WO2011068590A2 - Solar cell contact formation using laser ablation - Google Patents
Solar cell contact formation using laser ablation Download PDFInfo
- Publication number
- WO2011068590A2 WO2011068590A2 PCT/US2010/051178 US2010051178W WO2011068590A2 WO 2011068590 A2 WO2011068590 A2 WO 2011068590A2 US 2010051178 W US2010051178 W US 2010051178W WO 2011068590 A2 WO2011068590 A2 WO 2011068590A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- poly
- crystalline
- layer
- forming
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/93—Interconnections
- H10F77/933—Interconnections for devices having potential barriers
- H10F77/935—Interconnections for devices having potential barriers for photovoltaic devices or modules
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/146—Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- Embodiments of the present invention are in the field of renewable energy and, in particular, the formation of single-step damage free solar cell contact openings using a laser.
- Metal contact formation to electrically active areas in semi-conductor and solar industries often involves a removal of dielectric material(s) (e.g., an oxide or nitride material), which may exist to electrically isolate or passivate certain active areas.
- dielectric material(s) e.g., an oxide or nitride material
- Commonly practiced methods may require several process operations, such as deposition of a mask layer, selective etching of dielectric layer(s), and removal of a mask, or laser with subsequent etch or anneal.
- Figure 1 illustrates a flowchart representing operations in a method of fabricating a back-contact solar cell, in accordance with an embodiment of the present invention.
- Figure 2A illustrates a cross-sectional view of a stage in the fabrication of a back-contact solar cell corresponding to an operation of the flowchart of Figure 1, in accordance with an embodiment of the present invention.
- Figure 2B illustrates a cross-sectional view of a stage in the fabrication of a back-contact solar cell corresponding to an operation of the flowchart of Figure 1, in accordance with an embodiment of the present invention.
- Figure 2B' illustrates a cross-sectional view of an alternative stage in the fabrication of a back-contact solar cell corresponding to an operation of the flowchart of Figure 1, in accordance with an embodiment of the present invention.
- Figure 2C illustrates a cross-sectional view of a stage in the fabrication of a back-contact solar cell corresponding to an operation of the flowchart of Figure 1, in accordance with an embodiment of the present invention.
- Figure 2D illustrates a cross-sectional view of a stage in the fabrication of a back-contact solar cell corresponding to an operation of the flowchart of Figure 1, in accordance with an embodiment of the present invention.
- Figure 3A illustrates a cross-sectional view of a back-contact solar cell, in accordance with an embodiment of the present invention.
- Figure 3B illustrates a cross-sectional view of a back-contact solar cell, in accordance with another embodiment of the present invention.
- Figure 4 illustrates a flowchart representing operations in a method of fabricating a back-contact solar cell, in accordance with an embodiment of the present invention.
- a method includes forming a poly-crystalline material layer above a single-crystalline substrate.
- a dielectric material stack is formed above the poly- crystalline material layer.
- a plurality of contacts holes is formed in the dielectric material stack by laser ablation, each of the contact holes exposing a portion of the poly-crystalline material layer.
- Conductive contacts are formed in the plurality of contact holes.
- a method includes forming a poly-crystalline material layer above a single-crystalline substrate.
- a dielectric material stack is formed above the poly-crystalline material layer.
- a recast poly signature is formed in the poly-crystalline material layer.
- a plurality of conductive contacts is formed in the dielectric material stack and coupled directly to a portion of the poly-crystalline material layer, one of the conductive contacts in alignment with the recast poly signature. It is to be understood that embodiments of the present invention need not be limited to the formation of back-side contacts, but could be used to form front-side contacts instead or as well.
- a back-contact solar cell includes a poly-crystalline material layer disposed above a single-crystalline substrate.
- a dielectric material stack is disposed above the poly- crystalline material layer.
- a plurality of conductive contacts is disposed in the dielectric material stack and coupled directly to a portion of the poly-crystalline material layer.
- a recast poly signature is disposed in the poly-crystalline material layer and in alignment with one of the plurality of conductive contacts.
- contact formation is simplified and an associated cost of manufacture is reduced through reduction of consumables used, reduction of capital expenditure, and reduction of complexity.
- contact formation for a solar cell includes contact formation in a dielectric layer by a direct-fire laser approach. Such an approach may otherwise be detrimental for single-crystal substrate based solar cells.
