WO2011068058A1 - 色素増感型太陽電池 - Google Patents

色素増感型太陽電池 Download PDF

Info

Publication number
WO2011068058A1
WO2011068058A1 PCT/JP2010/070866 JP2010070866W WO2011068058A1 WO 2011068058 A1 WO2011068058 A1 WO 2011068058A1 JP 2010070866 W JP2010070866 W JP 2010070866W WO 2011068058 A1 WO2011068058 A1 WO 2011068058A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular container
dye
transparent conductive
counter electrode
conductive film
Prior art date
Application number
PCT/JP2010/070866
Other languages
English (en)
French (fr)
Inventor
中村 雅規
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to GB1209518.8A priority Critical patent/GB2488472B/en
Priority to US13/513,423 priority patent/US9236195B2/en
Priority to JP2011514992A priority patent/JP4840540B2/ja
Priority to CN201080050404.1A priority patent/CN102714340B/zh
Publication of WO2011068058A1 publication Critical patent/WO2011068058A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2086Photoelectrochemical cells in the form of a fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to a dye-sensitized solar cell.
  • the present invention relates to a dye-sensitized solar cell having a translucent tubular container.
  • solar cells have been developed as a new energy source with little influence on the global environment.
  • solar cells using silicon semiconductors have high conversion efficiency and excellent light stability, and are widely spread.
  • high temperature and high vacuum conditions are required for manufacturing, and there is a problem that it is not easy to increase the area and the manufacturing cost is high.
  • a transparent electrode filled with an electrolyte solution and a photoelectrode made of a porous semiconductor adsorbed with a dye and a counter electrode are provided, and the dye irradiated with sunlight emits electrons.
  • a dye-sensitized solar cell that can take out electric energy by using (Patent Document 1). This type of solar cell does not require a high-vacuum chamber or the like for manufacturing, and has the advantage that it can be manufactured at low cost with less equipment burden.
  • FIG. 5 (a) is a cross-sectional view of the conventional dye-sensitized solar cell disclosed in Patent Document 1 cut along the tube axis direction
  • FIG. 5 (b) is a cross-sectional view taken along the line ZZ ′.
  • a transparent conductive layer 82, a dye-sensitized porous semiconductor layer 83 on which a dye is adsorbed, and an electrolyte layer 84 are sequentially provided on the inner surface of a pipe 81 made of a transparent material.
  • a counter electrode 85 is inserted along the tube axis. One end portion 85 b of the counter electrode 85 protrudes outward from the tube 81.
  • Electrode 85 Between the one end part 81b of the tube 81 and one end part 85b of the counter electrode 85, and between the other end part 81a of the tube 81 and the other end part 85a of the counter electrode 85 are insulated by, for example, a sealing member 86 made of epoxy resin. In addition, the electrolyte solution in the electrolyte layer 84 is prevented from leaking outside the tube 81. Lead wires 87 and 88 are connected to the counter electrode 85 and the transparent conductive layer 82, respectively.
  • the solar cell 8 When the solar cell 8 is irradiated with sunlight, the sunlight passes through the tube 81 and the transparent conductive layer 82 and reaches the dye-sensitized porous semiconductor layer 83, where a photochemical reaction occurs and the dye emits electrons.
  • the electromotive force is generated between the lead wires 87 and 88.
  • the change in the amount of power generation with respect to the incident angle of light can be greatly reduced because the container is tubular.
  • sealing of this type of dye-sensitized solar cell is performed by a sealing member made of resin as described above because it is necessary to achieve insulation.
  • the sealing member is a separate member from the container and is a separate material, it has been difficult to ensure hermeticity of sealing.
  • Sunlight is light including ultraviolet rays, and the resin is deteriorated with the use time by being exposed to the ultraviolet rays. Therefore, there has been a problem that the electrolyte filled inside leaks. Therefore, in the structure using the sealing member made of resin, there is a problem that the reliability of sealing is not sufficient.
  • an object of the present invention is to provide a dye-sensitized solar cell having a highly reliable sealing portion in which an electrolyte does not leak.
  • a dye-sensitized solar cell of the present invention includes a transparent conductive film and a semiconductor on which a dye is adsorbed, formed on the inner surface of a tubular container made of transparent glass.
  • a dye-sensitized solar cell comprising a photoelectrode composed of a film and a counter electrode provided in a tubular container in a state of being separated from the photoelectrode, and in which the electrolytic solution is sealed in the tubular container, Both ends of the tubular container are sealed with a sealed portion formed by melting and crushing the glass of the tubular container, In the sealing part on the one end side, the transparent conductive film extends, and an external lead electrically connected to the transparent conductive film is led out of the tubular container from the sealing part, A lead electrically connected to the counter electrode is led out of the tubular container from the sealing portion on the other end side.
  • the transparent conductive film and the external lead are connected by a metal foil embedded in the sealing portion on the one end side
  • the internal lead and the external lead connected to the counter electrode are connected by a metal foil embedded in the sealing part on the other end side.
  • the present invention is characterized in that the counter electrode is connected and held via an insulating member and a sealing portion on one end side where the transparent conductive film extends.
  • the present invention provides a transparent conductive film, a photoelectrode made of a semiconductor film adsorbed with a dye formed on the transparent conductive film, and a state separated from the photoelectrode on the inner surface of a tubular container made of transparent glass.
  • a dye-sensitized solar cell comprising a counter electrode provided in a tubular container, the tubular container being filled with an electrolyte, and sealed portions formed at both ends of the tubular container.
  • the sealing portion on one end side of the tubular container is formed by melting and crushing the glass of the tubular container, and the transparent conductive film extends in the sealing portion on the one end side, and the transparent conductive
  • An external lead electrically connected to the membrane is led out of the tubular container from the sealing portion
  • the sealing portion on the other end side of the tubular container has a tubular container attached to a buffer glass layer that is melt-bonded to the small diameter lead portion of the counter electrode in a state where the small diameter lead portion of the counter electrode is led out of the tubular container. Formed by melting and bonding the glass at the end of the The buffer glass has a thermal expansion coefficient larger than that of the tubular container and smaller than that of the counter electrode.
  • the sealing portion is formed by melting and crushing and bonding the glass at the end of the tubular container, so that the electrolyte filled inside does not leak. Moreover, since the sealing part is formed of glass, it does not deteriorate even when irradiated with ultraviolet rays contained in sunlight, and can be used stably over a long period of time.
