WO2011069929A1 - Verfahren zur isomerisierung eines gesättigten kohlenwasserstoffs - Google Patents

Verfahren zur isomerisierung eines gesättigten kohlenwasserstoffs Download PDF

Info

Publication number
WO2011069929A1
WO2011069929A1 PCT/EP2010/068902 EP2010068902W WO2011069929A1 WO 2011069929 A1 WO2011069929 A1 WO 2011069929A1 EP 2010068902 W EP2010068902 W EP 2010068902W WO 2011069929 A1 WO2011069929 A1 WO 2011069929A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
olefin
isomerization
butyl
ethyl
Prior art date
Application number
PCT/EP2010/068902
Other languages
English (en)
French (fr)
Inventor
Steffen Tschirschwitz
Stephan Deuerlein
Jochen BÜRKLE
Markus Schmitt
Steffen OEHLENSCHLÄGER
Kathrin Wissel-Stoll
Veronika Wloka
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2011069929A1 publication Critical patent/WO2011069929A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2778Catalytic processes with inorganic acids; with salts or anhydrides of acids
    • C07C5/2786Acids of halogen; Salts thereof
    • C07C5/2789Metal halides; Complexes thereof with organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/29Rearrangement of carbon atoms in the hydrocarbon skeleton changing the number of carbon atoms in a ring while maintaining the number of rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/125Compounds comprising a halogen and scandium, yttrium, aluminium, gallium, indium or thallium
    • C07C2527/126Aluminium chloride