- a poly-crystalline layer is included above a single-crystal substrate based solar cell. In that embodiment, any damage or melt is received and accommodated by the poly-crystalline layer instead of by the single-crystal substrate.
- by using a poly-crystalline layer to receive a process of direct-fired contact formation the formation of recombination sites in the single-crystal substrate is reduced or even essentially eliminated.
- such laser- induced damage is minimized or essentially eliminated with use of highly advanced lasers with ultra short pulse lengths (e.g., in the femto second range) and short wavelength light (UV).
- ultra short pulse lengths e.g., in the femto second range
- UV short wavelength light
- standard cell architectures may still exhibit electrical degradation with such laser configurations.
- recombination in a solar cell is insensitive to typical optical and thermal damages induced by a laser since any damage remains within a poly-crystalline material layer instead on an underlying single-crystalline substrate.
- a contact resistance of a solar cell surface remains low after contact formation by laser.
- formation of a dielectric or passivation layer in combination with a poly-crystalline material layer is tuned in a way to accommodate commercially available lasers which confine any laser damage to the poly-crystalline material layer or to the dielectric or passivation layer.
- a dielectric or passivation layer in combination with a poly-crystalline material layer is tuned in a way to accommodate commercially available lasers which confine any laser damage to the poly-crystalline material layer or to the dielectric or passivation layer.
- a pico- second laser is used and the thermal penetration depth in silicon is limited to a submicron level.
- an optical penetration depth in silicon during a laser-induced contact formation process is confined to a sub-micron level by using a laser wavelength less than approximately 1064 nanometers.
- an absorbing layer such as a silicon nitride layer with the composition SixNy
- total thermal and optical damage is confined within a poly-crystalline material layer so that high-efficiencies are achieved in a solar cell without the need for post-laser etching processes, or selective emitter formation.
- a thin, e.g. less than approximately 15 nanometers, thermal oxide layer is grown to help mitigate thermal damage and promote ablation quality, optimizing a laser absorption process.
- Figure 1 illustrates a flowchart 100 representing operations in a method of fabricating a back-contact solar cell, in accordance with an embodiment of the present invention.
- Figures 2A - 2D illustrate cross-sectional views of various stages in the fabrication of a back-contact solar cell corresponding to the operations of flowchart 100, in accordance with an embodiment of the present invention.
- a method of fabricating a back-contact solar cell includes forming a poly- crystalline material layer 202 above a single-crystalline substrate 200.
- forming poly-crystalline material layer 202 above single-crystalline substrate 200 includes forming a layer of poly-crystalline silicon above a single-crystalline silicon substrate.
- poly-crystalline material layer 202 is formed to a thickness of approximately 200 nanometers.
- forming the layer of poly-crystalline silicon above the single-crystalline silicon substrate includes forming the layer of poly-crystalline silicon directly on a dielectric film 201, dielectric film 201 formed directly on single-crystalline silicon substrate 200, and forming both N-type and P-type doped regions 202A and 202B, respectively, in the layer of poly-crystalline silicon, as depicted in Figure 2A.
- the dielectric film 201 is a material such as, but not limited to, silicon dioxide (Si0 2 ), phosphosilicate glass (PSG), or borosilicate glass (BSG) having a thickness approximately in the range of 5 to 15 nanometers.
- dielectric film 201 is composed of silicon dioxide and has a thickness approximately in the range of 1 - 2 nanometers.
- dielectric film 201 is a tunnel oxide barrier layer film.
- a non-poly-crystalline absorbing material is formed instead such as, but not limited to an amorphous layer, a polymer layer, or a multi-crystalline layer.
- a multi-crystalline substrate is used in its place.
- a trench or gap is present between the P and N diffused regions, e.g., in the case of one embodiment of a back-contact design.
- the method of fabricating a back-contact solar cell also includes forming a dielectric material stack 204 above poly-crystalline material layer 202.
- forming dielectric material stack 204 above poly-crystalline material layer 202 includes forming a silicon dioxide layer 203A directly on poly-crystalline material layer 202, and forming a silicon nitride layer 203B directly on silicon dioxide layer 203A.
- forming silicon dioxide layer 203A includes forming to a thickness sufficiently low to not reflect back laser energy during a laser ablation process.
