロピルトリメトキシシランが単分子膜を形成しており、かつノズル表面のSiO2層が10nmと薄いため、静電容量の変化を用いて液面検知を行うことが出来る。反応セルに試薬供給用分注機構7の試薬分注ノズル28によって、所定量の試薬が分注される。試薬分注ノズル28は水洗浄された後、次の反応セルのための試薬を分注する。検体と試薬の混合液は、撹拌機構8の攪拌棒29によって撹拌される。撹拌機構8は順次、次の反応セルの混合液を撹拌する。
 検体分注用ノズル27の表面処理には、他にも実験例に一般式(1)で示した一連の分子群から選ばれる少なくとも一つの分子の溶液を用いることが出来る。
 ここで、この装置に搭載されている液面検知の原理を説明する。搭載液面検知の原理には、静電容量方式を採用している。静電容量方式では、ノズルとグラウンド(本実施例の場合ではセル底が相当)間の静電容量値を測定する。誘電率の高い物質に接触した際に、静電容量が空気中に比べて大きくなることを利用している。
 図7に静電容量方式による液面検知の概念図を示す。表面修飾をしていない金属ノズルを使用した場合である。金属ノズル410が、検体容器412中の検体413に触れていない。検体容器が接する装置本体411をグラウンドとした場合、ノズルとグラウンド間の静電容量は、空気の静電容量C0と水の静電容量C1で決まる。この際の合計の静電容量Cは、C=(C0×C1)/(C0+C1)である。
 一方、図8にノズルが液面に触れた場合の概念図を示す。金属ノズル410が、検体容器412中の液体413に触れている。検体容器が装置本体411をグラウンドとした場合、ノズルとグラウンド間の静電容量はC1である。
 この方式を利用することで、本実施例のSiO2を被覆したノズルでも液面検知が可能である。図9に、酸化ケイ素を被覆したノズルでの液面検知の例を示す。酸化ケイ素層414を有する金属ノズル410が、検体容器412中の液体413に触れていない場合を示す。検体容器が接する装置本体411をグラウンドとする。酸化ケイ素(SiO2)層の静電容量をCとする。SiO2を被覆したノズルが空気中にある場合の静電容量をCxとすると、1/Cx=1/C0+1/C1+1/Cとなる。
 一方、図10に、酸化ケイ素層414を有する金属ノズル410が、検体容器412中の液体413に触れている場合を示す。検体ボトルが接する装置本体411をグラウンドとする。酸化ケイ素(SiO2)層の静電容量をCとする。SiO2を被覆したノズルが液面に触れている場合の静電容量をCyとすると、1/Cy=1/C1+1/Cとなり、空気中の静電容量Cxと異なることから液面を検知できる。
 何らかの衝撃や接触で、このノズルのSiO2層が割れた場合、金属ノズルが空気と直接触れるため、SiO2層の静電容量Cを無視できる。すると、静電容量が大幅に変化するので、ノズル上のSiO2層の傷や割れを検知できる。SiO2層の傷や割れが生じた場合、そこをきっかけとしてキャリーオーバが増加することがあり得る。したがって、SiO2層の傷や割れを検知できることは重要である。また、初期値からの静電容量のズレがある閾値を超えた場合や、ノズル交換に伴う初期値の変更も記憶する記憶媒体32がある。
 本実施例の自動分析装置には、この静電容量の変化を検知する検知機構31、ノズルの交換時期や分析正確性を知らせるインジケータ30が搭載されている。このインジケータは正常時には青色を示し、静電容量の変化を常に測定しており、ノズル表面の酸化ケイ素層に割れや傷等の異常が発生した際には、静電容量の変化からその異常を検知し、インターフェースを介してインジケータ30を例えば赤色に表示して報知する。また、この際に分析したサンプルについては、装置上で記憶しており、ノズル交換後に分析データを再取得するプログラムを内蔵している。
<実施例3>