Definitions

  • the invention relates to a process for the isomerization of a saturated hydrocarbon.
  • the isomerization of saturated hydrocarbons (paraffins) to the corresponding branched isomers is an important process to produce e.g. For example, to increase the research octane (RON) of gasoline to improve its combustion properties.
  • RON research octane
  • Branched cyclic hydrocarbons may isomerize under ring expansion to less branched cyclic hydrocarbons;
  • One example is the rearrangement of methylcyclopentane (MCP) to cyclohexane. These reactions are catalyzed by strong Lewis acids or strong Br ⁇ nsted acids.
  • Cyclic hydrocarbons having a tertiary carbon atom as additives such as methylcyclohexane and dimethylcyclopentane, according to EP 1 403 236 A1 (Haldor Topsoe A / S) increase the selectivity with regard to the formation of more branched hydrocarbons from less or unbranched hydrocarbons.
  • Ionic liquids consisting of n-butylpyridinium chloride and aluminum chloride can be used to isomerize methylcyclopentane and cyclohexane: V.A. Ksenofontov, T.V. Vasina, Y.E. Zubarev, L.M. Kustov, React. Kinet. Catal. Lett. 2003, Vol. 80 (2), pages 329-335.
  • the present invention was based on the object, overcoming
  • the preparation process should be particularly simple and economical and should yield the process product (a saturated hydrocarbon having the same empirical formula) in high yields, in particular in high space-time yields (RZA).
  • RZA space-time yields
  • a process has been found for the isomerization of a saturated hydrocarbon characterized by carrying out the isomerization in the presence of a superacidic ionic liquid comprising an organic cation and an inorganic anion, the anion being a super acidic aluminum trichloride Lewis base.
  • Adduct is, and an olefin performs.
  • the isomerization of a saturated hydrocarbon can be greatly accelerated if the isomerization is carried out in the presence of a super-acidic ionic liquid containing aluminum chloride and in the presence of an olefin as a catalyst.
  • the inventive method is superior to conventional methods, because the reaction equilibria are reached much faster.
  • the olefin is preferably a linear or branched and / or cyclic C 2-14 -olefin, in particular a linear or branched and / or cyclic C 2-10 -olefin, in particular a linear or branched and / or cyclic C2-7 olefin.
  • Preferred olefins are ethene, propene, 1-butene, cis-butene-2, trans-butene-2, isobutene, 3-methyl-1-butene, 1-pentene, 2-methyl-1-butene, trans-pentene-2, cis-pentene-2, 2-methyl-2-butene, cyclopentene, 4-methyl-1-pentene, 3-methyl-1-pentene, methylpentadiene, 2-methyl-1-pentene, trans-hexene-2, cis- Hexene-2, 2-methyl-2-pentene, 3-methylcyclopentene, 3-methyl-cis-pentene-2, cis-hexene-2, 3-methyl-trans-pentene-2, 4,4-dimethyl-trans- pentene-2, 1-methylcyclopentene, cyclohexene and trans-heptene-3, in particular 3-methyl-1-butene, 1-pentene, 2-methyl-1-butene, trans
  • the olefin is preferably a monoolefin.
  • the olefin is ethene, 2-methyl-1-butene, 2-methyl-2-butene or 1-methylcyclopentene.
  • the isomerization is preferably in the presence of 0.01 to 5 wt .-%, particularly 0.1 to 3 wt .-%, in particular> 0.1 to 2 wt .-%, more particularly 0.5 to 1, 5 wt .-%, of the olefin, in each case based on the saturated hydrocarbon used, performs.
  • the hydrocarbon to be isomerized is preferably a linear or branched and / or cyclic C 4-18 hydrocarbon, especially a linear or branched and / or cyclic C 1-10 -hydrocarbon, more particularly a linear or branched one and / or cyclic Cs-8 carbon hydrogen.
  • Examples of a linear isomerizing hydrocarbon and possible isomerization products are n-pentane (2-methylbutane, 1,1-dimethylpropane), n-hexane (2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, 3-ethylpentane), n-heptane (2-methylhexane, 3-methylhexane, 2,3-dimethylpentane), n-octane (isooctanes).
  • Examples of a branched (non-cyclic) hydrocarbon to be isomerized and possible isomerization products are 1-methylbutane (2-methylbutane), 1-methylpentane (2-methylpentane), 1-methylhexane (2-methylhexane).
  • cyclic hydrocarbon to be isomerized and possible isomerization products are cyclohexane (methylcyclopentane), cycloheptane (methylcyclohexane, MCH).
  • Examples of a branched and cyclic hydrocarbon to be isomerized and possible isomerization products are methylcyclopentane (cyclohexane); 1, 2-dimethylcyclopentane, 1, 1-dimethylcyclopentane, 1, 3-dimethylcyclopentane (methylcyclohexane).
  • MCP methylcyclopentane
  • CH cyclohexane
  • the hydrocarbon to be isomerized is preferably used in a concentration in the range from 1 to 90% by weight, in particular from 5 to 20% by weight, in each case based on the ionic liquid.
  • the isomerization is preferably carried out at a temperature in the range of -20 to 150 ° C, especially 40 to 100 ° C, performed.
  • the isomerization is preferably carried out at an absolute pressure in the range of 1 to 10 bar, especially 1 to 6 bar.
  • [A] + is a quaternary ammonium cation, an oxonium cation, a sulfonium cation or a phosphonium cation, and [Y ] n- represents a mono-, di-, tri- or tetravalent anion;
  • the ionic liquids have a melting point of less than 180 ° C. Further preferably, the melting point is in a range of -50 ° C to 150 ° C, more preferably in the range of -20 ° C to 120 ° C, and further more preferably, less than 100 ° C.
  • the ionic liquids of the invention are organic compounds, d. H. in that at least one cation or anion of the ionic liquid contains an organic radical.
  • Compounds suitable for forming the cation [A] + of ionic liquids are e.g. B. from DE 102 02 838 A1.
  • such compounds may contain oxygen, phosphorus, sulfur or in particular nitrogen atoms, for example at least one nitrogen atom, preferably 1-10 nitrogen atoms, particularly preferably 1-5, very particularly preferably 1-3 and in particular 1-2 nitrogen atoms.
  • other heteroatoms such as oxygen, sulfur or phosphorus atoms may be included.
  • the nitrogen atom is a suitable carrier of the positive charge in the cation of the ionic liquid from which, in equilibrium, a proton or an alkyl radical can then be transferred to the anion to produce an electrically neutral molecule.
  • a cation can first be generated by quaternization on the nitrogen atom of, for example, an amine or nitrogen heterocycle.
  • the quaternization can be carried out by protonation or alkylation of the nitrogen atom.
  • salts with different anions are obtained.
  • this can be done in a further synthesis step.
  • the halide can be reacted with a Lewis acid to form a complex anion from halide and Lewis acid.
  • halide ion replacement of a halide ion with the desired anion is possible. This can be done by adding a metal salt with precipitation of the resulting Metallha- logenids, via an ion exchanger or by displacement of the halide ion by a strong acid (to release the hydrohalic acid). Suitable methods are, for example, in Angew. Chem. 2000, 12, pp. 3926-3945 and the literature cited therein.
  • Suitable alkyl radicals with which the nitrogen atom in the amines or nitrogen heterocycles can be quaternized are C 1 -C 6 -alkyl, preferably Cio-alkyl, particularly preferably Ci-C6-alkyl and most preferably methyl.
  • the alkyl group may be unsubstituted or have one or more identical or different substituents.
  • those compounds which contain at least one five- to six-membered heterocycle in particular a five-membered heterocycle, which has at least one nitrogen atom and optionally an oxygen or sulfur atom
  • aromatic heterocycles are particularly preferred.
  • Particularly preferred compounds are those which have a molecular weight below 1000 g / mol, very particularly preferably below 500 g / mol.
  • the radical R is hydrogen, a carbon-containing organic, saturated or unsaturated, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted or by 1 to 5 heteroatoms or functional Groups are interrupted or substituted radicals having from 1 to 20 carbon atoms; and the radicals R 1 to R 9 independently of one another are hydrogen, a sulfo group or a carbon-containing organic, saturated or unsaturated, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted or interrupted by 1 to 5 heteroatoms or functional groups or substituted radical having 1 to 20 carbon atoms, wherein the radicals R 1 to R 9 , which in the abovementioned formulas (IV) are bonded to a carbon atom (and not to a heteroatom), may additionally also stand for halogen or a functional group ; or two adjacent radicals from the series R 1 to R
  • the carbon-containing group contains heteroatoms, oxygen, nitrogen, sulfur, phosphorus and silicon are preferable.
  • the radicals R 1 to R 9 are, in the cases in which those in the above formulas (IV) to a carbon atom (and not to a heteroatom) bound also be bound directly via the heteroatom.
  • Fractional groups and heteroatoms can also be directly adjacent, so that combinations of several adjacent atoms, such as -O- (ether), -S- (thioether), -COO- (ester), -CONH- (secondary amide) or -CONR'- (tertiary amide), are included, for example, di- (Ci-C4-alkyl) -amino, C1-C4-alkyloxycarbonyl or Ci-C4-alkyloxy.
  • the radicals R ' are the remaining part of the carbon-containing radical.
  • Halogens are fluorine, chlorine, bromine and iodine.
  • the radical R is unbranched or branched, unsubstituted or monosubstituted to polysubstituted by hydroxyl, halogen, phenyl, cyano, Ci-C6-alkoxycarbonyl and / or SO3H Ci-Ci8-alkyl having a total of 1 to 20 carbon atoms, such as methyl, Ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl (isobutyl), 2-methyl-2-propyl (tert-butyl), 1-pentyl, 2 Pentyl, 3-pentyl, 2-methyl-1-butyl,
  • R A 0- (CH 2 CH 2 CH 2 CH 2 O) n-CH 2 CH 2 CH 2 CH 2 O- with R A and R B is preferably hydrogen, methyl or ethyl and n is preferably 0 to 3, in particular 3-oxabutyl,
  • N, N-di-C 1 -C 6 -alkyl-amino such as ⁇ , ⁇ -dimethylamino and N, N-diethylamino.
  • the radical R particularly preferably represents unbranched and unsubstituted C 1 -C 18 -alkyl, such as, for example, methyl, ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, 1-octyl, 1-decyl, 1 -dodecyl, 1-tetradecyl, 1 -hexadecyl, 1-octadecyl, especially for methyl, ethyl, 1-butyl and 1-octyl and for CH 3 0- (CH 2 CH 2 O) n -CH 2 CH 2 - and
  • radicals R 1 to R 9 are preferably each independently
  • Ci-cis-alkyl is preferably methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl (isobutyl), 2-methyl-2-propyl (tert-butyl), 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-1-butyl, 3 -Methyl-
  • aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles is preferably phenyl, tolyl, xylyl, a-naphthyl, ß-naphthyl, 4-diphenylyl, Chlorophenyl, dichlorophenyl, trichlorophenyl, difluorophenyl, methylphenyl, dimethylphenyl, trimethylphenyl, ethylphenyl, diethylphenyl, isopropylphenyl, tert-butylphenyl, dodecylphenyl, methoxyphenyl, dimethoxyphenyl, ethoxyphenyl, hexyloxyphenyl, methylnaphthyl,
  • An optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles substituted five- to six-membered, oxygen, nitrogen and / or sulfur atoms containing heterocycle is preferably furyl, thiophenyl, pyrryl, Pyridyl, indolyl, benzoxazolyl, dioxolyl, dioxo, benzimidazolyl, benzthiazolyl, dimethylpyridyl, methylquinolyl, dimethylpyrryl, methoxyfuryl, dimethoxypyridyl or difluoropyridyl.
  • Two adjacent radicals together form an unsaturated, saturated or aromatic, optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles and optionally substituted by one or more oxygen and / or sulfur atoms and / or one or more several substituted or unsubstituted imino groups interrupted ring, it is preferably 1, 3-propylene, 1, 4-butylene, 1, 5-pentylene, 2-oxa-1, 3-propylene, 1 -Oxa-1, 3-propylene, 2-oxa-1, 3-propylene, 1-oxa-1, 3-propenylene, 3-oxa-1, 5-pentylene, 1 -za-1, 3-propenylene, 1-Ci-C4- Alkyl 1 -aza-1, 3-propenylene, 1,4-buta-1,3-dienylene, 1-az-1, 4-buta-1,3-dienylene or 2-aza-1,4-butane
  • radicals contain oxygen and / or sulfur atoms and / or substituted or unsubstituted imino groups
  • the number of oxygen and / or sulfur atoms and / or imino groups is not restricted. As a rule, it is not more than 5 in the radical, preferably not more than 4, and very particularly preferably not more than 3.
  • radicals contain heteroatoms, then between two heteroatoms there are generally at least one carbon atom, preferably at least two carbon atoms.
  • radicals R 1 to R 9 independently of one another are hydrogen; - unbranched or branched, unsubstituted or one to several times with
  • C 1 -C 20 -alkyl having in total 1 to 20 carbon atoms such as, for example, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2 Butyl, 2-methyl-1-propyl (isobutyl), 2-methyl-2-propyl (tert-butyl), 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-1-butyl, 3 -Methyl-1-butyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2,2-dimethyl-1-propyl, 1 -
  • N, N-di-C 1 -C 6 -alkyl-amino such as ⁇ , ⁇ -dimethylamino and N, N-diethylamino.
  • the radicals R 1 to R 9 are independently hydrogen or Ci-Ci8-alkyl, such as methyl, ethyl, 1-butyl, 1-pentyl, 1 - hexyl, 1 -heptyl, 1-octyl, phenyl , for 2-hydroxyethyl, for 2-cyanoethyl, for
  • R 3 is dimethylamino and the remaining radicals R 1 , R 2 , R 4 and R 5 are hydrogen; - All radicals R 1 to R 5 are hydrogen; R 2 is carboxy or carboxamide and the remaining radicals R 1 , R 2 , R 4 and R 5 are hydrogen; or
  • R 1 and R 2 or R 2 and R 3 is 1, 4-buta-1, 3-dienylene and the remaining R 1 , R 2 , R 4 and R 5 are hydrogen; and in particular those in which
  • R 1 to R 5 are hydrogen; or one of R 1 to R 5 is methyl or ethyl and the remaining R 1 to R 5 are hydrogen.
  • pyridinium ions (IVa) there may be mentioned 1-methylpyridinium, 1-ethylpyridinium, 1- (1-butyl) pyridinium, 1- (1-hexyl) pyridinium, 1- (1-octyl) -pyridinium, 1 (1-Hexyl) -pyridinium, 1- (1-octyl) -pyridinium, 1- (1-dodecyl) -pyridinium, 1- (1-tetradecyl) -pyridinium, 1- (1-hexadecyl) -pyridinium, 1, 2-dimethylpyridinium, 1-ethyl-2-methylpyridinium, 1- (1-butyl) -2-methylpyridinium, 1- (1-hexyl) -2-methylpyridinium, 1- (1-octyl) -2-methylpyridinium, 1 - (1-dodecyl) -2-methylpyridinium, 1
  • R 1 to R 4 are hydrogen; or one of the radicals R 1 to R 4 is methyl or ethyl and the remaining radicals R 1 to R 4 are hydrogen.
  • Very particularly preferred pyrimidinium ions are those in which - R 1 is hydrogen, methyl or ethyl and R 2 to R 4, independently of one another, are hydrogen or methyl; or R 1 is hydrogen, methyl or ethyl, R 2 and R 4 are methyl and R 3 is hydrogen.
  • R 1 is hydrogen, methyl or ethyl and R 2 to R 4 are independently hydrogen or methyl;
  • R 1 is hydrogen, methyl or ethyl, R 2 and R 4 are methyl and R 3 is hydrogen;
  • R 1 to R 4 are methyl
  • R 1 to R 4 are hydrogen.
  • R 1 is hydrogen, methyl, ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-octyl, 2-hydroxyethyl or 2-cyanoethyl and R 2 to R 4 are each independently hydrogen, methyl or ethyl are.
  • imidazolium ions which may be mentioned are 1-methylimidazolium, 1-ethylimidazolium, 1- (1-butyl) -imidazolium, 1- (1-octyl) -imidazolium, 1- (1-dodecyl) -imidazolium, 1- (1-Tetradecyl) -imidazolium, 1- (1-hexadecyl) -imidazolium, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1- (1-butyl) -3-methylimidazolium, 1- (1 Butyl) -3-ethylimidazolium, 1- (1-hexyl) -3-methylimidazolium, 1- (1-hexyl) -3-ethylimidazolium, 1- (1-hexyl) -3-butylimidazolium, 1- (1-octyl)
  • R 1 is hydrogen, methyl or ethyl and R 2 to R 4 are independently hydrogen or methyl.
  • R 1 to R 4 are independently hydrogen or methyl.
  • R 1 is hydrogen, methyl, ethyl or phenyl and R 2 to R 6 are independently of one another hydrogen or methyl.
  • Imidazoliniumionen are those in which
  • R 1 and R 2 are independently hydrogen, methyl, ethyl, 1-butyl or phenyl, R 3 and R 4 are independently hydrogen, methyl or ethyl, and R 5 and R 6 are independently hydrogen or methyl.
  • IVm imidazolinium ions
  • IVm ' imidazolinium ions
  • R 1 and R 2 are independently hydrogen, methyl or ethyl and R 3 to R 6 are independently hydrogen or methyl.
  • R 1 is hydrogen, methyl, ethyl or phenyl and R 2 and R 3 are independently hydrogen or methyl.
  • Very particular preference is given to using 1, 2,4-triazolium ions (IVq), (IVq ') or (IVq ") those in which
  • R 1 and R 2 are independently hydrogen, methyl, ethyl or phenyl and R 3 is hydrogen, methyl or phenyl.
  • R 1 is hydrogen, methyl or ethyl and R 2 and R 3 are independently hydrogen or methyl, or R 2 and R 3 together are 1, 4-buta-1,3-dienylene.
  • R 1 is hydrogen, methyl, ethyl or phenyl and R 2 to R 9 are independently hydrogen or methyl.
  • R 1 and R 4 are independently hydrogen, methyl, ethyl or phenyl and R 2 and R 3 and R 5 to R 8 are independently hydrogen or methyl.
  • R 1 to R 3 are independently C 1 to C 18 alkyl; or - R 1 and R 2 together are 1, 5-pentylene or 3-oxa-1, 5-pentylene and R 3 is C 1 -C 18 alkyl, 2-hydroxyethyl or 2-cyanoethyl.
  • ammonium ions IVu may be mentioned trimethylammonium, triethylammonium, dimethylethylammonium, diethylmethylammonium, tetramethylammonium.
  • Examples of the tertiary amines from which the quaternary ammonium ions of the general formula (IVu) are derived by quaternization with the abovementioned radicals R are trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, diethylmethylamine, dimethylethylamine, triisopropylamine, Isopropyldiethylamine, diisopropylethylamine, diethyl-n-butylamine, diethyl-tert-butylamine, diethyl-n-pentylamine, diethyl-hexylamine, diethyloctylamine, diethyl (2-ethylhexyl) -amine, di-n-propylbutylamine, di-n-propylamine.
  • n-pentylamine di-n-propylhexylamine, di-n-propyloctylamine, di-n-propyl- (2-ethyl-hexyl) -amine, diisopropylethylamine, di-iso-propyl-n-propylamine, di-isopropyl butylamine, diisopropylpentylamine, di-iso-propylhexylamine, di-isopropyloctylamine, di-iso-propyl- (2-ethylhexyl) -amine, di-n-butylethylamine, di-n-butyl-n-propylamine, di-n- butyl-n-pentylamine, di-n-butylhexylamine, di-n-butyloctylamine, di-n-butyl (2-ethylhexyl) amine, Nn-butylpyr
  • Preferred quaternary ammonium salts of the general formula (IVu) are those which can be derived from the following tertiary amines by quaternization with the abovementioned radicals R, such as dimethylamine, trimethylamine, diethylamine, triethylamine, dimethylethylamine, diethyl-tert-butylamine, diisopropylethylamine , Tripropylamine, tributylamine.
  • Particularly preferred tertiary amines are trimethylamine and triethylamine.
  • R 1 to R 5 are methyl.
  • guanidinium ion may be mentioned N, N, N ', N', N ", N" - hexamethylguanidinium.
  • cholinium ions those in which R 1 and R 2 are independently methyl, ethyl, 1-butyl or 1-octyl and R 3 is hydrogen, methyl, ethyl, acetyl, -SO 2 OH or -PO (OH) 2 ;
  • R 1 is methyl, ethyl, 1-butyl or 1-octyl
  • R 2 is a -CH 2 -CH 2 -OR 4 group and R 3 and R 4 independently of one another are hydrogen, methyl, ethyl, acetyl, -SO 2 OH or PO (OH) 2 are; or
  • R 1 is a -CH 2 -CH 2 -OR 4 group
  • R 2 is a -CH 2 -CH 2 -OR 5 group
  • R 3 to R 5 are independently hydrogen, methyl, ethyl, acetyl, -SO 2 OH or - PO (OH) 2 .
  • Particularly preferred cholinium ions are those in which R 3 is selected from hydrogen, methyl, ethyl, acetyl, 5-methoxy-3-oxa-pentyl, 8-methoxy-3,6-dioxo-octyl, 1 1 -methoxy 3,6,9-trioxa-undecyl, 7-methoxy-4-oxa-heptyl, 1-methoxy-4,8-dioxa-undecyl, 15-methoxy-4,8,12-trioxa-pentadecyl, 9- Methoxy-5-oxa-nonyl, 14-methoxy-5,10-oxa-tetradecyl, 5-ethoxy-3-oxa-pentyl, 8-ethoxy-3,6-dioxa-octyl, 1-ethoxy-3,6 , 9-trioxa undecyl, 7-ethoxy-4-
  • R 1 to R 3 independently of one another are C 1 -C 6 -alkyl, in particular butyl, isobutyl, 1-hexyl or 1-octyl.
  • the pyridinium ions, pyrazolinium, pyrazolium ions and imidazolinium and imidazolium ions are preferable. Furthermore, ammonium ions are preferred.
  • [M 4 ] 2+ and [M 5 ] 3+ are generally metal cations of the 1, 2, 6, 7, 8, 9, 10, 1 1, 12, and 13 Group of the periodic table. Suitable metal cations are, for example, Li + , Na + , K + , Cs + , Mg 2+ , Ca 2+ , Ba 2+ , Cr 3+ , Fe 2+ , Fe 3+ , Co 2+ , Ni 2+ , Cu 2 + , Ag + , Zn 2+ and Al 3+ .
  • the organic cation is particularly preferably an ammonium ion, optionally C 1-4 -alkyl-substituted pyridinium ion or optionally C 1-4 -alkyl-substituted imidazolium ion.
  • the organic cation is a trimethylammonium ion, triethylammonium ion, unsubstituted pyridinium ion or 1-ethyl-3-methylimidazolium ion.
  • the anion of the ionic liquids used in the invention is selected from super acidic aluminum trichloride Lewis base adducts.
  • Aluminum trichloride (AlC) is a Lewis acid.
  • the term "superacid trichloride-Lewisbase aluminum adducts" such aluminum trichloride Lewis base adducts which have a pK s value in protonated form, which is less than or equal to a strong acid pK s value of a very strong acid.
  • the superacid aluminum trichloride Lewis base adducts used according to the invention in protonated form preferably have a pK s value ⁇ -7, ie a pK s value which is smaller than HCl.
  • aluminum trichloride Lewis base adduct refers to complex anions formed by the addition of an anion, especially a chloride or bromide to which Lewis acid aluminum trichloride is formed.
  • the addition products may also form adducts with one or two further (identical or different) Lewis acid molecules.
  • a is 2 or 3.
  • the metals or semimetals Met contained in the Lewis acid-Lewis base adduct may be the same or different.
  • Lewis acid Lewis base adducts with various metals are formed, for example, when a Lewis acid Lewis base adduct of a Lewis acid and a halide ion first forms and this then reacts with another, different from the first Lewis acid Lewis acid with adduct formation.
  • a Lewis acid Lewis base adduct of a Lewis acid and a halide ion first forms and this then reacts with another, different from the first Lewis acid Lewis acid with adduct formation.
  • the Lewis acid-Lewis base adduct of the formula [Met a Zb]" Z may be the same or different.
  • Lewis acid Lewis base adducts with mixed Z are obtained, for example, when, as described above, the Lewis acid Lewis base adduct is formed from two different Lewis acids. Alternatively, they are obtained when Lewis acid with mixed halogen atoms are used or when the halide ion, which acts as a Lewis base, is different from the halogen atom of the Lewis acid.
  • all Z contained in the Lewis acid Lewis base adduct of formula [Met a Zb] " are the same, in particular Z is chlorine or bromine.
  • Lewis bases Ch, Br, AICk, AIBrC “ , Al 2 Cl 7 “ , Al 2 BrCl 6 “ , Al 3 Cho “ , A BrClg “ , BCI 4 “ , BBr 4 “ , TiCl 5 “ , VCI 6 " , FeCk, FeBr 4 -, Fe 2 Cl 7 -, FesCho “ , ZnC, ZnBr 3 -,
  • Preferred Lewis bases are AICI 4 , Al 2 Cl 7 “ , BCI 4 -, BBr 4 -, TiCl 5 " , FeCk, FeBr 4 -, Fe 2 Cl 7 “ and FesC 0 " .
  • the anion of the ionic liquid is, for example, AlCk, AIBrCIs “ , Al 2 Cl 7, Al 2 BrCl 6 -, A Cho " , AbBrClg " or (CF 3 S0 2 ) 2 NaCl 3 -.
  • Preferred anions Y- are selected from AIBrC “ , AI2CI7 “ , A BrCk, Al3CI10 “ , AbBrClg “ .
  • the preparation of such an ionic liquid is effected in particular by adding the appropriate amount of aluminum chloride to the ionic liquid or to an ammonium chloride.
  • the molar ratio of aluminum trichloride to Lewis base is preferably> 1, 0, especially> 1, 5, further especially> 2.0.
  • the Hamm function Ho is preferably in the range of -16 to -20, especially in the range of -17 to -19.
  • the ionic liquid (IL) 150 ml was placed in the stirred tank and filled to be isomerized methylcyclopentane-containing organic mixture (30 ml) in the feed vessel. After tempering of all educts to 60 ° C, the entire contents of the feed vessel was transferred with stirring within 1 - 2 seconds in the stirred tank with the IL with stirring by opening the Teflon tap. In each case 5 ml of sample were taken at predetermined time intervals by means of 30 cm cannula and syringe via the sampling nozzle with septum.
  • TMA trimethylammonium
  • IL TMA-AI2CI7
  • Organics 39% by weight of MCP, 12% by weight of CH, 49% by weight of n-hexane, 0.3% by weight of 2-methyl-1-pentene
  • Example 1 1 (according to the invention):

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Verfahren zur Isomerisierung eines gesättigten Kohlenwasserstoffs, wobei man die Isomerisierung in Gegenwart einer super-sauren ionischen Flüssigkeit, umfassend ein organisches Kation und ein anorganisches Anion, wobei das Anion ein super-saures Aluminiumtrichlorid-Lewisbase-Addukt ist, und eines Olefins durchführt.