- forming silicon dioxide layer 203A includes forming to a thickness sufficiently high to act as an ablation stop layer during a laser ablation process.
- forming silicon dioxide layer 203 A includes forming the layer to have a thickness approximately in the range of 1 - 50 nanometers.
- forming silicon dioxide layer 203 A includes forming the layer to have a thickness
- the method of fabricating a back-contact solar cell also includes forming, by laser ablation 206, a plurality of contacts holes 208 in dielectric material stack 204, each of the contact holes 208 exposing a portion of poly-crystalline material layer 202.
- forming the plurality of contact holes 208 is performed without the use of a patterned mask.
- forming the plurality of contact holes 208 includes ablating with a laser having a wavelength approximately at, or less than, 1064 nanometers.
- the method of fabricating a back-contact solar cell also includes forming conductive contacts 210 in the plurality of contact holes 208.
- FIG. 3A illustrates a cross-sectional view of a back-contact solar cell, in accordance with an embodiment of the present invention.
- a back-contact solar cell 300 includes a poly- crystalline material layer 302A + 302B disposed above a single-crystalline substrate 300.
- a dielectric material stack 304 is disposed above poly-crystalline material layer 302A + 302B.
- a plurality of conductive contacts 310 is disposed in dielectric material stack 304 and coupled directly to a portion of poly-crystalline material layer 302A + 302B.
- a recast poly signature 320 is disposed in poly-crystalline material layer 302A + 302B and is in alignment with one of the plurality of conductive contacts 310.
- poly- crystalline material layer 302A + 302B is a layer of poly-crystalline silicon
- single-crystalline substrate 300 is a single-crystalline silicon substrate.
- the layer of poly-crystalline silicon is disposed directly on a dielectric film 301, and dielectric film 301 is disposed directly on single-crystalline silicon substrate 300, as depicted in Figure 3A.
- the layer of poly- crystalline silicon includes both N-type and P-type doped regions, 302A + 302B, as is also depicted in Figure 3A.
- dielectric material stack 304 includes a silicon dioxide layer 303A disposed directly on poly-crystalline material layer 302A + 302B, and a silicon nitride layer 303B disposed directly on silicon dioxide layer 303A, as depicted in Figure 3A.
- silicon dioxide layer 303A has a thickness approximately in the range of 5 - 15 nanometers.
- each of the plurality of conductive contacts 310 is round in shape.
- a non- poly-crystalline absorbing material is formed instead such as, but not limited to an amorphous layer, a polymer layer, or a multi-crystalline layer.
- a multi-crystalline substrate is used in its place.
- a trench or gap is present between the P and N diffused regions, e.g., in the case of one embodiment of a back-contact design.
- a single dielectric material 303B with a thickness approximately in the range of 5-15 nanometers is used, and layer 303A is excluded.
- a back-contact solar cell having a recast poly signature may be formed when contact holes in the back-contact solar cell are formed by a laser ablation process.
- Figure 4 illustrates a flowchart 400 representing operations in a method of fabricating a back-contact solar cell, in accordance with an embodiment of the present invention.
- a method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate.
- forming the poly-crystalline material layer above the single-crystalline substrate includes forming a layer of poly-crystalline silicon above a single-crystalline silicon substrate.
- forming the layer of poly-crystalline silicon above the single-crystalline silicon substrate includes forming the layer of poly- crystalline silicon directly on a dielectric film, the dielectric film formed directly on the single-crystalline silicon substrate, and forming both N-type and P-type doped regions in the layer of poly-crystalline silicon.
- a non-poly-crystalline absorbing material is formed instead such as, but not limited to an amorphous layer, a polymer layer, or a multi-crystalline layer.
- a multi-crystalline substrate is used in its place.
- a trench or gap is present between the P and N diffused regions, e.g., in the case of one embodiment of a back-contact design.
- the method of fabricating a back-contact solar cell also includes forming a dielectric material stack above the poly-crystalline material layer.
- forming the dielectric material stack above the poly-crystalline material layer includes forming a silicon dioxide layer directly on the poly-crystalline material layer, and forming a silicon nitride layer directly on the silicon dioxide layer.
- forming the silicon dioxide layer includes forming the layer to have a thickness approximately in the range of 1 - 50 nanometers.
- forming the silicon dioxide layer includes forming the layer to have a thickness approximately in the range of 5 - 15 nanometers.