  • the glass is cooled in the process of cooling after sealing. And the stress caused by the difference in thermal expansion coefficient between metals is relieved. Therefore, cracks and the like are less likely to occur in the sealing portion, and leakage of the electrolytic solution can be more reliably prevented.
  • the counter electrode is held by the sealing portions at both ends and physically connected via the insulator with the internal lead connected to the transparent conductive film, The counter electrode is held while being electrically insulated from the photoelectrode.
  • the buffer glass layer exists as an intermediate layer between the small-diameter lead portion of the counter electrode and the glass of the tubular container, so that the thermal stress resulting from the difference in expansion and contraction is alleviated. Therefore, even if the counter electrode is rod-shaped, there is no possibility that damage such as a crack will occur in the sealing portion in the cooling process after sealing. Moreover, since the sealing part is formed of glass, it does not deteriorate even when irradiated with ultraviolet rays contained in sunlight, and can be used stably over a long period of time.
  • FIG.1 (a) is sectional drawing cut
  • FIG.1 (b) is a sealing part of Fig.1 (a).
  • FIG. 1C is a cross-sectional view taken along the tube diameter direction, taken along the line AA ′ of FIG. 1A.
  • 2 (a) to 2 (c) are cross-sectional views for explaining the method of forming the sealing portion of the dye-sensitized solar cell of the embodiment of FIG. 1 in the order of steps.
  • FIGS. 5A and 5B are diagrams showing a dye-sensitized solar cell according to a conventional example
  • FIG. 5A is a cross-sectional view taken along the tube axis direction
  • FIG. 1A is a cross-sectional view of a dye-sensitized solar cell according to an embodiment of the present invention cut in the tube axis direction
  • FIG. 1B is a diagram illustrating only the sealing portion of FIG.
  • FIG. 1C is a cross-sectional view in a state rotated by 90 ° in the circumferential direction
  • FIG. 1C shows a cross-sectional view taken along the line AA ′ in FIG.
  • a transparent conductive film 12 and a photoelectrode 13 formed on the transparent conductive film 12 are sequentially provided on the inner surface of the tubular container 11. Inside the tubular container 11, a coiled counter electrode 15 is disposed along the longitudinal direction.
  • the tubular container 11 constituting the solar cell 1 is made of a translucent material made of glass, for example.
  • the cross-sectional shape of the tubular container 11 may be any shape such as a circular shape, an elliptical shape, or a rectangular shape.
  • quartz glass, soda glass, or the like is preferably used as the kind of glass constituting the tubular container 11.
  • a transparent conductive film 12 is formed on the inner peripheral surface of the tubular container 11 over the entire circumference.
  • the transparent conductive film 12 is preferably a thin film made of a metal oxide such as indium (In) -tin (Sn) composite oxide (including ITO (including those doped with fluorine)), zinc oxide (ZnO), and tin oxide. Used. Furthermore, you may comprise the transparent conductive film 12 with two or more types of materials combining these.
  • the transparent conductive film 12 can be alternatively used as a metal electrode in which a metal is formed in a mesh shape, a stripe shape, or the like so that light can partially pass therethrough.
  • the photoelectrode 13 is a semiconductor layer to which a sensitizing dye is adsorbed, and is provided in a region excluding both ends of the tubular container 11 where a sealing portion is formed.
  • the semiconductor layer is a porous thin film formed by depositing semiconductor fine particles, for example, metal oxide or metal sulfide.
  • metal oxide for example, titanium oxide, tin oxide, zinc oxide, niobium oxide, tantalum oxide, or zirconium oxide can be used as the material.
  • composite oxides such as strontium titanate, calcium titanate, and barium titanate can also be used.
  • a metal sulfide for example, zinc sulfide, lead sulfide, bismuth sulfide, etc. can be used.
  • the semiconductor layer can be formed by applying a paste containing the metal oxide and metal sulfide fine particles to the surface of the transparent conductive film and baking it.
  • a paste containing the metal oxide and metal sulfide fine particles for example, a sol-gel method, a sputtering method, a fine particle sintering method, or the like can be used.
  • the paste application method for example, a screen printing method, a doctor blade method, a squeegee method, or the like can be used.
  • the sensitizing dye adsorbed on the semiconductor layer is a dye such as a metal complex or an organic dye having absorption in the visible light region or in addition to the infrared light region.
  • a metal complex for example, metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll, hemin, or derivatives thereof, ruthenium, osmium, iron, or zinc complexes can be used.
  • organic dyes include metal-free phthalocyanine, cyanine dyes, methocyanine dyes, xanthene dyes, triphenylmethane dyes, phthalocyanine dyes, naphthalocyanine dyes, phthalo / naphthalene mixed phthalocyanine dyes, and dipyridyl ruthenium complexes.
  • Dyes, terpyridyl ruthenium complex dyes, phenanthroline ruthenium complex dyes, phenylxanthene dyes, triphenylmethane dyes, coumarin dyes, acridine dyes, or azo metal complex dyes are preferably used.
  • Sensitizing dye is attached to the surface of the semiconductor layer.
  • any form of attachment such as chemisorption, physical adsorption, or deposition may be used.
  • As a method of attaching for example, there is a method of heating after immersing a porous film forming a semiconductor layer in a solution containing a sensitizing dye.
  • Examples of the electrolyte solution 14 filled in the tubular container 11 include redox electrolytes such as I ⁇ / I 3 ⁇ , Br ⁇ / Br 3 ⁇ , and quinone / hydroquinone, such as acetonitrile, propylene carbonate, and ethylene carbonate.
  • an electrolytic solution dissolved in an electrochemically inert solvent or a mixed solvent thereof can be used.
  • an I ⁇ / I 3 ⁇ type electrolyte an ammonium salt of iodine or a mixture of lithium iodide and iodine can be used.
  • the counter electrode 15 with respect to the photoelectrode 13 for example, platinum or a conductive material such as rhodium, ruthenium, ruthenium oxide, carbon or the like formed by forming a platinum thin film on the surface of the conductive material can be used. These conductive materials are suitable because they have a catalytic ability to perform the reduction reaction of the electrolytic solution at a sufficient speed.
  • a shape formed in a rod shape or a coil shape is used as the counter electrode 15.
  • FIG. 2 is a cross-sectional view for explaining a method of forming the sealing portion of the dye-sensitized solar cell according to the present invention.
  • the transparent conductive film 12 and the photoelectrode 13 on the transparent conductive film are sequentially formed on the inner peripheral surface of the glass tube 11A for forming the tubular container.
