WO2011068283A1 - Réacteur de dépôt chimique en phase vapeur comportant une couche barrière de chaleur rayonnante pour améliorer le rendement énergétique - Google Patents

Réacteur de dépôt chimique en phase vapeur comportant une couche barrière de chaleur rayonnante pour améliorer le rendement énergétique Download PDF

Info

Publication number
WO2011068283A1
WO2011068283A1 PCT/KR2010/000924 KR2010000924W WO2011068283A1 WO 2011068283 A1 WO2011068283 A1 WO 2011068283A1 KR 2010000924 W KR2010000924 W KR 2010000924W WO 2011068283 A1 WO2011068283 A1 WO 2011068283A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
radiation
radiant heat
cvd reactor
polysilicon
Prior art date
Application number
PCT/KR2010/000924
Other languages
English (en)
Korean (ko)
Inventor
이종규
김종록
이상우
씨 원터톤라일
Original Assignee
웅진폴리실리콘주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웅진폴리실리콘주식회사 filed Critical 웅진폴리실리콘주식회사
Publication of WO2011068283A1 publication Critical patent/WO2011068283A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Definitions

  • Polycrystalline silicon or polysilicon is a very important raw material used in the electronics industry.
  • Polysilicon is the starting material used in the production of monocrystalline or polycrystalline silicon ingots used in the semiconductor and solar power industries.
  • Semiconductor grade polysilicon contains impurities with electronic activity at parts per billion (ppb) or parts per trillion (ppt).
  • the coolant inlet tube 48a and the outlet tube 48b are also connected to the substrate 40 to allow the coolant to flow so as not to exceed a predetermined temperature.
  • the substrate 40 is also provided with a gas inlet 42 and a gas outlet 44.
  • the silicon-containing gas compound is introduced into the reaction chamber 25 through the gas inlet 42 connected to the silicon-containing gas source 46, and the gas subjected to the CVD reaction is discharged out of the reaction chamber 25 through the gas outlet 44. do.
  • two feed throughs 38 extend out of the substrate 40 into the reaction chamber 25, the ends of which are for example graphite 39, supported by a rod support 37. This is connected.
  • One or more sets of rod filaments 34 are provided in the reaction chamber 25.
  • the present invention provides a CVD reactor capable of producing large diameter polysilicon rods by reducing the net energy loss of the polysilicon rods during the CVD process, thereby reducing the temperature gradient of the entire inside of the polysilicon rods and also reducing the tensile stress. To provide for other purposes.
  • the said radiation shield is made to be maintained at 400 degreeC or more during the said CVD reaction.
  • the radiation shielding film is preferably made such that, during the CVD reaction, the temperature of the surface of the surface thereof facing the heated rod is maintained at 400 ° C or higher.
  • the radiation shield reduces thermal energy loss from the polysilicon rod by at least one of the following effects: thermal barrier effect by high temperature radiation (> 400 ° C.), multilayer barrier thermal barrier effect, low emissivity of the barrier material. Barrier effect, and thermal insulation effect by reducing heat conduction by barrier thickness.
  • thermal barrier effect by high temperature radiation (> 400 ° C.)
  • multilayer barrier thermal barrier effect low emissivity of the barrier material.
  • Barrier effect and thermal insulation effect by reducing heat conduction by barrier thickness.
  • the efficiency of the barrier membrane is highly dependent on the membrane position within the reactor.
  • the barrier must be positioned in such a way that its heat radiation source opposing side (the side facing the heated rod) is kept hot (high temperature) by intercepting radiant heat energy from the heated rod.
  • FIG. 5 is a cross-sectional view showing the structure of a CVD reactor in which a multi-layered radiation shield in accordance with another embodiment of the present invention covers a portion of the cooling substrate wall in the CVD reactor.
  • FIG. 12 is a plan view taken along the cutting line C-C shown in FIG. 11.
  • ⁇ 1 spectroscopic surface emissivity of the rod 32
  • the barrier film can maintain its own temperature at 400 ° C or higher. For example, consider the case of using 100 layers of loosely overlapped barriers, which act as if made of 50 individual barriers completely spaced between the barriers.
  • the thermal energy blocking efficiency of the radiation shield according to the present invention the following three embodiments were performed.
  • the conventional CVD reactor shown in FIG. 1 in which no radiation heat shielding film was installed in the Siemens CVD reactor was used.
  • the diameter of the polysilicon rod was 115 mm
  • electrical energy was consumed by 133 kW in the CVD reactor (comparative example) and the center temperature of the polysilicon rod rose to 1233 ° C.