- the method of fabricating a back-contact solar cell also includes forming a recast poly signature in the poly- crystalline material layer.
- each of the plurality of conductive contacts is round in shape.
- the method of fabricating a back-contact solar cell also includes forming a plurality of conductive contacts in the dielectric material stack and coupled directly to a portion of the poly-crystalline material layer, one of the conductive contacts in alignment with the recast poly signature.
- forming the recast poly signature includes ablating with a laser having a wavelength approximately at, or less than, 1064 nanometers.
- poly-crystalline layer when referring to a polycrystalline silicon layer, is intended to also cover material that can be described as amorphous- or a-silicon. It is also to be understood that, instead of or in addition to forming N-type and P-type doped regions in the poly-crystalline layer, such regions can instead be formed directly in a single crystalline substrate. It is also to be understood that a variety of laser pulse periodicities may be used for ablation. However, in an embodiment, laser ablation is performed with laser pulse lengths in the pico- to nano-second range.
- a method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate.
- a dielectric material stack is formed above the poly-crystalline material layer.
- a plurality of contacts holes is formed in the dielectric material stack by laser ablation, each of the contact holes exposing a portion of the poly-crystalline material layer.
- Conductive contacts are formed in the plurality of contact holes.
- forming the plurality of contact holes is performed without the use of a patterned mask.
- forming the plurality of contact holes includes ablating with a laser having a wavelength approximately at, or less than, 1064 nanometers.
- forming the poly-crystalline material layer above the single-crystalline substrate includes forming a layer of poly-crystalline silicon above a single-crystalline silicon substrate.
Landscapes
- Photovoltaic Devices (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201080054693.2A CN102640300B (zh) | 2009-12-01 | 2010-10-01 | 使用激光烧蚀的太阳能电池的接触形成 |
| EP10834898.8A EP2507844B1 (en) | 2009-12-01 | 2010-10-01 | Solar cell contact formation using laser ablation |
| EP23210934.8A EP4300598B1 (en) | 2009-12-01 | 2010-10-01 | Solar cell contact formation using laser ablation |
| EP20165212.0A EP3723141B1 (en) | 2009-12-01 | 2010-10-01 | Solar cell contact formation using laser ablation |
| PH1/2012/500956A PH12012500956A1 (en) | 2009-12-01 | 2010-10-01 | Solar cell contact formation using laser ablation |
| JP2012542005A JP5726892B2 (ja) | 2009-12-01 | 2010-10-01 | レーザアブレーションを利用する、太陽電池のコンタクトの形成 |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US26565209P | 2009-12-01 | 2009-12-01 | |
| US61/265,652 | 2009-12-01 | ||
| US12/895,437 | 2010-09-30 | ||
| US12/895,437 US8324015B2 (en) | 2009-12-01 | 2010-09-30 | Solar cell contact formation using laser ablation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2011068590A2 true WO2011068590A2 (en) | 2011-06-09 |
| WO2011068590A3 WO2011068590A3 (en) | 2011-08-04 |
Family
ID=44067930
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2010/051178 Ceased WO2011068590A2 (en) | 2009-12-01 | 2010-10-01 | Solar cell contact formation using laser ablation |
Country Status (7)
| Country | Link |
|---|---|
| US (6) | US8324015B2 (enExample) |
| EP (3) | EP2507844B1 (enExample) |
| JP (3) | JP5726892B2 (enExample) |
| CN (2) | CN102640300B (enExample) |