  • the counter electrode 15 later on a part of the other end portion (left end portion in the tube axis direction in the drawing) of the glass tube 11A.
  • the electrode mount 10 is inserted into the glass tube 11A (FIG. 2 (a)).
  • the electrode mount 10 is a connection body of internal leads 16 and 16 made of metal wires, metal foils 31 and 32, and external leads 17 and 18 made of metal wires at both ends of the counter electrode 15.
  • the right end) and the internal lead 16 are connected via an insulator 19.
  • the electrode mount 10 inserted into the glass tube 11 ⁇ / b> A is held in the air independently while being pulled away from both ends and separated from the photoelectrode 13 as indicated by the left and right arrows.
  • both ends of the tubular container 11 are heated by appropriate heating means such as a burner or a local heater.
  • both ends of the glass tube 11A are heated moderately and a part thereof is melted and softened, the both ends are crushed from above and below as indicated by arrows, thereby forming the sealing portions 21 and 22 ( FIG. 2 (b)).
  • the sealing portions 21 and 22 formed by the crushing are molded into a flat plate shape, and the tubular container 11 shown in FIG. 2C is formed.
  • the other end part (left end part) of the tubular container 11 is the sealing part 21 from which the lead formed in the other end of the counter electrode 15 is derived
  • the sealing portions 21 and 22 are not configured to use a sealing member separate from the glass tube 11A as a cap or a plug, but are processed by softening the end of the glass tube 11A for forming a tubular container. Since the glass at the end of the opening melts and hardens and is in a closed state, a gap is unlikely to occur in the sealed portion, and the airtightness is high and the electric field liquid does not leak.
  • a metal foil 31 is embedded in the sealing portion 21 on the other end side (left end side), and extends from the inside of the tubular container 11 on the surface of the inner end side (right end side) portion of the counter electrode 15.
  • An internal lead 16 connected to the end (left end) is joined by welding or the like.
  • An external lead 17 projecting to the outside of the tubular container 11 is joined to the outer end (left side) of the metal foil 31 by welding or the like, like the internal lead 16. Electrical connection between the inside and outside of the tubular container 11 is made through a metal foil 31. Accordingly, it is possible to prevent the sealing portion 21 from being cracked due to thermal stress generated in the cooling process after sealing due to the large difference in thermal expansion coefficient between glass and metal.
  • the thermal stress is relaxed by being absorbed by plastic deformation of the metal foil 31.
  • the external lead 17 is a thin metal wire having a diameter of, for example, 0.3 mm or less, a sealed portion having no problem in airtightness can be formed.
  • the transparent conductive film 12 formed on the inner surface of the tubular container 11 extends in the sealing portion 22 on one end side (right end side) from which the lead of the photoelectrode 13 is led out.
  • a metal foil 32 is embedded, and an internal lead 16 extending from the inside of the tubular container 11 is joined on the surface on the inner end side (left end side) thereof.
  • An external lead 18 projecting to the outside of the tubular container 11 is joined to the outer end side (right end side) of the metal foil 31 in the same manner.
  • the transparent conductive film 12 is attached along the inner surface of the tubular container forming glass tube 11A, even when the end portion of the glass tube 11A is crushed to form the sealing portion 22, the tubular container 11 A continuous state from the body part to the sealing part 22 is maintained. Even if a part of the transparent conductive film is peeled off or discontinuous, the transparent conductive film 12 and the metal foil 32 embedded in the sealing portion 22 are crushed, The internal lead 16 and the external lead 18 are in contact with each other and are electrically connected.
  • an insulator 19 that is physically fixed and connected to one end (right end) of the counter electrode 15 is provided on the inner end (left end) of the internal lead 16 connected to the inner end (left end) portion of the metal foil 32. It is connected. The outer end portion of the internal lead 16 is joined to the surface of the metal foil 32 by welding or the like.
  • the insulator 19 is a glass member, for example, and the internal lead 16 is a metal wire. Fixing between the counter electrode 15 and the insulator 19 and between the insulator 19 and the internal lead 16 is appropriately performed by a method such as welding or winding.
  • the counter electrode 15 in the tubular container 11 is fixed by the sealing portions 21 and 22 at both ends, and is held in a state of being separated from the photoelectrode 13.
  • the counter electrode 15 is in an insulated state by being physically connected to the internal lead 16 in contact with the transparent conductive film 12 via an insulator 19.
  • FIG. 3 is a cross-sectional view for explaining a method of filling the electrolytic solution in the tubular container of the dye-sensitized solar cell according to the present invention.
  • the injection tube 23 is provided in the non-coating formation region 12 ⁇ / b> A of the tubular container 11.
  • the electrolytic solution 14 is injected from the injection tube 23 into the tubular container 11 (FIG. 3A), and after filling the tubular container 11, the end of the injection tube 23 is heated and sealed (FIG. 3).
  • 23A is a sealing tip of the injection tube 23.
  • the sealing portion of the solar cell By constructing the sealing portion of the solar cell as described above, the end portion of the tubular container is melted and solidified by glass, and is sealed airtight, so that the electrolyte filled inside may leak. Absent. Moreover, since the sealing part is formed of glass, it does not deteriorate even when irradiated with ultraviolet rays contained in sunlight, and can be used stably over a long period of time. In addition, since the inside and outside of the tubular container are electrically connected via a metal foil embedded in the sealing portion, the stress caused by the difference in the thermal expansion coefficient between glass and metal is reduced in the process of cooling after sealing. It can be relaxed. Therefore, it is possible to prevent a crack or the like from occurring in the sealing portion, and the electrolyte does not leak.
  • FIG. 4A is a cross-sectional view of a dye-sensitized solar cell according to another embodiment of the present invention cut along the tube axis direction
  • FIG. 4B is a cross-sectional view cut along the tube diameter direction.
  • BB 'sectional drawing of is shown.
  • the first embodiment shown in FIG. 1 the form of the counter electrode 15, the structure of the sealing portion 21 on the other end side related to the lead of the counter electrode 15, and the counter electrode 15 are held. Only the insulator 19 is different. Since the configuration other than this is the same as the above-described embodiment, the description thereof is omitted.
  • the counter electrode 15 can be composed of, for example, one made of a metal rod such as platinum as described above, or one obtained by forming a platinum thin film on a rod made of glass or a conductive material.
  • the counter electrode 15 is electrically insulated and held in a state where both ends are separated from the transparent conductive film by insulators 19 and 19.