Abstract

L'invention concerne un réacteur de dépôt chimique en phase vapeur Siemens. Un filament tige est installé dans le réacteur, et une ou plusieurs couches barrière de chaleur rayonnante est/sont installée(s) entre des parois de refroidissement. La couche barrière de chaleur rayonnante absorbe la chaleur rayonnante émise par une tige de silicium polycristallin chauffée dans un processus de dépôt chimique en phase vapeur, et fait rayonner à nouveau la chaleur absorbée (qui chauffe la couche barrière de chaleur rayonnante à une température égale ou supérieure à 400˚C) en direction de la tige de silicium polycristallin et des deux faces des parois de refroidissement afin de protéger lesdites parois contre la chaleur. La perte d'énergie nette de la tige de silicium polycristallin est réduite selon la quantité d'énergie rayonnée en direction de la tige de silicium polycristallin, ce qui permet d'économiser et de conserver une quantité importante d'énergie électrique pour le réacteur de dépôt chimique en phase vapeur. La réduction d'énergie est considérablement accrue quand on utilise de multiples couches barrières présentant une faible émissivité d'écran et une faible conductivité thermique d'écran. La pureté du silicium polycristallin fabriqué peut être maintenue grâce à l'utilisation de graphite très pur, qui est stable dans des conditions de température élevées, de graphite revêtu de carbure de silicium (SiC), de silicium ou d'autres matières d'écran thermique.
PCT/KR2010/000924 2009-12-02 2010-02-12 Réacteur de dépôt chimique en phase vapeur comportant une couche barrière de chaleur rayonnante pour améliorer le rendement énergétique WO2011068283A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0118543 2009-12-02
KR1020090118543A KR101115697B1 (ko) 2009-12-02 2009-12-02 에너지 효율을 높여주는 복사열 차단막을 갖는 화학기상증착 반응기

Publications (1)

Publication Number Publication Date
WO2011068283A1 true WO2011068283A1 (fr) 2011-06-09

Family

ID=43035010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000924 WO2011068283A1 (fr) 2009-12-02 2010-02-12 Réacteur de dépôt chimique en phase vapeur comportant une couche barrière de chaleur rayonnante pour améliorer le rendement énergétique

Country Status (4)