Description

Verfahren zur Isomerisierung eines gesättigten Kohlenwasserstoffs Beschreibung Die Erfindung betrifft ein Verfahren zur Isomerisierung eines gesättigten Kohlenwasserstoffs.
Die Isomerisierung von gesättigten Kohlenwasserstoffen (Paraffinen) zu den korrespondierenden verzweigten Isomeren ist ein wichtiger Prozess, um z. B. die Research Octanzahl (ROZ) von Benzin zu erhöhen, um dessen Verbrennungseigenschaften zu verbessern.
Verzweigte zyklische Kohlenwasserstoffe können unter Ringerweiterung zu weniger verzweigten zyklischen Kohlenwasserstoffen isomerisieren; ein Beispiel ist die Umlage- rung von Methylcyclopentan (MCP) zu Cyclohexan. Katalysiert werden diese Reaktionen durch starke Lewis-Säuren bzw. starke Bransted-Säuren.
Die Isomerisierung gesättigter Kohlenwasserstoffe mit festem Aluminiumchlorid ist seit langem bekannt. Als beschleunigender Zusatz wird häufig HCl eingesetzt (z. B. US 2,493,567, US 3,233,001 , US 5,202,519). Problematisch in diesen Verfahren ist die Langzeitstabilität von festem Aluminiumchlorid und dessen Abtrennung.
US 2003/0109767 A1 (Vasina et al.) berichtet, dass ionische Flüssigkeiten bestehend aus einem stickstoffhaltigen heterocyclischen oder aliphatischen Kation und einem Anion, das sich von einem Metallhalogenid ableitet, zur Isomerisierung von Paraffinen in Richtung höher verzweigter Paraffine bei relativ niedrigen Temperaturen genutzt werden können.
Zyklische Kohlenwasserstoffe mit einem tertiären Kohlenstoffatom als Additive, wie Methylcyclohexan und Dimethylcyclopentan, erhöhen gemäß EP 1 403 236 A1 (Haldor Topsoe A/S) die Selektivität bezüglich der Bildung stärker verzweigter Kohlenwasserstoffe aus weniger oder nicht verzweigten Kohlenwasserstoffen.
Ionische Flüssigkeiten bestehend aus n-Butylpyridiniumchlorid und Aluminiumchlorid können benutzt werden, um Methylcyclopentan und Cyclohexan zu isomerisieren: V.A. Ksenofontov, T.V. Vasina, Y.E. Zubarev, L.M. Kustov, React. Kinet. Catal. Lett. 2003, Vol. 80 (2), Seiten 329-335.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, unter Überwindung von
Nachteilen des Stands der Technik, ein verbessertes wirtschaftliches Verfahren zur Isomerisierung eines gesättigten Kohlenwasserstoffs bereitzustellen. Das Herstellverfahren sollte zudem besonders einfach und wirtschaftlich sein und das Verfahrensprodukt (ein gesättigter Kohlenwasserstoff mit gleicher Summenformel) in hohen Ausbeuten, insbesondere in hohen Raum-Zeit-Ausbeuten (RZA) liefern. Demgemäß wurde ein Verfahren zur Isomerisierung eines gesättigten Kohlenwasserstoffs gefunden, welches dadurch gekennzeichnet, dass man die Isomerisierung in Gegenwart einer super-sauren ionischen Flüssigkeit, umfassend ein organisches Kation und ein anorganisches Anion, wobei das Anion ein super-saures Aluminiumtrichlo- rid-Lewisbase-Addukt ist, und eines Olefins durchführt.
Erfindungsgemäß wurde erkannt, dass die Isomerisierung eines gesättigten Kohlenwasserstoffs stark beschleunigt werden kann, wenn die Isomerisierung in Gegenwart einer super-sauren ionischen Flüssigkeit enthaltend Aluminiumchlorid und in Gegenwart eines Olefins als Katalysator durchgeführt wird.
Somit ist das erfindungsgemäße Verfahren herkömmlichen Verfahren überlegen, weil die Reaktionsgleichgewichte deutlich schneller erreicht werden.
Bei dem Olefin handelt es sich bevorzugt um ein lineares oder verzweigtes und/oder zyklisches C2-i4-Olefin, insbesondere um ein lineares oder verzweigtes und/oder zykli- sches C2-io-Olefin, ganz besonders um ein lineares oder verzweigtes und/oder zyklisches C2-7-Olefin.
Bevorzugte Olefine sind Ethen, Propen, 1 -Buten, cis-Buten-2, trans-Buten-2, Isobuten 3-Methyl-1 -buten, 1 -Penten, 2-Methyl-1 -buten, trans-Penten-2, cis-Penten-2, 2-Methyl- 2-buten, Cyclopenten, 4-Methyl-1 -penten, 3-Methyl-1 -penten, Methylpentadien, 2- Methyl-1 -penten, trans-Hexen-2, cis-Hexen-2, 2-Methyl-2-penten, 3- Methylcyclopenten, 3-Methyl-cis-penten-2, cis-Hexen-2, 3-Methyl-trans-penten-2, 4,4- Dimethyl-trans-penten-2, 1 -Methylcyclopenten, Cyclohexen und trans-Hepten-3, insbesondere 3-Methyl-1 -buten, 1 -Penten, 2-Methyl-1 -buten, trans-Penten-2, cis-Penten-2, 2-Methyl-2-buten, Cyclopenten, 2-Methyl-1 -penten, 2-Methyl-2-penten, 3-
Methylcyclopenten, cis-Hexen-2, 3-Methyl-trans-penten-2, 1 -Methylcyclopenten, Cyclohexen und trans-Hepten-3.
Bevorzugt handelt es sich bei dem Olefin um ein Monoolefin.
Ganz besonders bevorzugt handelt es sich bei dem Olefin um Ethen, 2-Methyl-1 -buten, 2-Methyl-2-buten oder 1 -Methyl-cyclopenten.
Die Isomerisierung wird bevorzugt in Gegenwart von 0,01 bis 5 Gew.-%, besonders 0,1 bis 3 Gew.-%, insbesondere > 0,1 bis 2 Gew.-%, weiter besonders 0,5 bis 1 ,5 Gew.-%, des Olefins, jeweils bezogen auf den eingesetzten gesättigten Kohlenwasserstoff, durchführt. Bei dem zu isomerisierenden Kohlenwasserstoff handelt es sich bevorzugt um einen linearen oder verzweigten und/oder zyklischen C4-i8-Kohlenwasserstoff, besonders um einen linearen oder verzweigten und/oder zyklischen Cs-io-Kohlenwasserstoff, ganz besonders um einen linearen oder verzweigten und/oder zyklischen Cs-8-Kohlen- Wasserstoff.
Beispiele für einen linearen zu isomerisierenden Kohlenwasserstoff und mögliche Iso- merisierungsprodukte (in Klammern) sind n-Pentan (2-Methylbutan, 1 ,1 - Dimethylpropan), n-Hexan (2-Methylpentan, 3-Methylpentan, 2,2-Dimethylbutan, 2,3- Dimethylbutan, 3-Ethylpentan), n-Heptan (2-Methylhexan, 3-Methylhexan, 2,3- Dimethylpentan), n-Oktan (Isooktane).
Beispiele für einen verzweigten (nicht zyklischen) zu isomerisierenden Kohlenwasserstoff und mögliche Isomerisierungsprodukte (in Klammern) sind 1 -Methylbutan (2- Methylbutan), 1 -Methylpentan (2-Methylpentan), 1 -Methylhexan (2-Methylhexan).
Beispiele für einen zyklischen zu isomerisierenden Kohlenwasserstoff und mögliche Isomerisierungsprodukte (in Klammern) sind Cyclohexan (Methylcyclopentan), Cyclo- heptan (Methylcyclohexan, MCH).
Beispiele für einen verzweigten und zyklischen zu isomerisierenden Kohlenwasserstoff und mögliche Isomerisierungsprodukte (in Klammern) sind Methylcyclopentan (Cyclohexan); 1 ,2-Dimethylcyclopentan, 1 ,1 -Dimethylcyclopentan, 1 ,3-Dimethylcyclopentan (Methylcyclohexan).
Mit dem erfindungsgemäßen Verfahren wird z. B. ein sekundäres C-Atom im eingesetzten Kohlenwasserstoff in ein tertiäres C-Atom umgewandelt.
Ein Beispiel hiefür ist die Isomerisierung von n-Hexan zu Isohexan und von n-Heptan zu Isoheptan. Die Isomerisierung liefert hier also einen höher verzweigten gesättigten Kohlenwasserstoff als Produkt.
Bevorzugt wird bei der erfindungsgemäßen Isomerisierung ein tertiäres C-Atom des Kohlenwasserstoffs in ein sekundäres C-Atom umgewandelt. Die Isomerisierung liefert also einen weniger verzweigten gesättigten Kohlenwasserstoff als Produkt.
Ein Beispiel hiefür ist die Isomerisierung von Methylcyclopentan (MCP) zu Cyclohexan (CH).
Der zu isomerisierende Kohlenwasserstoff wird bevorzugt in einer Konzentration im Bereich von 1 bis 90 Gew.-%, besonders von 5 bis 20 Gew.-%, jeweils bezogen auf die ionische Flüssigkeit, einsetzt. Die Isomensierung wird bevorzugt bei einer Temperatur im Bereich von -20 bis 150 °C, besonders 40 bis 100 °C, durchführt.
Die Isomerisierung wird bevorzugt bei einem Absolutdruck im Bereich von 1 bis 10 bar, besonders 1 bis 6 bar, durchführt.
Ionische Flüssigkeiten im Sinne der vorliegenden Erfindung sind vorzugsweise
(A) Salze der allgemeinen Formel (I) n-
[A]„ [Y] in der n für 1 , 2, 3 oder 4 steht, [A]+ für ein quartäres Ammonium-Kation, ein O- xonium-Kation, ein Sulfonium-Kation oder ein Phosphonium-Kation und [Y]n- für ein ein-, zwei-, drei- oder vierwertiges Anion steht;
(B) gemischte Salze der allgemeinen Formeln (II)
[A1]+[A2]+ [Y]n- (IIa), wobei n = 2;
[A1]+[A2]+[A3]+ [Y]n- (IIb), wobei n = 3; oder
[A1]+[A2]+[A3]+[A4]+ [Y]n- (llc), wobei n = 4 und wobei [A1]+, [A2]+, [A3]+ und [A4]+ unabhängig voneinander aus den für [A]+ genannten Gruppen ausgewählt sind und [Y]n- die unter (A) genannte Bedeutung besitzt; oder
(C) gemischte Salze der allgemeinen Formeln (III)
[A1 ]+[A2]+[A3]+[M1]+ [Y]n- (I la), wobei n = 4;
[A1 |+[A2]+[M1]+[M2]+ [Y]n- (I Ib), wobei n = 4;
[A1 |+[M1]+[M2]+[M3]+ [Y]n- (I Ic), wobei n = 4;
[A1 |+[A2]+[M1]+ [Y]n- (I Id), wobei n = 3;
[A1 |+[M1]+[M2]+ [Y]n- (I le), wobei n = 3;
[A1 |+[M1]+ [Y]n- (I If), wobei n = 2;
[A1 |+[A2]+[M4]2+ [Y]n- (I Ig), wobei n = 4;
[A1 |+[M1]+[M4]2+ [Y]n- (I Ih), wobei n = 4;
[A1 |+[M5]3+ [Y]n- (I Ii), wobei n = 4; oder
[A1 |+[M4]2+ [Y]n- (I Ij), wobei n = 3 und wobei [A1]+, [A2]+ und [A3]+ unabhängig voneinander aus den für [A]+ genannten
Gruppen ausgewählt sind, [Y]n- die unter (A) genannte Bedeutung besitzt und [M1]+, [M2]+, [M3]+ einwertige Metallkationen, [M4]2+ zweiwertige Metallkationen und [M5]3+ dreiwertige Metallkationen bedeuten.
Vorzugsweise besitzen die ionischen Flüssigkeiten einen Schmelzpunkt von weniger als 180 °C. Weiterhin bevorzugt liegt der Schmelzpunkt in einem Bereich von -50 °C bis 150 °C, mehr bevorzugt im Bereich von -20 °C bis 120 °C und weiterhin mehr bevorzugt unter 100 °C.
Bei den erfindungsgemäßen ionischen Flüssigkeiten handelt es sich um organische Verbindungen, d. h. dass mindestens ein Kation oder ein Anion der ionischen Flüssigkeit einen organischen Rest enthält.
Verbindungen, die sich zur Bildung des Kations [A]+ von ionischen Flüssigkeiten eignen, sind z. B. aus DE 102 02 838 A1 bekannt. So können solche Verbindungen Sau- erstoff-, Phosphor-, Schwefel- oder insbesondere Stickstoffatome enthalten, beispielsweise mindestens ein Stickstoffatom, bevorzugt 1 -10 Stickstoffatome, besonders bevorzugt 1 -5, ganz besonders bevorzugt 1 -3 und insbesondere 1 -2 Stickstoffatome. Gegebenenfalls können auch weitere Heteroatome wie Sauerstoff-, Schwefel- oder Phosphoratome enthalten sein. Das Stickstoffatom ist ein geeigneter Träger der positiven Ladung im Kation der ionischen Flüssigkeit, von dem im Gleichgewicht dann ein Proton bzw. ein Alkylrest auf das Anion übergehen kann, um ein elektrisch neutrales Molekül zu erzeugen.
Für den Fall, dass das Stickstoffatom der Träger der positiven Ladung im Kation der ionischen Flüssigkeit ist, kann bei der Synthese der ionischen Flüssigkeiten zunächst durch Quaternisierung am Stickstoffatom etwa eines Amins oder Stickstoff- Heterocyclus' ein Kation erzeugt werden. Die Quaternisierung kann durch Protonierung oder Alkylierung des Stickstoffatoms erfolgen. Je nach verwendetem Alkylierungsrea- gens werden Salze mit unterschiedlichen Anionen erhalten. In Fällen, in denen es nicht möglich ist, das gewünschte Anion bereits bei der Quaternisierung zu bilden, kann dies in einem weiteren Syntheseschritt erfolgen. Ausgehend beispielsweise von einem Ammoniumhalogenid kann das Halogenid mit einer Lewissäure umgesetzt werden, wobei aus Halogenid und Lewissäure ein komplexes Anion gebildet wird. Alternativ dazu ist der Austausch eines Halogenidions gegen das gewünschte Anion möglich. Dies kann durch Zugabe eines Metallsalzes unter Ausfällung des gebildeten Metallha- logenids, über einen Ionenaustauscher oder durch Verdrängung des Halogenidions durch eine starke Säure (unter Freisetzung der Halogenwasserstoffsäure) geschehen. Geeignete Verfahren sind beispielsweise in Angew. Chem. 2000, 1 12, S. 3926 - 3945 und der darin zitierten Literatur beschrieben.
Geeignete Alkylreste, mit denen das Stickstoffatom in den Aminen oder Stickstoff- Heterocyclen beispielsweise quaternisiert sein kann, sind Ci-Cis-Alkyl, bevorzugt d- Cio-Alkyl, besonders bevorzugt Ci-C6-Alkyl und ganz besonders bevorzugt Methyl. Die Alkylgruppe kann unsubstituiert sein oder einen oder mehrere gleiche oder verschiedene Substituenten aufweisen. Bevorzugt sind solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus, insbesondere einen fünfgliedrigen Heterocyclus, enthalten, der mindestens ein Stickstoffatom sowie gegebenenfalls ein Sauerstoff- oder Schwefelatom aufweist, besonders bevorzugt sind solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus enthalten, der ein, zwei oder drei Stickstoffatome und ein Schwefel- oder ein Sauerstoffatom aufweist, ganz besonders bevorzugt solche mit zwei Stickstoffatomen. Weiterhin bevorzugt sind aromatische Heterocyclen.
Besonders bevorzugte Verbindungen sind solche, die ein Molgewicht unter 1000 g/mol aufweisen, ganz besonders bevorzugt unter 500 g/mol.
Weiterhin sind solche Kationen bevorzugt, die ausgewählt sind aus den Verbindungen der Formeln (IVa) bis (IVw),
Figure imgf000007_0001
Figure imgf000008_0001