  • the insulator 19 in this example is, for example, a ring-shaped glass member, and holds the counter electrode 15 on the inner peripheral surface of the hole.
  • a small-diameter lead portion 15A having a small diameter and extending outward from the other end (left end) of the counter electrode 15 is formed.
  • the small-diameter lead portion 15A is for minimizing the stress generated by the difference in thermal expansion coefficient between the counter electrode 15 and the glass tube 11A in the cooling process after the sealing portion is formed.
  • the sealing portion 21 on the other end (left end) side of the tubular container 11 is formed with a buffer glass layer 24 that is melted and bonded to the small-diameter lead portion 15A of the counter electrode 15 protruding outside the tubular container 11.
  • the layer 24 is formed by melting and bonding the glass at the end of the tubular container 11.
  • the sealing portion 21 on the other end side is formed as follows. First, the counter electrode 15 is inserted into the tubular container forming glass tube 11A in which the sealing portion 22 on one end side is formed. Next, the buffer glass layer 24 is formed in the circumferential direction on the outer periphery of the portion to be sealed in the small diameter lead portion 15A of the counter electrode 15.
  • the buffer glass is glass having a thermal expansion coefficient larger than that of the glass of the tubular container 11 or the glass tube 11A and smaller than that of the counter electrode 15.
  • the buffer glass material may be heated and softened and wound around the small-diameter lead portion 15 ⁇ / b> A of the counter electrode 15 in the circumferential direction, or a ring-shaped buffer glass material may be used. It may be inserted into the small-diameter lead portion 15A and heated later to be bonded to the small-diameter lead portion 15A.
  • the inside of the tubular container 11 is evacuated to a reduced pressure state using an injection pipe (not shown) formed in the non-coating formation region 12A of the tubular container 11.
  • the end region portion where the sealing portion 21 of the glass tube is to be formed is heated and softened. As a result, the end region portion melts and contracts inward, and is in close contact with the buffer glass layer 24 to form a sealing portion.
  • the sealing portion can also be formed by interposing the buffer glass layer between the counter electrode and the tubular container, evacuating the container to a reduced pressure state, and contracting the heated portion.
  • the buffer glass layer exists as an intermediate layer, the thermal stress resulting from the difference in expansion and contraction is relieved. Therefore, even if the counter electrode has a rod shape, the sealing portion There is no risk of damage such as cracks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 電解液が漏洩することがない、信頼性の高い封止部を持つ色素増感型太陽電池を提供する。 透明なガラスよりなる管状容器11の内面に、透明導電膜12と、透明導電膜12上に形成された、色素が吸着された半導体膜よりなる光電極13と、光電極13と離間した状態で管状容器内に設けられた対向電極15とを備え、管状容器11に電解液14が密封された色素増感型太陽電池において、管状容器11の両端は、ガラスが溶融して圧潰された封止部21、22が形成され密閉されており、一端側の封止部22内には、透明導電膜12が延在するとともに、透明導電膜12に電気的に接続された外部リード18が、封止部22から管状容器の外部に導出されており、他端側の封止部21からは、対向電極15に電気的に接続されたリードが管状容器の外部に導出されている。

Description

色素増感型太陽電池
 この発明は、色素増感型太陽電池に関する。特に、透光性の管状容器を有する色素増感型太陽電池に関する。
 従来から、地球環境に対する影響の少ない新たなエネルギー源として太陽電池の開発が行われている。中でも、シリコン半導体を用いた太陽電池は、高い変換効率と優れた光安定性とを有しており、広く一般に普及している。しかしながら、製造に際して、高温高真空の条件が必要であり、大面積化が容易ではなく、製造コストが高いといった問題があった。