Country Link
US (1) US20110126761A1 (fr)
EP (1) EP2330232A1 (fr)
KR (1) KR101115697B1 (fr)
WO (1) WO2011068283A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768148B1 (ko) * 2006-05-22 2007-10-17 한국화학연구원 금속 코어수단을 이용한 다결정 실리콘 봉의 제조방법
WO2013006522A1 (fr) * 2011-07-01 2013-01-10 Kagan Ceran Cartouche de dépôt pour production de matériaux selon le processus de dépôt chimique en phase vapeur
US8778079B2 (en) * 2007-10-11 2014-07-15 Valence Process Equipment, Inc. Chemical vapor deposition reactor
US20110159214A1 (en) * 2008-03-26 2011-06-30 Gt Solar, Incorporated Gold-coated polysilicon reactor system and method
KR20130057424A (ko) * 2010-04-12 2013-05-31 엠이엠씨 일렉트로닉 머티리얼스 쏘시에떼 퍼 아찌오니 열복사 차폐체를 포함하는 지멘스 반응기용 벨 자
KR101279414B1 (ko) * 2011-08-17 2013-06-27 (주)세미머티리얼즈 폴리실리콘 제조장치 및 폴리실리콘 제조방법
DE102011115782B4 (de) * 2011-10-12 2013-04-25 Centrotherm Sitec Gmbh Reaktor mit beschichtetem Reaktorgefäß und Beschichtungsverfahren
KR101146864B1 (ko) * 2011-10-27 2012-05-16 웅진폴리실리콘주식회사 폴리실리콘 제조용 반응기
KR101420338B1 (ko) * 2012-03-12 2014-07-16 한국실리콘주식회사 씨브이디 반응장치용 절연 슬리브 및 그 절연 슬리브가 구비된 씨브이디 반응장치
KR101380767B1 (ko) * 2012-04-25 2014-04-02 한국실리콘주식회사 폴리실리콘 제조용 화학기상증착 반응기
JP2015535419A (ja) * 2012-08-13 2015-12-10 トライアングル リソース ホールディング (スイッツァランド) アーゲーTriangle Resource Holding (Switzerland) Ag 熱光起電力装置用エネルギー変換・伝達配置、及び、そのエネルギー変換・伝達配置を含む熱光起電力装置
EP2883002A1 (fr) * 2012-08-13 2015-06-17 Triangle Resource Holding (Switzerland) AG Structure multicouche pour dispositifs thermophotovoltaïques et dispositifs thermophotovoltaïques comprenant une telle structure
KR101311739B1 (ko) * 2013-01-14 2013-10-14 주식회사 아이제이피에스 폴리실리콘 제조장치
CN103342362A (zh) * 2013-07-12 2013-10-09 新特能源股份有限公司 一种多晶硅cvd反应器隔热罩
KR101654148B1 (ko) * 2013-09-27 2016-09-05 한화케미칼 주식회사 폴리실리콘 제조용 화학 기상 증착 반응기
US11015244B2 (en) * 2013-12-30 2021-05-25 Advanced Material Solutions, Llc Radiation shielding for a CVD reactor
US20160122875A1 (en) * 2014-11-05 2016-05-05 Rec Silicon Inc Chemical vapor deposition reactor with filament holding assembly
KR101554436B1 (ko) 2014-12-11 2015-09-18 이재명 피드 스루 냉각장치
CN107109641B (zh) * 2014-12-23 2019-06-18 瑞科硅公司 在热分解反应器中利用反射能管理温度分布的设备和方法
CN104714443B (zh) * 2014-12-30 2017-08-15 北京京仪椿树整流器有限责任公司 一种多晶硅还原调功电源及其电气控制系统
WO2016116384A1 (fr) * 2015-01-19 2016-07-28 Oerlikon Surface Solutions Ag, Pfäffikon Chambre à vide munie d'une structure particulière permettant d'augmenter l'évacuation de la chaleur
KR101895538B1 (ko) 2015-09-08 2018-09-05 한화케미칼 주식회사 폴리실리콘 제조 장치
MY185420A (en) * 2015-09-08 2021-05-19 Hanwha Chemical Corp Polysilicon manufacturing apparatus
KR101719952B1 (ko) * 2016-01-29 2017-03-27 주식회사 효성 탄화수소 스트림 가열장치
JP7020076B2 (ja) * 2016-11-24 2022-02-16 三菱マテリアル株式会社 多結晶シリコンロッド製造用反応炉の製造方法及びこの反応炉を用いた多結晶シリコンロッドの製造方法
WO2019025559A1 (fr) * 2017-08-02 2019-02-07 Oerlikon Surface Solutions Ag, Pfäffikon Dispositif de revêtement pour réaliser un revêtement à basse température très efficace
CN207331058U (zh) * 2017-08-25 2018-05-08 京东方科技集团股份有限公司 一种镀膜装置
TWI672388B (zh) * 2018-06-21 2019-09-21 漢民科技股份有限公司 用於氣相沉積設備之反應腔室
CN111575790A (zh) * 2020-05-14 2020-08-25 中环领先半导体材料有限公司 一种降低硅单晶片多晶气相沉积崩边率的工艺
CN116815318A (zh) * 2023-06-07 2023-09-29 山西烁科晶体有限公司 一种制备高纯度SiC多晶棒的装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023520A (en) * 1975-04-28 1977-05-17 Siemens Aktiengesellschaft Reaction container for deposition of elemental silicon
US4150168A (en) * 1977-03-02 1979-04-17 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for manufacturing high-purity silicon rods
US20020014197A1 (en) * 1997-12-15 2002-02-07 Keck David W. Chemical vapor deposition system for polycrystalline silicon rod production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011877A (en) 1956-06-25 1961-12-05 Siemens Ag Production of high-purity semiconductor materials for electrical purposes
NL251143A (fr) 1959-05-04
DE1138481C2 (de) 1961-06-09 1963-05-22 Siemens Ag Verfahren zur Herstellung von Halbleiteranordnungen durch einkristalline Abscheidung von Halbleitermaterial aus der Gasphase
DE1229986B (de) * 1964-07-21 1966-12-08 Siemens Ag Vorrichtung zur Gewinnung reinen Halbleiter-materials
US4173944A (en) 1977-05-20 1979-11-13 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Silverplated vapor deposition chamber
JPH0639352B2 (ja) * 1987-09-11 1994-05-25 信越半導体株式会社 単結晶の製造装置
WO1999031013A1 (fr) 1997-12-15 1999-06-24 Advanced Silicon Materials, Inc. Systeme de depot chimique en phase vapeur permettant de produire des barreaux en silicium polycristallin
JP2001294416A (ja) 2000-04-07 2001-10-23 Mitsubishi Materials Polycrystalline Silicon Corp 多結晶シリコンの製造装置
ES2331283B1 (es) * 2008-06-25 2010-10-05 Centro De Tecnologia Del Silicio Solar, S.L. (Centsil) Reactor de deposito de silicio de gran pureza para aplicaciones fotovoltaicas.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023520A (en) * 1975-04-28 1977-05-17 Siemens Aktiengesellschaft Reaction container for deposition of elemental silicon
US4150168A (en) * 1977-03-02 1979-04-17 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for manufacturing high-purity silicon rods
US20020014197A1 (en) * 1997-12-15 2002-02-07 Keck David W. Chemical vapor deposition system for polycrystalline silicon rod production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. DEL COSO ET AL.: "Temperature homogeneity of polysilicon rods a Siemens reactor.", JOURNAL OF CRYSTAL GROWTH, vol. 299, 2007, pages 165 - 170, XP005869991, DOI: doi:10.1016/j.jcrysgro.2006.12.004 *