Figure imgf000009_0001
sowie Oligomere, die diese Strukturen enthalten.
Weitere geeignete Kationen sind Verbindungen der allgemeinen Formel (IVx) und (IVy)
Figure imgf000010_0001
sowie Oligomere, die diese Struktur enthalten.
In den oben genannten Formeln (IVa) bis (IVy) stehen - der Rest R für Wasserstoff, einen Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome o- der funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 20 Kohlenstoffatomen; und die Reste R1 bis R9 unabhängig voneinander für Wasserstoff, eine Sulfo-Gruppe oder einen Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Grup- pen unterbrochenen oder substituierten Rest mit 1 bis 20 Kohlenstoffatomen, wobei die Reste R1 bis R9, welche in den oben genannten Formeln (IV) an ein Kohlenstoffatom (und nicht an ein Heteroatom) gebunden sind, zusätzlich auch für Halogen oder eine funktionelle Gruppe stehen können; oder zwei benachbarte Reste aus der Reihe R1 bis R9 zusammen auch für einen zweibindigen, Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 30 Kohlenstoffatomen.
Als Heteroatome kommen bei der Definition der Reste R und R1 bis R9 prinzipiell alle Heteroatome in Frage, welche in der Lage sind, formell eine -CH2-, eine -CH=, eine -C= oder eine =C= -Gruppe zu ersetzen. Enthält der Kohlenstoff enthaltende Rest Heteroatome, so sind Sauerstoff, Stickstoff, Schwefel, Phosphor und Silizium bevorzugt. Als bevorzugte Gruppen seien insbesondere -O-, -S-, -SO-, -SO2-, -NR'-, -N=, -PR'-, -PR'2 und -SiRV genannt, wobei es sich bei den Resten R' um den verbleibenden Teil des Kohlenstoff enthaltenden Rests handelt. Die Reste R1 bis R9 können dabei in den Fällen, in denen diese in den oben genannten Formeln (IV) an ein Kohlenstoffatom (und nicht an ein Heteroatom) gebunden sind, auch direkt über das Heteroatom ge- bunden sein. Als funktionelle Gruppen kommen prinzipiell alle funktionellen Gruppen in Frage, welche an ein Kohlenstoffatom oder ein Heteroatom gebunden sein können. Als geeignete Beispiele seien -OH (Hydroxy), =0 (insbesondere als Carbonylgruppe), -IMH2 (Amino), -NHR', -NR2' =NH (Imino), -COOH (Carboxy), -CONH2 (Carboxamid), -S03H (Sulfo) und -CN (Cyano) genannt. Fuktionelle Gruppen und Heteroatome können auch direkt benachbart sein, so dass auch Kombinationen aus mehreren benachbarten Atomen, wie etwa -O- (Ether), -S- (Thioether), -COO- (Ester), -CONH- (sekundäres Amid) oder -CONR'- (tertiäres Amid), mit umfasst sind, beispielsweise Di-(Ci-C4-Alkyl)-amino, C1- C4-Alkyloxycarbonyl oder Ci-C4-Alkyloxy. Bei den Resten R' handelt es sich um den verbleibenden Teil des Kohlenstoff enthaltenden Restes.
Als Halogene seien Fluor, Chlor, Brom und lod genannt.
Bevorzugt steht der Rest R für unverzweigtes oder verzweigtes, unsubstituiertes oder ein bis mehrfach mit Hydroxy, Halogen, Phenyl, Cyano, Ci-C6-Alkoxycarbonyl und/oder SO3H substituiertes Ci-Ci8-Alkyl mit insgesamt 1 bis 20 Kohlenstoffatomen, wie beispielsweise Methyl, Ethyl, 1 -Propyl, 2-Propyl, 1 -Butyl, 2-Butyl, 2-Methyl-1 -propyl (Isobu- tyl), 2-Methyl-2-propyl (tert.-Butyl), 1 -Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1 -butyl,
3-Methyl-1 -butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl1 -propyl, 1 - Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1 -pentyl, 3-Methyl-1 -pentyl, 4-Methyl-1 -pentyl,
2- Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3- Methyl-3-pentyl, 2,2-Dimethyl-1 -butyl, 2,3-Dimethyl-1 -butyl, 3,3-Dimethyl-1 -butyl, 2-Ethyl-1 -butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, 1 -Heptyl, 1 -Octyl, 1 -
Nonyl, 1 -Decyl, 1 -Undecyl, 1 -Dodecyl, 1 -Tetradecyl, 1 -Hexadecyl, 1 -Octadecyl, Benzyl, 3-Phenylpropyl, 2-Hydroxyethyl, 2-Cyanoethyl, 2-(Methoxycarbonyl)- ethyl, 2-(Ethoxycarbonyl)-ethyl, 2-(n-Butoxy-carbonyl)-ethyl, Trifluormethyl, Diflu- ormethyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopropyl, Nonafluorbutyl, Nonafluorisobutyl, Undecylfluorpentyl, Undecylfluorisopentyl, 6-
Hydroxyhexyl und Sulfopropyl;
Glykole, Butylenglykole und deren Oligomere mit 1 bis 100 Einheiten und einem Wasserstoff oder einem Ci-Cs-Alkyl als Endgruppe, wie beispielsweise
RA0-(CHRB-CH2-0)n-CHRB-CH2- oder
RA0-(CH2CH2CH2CH20)n-CH2CH2CH2CH20- mit RA und RB bevorzugt Wasserstoff, Methyl oder Ethyl und n bevorzugt 0 bis 3, insbesondere 3-Oxabutyl,
3- Oxapentyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 3,6,9-Trioxadecyl, 3,6,9-Trioxaun- decyl, 3,6,9, 12-Tetraoxatridecyl und 3,6,9, 12-Tetraoxatetradecyl;
Vinyl; 1 -Propen-1 -yl, 1 -Propen-2-yl und 1 -Propen-3-yl; und
N,N-Di-Ci-C6-alkyl-amino, wie beispielsweise Ν,Ν-Dimethylamino und N,N- Diethylamino.
Besonders bevorzugt steht der Rest R für unverzweigtes und unsubstituiertes C1-C18- Alkyl, wie beispielsweise Methyl, Ethyl, 1 -Propyl, 1-Butyl, 1 -Pentyl, 1 -Hexyl, 1 -Heptyl, 1 -Octyl, 1 -Decyl, 1 -Dodecyl, 1 -Tetradecyl, 1 -Hexadecyl, 1 -Octadecyl, insbesondere für Methyl, Ethyl, 1 -Butyl und 1 -Octyl sowie für CH30-(CH2CH20)n-CH2CH2- und
CH3CH20-(CH2CH20)n-CH2CH2- mit n gleich 0 bis 3.
Bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für
Wasserstoff; Halogen; eine funktionelle Gruppe; gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes Ci-Cis-Alkyl; gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C2-Cis-Alkenyl; gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C6-Ci2-Aryl; gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halo gen, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkyl; gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halo gen, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkenyl; oder - einen gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituierten fünf- bis sechsglied- rigen, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisenden Heterocyc- lus bedeuten; oder zwei benachbarte Reste zusammen mit den Atomen, an welchen sie gebunden sind, für einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituierten und gegebenenfalls durch ein oder mehrere Sauer- stoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder un- substituierte Iminogruppen unterbrochenen Ring.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertem Ci-Cis-Alkyl handelt es sich bevor- zugt um Methyl, Ethyl, 1 -Propyl, 2-Propyl, 1 -Butyl, 2-Butyl, 2-Methyl-1 -propyl (Isobutyl), 2-Methyl-2-propyl (tert.-Butyl), 1 -Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1 -butyl, 3-Methyl-
1 - butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-1 -propyl, 1 -Hexyl, 2-Hexyl, 3- Hexyl, 2-Methyl-1 -pentyl, 3-Methyl-1 -pentyl, 4-Methyl-1 -pentyl, 2-Methyl-2-pentyl, 3- Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl- 1 -butyl, 2,3-Dimethyl-1 -butyl, 3,3-Dimethyl-1 -butyl, 2-Ethyl-1 -butyl, 2,3-Dimethyl-2- butyl, 3,3-Dimethyl-2-butyl, Heptyl, Octyl, 2-Etylhexyl, 2,4,4-Trimethylpentyl, 1 ,1 ,3,3- Tetramethylbutyl, 1 -Nonyl, 1 -Decyl, 1 -Undecyl, 1 -Dodecyl, 1 -Tridecyl, 1 -Tetradecyl, 1 - Pentadecyl, 1 -Hexadecyl, 1 -Heptadecyl, 1 -Octadecyl, Cyclopentylmethyl, 2- Cyclopentylethyl, 3-Cyclopentylpropyl, Cyclohexylmethyl, 2-Cyclohexylethyl, 3- Cyclohexylpropyl, Benzyl (Phenylmethyl), Diphenylmethyl (Benzhydryl), Triphenyl- methyl, 1 -Phenylethyl, 2-Phenylethyl, 3-Phenylpropyl, α,α-Dimethylbenzyl, p-Tolyl- methyl, 1 -(p-Butylphenyl)-ethyl, p-Chlorbenzyl, 2,4-Dichlorbenzyl, p-Methoxybenzyl, m-Ethoxybenzyl, 2-Cyanoethyl, 2-Cyanopropyl, 2-Methoxycarbonylethyl, 2-Ethoxy- carbonylethyl, 2-Butoxycarbonylpropyl, 1 ,2-Di-(methoxycarbonyl)-ethyl, Methoxy, Eth- oxy, Formyl, 1 ,3-Dioxolan-2-yl, 1 ,3-Dioxan-2-yl, 2-Methyl-1 ,3-dioxolan-2-yl, 4-Methyl- 1 ,3-dioxolan-2-yl, 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 4-Hydroxybutyl, 6-Hydroxyhexyl, 2-Aminoethyl, 2-Aminopropyl, 3-Aminopropyl, 4-Aminobutyl, 6-Amino- hexyl, 2-Methylaminoethyl, 2-Methylaminopropyl, 3-Methylaminopropyl, 4-Methyl- aminobutyl, 6-Methylaminohexyl, 2-Dimethylaminoethyl, 2-Dimethylaminopropyl, 3-Di- methylaminopropyl, 4-Dimethylaminobutyl, 6-Dimethylaminohexyl, 2-Hydroxy-2,2-di- methylethyl, 2-Phenoxyethyl, 2-Phenoxypropyl, 3-Phenoxypropyl, 4-Phenoxybutyl, 6-Phenoxyhexyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3-Ethoxypropyl, 4-Ethoxybutyl, 6-Ethoxyhexyl, Acetyl, CnF2(n-a)+(i-b)H2a+b mit n gleich 1 bis 30, 0 < a < n und b = 0 oder 1 (beispielsweise CF3, C2F5, CH2CH2-C(n-2)F2(n-2)+i , CeFi3, CsFi7, C10F21 , C12F25), Chlormethyl, 2-Chlorethyl, Trichlormethyl, 1 ,1 -Dimethyl-2-chlorethyl, Methoxymethyl,
2- Butoxyethyl, Diethoxymethyl, Diethoxyethyl, 2-lsopropoxyethyl, 2-Butoxypropyl, 2-Octyloxyethyl, 2-Methoxyisopropyl, 2-(Methoxycarbonyl)-ethyl, 2-(Ethoxycarbonyl)- ethyl, 2-(n-Butoxycarbonyl)-ethyl, Butylthiomethyl, 2-Dodecylthioethyl, 2-Phenyl- thioethyl, 5-Hydroxy-3-oxa-pentyl, 8-Hydroxy-3,6-dioxa-octyl, 1 1 -Hydroxy-3,6,9-trioxa- undecyl, 7-Hydroxy-4-oxa-heptyl, 1 1 -Hydroxy-4,8-dioxa-undecyl, 15-Hydroxy-4,8,12- trioxa-pentadecyl, 9-Hydroxy-5-oxa-nonyl, 14-Hydroxy-5,10-dioxa-tetradecyl,
5-Methoxy-3-oxa-pentyl, 8-Methoxy-3,6-dioxa-octyl, 1 1 -Methoxy-3,6,9-trioxa-undecyl, 7-Methoxy-4-oxa-heptyl, 1 1 -Methoxy-4,8-dioxa-undecyl, 15-Methoxy-4,8,12-trioxa- pentadecyl, 9-Methoxy-5-oxa-nonyl, 14-Methoxy-5,10-dioxa-tetradecyl, 5-Ethoxy-3- oxa-pentyl, 8-Ethoxy-3,6-dioxa-octyl, 1 1 -Ethoxy-3,6,9-trioxa-undecyl, 7-Ethoxy-4-oxa- heptyl, 1 1 -Ethoxy-4,8-dioxa-undecyl, 15-Ethoxy-4,8,12-trioxa-pentadecyl, 9-Ethoxy-5- oxa-nonyl oder 14-Ethoxy-5,10-oxa-tetradecyl.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder un- substituierte Iminogruppen unterbrochenes C2-Cis-Alkenyl handelt es sich bevorzugt um Vinyl, 2-Propenyl, 3-Butenyl, cis-2-Butenyl, trans-2-Butenyl oder CnF2(n-a)-(i-b)H2a-b mit n < 30, 0 < a < n und b = 0 oder 1 . Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C6-C12-Aryl handelt es sich bevorzugt um Phenyl, Tolyl, Xylyl, a-Naphthyl, ß-Naphthyl, 4-Diphenylyl, Chlorphenyl, Dich- lorphenyl, Trichlorphenyl, Difluorphenyl, Methylphenyl, Dimethylphenyl, Trimethyl- phenyl, Ethylphenyl, Diethylphenyl, iso-Propylphenyl, tert.-Butylphenyl, Dodecylphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, Methylnaphthyl,
Isopropylnaphthyl, Chlornaphthyl, Ethoxynaphthyl, 2,6-Dimethylphenyl, 2,4,6-Trimethyl- phenyl, 2,6-Dimethoxyphenyl, 2,6-Dichlorphenyl, 4-Bromphenyl, 2-Nitrophenyl, 4-Nitro- phenyl, 2,4-Dinitrophenyl, 2,6-Dinitrophenyl, 4-Dimethylaminophenyl, 4-Acetyl phenyl, Methoxyethylphenyl, Ethoxymethylphenyl, Methylthiophenyl, Isopropylthiophenyl oder tert.-Butylthiophenyl oder C6F(5-a)Ha mit 0 < a < 5.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C5-C12-Cycloalkyl handelt es sich bevorzugt um Cyclopentyl, Cyclohexyl, Cyclooctyl, Cyclododecyl, Methylcyclopentyl, Dimethylcyclopentyl, Methylcyclohexyl, Dimethylcyclohexyl, Diethylcyclohexyl, Butyl- cyclohexyl, Methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, Butylthio- cyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Dichlorcyclopentyl, CnF2(n-a)-(1 - b)H2a-b mit n < 30, 0 < a < n und b = 0 oder 1 sowie ein gesättigtes oder ungesättigtes bicyclisches System wie z. B. Norbornyl oder Norbornenyl.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkenyl handelt es sich bevorzugt um 3-Cyclopentenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, 2,5-Cyclohexadienyl oder CnF2(n-a)-3(i-b)H2a-3b mit n < 30, 0 < a < n und b = 0 oder 1 .
Bei einen gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituierten fünf- bis sechsgliedrigen, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisenden Heterocyclus handelt es sich bevorzugt um Furyl, Thiophenyl, Pyrryl, Pyridyl, Indolyl, Benzoxazolyl, Dioxolyl, Dioxyl, Benzimidazolyl, Benzthiazolyl, Dimethylpyridyl, Methylchinolyl, Dimethylpyrryl, Methoxyfuryl, Dimethoxypyridyl oder Difluorpyridyl.
Bilden zwei benachbarte Reste gemeinsam einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituierten und gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere sub- stituierte oder unsubstituierte Iminogruppen unterbrochenen Ring, so handelt es sich bevorzugt um 1 ,3-Propylen, 1 ,4-Butylen, 1 ,5-Pentylen, 2-Oxa-1 ,3-propylen, 1 -Oxa-1 ,3- propylen, 2-Oxa-1 ,3-propylen, 1 -Oxa-1 ,3-propenylen, 3-Oxa-1 ,5-pentylen, 1 -Aza-1 ,3- propenylen, 1 -Ci-C4-Alkyl-1 -aza-1 ,3-propenylen, 1 ,4-Buta-1 ,3-dienylen, 1 -Aza-1 ,4- buta-1 ,3-dienylen oder 2-Aza-1 ,4-buta-1 ,3-dienylen.
Enthalten die oben genannten Reste Sauerstoff- und/oder Schwefelatome und/oder substituierte oder unsubstituierte Iminogruppen, so ist die Anzahl der Sauerstoff- und/oder Schwefelatome und/oder Iminogruppen nicht beschränkt. In der Regel beträgt sie nicht mehr als 5 in dem Rest, bevorzugt nicht mehr als 4 und ganz besonders be- vorzugt nicht mehr als 3.