 一方、透明な容器の内部に電解液を充填し、色素を吸着させた多孔質半導体からなる光電極と対向電極とが設けられてなり、太陽光を照射された色素が電子を放出することを利用して電気エネルギーを取り出すことができる色素増感型太陽電池が知られている(特許文献1)。
 この種の太陽電池には、製造のために高真空なチャンバーなどが不要であり、設備面での負担が少なく、安価に製造できるという利点がある。
 図5(a)は、特許文献1に示された従来の色素増感型太陽電池の管軸方向で切断した断面図、図5(b)は、そのZ-Z’線断面図である。
 太陽電池8は、透明材料からなる管81の内面に、透明導電層82、色素を吸着させた色素増感多孔質半導体層83、および電解質層84が順次設けられており、管81の内部には管軸に沿って対極85が挿入されている。対極85の一端部85bは管81より外方に突出している。管81の一端部81bと対極85の一端部85bとの間、および管81の他端部81aと対極85の他端部85aとの間は、例えばエポキシ樹脂よりなる封止部材86により、絶縁されるとともに封止され、電解質層84の電解液が管81の外部に漏れないようになっている。対極85および透明導電層82には、それぞれリード線87、88が接続されている。
 この太陽電池8に太陽光が照射されると、太陽光は、管81および透明導電層82を透過して、色素増感多孔質半導体層83に到達し、光化学反応が生じて色素が電子を放出し、これによりリード線87、88間に起電力が発生する。
 特に、この構造においては、容器が円管状であることにより、光の入射角度に対する発電量の変化を大幅に低減することができる。
特開2007-12545号公報
 ところで、この種の色素増感型の太陽電池の封止は、絶縁を達成することが必要であることから、上記のように樹脂よりなる封止部材によって行われている。しかしながら、封止部材が容器と別個の部材であり、別個の材料であることから、封止の気密性を確保することが困難であった。また、太陽光は紫外線を含む光であり、樹脂は紫外線にさらされることにより、使用時間が経つにつれて劣化する。そのため、内部に充填された電解液が漏洩するといった問題があった。したがって、樹脂よりなる封止部材を使用する構成では、封止の信頼性が十分ではないという課題がある。
 以上の事情から、本発明は、電解液が漏洩することがない、信頼性の高い封止部を持つ色素増感型太陽電池を提供することを目的とする。
 上記課題を解決するため、本発明の色素増感型太陽電池は、透明なガラスよりなる管状容器の内面に、透明導電膜と、この透明導電膜上に形成された、色素が吸着された半導体膜よりなる光電極と、この光電極と離間した状態で管状容器内に設けられた対向電極とを備え、当該管状容器に電解液が密封された色素増感型太陽電池において、
 前記管状容器の両端は、当該管状容器のガラスが溶融して圧潰された封止部が形成され密閉されており、
 一端側の封止部内には、前記透明導電膜が延在するとともに、当該透明導電膜に電気的に接続された外部リードが、当該封止部から管状容器の外部に導出されており、
 他端側の封止部からは、前記対向電極に電気的に接続されたリードが管状容器の外部に導出されていることを特徴とする。
 また、本発明は、前記一端側の封止部内において、透明導電膜と外部リードとの間が、当該一端側の封止部内に埋設された金属箔により接続されており、
 前記他端側の封止部内において、対向電極に接続された内部リードと外部リードとの間が、当該他端側の封止部内に埋設された金属箔により接続されていることを特徴とする。
 また、本発明は、前記対向電極は、前記透明導電膜が延在する一端側の封止部と、絶縁部材を介して連結され保持されていることを特徴とする。
 本発明は、透明なガラスよりなる管状容器の内面に、透明導電膜と、この透明導電膜上に形成された、色素が吸着された半導体膜よりなる光電極と、この光電極と離間した状態で管状容器内に設けられた対向電極とを備え、当該管状容器に電解液が充填され、管状容器の両端に封止部が形成されてなる色素増感型太陽電池において、
 前記管状容器の一端側の封止部は、当該管状容器のガラスが溶融して圧潰されて形成され、当該一端側の封止部内には、前記透明導電膜が延在するとともに、当該透明導電膜に電気的に接続された外部リードが、当該封止部から管状容器の外部に導出されており、
 前記管状容器の他端側の封止部は、前記対向電極の小径リード部が管状容器の外部に導出された状態で、当該対向電極の小径リード部に溶融接着されたバッファガラス層に管状容器の端部のガラスが溶融接着されることによって形成され、
 当該バッファガラスの熱膨張係数は、管状容器のガラス熱膨張係数よりも大きく、対向電極の熱膨張係数よりも小さいことを特徴とする。
 本発明によれば、封止部は、管状容器の端部のガラスを溶融して圧潰接着することにより形成されているので、内部に充填された電解液が漏洩することがない。
 また、封止部がガラスにより形成されているので、太陽光に含まれる紫外線が照射されても劣化することはなく、長期間にわたって安定して使用することができる。
 また、本発明によれば、封止部に埋設した金属箔を介して、管状容器の内部と外部との間の電気的な接続が形成されているので、封止後に冷却する過程で、ガラスと金属の熱膨張係数の違いにより生じる応力が緩和される。そのため、封止部に亀裂などが生じにくくなり、電解液の漏洩をより確実に防止することができる。
 また、本発明によれば、対向電極が、両端の封止部によって保持され、透明導電膜と接続された内部リードと、絶縁体を介して物理的に連結されていることにより、対向電極と光電極とが電気的に絶縁されるとともに、対向電極が保持される。
 また、本発明によれば、封止部において、対向電極の小径リード部と管状容器のガラスとの間にバッファガラス層が中間層として存在する構成により、膨張収縮の差から生じる熱応力が緩和されるため、対向電極が棒状であっても、封止後の冷却過程で封止部に亀裂が入るなどの損傷が生ずるおそれがない。
 また、封止部はガラスにより形成されているので、太陽光に含まれる紫外線が照射されても劣化することはなく、長期間にわたって安定して使用することができる。
本発明の一実施例にかかる色素増感型太陽電池を示す図であり、図1(a)は管軸方向で切断した断面図、図1(b)は図1(a)の封止部のみを周方向に90°回転させた状態の断面図、図1(c)は管径方向に沿って切断した、図1(a)のA-A’断面図である。 図2(a)~図2(c)は、図1の実施例の色素増感太陽電池の封止部を形成する方法を工程順に説明するための断面図である。 図3(a)および図3(b)は、図1の実施例の色素増感型太陽電池の製造において、管状容器内に電解液を充填する方法を工程順に説明するための断面図である。 本発明の他の実施例にかかる色素増感型太陽電池を示す図であり、図4(a)は管軸方向で切断した断面図、図4(b)は管径方向に沿って切断した、図4(a)のB-B’断面図である。 従来例にかかる色素増感型太陽電池を示す図であり、図5(a)は管軸方向で切断した断面図、図5(b)は図5(a)のZ-Z’線断面図である。
 以下に、本発明の実施形態について図面を参照しながら説明する。
 図1(a)は、本発明の一実施例にかかる色素増感型太陽電池を管軸方向で切断した断面図を、図1(b)は、図1(a)の封止部のみを、周方向に90°回転させた状態の断面図を、図1(c)は、管径方向に沿って切断した図1(a)のA-A’断面図を示す。
 管状容器11の内面には、透明導電膜12と、この透明導電膜12上に形成された光電極13とが順次設けられている。管状容器11の内部には、長手方向に沿ってコイル状の対向電極15が配置されている。管状容器11の両端は封止され、内部には電解液14が充填され密封されている。
 以下に、各構成について具体的に説明する。以下の説明においては、図の右方端部を「一端部」とし、図の左方端部を「他端部」とする。