 図11に、本実施例で用いる自動分析装置の概略図を示す。本実施例では、図6に示した自動分析装置の構成に、第一処理液槽401と第二処理液槽402が追加されている。また図11の分注ノズル27はステンレススチール製分注ノズルであり、表面にSiO2層を10nm形成したものを用いた。
 まず、検体分注ノズル27を第一処理液槽401に回転移動し、下降して第一処理液に浸漬する。この際の浸漬領域は、分注時に検体分注ノズル27が検体に浸漬する領域よりも十分に大きい。第一処理液としては、PEG誘導体として2-メトキシポリエチレンオキシプロピルトリメトキシシランや、実験例に一般式(1)で示した一連の分子群から選ばれる少なくとも一つの分子の溶液を用いることが出来る。ここでは2-メトキシポリエチレンオキシプロピルトリメトキシシランの2mMトルエン溶液を用いた。浸漬する時間は、浸漬頻度に応じて変化する。例えば分注に際して毎回浸漬する場合には1秒程度で十分である。また、一日の分析終了後に浸漬する場合には30分間程度浸漬する。次に、分注ノズル27を第二処理液槽402に回転移動し、下降して第二処理液に浸漬する。この際、浸漬領域は、先の第一処理液に浸漬した領域よりも十分に大きい。第二処理液槽402で用いる溶液としては、先の第一処理液槽401での処理液に溶媒として用いられたトルエンを用いる。
 以上の第二処理液槽402での動作により、第一処理液槽401で処理した際に余剰に付着した2-メトキシポリエチレンオキシプロピルトリメトキシシランを除去することが出来る。そののち検体を分注することで、タンパク質に代表される生体高分子の吸着を抑制し、キャリーオーバを従来のステンレススチール製分注ノズルに比較して1/2以下に低減することが出来る。キャリーオーバは洗浄した後での比較である。したがって、キャリーオーバをさらに低下させることは難しいにもかかわらず、ノズルに表面処理することで、キャリーオーバ率を低下できたことは著しい進歩である。
 以上の実施例1~3においても、実験例と同様に、PEG誘導体は必要なエチレンオキシド基の数が2以上であること及び分子が配列するための分子間相互作用が十分であるという要請から、分子量は100以上であることが望ましい。また、逆に分子間の立体的な斥力が大きすぎると表面へのPEG誘導体の吸着量が低減してしまう。このため、PEG誘導体の分子量は20000以下であることが望ましい。被覆するPEG誘導体の化学構造は単一である必要はなく混合物であっても良い。
 以上の実施例では検体分注ノズルにおけるキャリーオーバを問題としたが、攪拌棒などキャリーオーバの要因となりうる全ての部材において、本発明の処理を行うことで、同様の効果が得られる。
 本発明によれば、分注ノズル表面へのタンパク質などの生体高分子の非特異吸着を劇的に低減し、キャリーオーバの抑制を図ることで、自動分析装置の信頼性の向上に貢献することが出来る。また、このため検体微量化、試薬の微量化にも貢献し、ランニングコストや環境負荷の低減をすることが出来る。
1 検体収納部機構
2 検体供給用分注機構
3 反応ディスク
4 反応セル
5 試薬ディスク機構
6 試薬容器
7 試薬供給用分注機構
8 撹拌機構
9 恒温槽
10 分光光度計
11 反応セル洗浄機構
12 吸引ノズル
13 洗浄剤容器
15 検体用ピペッタ
16 洗浄水ポンプ
17 試薬用ピペッタ
25 検体容器
26 集光フィルタつき光源
27 検体分注ノズル
28 試薬分注ノズル
29 撹拌棒
30 インジケータ
31 検知機構
32 記憶媒体
101 分注ノズル本体部
111 分注ノズル本体部
112 金薄膜層
113 親水性分子層
200 駆動部
201 駆動部
202 駆動部
401 第一処理液槽
402 第二処理液槽
403 分注ノズル洗浄槽
410 分注ノズル
411 装置本体
412 検体容器
413 検体
414 酸化ケイ素層