| MY (1) | MY155779A (enExample) |
| PH (1) | PH12012500956A1 (enExample) |
| WO (1) | WO2011068590A2 (enExample) |
Families Citing this family (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170005206A1 (en) * | 2007-10-06 | 2017-01-05 | Solexel, Inc. | Patterning of silicon oxide layers using pulsed laser ablation |
| US8242354B2 (en) * | 2008-12-04 | 2012-08-14 | Sunpower Corporation | Backside contact solar cell with formed polysilicon doped regions |
| US8324015B2 (en) * | 2009-12-01 | 2012-12-04 | Sunpower Corporation | Solar cell contact formation using laser ablation |
| WO2012092301A2 (en) * | 2010-12-29 | 2012-07-05 | Intevac, Inc. | Method and apparatus for masking substrates for deposition |
| US8658458B2 (en) * | 2011-06-15 | 2014-02-25 | Varian Semiconductor Equipment Associates, Inc. | Patterned doping for polysilicon emitter solar cells |
| US8692111B2 (en) * | 2011-08-23 | 2014-04-08 | Sunpower Corporation | High throughput laser ablation processes and structures for forming contact holes in solar cells |
| EP2579317A1 (en) * | 2011-10-07 | 2013-04-10 | Total SA | Method of manufacturing a solar cell with local back contacts |
| WO2013062741A1 (en) * | 2011-10-28 | 2013-05-02 | Applied Materials, Inc. | Back contact through-holes formation process for solar cell fabrication |
| US20130199606A1 (en) * | 2012-02-06 | 2013-08-08 | Applied Materials, Inc. | Methods of manufacturing back surface field and metallized contacts on a solar cell device |
| DE102012205966A1 (de) * | 2012-04-12 | 2013-10-17 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Dünnschicht-Solarmoduls |
| CN105190903B (zh) * | 2013-03-15 | 2017-07-14 | 太阳能公司 | 太阳能电池降低的接触电阻及延长的寿命 |
| EP4092757A1 (en) | 2013-04-03 | 2022-11-23 | Lg Electronics Inc. | Method for fabricating a solar cell |
| KR101613843B1 (ko) * | 2013-04-23 | 2016-04-20 | 엘지전자 주식회사 | 태양 전지 및 이의 제조 방법 |
| US9768343B2 (en) * | 2013-04-29 | 2017-09-19 | OB Realty, LLC. | Damage free laser patterning of transparent layers for forming doped regions on a solar cell substrate |
| KR102045001B1 (ko) * | 2013-06-05 | 2019-12-02 | 엘지전자 주식회사 | 태양 전지 및 이의 제조 방법 |
| KR101622089B1 (ko) * | 2013-07-05 | 2016-05-18 | 엘지전자 주식회사 | 태양 전지 및 이의 제조 방법 |
| KR101620431B1 (ko) * | 2014-01-29 | 2016-05-12 | 엘지전자 주식회사 | 태양 전지 및 이의 제조 방법 |
| KR101569415B1 (ko) | 2014-06-09 | 2015-11-16 | 엘지전자 주식회사 | 태양 전지의 제조 방법 |
| KR102219804B1 (ko) | 2014-11-04 | 2021-02-24 | 엘지전자 주식회사 | 태양 전지 및 그의 제조 방법 |
| JP6219913B2 (ja) | 2014-11-28 | 2017-10-25 | エルジー エレクトロニクス インコーポレイティド | 太陽電池及びその製造方法 |
| US10535790B2 (en) * | 2015-06-25 | 2020-01-14 | Sunpower Corporation | One-dimensional metallization for solar cells |
| KR102272433B1 (ko) | 2015-06-30 | 2021-07-05 | 엘지전자 주식회사 | 태양 전지 및 이의 제조 방법 |
| KR102600379B1 (ko) * | 2015-12-21 | 2023-11-10 | 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 | 태양 전지와 그 제조 방법 |
| KR102526398B1 (ko) * | 2016-01-12 | 2023-04-27 | 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 | 태양 전지 및 이의 제조 방법 |
| US20170236972A1 (en) * | 2016-02-12 | 2017-08-17 | Lg Electronics Inc. | Solar cell and method of manufacturing the same |
| USD822890S1 (en) | 2016-09-07 | 2018-07-10 | Felxtronics Ap, Llc | Lighting apparatus |
| US10775030B2 (en) | 2017-05-05 | 2020-09-15 | Flex Ltd. | Light fixture device including rotatable light modules |
| USD832494S1 (en) | 2017-08-09 | 2018-10-30 | Flex Ltd. | Lighting module heatsink |
| USD872319S1 (en) | 2017-08-09 | 2020-01-07 | Flex Ltd. | Lighting module LED light board |
| USD846793S1 (en) | 2017-08-09 | 2019-04-23 | Flex Ltd. | Lighting module locking mechanism |