 太陽電池1を構成する管状容器11は、例えばガラスである透光性材料よりなる。管状容器11の断面形状は、円形状、楕円形状、矩形状など、いずれの形状でもよい。
 管状容器11を構成するガラスの種類としては、石英ガラス、ソーダガラスなどが好適に用いられる。
 管状容器11の内周面には、全周にわたって透明導電膜12が形成されている。透明導電膜12は、インジウム(In)-スズ(Sn)複合酸化物(ITO(フッ素がドープされたものを含む))、酸化亜鉛(ZnO)、酸化スズなどの金属酸化物による薄膜が好適に用いられる。さらに透明導電膜12は、これらを組み合わせて2種類以上の材質によって構成してもよい。
 また、透明導電膜12は、金属をメッシュ状、ストライプ状などに形成して、一部を光が透過できるようにした金属電極でも、代わりとして用いることができる。
 透明導電膜12上には、太陽光を光電変換するための光電極13が設けられている。光電極13は、増感色素が吸着された半導体層であり、封止部が形成される管状容器11の両端を除いた領域に設けられる。
 半導体層は、例えば、金属酸化物または金属硫化物である半導体微粒子を堆積させて形成した多孔質の薄膜である。
 材料として、金属酸化物の場合は、例えば、酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ、酸化タンタル、または酸化ジルコニウム等を用いることができる。さらに、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム等の複合酸化物を用いることもできる。
 金属硫化物の場合は、例えば、硫化亜鉛、硫化鉛、硫化ビスマス等を用いることができる。
 半導体層を形成するには、上記金属酸化物、金属硫化物の微粒子を含有するペーストを、透明導電膜の表面に塗布し、焼成することにより作成することができる。また、半導体層を多孔質とするためには、例えば、ゾルゲル法や、スパッタ法、あるいは微粒子の焼結法等を用いることができる。ペーストの塗布方法についても、例えば、スクリーン印刷法、ドクターブレード法、スキージ法などを用いることができる。
 半導体層に吸着される増感色素は、可視光領域、あるいはそれに加えて赤外光領域に吸収を持つ、金属錯体や有機色素などの色素である。
 金属錯体としては、例えば、銅フタロシアニン、チタニルフタロシアニン等の金属フタロシアニン、クロロフィル、ヘミン、もしくはそれらの誘導体、ルテニウム、オスミウム、鉄、または亜鉛の錯体などを用いることができる。
 有機色素としては、例えば、メタルフリーフタロシアニン、シアニン系色素、メタロシアニン系色素、キサンテン系色素、トリフェニルメタン系色素、フタロシアニン系色素、ナフタロシアニン系色素、フタロ/ナフタロ混合フタロシアニン系色素、ジピリジルルテニウム錯体色素、ターピリジルルテニウム錯体色素、フェナントロリンルテニウム錯体色素、フェニルキサンテン色素、トリフェニルメタン色素、クマリン色素、アクリジン色素、またはアゾ金属錯体色素などが好適に用いられる。
 増感色素は、上記の半導体層の表面に付着している。付着の形態については、化学吸着、物理吸着、または堆積など、どのような付着形態でもよい。付着させる方法としては、例えば増感色素を含む溶液中に、半導体層を形成する多孔質膜を浸漬した後、加熱する方法がある。
 管状容器11の内部に充填される電解液14としては、I/I3-系、Br/Br3-系、キノン/ハイドロキノン系などのレドックス電解質を、アセトニトリル、炭酸プロピレン、エチレンカーボネートなどの、電気化学的に不活性な溶媒、またはこれらの混合溶媒に、溶かした電解液を用いることができる。例えば、I/I3-系の電解液としては、ヨウ素のアンモニウム塩、またはヨウ化リチウムとヨウ素を混合したものを用いることができる。
 光電極13に対する対向電極15には、例えば、白金、または導電性材料表面に白金の薄膜を形成したもの、ロジウム、ルテニウム、酸化ルテニウム、カーボン等の導電性材料を用いることができる。これらの導電性材料は、電解液の還元反応を十分な速さで行わせる触媒能を持っており、好適である。
 対向電極15としては、その形状が、例えば、棒状、コイル状に形成されたものが用いられる。
 管状容器の両端の封止部は以下のように構成されている。
 図2は、本発明にかかる色素増感太陽電池の封止部を形成する方法を説明するための断面図である。
 管状容器形成用のガラス管11Aの内周面には、前述の通り、透明導電膜12と、この透明導電膜上の光電極13とが順次形成されている。
 ガラス管11Aの他端部(図の管軸方向左側端部)の一部には、後に対向電極15を絶縁しながらその小径リード部を管外に導出する封止部を形成するために、透明導電膜12等が形成されていない非被膜形成領域12Aが存在する。
 このガラス管11Aの内部に、電極マウント10を挿入する(図2(a))。電極マウント10は、対向電極15の両端に、金属線よりなる内部リード16、16、金属箔31、32、金属線よりなる外部リード17、18の連結体であるが、対向電極15の一端(右端)と内部リード16は、絶縁体19を介して連結されている。
 ガラス管11Aの内部に挿入された電極マウント10は、左右の矢印で示すように、両端が引っ張られ、光電極13と離間した状態で独立に空中で保持される。この状態で管状容器11の両端部は、バーナーや、局所加熱ヒーター等の適宜の加熱手段により加熱される。
 ガラス管11Aの両端部が適度に熱せられて、その一部が溶融し軟化した後、この両端を、矢印で示すように上下から圧潰することで、封止部21、22が形成される(図2(b))。
 この圧潰により形成された封止部21、22は平坦な板状の形状に成型され、図2(c)に示す管状容器11が形成される。
 図2(c)において、管状容器11の他端部(左端部)は、対向電極15の他端に形成されたリードが外部に導出される封止部21であり、一端部(右端部)は、光電極13のリードが外部に導出される封止部22である。
 この封止部21、22は、ガラス管11Aとは別個の封止用部材をキャップまたはプラグとして用いたような構成ではなく、管状容器形成用のガラス管11Aの端部を軟化させて加工し、開口する端部のガラスが溶け合って固まり、閉じた状態となっているため、封止部に間隙が生じにくく、気密性が高くて電界液が漏れることがない。
 他端側(左端側)の封止部21内には、金属箔31が埋設され、その内端側(右端側)部分の表面上に、管状容器11の内部から伸びる、対向電極15の他端(左端)に接続された内部リード16が、溶接等により接合されている。
 金属箔31の外端(左側)には、管状容器11の外部に突出する外部リード17が、内部リード16と同様に、溶接等により接合されている。
 管状容器11の内外の電気的な接続は金属箔31を介して行われる。これにより、ガラスと金属との熱膨張係数の差が大きいことによって封止後の冷却過程で熱応力が生じて封止部21に亀裂などが生じることが防止される。熱応力が、金属箔31の塑性変形で吸収されることにより、緩和されるからである。
 なお、金属箔31を用いずとも、外部リード17が、例えば直径0.3mm以下などの細い金属線であれば、気密性に問題のない封止部を形成することができる。
 光電極13のリードが導出する一端側(右端側)の封止部22内には、管状容器11の内面に形成された透明導電膜12が延在している。また、同様に金属箔32が埋設され、その内端側(左端側)の表面上に管状容器11の内部から伸びる内部リード16が接合されている。
 金属箔31の外端側(右端側)には、管状容器11の外部に突出する外部リード18が同じく接合されている。
 透明導電膜12は、管状容器形成用ガラス管11Aの内面に沿って付着されているので、ガラス管11Aの端部を圧潰して封止部22が形成されたときにも、管状容器11の胴部から当該封止部22にまで連続した状態が維持される。仮に、透明導電膜の一部が剥離し、あるいは不連続となった場合であっても、圧潰されることにより、この透明導電膜12と、封止部22内に埋設された金属箔32、内部リード16、外部リード18とが接触し、電気的に接続される。