Enthalten die oben genannten Reste Heteroatome, so befinden sich zwischen zwei Heteroatomen in der Regel mindestens ein Kohlenstoffatom, bevorzugt mindestens zwei Kohlenstoffatome.
Besonders bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für Wasserstoff; - unverzweigtes oder verzweigtes, unsubstituiertes oder ein bis mehrfach mit
Hydroxy, Halogen, Phenyl, Cyano, Ci-C6-Alkoxycarbonyl und/oder SO3H substituiertes Ci-Ci8-Alkyl mit insgesamt 1 bis 20 Kohlenstoffatomen, wie beispielsweise Methyl, Ethyl, 1 -Propyl, 2-Propyl, 1 -Butyl, 2-Butyl, 2-Methyl-1 -propyl (Isobu- tyl), 2-Methyl-2-propyl (tert.-Butyl), 1 -Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1 -butyl, 3-Methyl-1 -butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-1 -propyl, 1 -
Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1 -pentyl, 3-Methyl-1 -pentyl, 4-Methyl-1 -pentyl, 2-Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3- Methyl-3-pentyl, 2,2-Dimethyl-1 -butyl, 2,3-Dimethyl-1 -butyl, 3,3-Dimethyl-1 -butyl, 2-Ethyl-1 -butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, 1 -Heptyl, 1 -Octyl, 1 - Nonyl, 1 -Decyl, 1 -Undecyl, 1 -Dodecyl, 1 -Tetradecyl, 1 -Hexadecyl, 1 -Octadecyl, Benzyl, 3-Phenylpropyl, 2-Hydroxyethyl, 2-Cyanoethyl, 2-(Methoxycarbonyl)- ethyl, 2-(Ethoxycarbonyl)-ethyl, 2-(n-Butoxy-carbonyl)-ethyl, Trifluormethyl, Diflu- ormethyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopropyl, Nonafluorbutyl, Nonafluorisobutyl, Undecylfluorpentyl, Undecylfluorisopentyl, 6- Hydroxyhexyl und Sulfopropyl; - Glykole, Butylenglykole und deren Oligomere mit 1 bis 100 Einheiten und einem Wasserstoff oder einem d- bis Cs-Alkyl als Endgruppe, wie beispielsweise RA0-(CHRB-CH2-0)n-CHRB-CH2- oder
RA0-(CH2CH2CH2CH20)n-CH2CH2CH2CH20- mit RA und RB bevorzugt Wasserstoff, Methyl oder Ethyl und n bevorzugt 0 bis 3, insbesondere 3-Oxabutyl, 3-Oxapentyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 3,6,9-Trioxadecyl, 3,6,9-Trioxa- undecyl, 3,6,9,12-Tetraoxatridecyl und 3,6,9, 12-Tetraoxatetradecyl;
Vinyl; - 1 -Propen-1 yl, 1 -Propen-2-yl und 1 -Propen-3yl; und
N,N-Di-Ci-C6-alkyl-amino, wie beispielsweise Ν,Ν-Dimethylamino und N,N- Diethylamino. Ganz besonders bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für Wasserstoff oder Ci-Ci8-Alkyl, wie beispielsweise Methyl, Ethyl, 1 -Butyl, 1 -Pentyl, 1 - Hexyl, 1 -Heptyl, 1 -Octyl, für Phenyl, für 2-Hydroxyethyl, für 2-Cyanoethyl, für
2-(Methoxycarbonyl)ethyl, für 2-(Ethoxycarbonyl)ethyl, für 2-(n-Butoxycarbonyl)ethyl, für Ν,Ν-Dimethylamino, für Ν,Ν-Diethylamino, für Chlor sowie für CH30-(CH2CH20)n- CH2CH2- und CH3CH20-(CH2CH20)n-CH2CH2- mit n gleich 0 bis 3.
Ganz besonders bevorzugt setzt man als Pyridiniumionen (IVa) solche ein, bei denen einer der Reste R1 bis R5 Methyl, Ethyl oder Chlor ist und die verbleibenden Res- te R1 bis R5 Wasserstoff sind;
R3 Dimethylamino ist und die verbleibenden Reste R1, R2, R4 und R5 Wasserstoff sind; - alle Reste R1 bis R5 Wasserstoff sind; R2 Carboxy oder Carboxamid ist und die verbleibenden Reste R1, R2, R4 und R5 Wasserstoff sind; oder
R1 und R2 oder R2 und R3 1 ,4-Buta-1 ,3-dienylen ist und die verbleibenden Reste R1, R2, R4 und R5 Wasserstoff sind; und insbesondere solche, bei denen
R1 bis R5 Wasserstoff sind; oder einer der Reste R1 bis R5 Methyl oder Ethyl ist und die verbleibenden Reste R1 bis R5 Wasserstoff sind.
Als ganz besonders bevorzugte Pyridiniumionen (IVa) seien genannt 1 -Methylpyridi- nium, 1 -Ethylpyridinium, 1 -(1 -Butyl)pyridinium, 1 -(1 -Hexyl)pyridinium, 1 -(1 -Octyl)- pyridinium, 1 -(1 -Hexyl)-pyridinium, 1 -(1 -Octyl)-pyridinium, 1 -(1 -Dodecyl)-pyridinium, 1 -(1 -Tetradecyl)-pyridinium, 1 -(1 -Hexadecyl)-pyridinium, 1 ,2-Dimethylpyridinium, 1 -Ethyl-2-methylpyridinium, 1 -(1 -Butyl)-2-methylpyridinium, 1 -(1 -Hexyl)-2-methylpyri- dinium, 1 -(1 -Octyl)-2-methylpyridinium, 1 -(1 -Dodecyl)-2-methylpyridinium, 1 -(1 -Tetra- decyl)-2-methylpyridinium, 1 -(1 -Hexadecyl)-2-methylpyridinium, 1 -Methyl-2-ethylpyri- dinium, 1 ,2-Diethylpyridinium, 1 -(1 -Butyl)-2-ethylpyridinium, 1 -(1 -Hexyl)-2-ethylpyridi- nium, 1 -(1 -Octyl)-2-ethylpyridinium, 1 -(1 -Dodecyl)-2-ethylpyridinium, 1 -(1 -Tetradecyl)- 2-ethylpyridinium, 1 -(1 -Hexadecyl)-2-ethylpyridinium, 1 ,2-Dimethyl-5-ethyl-pyridinium, 1 ,5-Diethyl-2-methyl-pyridinium, 1 -(1 -Butyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Hexyl)-2- methyl-3-ethyl-pyridinium und 1 -(1 -Octyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Dodecyl)-2- methyl-3-ethyl-pyridinium, 1 -(1 -Tetradecyl)-2-methyl-3-ethyl-pyridinium und 1 -(1 - Hexadecyl)-2-methyl-3-ethyl-pyridinium.
Ganz besonders bevorzugt setzt man als Pyridaziniumionen (IVb) solche ein, bei de- nen
R1 bis R4 Wasserstoff sind; oder einer der Reste R1 bis R4 Methyl oder Ethyl ist und die verbleibenden Reste R1 bis R4 Wasserstoff sind.
Ganz besonders bevorzugt setzt man als Pyrimidiniumionen (IVc) solche ein, bei denen - R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind; oder R1 Wasserstoff, Methyl oder Ethyl ist, R2 und R4 Methyl sind und R3 Wasserstoff ist.
Ganz besonders bevorzugt setzt man als Pyraziniumionen (IVd) solche ein, bei denen
R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind;
R1 Wasserstoff, Methyl oder Ethyl ist, R2 und R4 Methyl sind und R3 Wasserstoff ist;
R1 bis R4 Methyl sind; oder
R1 bis R4 Wasserstoff sind.
Ganz besonders bevorzugt setzt man als Imidazoliumionen (IVe) solche ein, bei denen
R1 Wasserstoff, Methyl, Ethyl, 1-Propyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1-Octyl, 2-Hydroxyethyl oder 2-Cyanoethyl und R2 bis R4 unabhängig voneinander Was- serstoff, Methyl oder Ethyl sind.
Als ganz besonders bevorzugte Imidazoliumionen (IVe) seien genannt 1-Methylimi- dazolium, 1-Ethylimidazolium, 1-(1-Butyl)-imidazolium, 1-(1-Octyl)-imidazolium, 1-(1- Dodecyl)-imidazolium, 1-(1-Tetradecyl)-imidazolium, 1-(1-Hexadecyl)-imidazolium, 1,3- Dimethylimidazolium, 1-Ethyl-3-methylimidazolium, 1-(1-Butyl)-3-methylimidazolium, 1- (1 -Butyl)-3-ethylimidazolium, 1 -(1 -Hexyl)-3-methyl-imidazolium, 1 -(1 -Hexyl)-3-ethyl- imidazolium, 1-(1-Hexyl)-3-butyl-imidazolium, 1-(1-Octyl)-3-methylimidazolium, 1-(1- Octyl)-3-ethylimidazolium, 1 -(1 -Octyl)-3-butylimidazolium, 1 -(1 -Dodecyl)-3-methyl- imidazolium, 1-(1-Dodecyl)-3-ethylimidazolium, 1-(1-Dodecyl)-3-butylimidazolium, 1-(1- Dodecyl)-3-octylimidazolium, 1-(1-Tetradecyl)-3-methylimidazolium, 1-(1-Tetradecyl)-3- ethylimidazolium, 1 -(1 -Tetradecyl)-3-butylimidazolium, 1 -(1 -Tetradecyl)-3-octylimi- dazolium, 1-(1-Hexadecyl)-3-methylimidazolium, 1-(1-Hexadecyl)-3-ethylimidazolium, 1-(1-Hexadecyl)-3-butylimidazolium, 1-(1-Hexadecyl)-3-octylimidazolium, 1 ,2-Dimethyl- imidazolium, 1,2,3-Trimethylimidazolium, 1-Ethyl-2,3-dimethylimidazolium, 1 -(1 -Butyl)- 2,3-dimethylimidazolium, 1-(1-Hexyl)-2,3-dimethyl-imidazolium, 1-(1-Octyl)-2,3-di- methylimidazolium, 1,4-Dimethylimidazolium, 1,3,4-Trimethylimidazolium, 1,4-Di- methyl-3-ethylimidazolium, 3-butylimidazolium, 1 ,4-Dimethyl-3-octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5-Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethyl- imidazolium, 1 ,4,5-Trimethyl-3-butylimidazolium, 1 ,4,5-Trimethyl-3-octylimidazolium und 1-(Prop-1-en-3-yl)-3-methylimidazolium. Ganz besonders bevorzugt setzt man als Pyrazoliumionen (IVf), (IVg) beziehungsweise (IVg') solche ein, bei denen
R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Pyrazoliumionen (IVh) solche ein, bei denen
R1 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 1 -Pyrazoliniumionen (IVi) solche ein, bei denen unabhängig voneinander R1 bis R6 Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 2-Pyrazoliniumionen (IVj) beziehungsweise (IVj') solche ein, bei denen
R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 bis R6 unabhängig vonein- ander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 3-Pyrazoliniumionen (IVk) beziehungsweise (IVk') solche ein, bei denen - R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R3 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazoliniumionen (IVI) solche ein, bei denen
R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl, 1 -Butyl oder Phenyl sind, R3 und R4 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R5 und R6 unabhängig voneinander Wasserstoff oder Methyl sind. Ganz besonders bevorzugt setzt man als Imidazoliniumionen (IVm) beziehungsweise (IVm') solche ein, bei denen
R1 und R2 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R3 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazoliniumionen (IVn) beziehungsweise (IVn') solche ein, bei denen R1 bis R3 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R4 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Thiazoliumionen (IVo) beziehungsweise (I- Vo') sowie als Oxazoliumionen (IVp) solche ein, bei denen
R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 und R3 unabhängig voneinander Wasserstoff oder Methyl sind. Ganz besonders bevorzugt setzt man als 1 ,2,4-Triazoliumionen (IVq), (IVq') beziehungsweise (IVq") solche ein, bei denen
R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R3 Wasserstoff, Methyl oder Phenyl ist.
Ganz besonders bevorzugt setzt man als 1 ,2,3-Triazoliumionen (IVr), (IVr') beziehungsweise (IVr") solche ein, bei denen
R1 Wasserstoff, Methyl oder Ethyl ist und R2 und R3 unabhängig voneinander Wasserstoff oder Methyl sind, oder R2 und R3 zusammen 1 ,4-Buta-1 ,3-dienylen ist.
Ganz besonders bevorzugt setzt man als Pyrrolidiniumionen (IVs) solche ein, bei denen
R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 bis R9 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazolidiniumionen (IVt) solche ein, bei denen
R1 und R4 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R2 und R3 sowie R5 bis R8 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Ammoniumionen (IVu) solche ein, bei denen
R1 bis R3 unabhängig voneinander d- bis Cis-Alkyl sind; oder - R1 und R2 zusammen 1 ,5-Pentylen oder 3-Oxa-1 ,5-pentylen sind und R3 C1-C18- Alkyl, 2-Hydroxyethyl oder 2-Cyanoethyl ist. Als ganz besonders bevorzugte Ammoniumionen (IVu) seien genannt Trimethylammo- nium, Triethylammonium, Dimethylethylammonium, Diethylmethylammonium, Tetramethylammonium. Beispiele für die tertiären Amine, von denen sich die quatären Ammoniumionen der allgemeinen Formel (IVu) durch Quaternisierung mit den genannten Resten R ableiten, sind Trimethylamin, Triethylamin, Tri-n-propylamin, Tri-n-butylamin, Diethylmethylamin, Dimethylethylamin, Triisopropylamin, Isopropyldiethylamin, Diisopropylethylamin, Diethyl-n-butylamin, Diethyl-tert-butylamin, Diethyl-n-pentylamin, Diethyl-hexylamin, Diethyloctylamin, Diethyl-(2-ethylhexyl)-amin, Di-n-propylbutylamin, Di-n-propyl-n- pentylamin, Di-n-propylhexylamin, Di-n-propyloctylamin, Di-n-propyl-(2-ethyl-hexyl)- amin, Di-isopropylethylamin, Di-iso-propyl-n-propylamin, Di-isopropyl-butylamin, Di- isopropylpentylamin, Di-iso-propylhexylamin, Di-isopropyloctylamin, Di-iso-propyl-(2- ethylhexyl)-amin, Di-n-butylethylamin, Di-n-butyl-n-propylamin, Di-n-butyl-n-pentylamin, Di-n-butylhexylamin, Di-n-butyloctylamin, Di-n-butyl-(2-ethylhexyl)-amin, N-n-Butyl- pyrrolidin, N-sek-Butylpyrrodidin, N-tert-Butylpyrrolidin, N-n-Pentylpyrrolidin, N,N- Dimethylcyclohexylamin, Ν,Ν-Diethylcyclohexylamin, N,N-Di-n-butylcyclohexylamin, N- n-Propylpiperidin, N-iso-Propylpiperidin, N-n-Butyl-piperidin, N-sek-Butylpiperidin, N- tert-Butylpiperidin, N-n-Pentylpiperidin, N-n-Butylmorpholin, N-sek-Butylmorpholin, N- tert-Butylmorpholin, N-n-Pentylmorpholin, N-Benzyl-N-ethylanilin, N-Benzyl-N-n-propyl- anilin, N-Benzyl-N-iso-propylanilin, N-Benzyl-N-n-butylanilin, N,N-Dimethyl-p-toluidin, N,N-Diethyl-p-toluidin, N,N-Di-n-butyl-p-toluidin, Diethylbenzylamin, Di-n-propyl- benzylamin, Di-n-butylbenzylamin, Diethylphenylamin, Di-n-Propylphenylamin und Di- n-Butylphenylamin.
Bevorzugte quartäre Ammoniumsalze der allgemeinen Formel (IVu) sind solche, die sich von folgenden tertiären Aminen durch Quärternisierung mit den genannten Resten R ableiten lassen, wie Dimethylamin, Trimethylamin, Diethylamin, Triethylamin, Dimethylethylamin, Diethyl-tert-butylamin, Di-iso-propylethylamin, Tripropylamin, Tributy- lamin.
Besonders bevorzugte tertiäre Amine sind Trimethylamin und Triethylamin.
Ganz besonders bevorzugt setzt man als Guanidiniumionen (IVv) solche ein, bei denen
R1 bis R5 Methyl sind.