| USD833061S1 (en) | 2017-08-09 | 2018-11-06 | Flex Ltd. | Lighting module locking endcap |
| USD862777S1 (en) | 2017-08-09 | 2019-10-08 | Flex Ltd. | Lighting module wide distribution lens |
| USD877964S1 (en) | 2017-08-09 | 2020-03-10 | Flex Ltd. | Lighting module |
| USD832495S1 (en) | 2017-08-18 | 2018-10-30 | Flex Ltd. | Lighting module locking mechanism |
| USD862778S1 (en) | 2017-08-22 | 2019-10-08 | Flex Ltd | Lighting module lens |
| USD888323S1 (en) | 2017-09-07 | 2020-06-23 | Flex Ltd | Lighting module wire guard |
| KR102350960B1 (ko) * | 2019-04-25 | 2022-01-14 | 엘지전자 주식회사 | 태양전지의 제조 방법 |
| US12329704B2 (en) | 2021-08-23 | 2025-06-17 | Medline Industries, Lp | Absorbent repositioning pad and method |
| CN117954512A (zh) | 2023-10-09 | 2024-04-30 | 晶科能源(海宁)有限公司 | 太阳能电池及光伏组件 |
Family Cites Families (57)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4626613A (en) * | 1983-12-23 | 1986-12-02 | Unisearch Limited | Laser grooved solar cell |
| US4900695A (en) * | 1986-12-17 | 1990-02-13 | Hitachi, Ltd. | Semiconductor integrated circuit device and process for producing the same |
| JP2706113B2 (ja) * | 1988-11-25 | 1998-01-28 | 工業技術院長 | 光電変換素子 |
| US5053083A (en) * | 1989-05-08 | 1991-10-01 | The Board Of Trustees Of The Leland Stanford Junior University | Bilevel contact solar cells |
| US5011565A (en) * | 1989-12-06 | 1991-04-30 | Mobil Solar Energy Corporation | Dotted contact solar cell and method of making same |
| JP2798769B2 (ja) * | 1990-02-22 | 1998-09-17 | 三洋電機株式会社 | 薄膜トランジスタの製造方法 |
| US5258077A (en) * | 1991-09-13 | 1993-11-02 | Solec International, Inc. | High efficiency silicon solar cells and method of fabrication |
| US5738731A (en) * | 1993-11-19 | 1998-04-14 | Mega Chips Corporation | Photovoltaic device |
| US5456763A (en) * | 1994-03-29 | 1995-10-10 | The Regents Of The University Of California | Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon |
| JP3193287B2 (ja) * | 1996-02-28 | 2001-07-30 | シャープ株式会社 | 太陽電池 |
| JPH10229211A (ja) * | 1997-02-18 | 1998-08-25 | Hitachi Ltd | 光電変換装置およびその製造方法 |
| DE19741832A1 (de) * | 1997-09-23 | 1999-03-25 | Inst Solarenergieforschung | Verfahren zur Herstellung einer Solarzelle und Solarzelle |
| US6126565A (en) | 1999-03-31 | 2000-10-03 | Dana Corporation | Method for controlling flow of lubrication in axle assembly and axle assembly with selectively adjustable drain-back spacer |
| DE10046170A1 (de) * | 2000-09-19 | 2002-04-04 | Fraunhofer Ges Forschung | Verfahren zur Herstellung eines Halbleiter-Metallkontaktes durch eine dielektrische Schicht |
| JP2003298078A (ja) | 2002-03-29 | 2003-10-17 | Ebara Corp | 光起電力素子 |
| US7388147B2 (en) * | 2003-04-10 | 2008-06-17 | Sunpower Corporation | Metal contact structure for solar cell and method of manufacture |
| US20050172996A1 (en) * | 2004-02-05 | 2005-08-11 | Advent Solar, Inc. | Contact fabrication of emitter wrap-through back contact silicon solar cells |
| US8049669B2 (en) * | 2004-03-26 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising circuit between first and second conducting wires |
| DE102004050269A1 (de) * | 2004-10-14 | 2006-04-20 | Institut Für Solarenergieforschung Gmbh | Verfahren zur Kontakttrennung elektrisch leitfähiger Schichten auf rückkontaktierten Solarzellen und Solarzelle |
| US20060130891A1 (en) * | 2004-10-29 | 2006-06-22 | Carlson David E | Back-contact photovoltaic cells |
| US8129822B2 (en) * | 2006-10-09 | 2012-03-06 | Solexel, Inc. | Template for three-dimensional thin-film solar cell manufacturing and methods of use |