 金属箔32の内端側(左端側)部分に接続した内部リード16の内端部(左端部)には、対向電極15の一端(右端)に物理的に固定され連結された絶縁体19が連結されている。 
 この内部リード16の外端部は、金属箔32の表面に溶接等により接合されている。以上において、絶縁体19は、例えばガラス部材であり、内部リード16は、金属線材などである。対向電極15と絶縁体19との間、および絶縁体19と内部リード16との間の固定は、溶着、巻着などの方法により適宜行われる。
 こうして、管状容器11内の対向電極15は、両端の封止部21、22によって固定され、光電極13と離間した状態で保持されている。そして、この対向電極15は、透明導電膜12と接触している内部リード16に対し、絶縁体19を介して物理的に連結されていることにより、絶縁された状態である。
 管状容器11への電解液14の充填は、注入管を介してなされる。これについて、図3を用いて説明する。
 図3は、本発明にかかる色素増感型太陽電池の管状容器内に電解液を充填する方法を説明するための断面図である。
 両封止部21、22を形成した後、管状容器11の非被膜形成領域12Aに注入管23が設けられる。この注入管23から、管状容器11の内部へ電解液14を注入し(図3(a))、管状容器11内を満たした後、この注入管23の端部を熱して封管する(図3(b))。23Aは、注入管23の封止チップである。
 再び図1に戻り、この色素増感型太陽電池の動作について説明する。外部から管状容器11に入射した光は、この管状容器11と透明導電膜12を透過し、光電極13に照射される。すると、光電極13の半導体層に吸着された色素が励起されて電子を発生する。この電子は、色素から半導体層に受け渡される。電子を失った色素は、電解液14のイオンから電子を受け取り、この電子を渡した電解質分子は、対向電極15から電子を受けとる。こうして、外部リード17、18間に起電力が発生する。
 上記のようにして太陽電池の封止部を構成することにより、管状容器の端部は、ガラスが溶け合って固まり、気密に封止されるので、内部に充填された電解液が漏洩することがない。
 また、封止部はガラスにより形成されているので、太陽光に含まれる紫外線が照射されても劣化することはなく、長期間にわたって安定して使用することができる。
 また、封止部に埋設した金属箔を介して、管状容器の内外の電気的な接続をしているので、封止後に冷却する過程で、ガラスと金属の熱膨張係数の違いにより生じる応力を緩和することもできる。そのため、封止部に亀裂などが生じるのを防ぐことができ、電解液が漏洩することがない。
 次に、本発明の他の実施例にかかる色素増感型太陽電池について説明する。
 図4(a)は、本発明の他の実施例にかかる色素増感型太陽電池を管軸方向で切断した断面図、図4(b)は管径方向に沿って切断した図4(a)のB-B’断面図を示す。
 本実施形態においては、図1に示した第1の実施形態と、対向電極15の形態、対向電極15のリードに係る他端側の封止部21の構造、並びに、対向電極15を保持する絶縁体19のみが異なる。これ以外の構成については既述の実施例と同様であるから、説明を省略する。
 管状容器11の内部には、管軸に沿って棒状の対向電極15が挿入されている。対向電極15は、例えば、前述のように白金などの金属棒材よりなるもの、ガラスや導電性材料からなる棒材に白金薄膜を形成したものなどで構成することができる。
 対向電極15は、両端が絶縁体19、19により透明導電膜と離間した状態で電気的に絶縁され保持されている。この例における絶縁体19は、例えばリング状のガラス部材であり、孔の内周面で対向電極15を保持している。
 対向電極15の他端(左端)から外方に伸びる、径の小さい小径リード部15Aが形成されている。この小径リード部15Aは、封止部形成後の冷却過程において対向電極15とガラス管11Aのガラスとの熱膨張係数の差によって生じる応力を可能な限り小さくするためのものである。
 管状容器11の他端(左端)側の封止部21は、管状容器11の外部に突出する対向電極15の小径リード部15Aに溶融して接着したバッファガラス層24が形成され、このバッファガラス層24に、管状容器11の端部のガラスが溶融して接着されることによって形成されている。
 他端側の封止部21は、以下のようにして形成される。
 まず、一端側の封止部22が形成された管状容器形成用ガラス管11Aの内部に対向電極15を挿入する。
 次に、対向電極15の小径リード部15Aにおける封止すべき部分の外周に、周方向にわたってバッファガラス層24を形成する。
 ここで、バッファガラスとは、管状容器11またはガラス管11Aのガラスの熱膨張係数よりも大きく、対向電極15の熱膨張係数よりも小さい熱膨張係数を有するガラスである。
 バッファガラス層24を形成する方法としては、バッファガラス材を加熱し軟化させて、対向電極15の小径リード部15Aに周方向に巻きつけてもよいし、リング状のバッファガラス材を対向電極15の小径リード部15Aに挿入して、後から加熱して小径リード部15Aと接着させてもよい。
 そして、管状容器11の非被膜形成領域12Aに形成した注入管(不図示)等を利用して、管状容器11の内部を排気して減圧状態にする。
 ガラス管の封止部21を形成すべき端部領域部分を加熱して軟化させる。すると、端部領域部分は、溶融するとともに内側に収縮してバッファガラス層24と密着し、封止部が形成される。
 このように、対向電極と管状容器との間にバッファガラス層を介在させ、容器内を減圧状態に排気して、加熱した個所を収縮させることによっても封止部を形成することができる。
 この構成によれば、バッファガラス層が中間層として存在することにより、膨張収縮の差から生じる熱応力が緩和されるため、対向電極が棒状であっても封止後の冷却過程で封止部に亀裂が入るなどの損傷が生ずるおそれがない。
1   太陽電池
10  電極マウント
11  管状容器
11A ガラス管
12  透明導電膜
12A 非被膜形成領域
13  光電極
14  電解液
15  対向電極
15A 小径リード部
16  内部リード
17  外部リード
18  外部リード
19  絶縁体
21  封止部
22  封止部
23  注入管
23A 注入管の封止チップ
24  バッファガラス層
31  金属箔
32  金属箔

Claims (4)

  1.  透明なガラスよりなる管状容器の内面に、透明導電膜と、この透明導電膜上に形成された、色素が吸着された半導体膜よりなる光電極と、この光電極と離間した状態で管状容器内に設けられた対向電極とを備え、当該管状容器に電解液が密封された色素増感型太陽電池において、
     前記管状容器の両端は、当該管状容器のガラスが溶融して圧潰された封止部が形成され密閉されており、
     一端側の封止部内には、前記透明導電膜が延在するとともに、当該透明導電膜に電気的に接続された外部リードが、当該封止部から管状容器の外部に導出されており、
     他端側の封止部からは、前記対向電極に電気的に接続されたリードが管状容器の外部に導出されていることを特徴とする色素増感型太陽電池。
  2.  前記一端側の封止部内において、透明導電膜と外部リードとの間が、当該一端側の封止部内に埋設された金属箔により接続されており、
     前記他端側の封止部内において、対向電極に接続された内部リードと外部リードとの間が、当該他端側の封止部内に埋設された金属箔により接続されていることを特徴とする請求項1に記載の色素増感型太陽電池。
  3.  前記対向電極は、前記透明導電膜が延在する一端側の封止部と、絶縁部材を介して連結され保持されていることを特徴とする請求項1に記載の色素増感型太陽電池。