Claims (6)

  1.  それぞれが検体を収納する複数の検体容器と、
     それぞれが試薬を収納する複数の試薬容器と、
     検体と試薬が注入される複数の反応セルと、
     検体分注ノズルを備え、前記検体容器中の検体を前記反応セルに分注する検体分注機構と、
     試薬分注ノズルを備え、前記試薬容器中の試薬を前記反応セルに分注する試薬分注機構とを有し、
     前記検体分注ノズルは、表面に酸化ケイ素層を有し、その酸化ケイ素層に対して、下記一般式
         Si-R1-(OCH2CH2n-O-R2(nは2以上の正の整数、R1は炭化水素基、R2はH又はCH3
    で示されるポリエチレングリコールを有するケイ素誘導体が化学吸着していることを特徴とする自動分析装置。
  2.  請求項1に記載の自動分析装置において、前記検体分注ノズルと前記反応セル間の静電容量を測定する手段と、前記静電容量の変化をもとに前記検体分注ノズル表面の酸化ケイ素層の異常を検知する機構と、異常を検知したときそれを表示するインジケータを備えることを特徴とする自動分析装置。
  3.  請求項1に記載の自動分析装置において、前記ポリエチレングリコール誘導体が化学吸着している前記検体分注ノズルの領域は、分注動作時に前記検体分注ノズルが検体に浸漬される領域よりも大きいことを特徴とする自動分析装置。
  4.  請求項1に記載の自動分析装置において、前記検体分注ノズルに対して前記ポリエチレングリコール誘導体を化学吸着処理する機構を備えることを特徴とする自動分析装置。
  5.  請求項1に記載の自動分析装置において、前記ポリエチレングリコール誘導体が、2-メトキシポリエチレンオキシシラン誘導体であることを特徴とする自動分析装置。
  6.  検体容器中の検体を反応セルに分注するのに用いられる自動分析装置用分注ノズルの製造方法において、
     スパッタリング又は薬液塗布及び乾燥を用いて分注ノズルの表面に酸化ケイ素層を形成する工程と、
     前記分注ノズルの表面に形成した酸化ケイ素層を洗浄する工程と、
     洗浄した前記分注ノズルを下記一般式
         RSi-R-(OCH2CH2n-O-R5(R1、R2、R3はケイ素の置換基、R4は炭化水素基、R5はH又はCH3、nは2以上の正の整数)
    で表されるシラノール基前駆体を有するポリエチレングリコール誘導体の溶液に浸漬する工程と、
     前記分注ノズルの処理された表面を溶媒で洗浄する工程と、
     前記洗浄した前記分注ノズルの表面を乾燥する工程と
    を有することを特徴とする自動分析装置用分注ノズルの製造方法。
PCT/JP2010/071079 2009-12-11 2010-11-26 自動分析装置用分注ノズル及びそれを搭載した自動分析装置 WO2011070919A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10835841.7A EP2511709B1 (en) 2009-12-11 2010-11-26 Dispensing nozzle for automatic analyzer, and automatic analyzer including same
CN201080055689.8A CN102652263B (zh) 2009-12-11 2010-11-26 自动分析装置用分注喷嘴及搭载该分注喷嘴的自动分析装置
US13/515,017 US8802008B2 (en) 2009-12-11 2010-11-26 Dispensing nozzle for automatic analyzer, and automatic analyzer including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-281539 2009-12-11
JP2009281539A JP5255553B2 (ja) 2009-12-11 2009-12-11 自動分析装置用分注ノズル及びそれを搭載した自動分析装置

Publications (1)

Publication Number Publication Date
WO2011070919A1 true WO2011070919A1 (ja) 2011-06-16

Family

ID=44145466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071079 WO2011070919A1 (ja) 2009-12-11 2010-11-26 自動分析装置用分注ノズル及びそれを搭載した自動分析装置

Country Status (5)