| US8420435B2 (en) * | 2009-05-05 | 2013-04-16 | Solexel, Inc. | Ion implantation fabrication process for thin-film crystalline silicon solar cells |
| US8399331B2 (en) * | 2007-10-06 | 2013-03-19 | Solexel | Laser processing for high-efficiency thin crystalline silicon solar cell fabrication |
| FR2880989B1 (fr) * | 2005-01-20 | 2007-03-09 | Commissariat Energie Atomique | Dispositif semi-conducteur a heterojonctions et a structure inter-digitee |
| EP1763086A1 (en) * | 2005-09-09 | 2007-03-14 | Interuniversitair Micro-Elektronica Centrum | Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method |
| US7279362B2 (en) * | 2005-03-31 | 2007-10-09 | Intel Corporation | Semiconductor wafer coat layers and methods therefor |
| DE102005040871A1 (de) * | 2005-04-16 | 2006-10-19 | Institut Für Solarenergieforschung Gmbh | Rückkontaktierte Solarzelle und Verfahren zu deren Herstellung |
| US7468485B1 (en) * | 2005-08-11 | 2008-12-23 | Sunpower Corporation | Back side contact solar cell with doped polysilicon regions |
| US20070137692A1 (en) | 2005-12-16 | 2007-06-21 | Bp Corporation North America Inc. | Back-Contact Photovoltaic Cells |
| US8084684B2 (en) * | 2006-10-09 | 2011-12-27 | Solexel, Inc. | Three-dimensional thin-film solar cells |
| JP2009152222A (ja) * | 2006-10-27 | 2009-07-09 | Kyocera Corp | 太陽電池素子の製造方法 |
| US7705237B2 (en) * | 2006-11-27 | 2010-04-27 | Sunpower Corporation | Solar cell having silicon nano-particle emitter |
| US20080202577A1 (en) * | 2007-02-16 | 2008-08-28 | Henry Hieslmair | Dynamic design of solar cell structures, photovoltaic modules and corresponding processes |
| EP2135292A2 (en) * | 2007-03-16 | 2009-12-23 | BP Corporation North America Inc. | Solar cells |
| JP2008283023A (ja) | 2007-05-11 | 2008-11-20 | Mitsubishi Heavy Ind Ltd | 光電変換装置の製造方法 |
| JP5230153B2 (ja) | 2007-09-18 | 2013-07-10 | 三菱重工業株式会社 | 光電変換装置の製造方法 |
| KR101293162B1 (ko) * | 2007-11-09 | 2013-08-12 | 선프림, 리미티드 | 저-비용 태양 전지 및 그 제조 방법 |
| US8198528B2 (en) * | 2007-12-14 | 2012-06-12 | Sunpower Corporation | Anti-reflective coating with high optical absorption layer for backside contact solar cells |
| US7820540B2 (en) * | 2007-12-21 | 2010-10-26 | Palo Alto Research Center Incorporated | Metallization contact structures and methods for forming multiple-layer electrode structures for silicon solar cells |
| WO2009094575A2 (en) * | 2008-01-24 | 2009-07-30 | Applied Materials, Inc. | Buried insulator isolation for solar cell contacts |
| US20090188553A1 (en) * | 2008-01-25 | 2009-07-30 | Emat Technology, Llc | Methods of fabricating solar-cell structures and resulting solar-cell structures |
| KR100864062B1 (ko) * | 2008-02-22 | 2008-10-16 | 한국철강 주식회사 | 태양전지 모듈 패터닝 장치 |
| KR101155343B1 (ko) * | 2008-02-25 | 2012-06-11 | 엘지전자 주식회사 | 백 콘택 태양전지의 제조 방법 |
| US7833808B2 (en) * | 2008-03-24 | 2010-11-16 | Palo Alto Research Center Incorporated | Methods for forming multiple-layer electrode structures for silicon photovoltaic cells |
| TW201019482A (en) * | 2008-04-09 | 2010-05-16 | Applied Materials Inc | Simplified back contact for polysilicon emitter solar cells |
| CN101884116A (zh) * | 2008-04-17 | 2010-11-10 | Lg电子株式会社 | 太阳能电池及其制造方法 |
| US7851698B2 (en) * | 2008-06-12 | 2010-12-14 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
| US20100071765A1 (en) * | 2008-09-19 | 2010-03-25 | Peter Cousins | Method for fabricating a solar cell using a direct-pattern pin-hole-free masking layer |
| US8242354B2 (en) | 2008-12-04 | 2012-08-14 | Sunpower Corporation | Backside contact solar cell with formed polysilicon doped regions |