Als ganz besonders bevorzugtes Guanidiniumion (IVv) sei genannt N,N,N',N',N",N"- Hexamethylguanidinium.
Ganz besonders bevorzugt setzt man als Choliniumionen (IVw) solche ein, bei denen R1 und R2 unabhängig voneinander Methyl, Ethyl, 1 -Butyl oder 1 -Octyl sind und R3 Wasserstoff, Methyl, Ethyl, Acetyl, -S02OH oder -PO(OH)2 ist;
R1 Methyl, Ethyl, 1 -Butyl oder 1 -Octyl ist, R2 eine -CH2-CH2-OR4-Gruppe ist und R3 und R4 unabhängig voneinander Wasserstoff, Methyl, Ethyl, Acetyl, -SO2OH oder -PO(OH)2 sind; oder
R1 eine -CH2-CH2-OR4-Gruppe ist, R2 eine -CH2-CH2-OR5-Gruppe ist und R3 bis R5 unabhängig voneinander Wasserstoff, Methyl, Ethyl, Acetyl, -S02OH oder - PO(OH)2 sind.
Besonders bevorzugte Choliniumionen (IVw) sind solche, bei denen R3 ausgewählt ist aus Wasserstoff, Methyl, Ethyl, Acetyl, 5-Methoxy-3-oxa-pentyl, 8-Methoxy-3,6-dioxa- octyl, 1 1 -Methoxy-3,6,9-trioxa-undecyl, 7-Methoxy-4-oxa-heptyl, 1 1 -Methoxy-4,8-dioxa- undecyl, 15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5-oxa-nonyl, 14-Methoxy- 5,10-oxa-tetradecyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6-dioxa-octyl, 1 1 -Ethoxy-3,6,9- trioxa-undecyl, 7-Ethoxy-4-oxa-heptyl, 1 1 -Ethoxy-4,8-dioxa-undecyl, 15-Ethoxy-4,8,12- trioxa-pentadecyl, 9-Ethoxy-5-oxa-nonyl oder 14-Ethoxy-5,10-oxa-tetradecyl. Ganz besonders bevorzugt setzt man als Phosphoniumionen (IVx) solche ein, bei denen
R1 bis R3 unabhängig voneinander Ci-Cis-Alkyl, insbesondere Butyl, Isobutyl, 1 -Hexyl oder 1 -Octyl sind.
Unter den vorstehend genannten heterocyclischen Kationen sind die Pyridiniumionen, Pyrazolinium-, Pyrazoliumionen und die Imidazolinium- sowie die Imidazoliumionen bevorzugt. Weiterhin sind Ammoniumionen bevorzugt. Insbesondere bevorzugt sind 1 -Methylpyridinium, 1 -Ethylpyridinium, 1 -(1 -Butyl)pyri- dinium, 1 -(1 -Hexyl)pyridinium, 1 -(1 -Octyl)pyridinium, 1 -(1 -Hexyl)-pyridinium, 1 -(1 - Octyl)-pyridinium, 1 -(1 -Dodecyl)-pyridinium, 1 -(1 -Tetradecyl)-pyridinium, 1 -(1 -Hexa- decyl)-pyridinium, 1 ,2-Dimethylpyridinium, 1 -Ethyl-2-methylpyridinium, 1 -(1 -Butyl)-2- methylpyridinium, 1 -(1 -Hexyl)-2-methylpyridinium, 1 -(1 -Octyl)-2-methylpyridinium, 1 -(1 - Dodecyl)-2-methylpyridinium, 1 -(1 -Tetradecyl)-2-methylpyridinium, 1 -(1 -Hexadecyl)-2- methylpyridinium, 1 -Methyl-2-ethylpyridinium, 1 ,2-Diethylpyridinium, 1 -(1 -Butyl)-2- ethylpyridinium, 1 -(1 -Hexyl)-2-ethylpyridinium, 1 -(1 -Octyl)-2-ethylpyridinium, 1 -(1 -Dode- cyl)-2-ethylpyridinium, 1 -(1 -Tetradecyl)-2-ethylpyridinium, 1 -(1 -Hexadecyl)-2-ethyl- pyridinium, 1 ,2-Dimethyl-5-ethyl-pyridinium, 1 ,5-Diethyl-2-methyl-pyridinium, 1 -(1 - Butyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Hexyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Octyl)- 2-methyl-3-ethyl-pyridinium, 1 -(1 -Dodecyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Tetra- decyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Hexadecyl)-2-methyl-3-ethyl-pyridinium, 1 -Methylimidazolium, 1 -Ethylimidazolium, 1 -(1 -Butyl)-imidazolium, 1 -(1 -Octyl)- imidazolium, 1 -(1 -Dodecyl)-imidazolium, 1 -(1 -Tetradecyl)-imidazolium, 1 -(1 -Hexa- decyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1 -Ethyl-3-methylimidazolium, 1 -(1 -Butyl)- 3-methylimidazolium, 1 -(1 -Hexyl)-3-methyl-imidazolium, 1 -(1 -Octyl)-3-methylimida- zolium, 1 -(1 -Dodecyl)-3-methylimidazolium, 1 -(1 -Tetradecyl)-3-methylimidazolium, 1 -(1 -Hexadecyl)-3-methylimidazolium, 1 ,2-Dimethylimidazolium, 1 ,2,3-Trimethylimi- dazolium, 1 -Ethyl-2,3-dimethylimidazolium, 1 -(1 -Butyl)-2,3-dimethylimidazolium, 1 -(1 - Hexyl)-2,3-dimethyl-imidazolium und 1 -(1 -Octyl)-2,3-dimethylimidazolium, 1 ,4-Di- methylimidazolium, 1 ,3,4-Trimethylimidazolium, 1 ,4-Dimethyl-3-ethylimidazolium, 3-Bu- tylimidazolium, 1 ,4-Dimethyl-3-octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5- Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethylimidazolium, 1 ,4,5-Trimethyl-3- butylimidazolium, 1 ,4,5-Trimethyl-3-octylimidazolium und 1 -(Prop-1 -en-3-yl)-3-metyl- imidazolium. Bei den in den Formeln (lila) bis (lllj) genannten Metallkationen [M1]+, [M2]+, [M3]+,
[M4]2+ und [M5]3+ handelt es sich im Allgemeinen um Metallkationen der 1 ., 2., 6., 7., 8., 9., 10., 1 1 ., 12. und 13. Gruppe des Periodensystems. Geeignete Metallkationen sind beispielsweise Li+, Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Cr3+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Ag+, Zn2+ und Al3+.
Bei dem organischen Kation handelt es sich besonders bevorzugt um ein Ammoniumion, ggf. Ci-4-Alkyl-substituiertes Pyridiniumion oder ggf. Ci-4-Alkyl-substituiertes Imida- zoliumion. Ganz besonders bevorzugt handelt es sich bei dem organischen Kation um ein Tri- methylammoniumion, Triethylammoniumion, unsubstituiertes Pyridiniumion oder 1 - Ethyl-3-methylimidazoliumion.
Das Anion der erfindungsgemäß verwendeten ionischen Flüssigkeiten ist ausgewählt unter super-sauren Aluminiumtrichlorid-Lewisbase-Addukten. Aluminiumtrichlorid (AlC ) ist eine Lewissäure.
Im Sinne der vorliegenden Erfindung bezeichnet der Ausdruck "super-saure Alumini- umtrichlorid-Lewisbase-Addukte" solche Aluminiumtrichlorid-Lewisbase-Addukte, die in protonierter Form einen pKs-Wert aufweisen, welcher kleiner dem einer starken Säure bzw. kleiner oder gleich dem pKs-Wert einer überaus starken Säure ist. Bevorzugt weisen die erfindungsgemäß verwendeten super-sauren Aluminiumtrichlorid-Lewisbase- Addukte in protonierter Form einen pKs-Wert < -7 auf, d. h. einen kleineren pKs-Wert als HCl.
Im Sinne der vorliegenden Erfindung bezeichnet der Ausdruck "Aluminiumtrichlorid- Lewisbase-Addukt" komplexe Anionen, die durch die Anlagerung eines Anions, speziell eines Chlorids oder Bromids, an die Lewissäure Aluminiumtrichlorid gebildet werden. Dabei können die Anlagerungsprodukte auch Addukte mit einem oder zwei weiteren (gleichen oder verschiedenen) Lewissäuremolekülen bilden. Üblicherweise sind geeignete Lewissäure-Lewisbase-Addukte ausgewählt unter Verbindungen der Formel [MetaZb]", worin der Wert von b dem Produkt von Oxidationszahl des Metalls oder Halbmetalls Met und dem Index a, plus 1 entspricht, d. h. b = a«Ox + 1 , wobei Ox für die Oxidationszahl des Metalls oder Halbmetalls steht. Üblicherweise weist a einen Wert im Bereich von 1 bis 3 auf. Bevorzugt steht in den Lewissäure- Lewisbase-Addukten a für 2 oder 3.
Wenn a für 2 oder 3 steht, können die im Lewissäure-Lewisbase-Addukt enthaltenen Metalle oder Halbmetalle Met gleich oder verschieden sein. Lewissäure-Lewisbase- Addukte mit verschiedenen Metallen entstehen beispielsweise, wenn sich zuerst ein Lewissäure-Lewisbase-Addukt aus einer Lewissäure und einem Halogenidion bildet und dieses sich anschließend mit einer weiteren, von der ersten Lewissäure verschiedenen Lewissäure unter Adduktbildung umsetzt. Vorzugsweise sind jedoch alle im Lewissäure-Lewisbase-Addukt [MetaZb]" enthaltenen Met gleich und zwar AI. Im Lewissäure-Lewisbase-Addukt der Formel [MetaZb]" kann Z gleich oder verschieden sein. Lewissäure-Lewisbase-Addukte mit gemischten Z werden beispielsweise erhalten, wenn, wie oben beschrieben, das Lewissäure-Lewisbase-Addukt aus zwei verschiedenen Lewissäuren entsteht. Alternativ erhält man sie, wenn Lewissäuren mit gemischten Halogenatomen eingesetzt werden oder wenn das Halogenidion, das als Lewisbase fungiert, vom Halogenatom der Lewissäure verschieden ist. Speziell sind alle im Lewissäure-Lewisbase-Addukt der Formel [MetaZb]" enthaltenen Z gleich, insbesondere steht Z für Chlor oder Brom.
Beispiele geeigneter Lewisbasen sind Ch, Br, AICk, AIBrC ", AI2CI7 ", AI2BrCI6 ", AI3Cho", A BrClg", BCI4 ", BBr4 ", TiCI5 ", VCI6 ", FeCk, FeBr4-, Fe2CI7-, FesCho", ZnC , ZnBr3-,
CuC ", CuBr2-, CuCIs", CuBr3-, NbCle", SnC , SnBr3-, SnCk, SnBr5- und (CF3S02)2N-.
Bevorzugte Lewisbasen sind AICI4-, AI2CI7 ", BCI4-, BBr4-, TiCI5 ", FeCk, FeBr4-, Fe2CI7 " und FesC o".
Dementsprechend ist das Anion der ionischen Flüssigkeit beispielsweise AlCk, AIBrCIs", AI2CI7-, AI2BrCI6-, A Cho", AbBrClg" oder (CF3S02)2NAICI3-.
Bevorzugte Anionen Y- sind ausgewählt unter AIBrC ", AI2CI7", A BrCk, AI3CI10", AbBrClg".
Besonders bevorzugt sind die Anionen Y- ausgewählt unter AI2CI7-, AI3CI10", speziell ist es AI2CI7-.
Die Herstellung einer solchen ionischen Flüssigkeit erfolgt insbesondere durch Zugabe der entsprechenden Menge an Aluminiumchlorid zur ionischen Flüssigkeit oder zu ei- nem Ammoniumchlorid.
In der super-sauren ionischen Flüssigkeit, umfassend ein organisches Kation und ein anorganisches Anion, wobei das Anion ein super-saures Aluminiumtrichlorid- Lewisbase-Addukt ist, beträgt das Molverhältnis von Aluminiumtrichlorid zu Lewisbase bevorzugt > 1 ,0, besonders > 1 ,5, weiter besonders > 2,0. Das Molverhältnis von Aluminiumtrichlorid zu Lewisbase beträgt bevorzugt < 3,0, besonders < 2,5, ganz besonders bevorzugt = 2,0.
Für die erfindungsgemäß verwendete super-saure ionische Flüssigkeit liegt die Ham- mett-Funktion Ho bevorzugt im Bereich von -16 bis -20, besonders im Bereich von -17 bis -19.
Beispiele Allgemeine Versuchsdurchführung:
Verwendet wurde jeweils ein 250-ml-Miniplant-Rührbehälter mit Scheibenrührer, Innenthermometer, Intensivkühler, 200-ml-Zulaufgefäß mit Teflonhahn (10 mm Bohrung), Thermometer und Druckausgleich zum Intensivkühler, Rührerantrieb mit Drehzahlanzeige, Probeentnahmeaufsatz mit Hahn und Septum sowie Inertisierung mit über Natriumhydroxid getrocknetem Argon.
Unter Argon wurde die ionische Flüssigkeit (IL) (150 ml) im Rührbehälter vorgelegt und das zu isomerisierende Methylcyclopentan-haltige Organikgemisch (30 ml) in das Zulaufgefäß eingefüllt. Nach Temperierung aller Edukte auf 60 °C wurde unter Rühren durch Öffnen des Teflonhahnes der gesamte Inhalt des Zulaufgefäßes innerhalb von 1 - 2 Sekunden in den Rührbehälter mit der IL überführt. In vorgegebenen Zeitabständen wurden jeweils 5 ml Probe mittels 30 cm-Kanüle und Spritze über den Probeentnahmestutzen mit Septum entnommen. Nach ca. 2 Minuten wurde die abgeschiedene, leichtere organische Phase aus der Spritze in ca. 5 ml 10 Gew.-%-ige wässrige Natri- um-EDTA-Lösung gegeben und geschüttelt. Anschließend wurden die Phasen ge- trennt. Die organische Phase wurde mit 2 ml Methylenchlorid verdünnt und nach Trocknen mit wasserfreiem Natriumsulfat mittels GC untersucht.
Die folgenden Beispiele betreffen die Isomerisierung von Methylcyclopentan zu Cyclo- hexan. Verwendete Abkürzungen:
RGG: Reaktionsgleichgewicht
MCP: Methylcyclopentan CH: Cyclohexan
TMA: Trimethylammonium
EMIM: 1 -Ethyl-3-methylimidazolium Beispiel 1 (Vergleich):
IL: TMA-AI2CI7
Organik: rein-MCP
Zeit bis zum Erreichen des RGG (80 % MCP-Umsatz): 180 min Beispiel 2 (erfindungsgemäß):
IL: TMA-AI2CI7
Organik: rein-MCP mit 0,1 Gew.-% 2-Methyl-1 -penten
Zeit bis zum Erreichen des RGG (80 % MCP-Umsatz): 70 min Beispiel 3 (erfindungsgemäß):
IL: TMA-AI2CI7
Organik: rein-MCP mit 0,3 Gew.-% 2-Methyl-1 -penten
Zeit bis zum Erreichen des RGG (80 % MCP-Umsatz): 40 min Beispiel 4 (Vergleich):
IL: EMIM-AI2CI7
Organik: rein-MCP
RGG nach 180 min nicht erreicht, MCP-Umsatz nach 180 min: 47 % Beispiel 5 (erfindungsgemäß):
IL: EMIM-AI2CI7
Organik: rein-MCP mit 0,3 Gew.-% 2-Methyl-1 -penten
Zeit bis zum Erreichen des RGG (80 % MCP-Umsatz): 180 min Beispiel 6 (erfindungsgemäß):
IL: EMIM-AI2CI7
Organik: rein-MCP mit 2 Gew.-% 2-Methyl-1 -penten
Zeit bis zum Erreichen des RGG (80 % MCP-Umsatz): 70 min Beispiel 7 (Vergleich):
IL: TMA-AI2CI7
Organik: 39 Gew.-% MCP, 12 Gew.-% CH, 49 Gew.-% n-Hexan Zeit bis zum Erreichen des RGG (77 % MCP-Umsatz): 300 min
Beispiel 8 (erfindungsgemäß):
IL: TMA-AI2CI7 Organik: 39 Gew.-% MCP, 12 Gew.-% CH, 49 Gew.-% n-Hexan, 0,3 Gew.-% 2-Methyl- 1 -penten
Zeit bis zum Erreichen des RGG (77 % MCP-Umsatz): 70 min Beispiel 9 (erfindungsgemäß):
IL: TMA-AI2CI7
Organik: 39 Gew.-% MCP, 12 Gew.-% CH, 47 Gew.-% n-Hexan, 2 Gew.-% 2-Methyl-1 - penten
Zeit bis zum Erreichen des RGG (77 % MCP-Umsatz): 5 min
Beispiel 10 (Vergleich):
IL: EMIM-AI2CI7
Organik: 39 Gew.-% MCP, 12 Gew.-% CH, 49 Gew.-% n-Hexan
RGG (77 % MCP-Umsatz) nach 180 min nicht erreicht, MCP-Umsatz nach 180 min: 59 %
Beispiel 1 1 (erfindungsgemäß):
IL: EMIM-AI2CI7
Organik: 39 Gew.-% MCP, 12 Gew.-% CH, 49 Gew.-% n-Hexan, 0,1 Gew.-% 2-Methyl- 1 -penten
RGG (77 % MCP-Umsatz) nach 180 min nicht erreicht, MCP-Umsatz nach 180 min: 74 %
Beispiel 12 (erfindungsgemäß):
IL: EMIM-AI2CI7
Organik: 39 Gew.-% MCP, 12 Gew.-% CH, 47 Gew.-% n-Hexan, 2 Gew.-% 2-Methyl-1 - penten
Zeit bis zum Erreichen des RGG (77 % MCP-Umsatz): 120 min