Country Link
US (1) US8802008B2 (ja)
EP (1) EP2511709B1 (ja)
JP (1) JP5255553B2 (ja)
CN (1) CN102652263B (ja)
WO (1) WO2011070919A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024064374A3 (en) * 2022-09-23 2024-05-02 Crystal Is, Inc. Nozzle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230586A (ja) * 2009-03-27 2010-10-14 Hitachi High-Technologies Corp 自動分析装置用分注ノズルとその製造方法及びそれを搭載した自動分析装置
EP3875965A4 (en) * 2018-10-31 2022-07-27 Hitachi High-Tech Corporation ELECTROLYTE ANALYSIS DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131066A (ja) 1986-11-20 1988-06-03 Nittec Co Ltd 自動分析装置
JPH09304243A (ja) * 1996-05-17 1997-11-28 Daikin Ind Ltd 分注ノズル洗浄方法
JP2002162404A (ja) * 2000-11-24 2002-06-07 Olympus Optical Co Ltd 液体分注装置
JP3330579B2 (ja) 1992-02-28 2002-09-30 オリンパス光学工業株式会社 分析装置の洗浄機構
JP2004522460A (ja) * 2000-06-01 2004-07-29 サイエンス アプリケーションズ インターナショナル コーポレイション 健康状態をモニタリングするため、および経皮にて薬剤を送達するためのシステムおよび方法
JP2006509201A (ja) * 2002-12-04 2006-03-16 インターナショナル・ビジネス・マシーンズ・コーポレーション 表面処理方法
JP2007085930A (ja) 2005-09-22 2007-04-05 Hitachi High-Technologies Corp 金属製プローブの使用方法及び分析装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357301A (en) * 1981-07-20 1982-11-02 Technicon Instruments Corp. Reaction cuvette
GB8521194D0 (en) * 1985-08-23 1985-10-02 Wiggins Teape Group Ltd Conductivised paper
JPH0375827A (ja) 1989-08-18 1991-03-29 Toshiba Corp コピー防止装置
US5270210A (en) * 1992-07-16 1993-12-14 Schiapparelli Biosystems, Inc. Capacitive sensing system and wash/alignment station for a chemical analyzer
JPH0743369A (ja) * 1993-07-28 1995-02-14 Hitachi Ltd 液面センサを備えた分析装置
DE10015380A1 (de) * 2000-03-28 2001-10-11 Nmi Univ Tuebingen Mikrofluidkomponente und Verfahren zur Oberflächenbehandlung einer solchen
US20020028288A1 (en) * 2000-06-14 2002-03-07 The Procter & Gamble Company Long lasting coatings for modifying hard surfaces and processes for applying the same
JP4377186B2 (ja) * 2003-09-24 2009-12-02 富士フイルム株式会社 インクジェット記録ヘッド、及びインクジェット記録装置
JP4095968B2 (ja) * 2004-02-06 2008-06-04 株式会社日立ハイテクノロジーズ 液体分注装置、それを用いた自動分析装置、及び液面検出装置
JP2007107918A (ja) * 2005-10-11 2007-04-26 Shimadzu Corp マイクロチップ処理装置
EP1795264B1 (en) * 2006-07-06 2012-08-22 Agilent Technologies, Inc. Fluid repellant needle
JP4980671B2 (ja) * 2006-08-18 2012-07-18 シスメックス株式会社 血液試料分析装置
US20080254995A1 (en) * 2007-02-27 2008-10-16 Drexel University Nanopore arrays and sequencing devices and methods thereof
JP2008256525A (ja) * 2007-04-04 2008-10-23 Olympus Corp 液体接触部品
JP2009058437A (ja) * 2007-08-31 2009-03-19 Olympus Corp 分注ノズル及び自動分析装置
US9114125B2 (en) * 2008-04-11 2015-08-25 Celonova Biosciences, Inc. Drug eluting expandable devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131066A (ja) 1986-11-20 1988-06-03 Nittec Co Ltd 自動分析装置
JP3330579B2 (ja) 1992-02-28 2002-09-30 オリンパス光学工業株式会社 分析装置の洗浄機構
JPH09304243A (ja) * 1996-05-17 1997-11-28 Daikin Ind Ltd 分注ノズル洗浄方法
JP2004522460A (ja) * 2000-06-01 2004-07-29 サイエンス アプリケーションズ インターナショナル コーポレイション 健康状態をモニタリングするため、および経皮にて薬剤を送達するためのシステムおよび方法
JP2002162404A (ja) * 2000-11-24 2002-06-07 Olympus Optical Co Ltd 液体分注装置
JP2006509201A (ja) * 2002-12-04 2006-03-16 インターナショナル・ビジネス・マシーンズ・コーポレーション 表面処理方法
JP2007085930A (ja) 2005-09-22 2007-04-05 Hitachi High-Technologies Corp 金属製プローブの使用方法及び分析装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL REVIEWS, vol. 96, 1996, pages 1533 - 1554
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 115, 1993, pages 10714 - 10721
THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 107, 2003, pages 6766 - 6773