| CN101447518A (zh) * | 2008-12-31 | 2009-06-03 | 江苏艾德太阳能科技有限公司 | 一种背点接触异质结太阳能电池及其制造方法 |
| EP2422374A4 (en) | 2009-04-21 | 2016-09-14 | Tetrasun Inc | METHOD FOR PRODUCING STRUCTURES FOR A SOLAR CELL |
| EP2422377A4 (en) | 2009-04-22 | 2013-12-04 | Tetrasun Inc | Localized metal contacts by localized laser assisted conversion of functional films in solar cells |
| US8324015B2 (en) | 2009-12-01 | 2012-12-04 | Sunpower Corporation | Solar cell contact formation using laser ablation |
| WO2013062741A1 (en) | 2011-10-28 | 2013-05-02 | Applied Materials, Inc. | Back contact through-holes formation process for solar cell fabrication |
| DE102012205966A1 (de) | 2012-04-12 | 2013-10-17 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Dünnschicht-Solarmoduls |
| CN105190903B (zh) | 2013-03-15 | 2017-07-14 | 太阳能公司 | 太阳能电池降低的接触电阻及延长的寿命 |
| US9768343B2 (en) | 2013-04-29 | 2017-09-19 | OB Realty, LLC. | Damage free laser patterning of transparent layers for forming doped regions on a solar cell substrate |
-
2010
- 2010-09-30 US US12/895,437 patent/US8324015B2/en active Active
- 2010-10-01 WO PCT/US2010/051178 patent/WO2011068590A2/en not_active Ceased
- 2010-10-01 MY MYPI2012002257A patent/MY155779A/en unknown
- 2010-10-01 CN CN201080054693.2A patent/CN102640300B/zh active Active
- 2010-10-01 EP EP10834898.8A patent/EP2507844B1/en active Active
- 2010-10-01 EP EP20165212.0A patent/EP3723141B1/en active Active
- 2010-10-01 EP EP23210934.8A patent/EP4300598B1/en active Active
- 2010-10-01 PH PH1/2012/500956A patent/PH12012500956A1/en unknown
- 2010-10-01 CN CN201710165852.XA patent/CN107134498B/zh active Active
- 2010-10-01 JP JP2012542005A patent/JP5726892B2/ja active Active
-
2012
- 2012-11-05 US US13/669,147 patent/US8785236B2/en active Active
-
2014
- 2014-07-17 US US14/334,401 patent/US9087939B2/en active Active
-
2015
- 2015-04-01 JP JP2015075493A patent/JP6089058B2/ja active Active
- 2015-07-07 US US14/793,356 patent/US10211349B2/en active Active
-
2017
- 2017-02-06 JP JP2017019684A patent/JP6648358B2/ja active Active
-
2019
- 2019-02-14 US US16/276,381 patent/US11152518B2/en active Active
-
2021
- 2021-10-12 US US17/498,979 patent/US12191404B2/en active Active
Non-Patent Citations (1)
| Title |
|---|
| None |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12191404B2 (en) | Solar cell having conductive contacts in alignment with recast signatures | |
| US9768343B2 (en) | Damage free laser patterning of transparent layers for forming doped regions on a solar cell substrate | |
| US9236510B2 (en) | Patterning of silicon oxide layers using pulsed laser ablation | |
| US9455362B2 (en) | Laser irradiation aluminum doping for monocrystalline silicon substrates | |
| US20120225515A1 (en) | Laser doping techniques for high-efficiency crystalline semiconductor solar cells | |
| US20130164883A1 (en) | Laser annealing applications in high-efficiency solar cells | |
| KR20180042463A (ko) | 태양 전지의 제조를 위한 공정 및 구조물 | |
| EP2659518A2 (en) | Laser processing methods for photovoltaic solar cells | |
| EP2819181A1 (en) | Laser annealing applications in high-efficiency solar cells | |
| Harley et al. | Solar cell having a plurality of conductive contacts |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201080054693.2 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10834898 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012542005 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12012500956 Country of ref document: PH |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010834898 Country of ref document: EP |