Claims

Patentansprüche
Verfahren zur Isomerisierung eines gesättigten Kohlenwasserstoffs, dadurch gekennzeichnet, dass man die Isomerisierung in Gegenwart einer super-sauren ionischen Flüssigkeit, umfassend ein organisches Kation und ein anorganisches Anion, wobei das Anion ein super-saures Aluminiumtrichlorid-Lewisbase-Addukt ist, und eines Olefins durchführt.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei dem Olefin um ein lineares oder verzweigtes und/oder zyklisches C2-i4-Olefin handelt.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei dem Olefin um ein lineares oder verzweigtes und/oder zyklisches C2-io-Olefin handelt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Olefin um ein Monoolefin handelt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Olefin um Ethen, 2-Methyl-1-buten, 2-Methyl-2-buten oder 1 -Methyl-cyclopenten handelt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Isomerisierung in Gegenwart von 0,01 bis 5 Gew.-% des Olefins, bezogen auf den eingesetzten gesättigten Kohlenwasserstoff, durchführt.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man die Isomerisierung in Gegenwart von 0,1 bis 3 Gew.-% des Olefins, bezogen auf den eingesetzten gesättigten Kohlenwasserstoff, durchführt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem zu isomerisierenden Kohlenwasserstoff um einen linearen oder verzweigten und/oder zyklischen C4-i8-Kohlenwasserstoff handelt.
Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es sich bei dem zu isomerisierenden Kohlenwasserstoff um einen linearen oder verzweigten und/oder zyklischen Cs-s-Kohlenwasserstoff handelt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Isomerisierung ein tertiäres C-Atom des Kohlenwasserstoffs in ein sekundäres C-Atom umgewandelt wird.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche zur Isomerisierung von Methylcyclopentan zu Cyclohexan.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für die super-saure ionische Flüssigkeit enthaltend Aluminiumchlorid die Hammett-Funktion Ho im Bereich von -16 bis -20 liegt.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem organischen Kation um ein Ammoniumion, ggf. Ci-4-Alkyl- substituiertes Pyridiniumion oder ggf. Ci-4-Alkyl-substituiertes Imidazoliumion handelt.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem organischen Kation um ein Trimethylammoniumion, Tri- ethylammoniumion, unsubstituiertes Pyridiniumion oder 1 -Ethyl-3- methylimidazoliumion handelt.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem anorganischen Anion um AI2CI7" oder A CleBr handelt.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Isomerisierung bei einer Temperatur im Bereich von -20 bis 150 °C durchführt.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Isomerisierung bei einem Absolutdruck im Bereich von 1 bis 10 bar durchführt.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man den zu isomerisierenden Kohlenwasserstoff in einer Konzentration im Bereich von 1 bis 90 Gew.-%, bezogen auf die ionische Flüssigkeit, einsetzt.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Molverhältnis von Aluminiumtrichlorid zu Lewisbase > 1 ,0 bis < 3,0 beträgt.
PCT/EP2010/068902 2009-12-07 2010-12-06 Verfahren zur isomerisierung eines gesättigten kohlenwasserstoffs WO2011069929A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09178210.2 2009-12-07
EP09178210 2009-12-07

Publications (1)

Publication Number Publication Date
WO2011069929A1 true WO2011069929A1 (de) 2011-06-16

Family

ID=43382383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068902 WO2011069929A1 (de) 2009-12-07 2010-12-06 Verfahren zur isomerisierung eines gesättigten kohlenwasserstoffs

Country Status (2)