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024064374A3 (en) * 2022-09-23 2024-05-02 Crystal Is, Inc. Nozzle

Also Published As

Publication number Publication date
EP2511709A4 (en) 2016-10-26
CN102652263B (zh) 2014-11-26
CN102652263A (zh) 2012-08-29
JP2011122964A (ja) 2011-06-23
EP2511709B1 (en) 2019-08-07
EP2511709A1 (en) 2012-10-17
US20120251393A1 (en) 2012-10-04
JP5255553B2 (ja) 2013-08-07
US8802008B2 (en) 2014-08-12

Similar Documents

Publication Publication Date Title
JP5097737B2 (ja) 自動分析装置及びサンプル分注ノズル
CN102308005B (zh) 用于免疫荧光的功能化的微流体装置
CN108463493A (zh) 具有拥有降低的生物分子粘附的表面的聚合物衬底以及这种衬底的热塑性制品
JP5255553B2 (ja) 自動分析装置用分注ノズル及びそれを搭載した自動分析装置
WO2012039184A1 (ja) 自動分析装置用分注ノズル、当該ノズルを搭載した自動分析装置及び自動分析装置用分注ノズルの製造方法
JP5468219B2 (ja) 自動分析装置、検体分注方法および検体分注装置の特別洗浄方法
WO2007132631A1 (ja) 洗浄装置および自動分析装置
JP2010249661A (ja) 分析装置
JP4422658B2 (ja) 液体分注装置
WO2010109926A1 (ja) 自動分析装置用分注ノズルとその製造方法及びそれを搭載した自動分析装置
JPWO2005054844A1 (ja) 反応容器およびそれを利用する反応装置および検出装置および反応容器の作製方法
WO2009148013A1 (ja) 検体分注装置のプローブ洗浄方法、検体分注装置及び自動分析装置
JP2013044623A (ja) 分析装置用分注ノズル及びそれを搭載した分析装置
WO2007132632A1 (ja) 洗浄装置および自動分析装置
JP2005043361A (ja) 診断用分析器における改良された流体混合
Vaidya et al. Protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating characterized using quartz crystal microbalance
EP3711856A1 (en) Specimen measurement device, specimen measurement method, and nozzle
JPH01254871A (ja) 分析装置用分注ノズルの洗浄方法および分注ノズル装置
JP2009031174A (ja) 自動分析装置
JP2011122964A5 (ja)
JP6216298B2 (ja) 自動分析装置及びそれを用いた分析方法
JP2008256525A (ja) 液体接触部品
JP7403652B2 (ja) 自動分析装置及び分析方法
WO2023233914A1 (ja) 検査装置
JP2007322148A (ja) 分注管およびそれを用いた分析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055689.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13515017

Country of ref document: US

Ref document number: 2010835841

Country of ref document: EP