Also Published As

Publication number Publication date
US20110126761A1 (en) 2011-06-02
KR20110061984A (ko) 2011-06-10
KR101115697B1 (ko) 2012-03-06
EP2330232A1 (fr) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2011068283A1 (fr) Réacteur de dépôt chimique en phase vapeur comportant une couche barrière de chaleur rayonnante pour améliorer le rendement énergétique
US10081003B2 (en) Fluidized bed reactor and a process using same to produce high purity granular polysilicon
US7964155B2 (en) Apparatus for producing trichlorosilane
US7998428B2 (en) Apparatus for producing trichlorosilane
US5422088A (en) Process for hydrogenation of tetrachlorosilane
US7442824B2 (en) Process and apparatus for the hydrogenation of chlorosilanes
EP1454670B1 (fr) Production de trichlorosilane dans un dispositif comprenant des détails en SiC
TWI464292B (zh) 塗覆金之多晶矽反應器系統和方法
US4123989A (en) Manufacture of silicon on the inside of a tube
US6365225B1 (en) Cold wall reactor and method for chemical vapor deposition of bulk polysilicon
US20140335008A1 (en) Method and Apparatus for Preparation of Granular Polysilicon
US9416014B2 (en) Method for producing trichlorosilane
WO2000049199A1 (fr) Procede et appareil de depot de vapeur chimique de polysilicium
SK5872002A3 (en) Method and apparatus for chemical vapor deposition of polysilicon
US8034300B2 (en) Apparatus for producing trichlorosilane
CN102864440A (zh) 用于cvd反应器中的电极固定器的保护性装置
CN103342362A (zh) 一种多晶硅cvd反应器隔热罩
JP5633174B2 (ja) 多結晶シリコンロッド
WO2012147300A1 (fr) Dispositif de production de silicium polycristallin et procédé s'y rapportant
US9493359B2 (en) Apparatus for producing trichlorosilane
WO2010116440A1 (fr) Réacteur
CN1834286A (zh) 化学气相淀积的生长设备
EP2633096B1 (fr) Bouclier thermique pour réacteurs de production de silicium
US9145303B2 (en) Chemical vapor deposition reactor having ceramic lining for production of polysilicon
WO2010113265A1 (fr) Réacteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834698

Country of ref document: EP

Kind code of ref document: A1