Country Link
US (1) US20110137098A1 (de)
WO (1) WO2011069929A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009332A1 (de) 2012-07-11 2014-01-16 Basf Se Phasentrennverfahren durch kippen der dispergierrichtung
WO2014009343A1 (de) 2012-07-11 2014-01-16 Basf Se Verfahren zur behandlung eines austrags einer kohlenwasserstoffkonversion durch wäsche mit einem wässrigen medium
WO2014009350A1 (de) 2012-07-11 2014-01-16 Basf Se Durchführung einer kohlenwasserstoffkonversion oder aufbereitung einer kohlenwasserstoffkonversion in vorrichtungen mit oberflächen aus nichtmetallischen werkstoffen
WO2014009341A1 (de) 2012-07-11 2014-01-16 Basf Se Chemisches umsetzungsverfahren in einer dispersion
WO2014009335A1 (de) 2012-07-11 2014-01-16 Basf Se Abtrennung von ionischen flüssigkeiten mittels eines gestricks
WO2014009353A1 (de) 2012-07-11 2014-01-16 Basf Se Abtrennung von ionischen flüssigkeiten mittels koaleszierfilter aus acrylphenolharz
WO2014009347A1 (de) 2012-07-11 2014-01-16 Basf Se Verfahren zur behandlung eines austrags einer kohlenwasserstoffkonversion unter abtrennung von wasserstoffhalogeniden und nachgeschalteter wäsche
WO2014009331A1 (de) 2012-07-11 2014-01-16 Basf Se Isomerisierungsverfahren von kohlenwasserstoffen unter rückleitung von wasserstoffhalogeniden
WO2014009351A1 (de) 2012-07-11 2014-01-16 Basf Se Verfahren zur abtrennung von wasserstoffhalogeniden in einer rektifizierkolonne mit partialkondensator
WO2014060462A2 (de) 2012-10-18 2014-04-24 Basf Se Kohlenwasserstoffkonversionsverfahren in gegenwart einer sauren ionischen flüssigkeit mit vorgeschalteter hydrierung
WO2014060461A1 (de) 2012-10-18 2014-04-24 Basf Se Neues verfahren zur herstellung von cyclohexan aus methylcyclopentan und benzol
WO2014060460A2 (de) 2012-10-18 2014-04-24 Basf Se Verfahren zur herstellung von cyclohexan mit aus einem steamcrackverfahren stammenden ausgangsmaterialien
WO2014135445A1 (de) * 2013-03-07 2014-09-12 Basf Se Chemisches umsetzungsverfahren bei konstantem wasserstoffhalogenid-partialdruck
WO2014135444A2 (de) * 2013-03-07 2014-09-12 Basf Se Chemisches umsetzungsverfahren unter zugabe von metallhalogeniden
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
US9095789B2 (en) 2012-07-11 2015-08-04 Basf Se Removal of ionic liquids by means of coalescing filters made from acrylic/phenolic resin
US9409839B2 (en) 2012-07-11 2016-08-09 Basf Se Removal of ionic liquids by means of a knitted fabric
US9873646B2 (en) 2014-04-22 2018-01-23 Basf Se Process for preparing cyclohexane from benzene and methylcyclopentane with upstream benzene hydrogenation
US10081580B2 (en) 2012-10-18 2018-09-25 Basf Se Process for preparing cyclohexane with starting materials originating from a steamcracking process
US10137386B2 (en) 2013-12-02 2018-11-27 Basf Se Separation of ionic liquids in coalescing devices
US10207201B2 (en) 2012-07-11 2019-02-19 Basf Se Phase separation process by inversion of the direction of dispersion
US10815168B2 (en) 2012-07-11 2020-10-27 Basf Se Chemical conversion process in a dispersion

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140018588A1 (en) * 2012-07-11 2014-01-16 Basf Se Isomerization process for hydrocarbons with recycling of hydrogen halides
US20140018590A1 (en) * 2012-07-11 2014-01-16 Basf Se Performance of a hydrocarbon conversion or processing of a hydrocarbon conversion in apparatuses with surfaces made from nonmetallic materials
US20150005554A1 (en) 2013-06-28 2015-01-01 Uop Llc Catalytic isomerization of butane using ionic liquids
US9096485B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic isomerization of heptane using ionic liquids
US9096482B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic reverse disproportionation of paraffins using ionic liquids
US9096481B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic disproportionation of pentane using ionic liquids
US9096480B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic disproportionation of heptane using ionic liquids
US9126881B2 (en) 2013-06-28 2015-09-08 Uop Llc Catalytic isomerization of pentane using ionic liquids
US9096483B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic isomerization of hexanes using ionic liquids
US9102577B2 (en) 2013-06-28 2015-08-11 Uop Llc Catalytic disproportionation of paraffins using ionic liquids
US9102578B2 (en) 2013-06-28 2015-08-11 Uop Llc Catalytic isomerization of paraffins using ionic liquids

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2411054A (en) * 1942-04-15 1946-11-12 Texas Co Catalytic conversion of hydrocarbons
US2493567A (en) 1945-01-12 1950-01-03 Anglo Iranian Oil Co Ltd Preparation in a condition of purity of hydrocarbons from mixtures containing them
US3233001A (en) 1963-01-25 1966-02-01 Phillips Petroleum Co Process for producing cyclohexane
US3239577A (en) * 1964-10-23 1966-03-08 Universal Oil Prod Co Hydrocarbon conversion process
US5202519A (en) 1992-09-04 1993-04-13 Phillips Petroleum Company Isomerization process and catalyst therefor
US20030109767A1 (en) 2001-11-13 2003-06-12 Vasina Tamara Vladimirovna Process of paraffin hydrocarbon isomerization catalysed by ionic liquids
DE10202838A1 (de) 2002-01-24 2003-08-07 Basf Ag Verfahren zur Abtrennung von Säuren aus chemischen Reaktionsgemischen mit Hilfe von ionischen Flüssigkeiten
EP1403236A1 (de) 2002-09-25 2004-03-31 Haldor Topsoe A/S Verfahren zur Isomerisierung von paraffinischen Kohelenwasserstoffen katalysiert durch eine ionischen Flüssigkeit in Gegenwart eines cyclischen Kohlenwasserstoffs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY138064A (en) * 2002-01-24 2009-04-30 Basf Ag Method for the separation of acids from chemical reaction mixtures by means of ionic fluids
ATE302061T1 (de) * 2002-03-22 2005-09-15 Haldor Topsoe As Verfahren zur paraffinisomerisierung und dafür geeignete katalytische zusammensetzung, enthaltend eine ionische flüssigkeit und ein metallsalz-additiv

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2411054A (en) * 1942-04-15 1946-11-12 Texas Co Catalytic conversion of hydrocarbons
US2493567A (en) 1945-01-12 1950-01-03 Anglo Iranian Oil Co Ltd Preparation in a condition of purity of hydrocarbons from mixtures containing them
US3233001A (en) 1963-01-25 1966-02-01 Phillips Petroleum Co Process for producing cyclohexane
US3239577A (en) * 1964-10-23 1966-03-08 Universal Oil Prod Co Hydrocarbon conversion process
US5202519A (en) 1992-09-04 1993-04-13 Phillips Petroleum Company Isomerization process and catalyst therefor
US20030109767A1 (en) 2001-11-13 2003-06-12 Vasina Tamara Vladimirovna Process of paraffin hydrocarbon isomerization catalysed by ionic liquids
DE10202838A1 (de) 2002-01-24 2003-08-07 Basf Ag Verfahren zur Abtrennung von Säuren aus chemischen Reaktionsgemischen mit Hilfe von ionischen Flüssigkeiten
EP1403236A1 (de) 2002-09-25 2004-03-31 Haldor Topsoe A/S Verfahren zur Isomerisierung von paraffinischen Kohelenwasserstoffen katalysiert durch eine ionischen Flüssigkeit in Gegenwart eines cyclischen Kohlenwasserstoffs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM., vol. 112, 2000, pages 3926 - 3945
V.A. KSENOFONTOV; T.V. VASINA; Y.E. ZUBAREV; L.M. KUSTOV, REACT. KINET. CATAL. LETT., vol. 80, no. 2, 2003, pages 329 - 335
VLADISLAV A KSENOFONTOV ET AL: "Isomerization of cyclic hydrocarbons mediated by an AlCl3-based ionic liquid as catalyst", REACTION KINETICS AND CATALYSIS LETTERS, SPRINGER SCIENCE+BUSINESS MEDIA, DORDRECHT, NL, vol. 80, no. 2, 1 November 2003 (2003-11-01), pages 329 - 335, XP019265121, ISSN: 1588-2837 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
WO2014009351A1 (de) 2012-07-11 2014-01-16 Basf Se Verfahren zur abtrennung von wasserstoffhalogeniden in einer rektifizierkolonne mit partialkondensator
US10815168B2 (en) 2012-07-11 2020-10-27 Basf Se Chemical conversion process in a dispersion
WO2014009341A1 (de) 2012-07-11 2014-01-16 Basf Se Chemisches umsetzungsverfahren in einer dispersion
WO2014009335A1 (de) 2012-07-11 2014-01-16 Basf Se Abtrennung von ionischen flüssigkeiten mittels eines gestricks
WO2014009353A1 (de) 2012-07-11 2014-01-16 Basf Se Abtrennung von ionischen flüssigkeiten mittels koaleszierfilter aus acrylphenolharz
WO2014009347A1 (de) 2012-07-11 2014-01-16 Basf Se Verfahren zur behandlung eines austrags einer kohlenwasserstoffkonversion unter abtrennung von wasserstoffhalogeniden und nachgeschalteter wäsche
WO2014009350A1 (de) 2012-07-11 2014-01-16 Basf Se Durchführung einer kohlenwasserstoffkonversion oder aufbereitung einer kohlenwasserstoffkonversion in vorrichtungen mit oberflächen aus nichtmetallischen werkstoffen
CN104411664A (zh) * 2012-07-11 2015-03-11 巴斯夫欧洲公司 通过反转分散方向的相分离方法
WO2014009331A1 (de) 2012-07-11 2014-01-16 Basf Se Isomerisierungsverfahren von kohlenwasserstoffen unter rückleitung von wasserstoffhalogeniden
US10207201B2 (en) 2012-07-11 2019-02-19 Basf Se Phase separation process by inversion of the direction of dispersion
US9409839B2 (en) 2012-07-11 2016-08-09 Basf Se Removal of ionic liquids by means of a knitted fabric
US9095789B2 (en) 2012-07-11 2015-08-04 Basf Se Removal of ionic liquids by means of coalescing filters made from acrylic/phenolic resin
WO2014009332A1 (de) 2012-07-11 2014-01-16 Basf Se Phasentrennverfahren durch kippen der dispergierrichtung
WO2014009343A1 (de) 2012-07-11 2014-01-16 Basf Se Verfahren zur behandlung eines austrags einer kohlenwasserstoffkonversion durch wäsche mit einem wässrigen medium
CN104470876A (zh) * 2012-07-11 2015-03-25 巴斯夫欧洲公司 具有卤化氢再循环的烃异构化方法
CN104755447A (zh) * 2012-10-18 2015-07-01 巴斯夫欧洲公司 具有在先氢化的在酸性离子液体存在下的烃转化方法
WO2014060460A2 (de) 2012-10-18 2014-04-24 Basf Se Verfahren zur herstellung von cyclohexan mit aus einem steamcrackverfahren stammenden ausgangsmaterialien
WO2014060462A2 (de) 2012-10-18 2014-04-24 Basf Se Kohlenwasserstoffkonversionsverfahren in gegenwart einer sauren ionischen flüssigkeit mit vorgeschalteter hydrierung
WO2014060461A1 (de) 2012-10-18 2014-04-24 Basf Se Neues verfahren zur herstellung von cyclohexan aus methylcyclopentan und benzol
CN104736502A (zh) * 2012-10-18 2015-06-24 巴斯夫欧洲公司 使用源自蒸汽裂化方法的原料制备环己烷的方法
WO2014060460A3 (de) * 2012-10-18 2014-06-26 Basf Se Verfahren zur herstellung von cyclohexan mit aus einem steamcrackverfahren stammenden ausgangsmaterialien
WO2014060462A3 (de) * 2012-10-18 2014-06-26 Basf Se Kohlenwasserstoffkonversionsverfahren in gegenwart einer sauren ionischen flüssigkeit mit vorgeschalteter hydrierung
US10081580B2 (en) 2012-10-18 2018-09-25 Basf Se Process for preparing cyclohexane with starting materials originating from a steamcracking process
CN104736502B (zh) * 2012-10-18 2017-11-10 巴斯夫欧洲公司 使用源自蒸汽裂化方法的原料制备环己烷的方法
WO2014135444A3 (de) * 2013-03-07 2014-10-30 Basf Se Chemisches umsetzungsverfahren unter zugabe von metallhalogeniden
WO2014135445A1 (de) * 2013-03-07 2014-09-12 Basf Se Chemisches umsetzungsverfahren bei konstantem wasserstoffhalogenid-partialdruck
WO2014135444A2 (de) * 2013-03-07 2014-09-12 Basf Se Chemisches umsetzungsverfahren unter zugabe von metallhalogeniden
US10137386B2 (en) 2013-12-02 2018-11-27 Basf Se Separation of ionic liquids in coalescing devices
US9873646B2 (en) 2014-04-22 2018-01-23 Basf Se Process for preparing cyclohexane from benzene and methylcyclopentane with upstream benzene hydrogenation

Also Published As

Publication number Publication date
US20110137098A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
EP2509935B1 (de) Verfahren zur isomerisierung eines gesättigten, verzweigten und zyklischen kohlenwasserstoffs
WO2011069929A1 (de) Verfahren zur isomerisierung eines gesättigten kohlenwasserstoffs
EP1893651B1 (de) Löslichkeit von cellulose in ionischen flüssigkeiten unter zugabe von aminbase
EP1881994B1 (de) Lösungen von cellulose in ionischen flüssigkeiten
EP1786776B1 (de) Verfahren zur herstellung quartärer ammoniumverbindungen hoher reinheit
DE102006028165A1 (de) Verfahren zur Acylierung von Cellulose
WO2008000666A1 (de) Verfahren zur acylierung von cellulose mit gezieltem durchschnittlichen polymerisationsgrad
DE102006011077A1 (de) Verfahren zum Abbau von Cellulose mit Nucleophilen
DE102006011075A1 (de) Verfahren zum Abbau von Cellulose in Lösung
WO2006021304A1 (de) Verfahren zur herstellung quartärer ammoniumverbindungen hoher reinheit
WO2007057403A1 (de) Verfahren zur herstellung von ionischen flüssigkeiten
EP1994060A1 (de) Verfahren zum abbau von cellulose
WO2018149844A1 (de) Polyoxazolidone und deren herstellung
DE102010028583B4 (de) Abbau von Polyurethanen in Gegenwart spezieller ionischer Flüssigkeiten und einem geringen Wasseranteil
WO2006077082A1 (de) Verfahren zur abdichtung rotierender wellen
DE102006011076A1 (de) Verfahren zum Abbau von Cellulose
DE102006029306A1 (de) Verfahren zur Silylierung von Cellulose
DE102006031810A1 (de) Verfahren zur Darstellung von Celluloseacetalen
DE102006042892A1 (de) Verfahren zur Acylierung von Cellulose mit gezieltem durchschnittlichen Polymerisationsgrad
EP2066710A1 (de) Ionische flüssigkeiten bei der pom-herstellung
DE102006030696A1 (de) Verfahren zur Acylierung von Cellulose mit gezieltem durchschnittlichen Polymerisationsgrad
WO2007088152A1 (de) Verfahren zur herstellung von isocyanaten
EP1900762A1 (de) Verfahren zur Herstellung eines Kohlenwasserstoffharzes
DE102006054213A1 (de) Verfahren zur Darstellung von Celluloseacetalen
DE102006042890A1 (de) Verfahren zur Silylierung von Cellulose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785083

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10785083

Country of ref document: EP

Kind code of ref document: A1