  4.  透明なガラスよりなる管状容器の内面に、透明導電膜と、この透明導電膜上に形成された、色素が吸着された半導体膜よりなる光電極と、この光電極と離間した状態で管状容器内に設けられた対向電極とを備え、当該管状容器に電解液が充填され、管状容器の両端に封止部が形成されてなる色素増感型太陽電池において、
     前記管状容器の一端側の封止部は、当該管状容器のガラスが溶融して圧潰されて形成され、当該一端側の封止部内には、前記透明導電膜が延在するとともに、当該透明導電膜に電気的に接続された外部リードが、当該封止部から管状容器の外部に導出されており、
     前記管状容器の他端側の封止部は、前記対向電極の小径リード部が管状容器の外部に導出された状態で、当該対向電極の小径リード部に溶融接着されたバッファガラス層に管状容器の端部のガラスが溶融接着されることによって形成され、
     当該バッファガラスの熱膨張係数は、管状容器のガラス熱膨張係数よりも大きく、対向電極の熱膨張係数よりも小さいことを特徴とする色素増感型太陽電池。
PCT/JP2010/070866 2009-12-02 2010-11-24 色素増感型太陽電池 WO2011068058A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1209518.8A GB2488472B (en) 2009-12-02 2010-11-24 Dye-sensitized solar cell
US13/513,423 US9236195B2 (en) 2009-12-02 2010-11-24 Dye-sensitized solar cell
JP2011514992A JP4840540B2 (ja) 2009-12-02 2010-11-24 色素増感型太陽電池
CN201080050404.1A CN102714340B (zh) 2009-12-02 2010-11-24 染料敏化型太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-274254 2009-12-02
JP2009274254 2009-12-02

Publications (1)

Publication Number Publication Date
WO2011068058A1 true WO2011068058A1 (ja) 2011-06-09

Family

ID=44114907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070866 WO2011068058A1 (ja) 2009-12-02 2010-11-24 色素増感型太陽電池

Country Status (5)

Country Link
US (1) US9236195B2 (ja)
JP (1) JP4840540B2 (ja)
CN (1) CN102714340B (ja)
GB (1) GB2488472B (ja)
WO (1) WO2011068058A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191342A (ja) * 2012-03-13 2013-09-26 Ushio Inc 色素増感型太陽電池
JP2014146436A (ja) * 2013-01-28 2014-08-14 Ushio Inc 色素増感型太陽電池およびその製造方法
JP2014154413A (ja) * 2013-02-12 2014-08-25 Ushio Inc 色素増感型太陽電池
JP2014154414A (ja) * 2013-02-12 2014-08-25 Ushio Inc 色素増感型太陽電池
JP2015142041A (ja) * 2014-01-29 2015-08-03 ウシオ電機株式会社 色素増感型太陽電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382186B1 (ja) * 2012-10-10 2014-01-08 ウシオ電機株式会社 色素増感型太陽電池
JP2014232616A (ja) * 2013-05-29 2014-12-11 ウシオ電機株式会社 色素増感太陽電池モジュール、植物育成ハウス及び建築物
JP2015065421A (ja) * 2013-08-28 2015-04-09 ウシオ電機株式会社 色素増感型太陽電池
JP5915620B2 (ja) * 2013-10-23 2016-05-11 ウシオ電機株式会社 太陽電池モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135358A (ja) * 1999-08-24 2001-05-18 Toyota Central Res & Dev Lab Inc 密閉二次電池
JP2004119306A (ja) * 2002-09-27 2004-04-15 Hitachi Maxell Ltd 光電変換素子及びその製造方法
JP2007012545A (ja) * 2005-07-04 2007-01-18 Sony Corp 色素増感光電変換素子、色素増感光電変換素子の製造方法、光電変換素子モジュール、電子機器、移動体および発電システム
JP2009252522A (ja) * 2008-04-04 2009-10-29 Fujikura Ltd 光電変換素子およびその製造方法
JP2010040391A (ja) * 2008-08-06 2010-02-18 Fujikura Ltd 光電変換素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080302418A1 (en) * 2006-03-18 2008-12-11 Benyamin Buller Elongated Photovoltaic Devices in Casings
JP2007280906A (ja) * 2006-04-12 2007-10-25 Sony Corp 機能デバイス及びその製造方法
TWI317561B (en) * 2006-09-07 2009-11-21 Ind Tech Res Inst Solar cells and modules comprising the same
JP5197965B2 (ja) 2007-01-23 2013-05-15 株式会社フジクラ 光電変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135358A (ja) * 1999-08-24 2001-05-18 Toyota Central Res & Dev Lab Inc 密閉二次電池
JP2004119306A (ja) * 2002-09-27 2004-04-15 Hitachi Maxell Ltd 光電変換素子及びその製造方法
JP2007012545A (ja) * 2005-07-04 2007-01-18 Sony Corp 色素増感光電変換素子、色素増感光電変換素子の製造方法、光電変換素子モジュール、電子機器、移動体および発電システム
JP2009252522A (ja) * 2008-04-04 2009-10-29 Fujikura Ltd 光電変換素子およびその製造方法
JP2010040391A (ja) * 2008-08-06 2010-02-18 Fujikura Ltd 光電変換素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191342A (ja) * 2012-03-13 2013-09-26 Ushio Inc 色素増感型太陽電池
JP2014146436A (ja) * 2013-01-28 2014-08-14 Ushio Inc 色素増感型太陽電池およびその製造方法
JP2014154413A (ja) * 2013-02-12 2014-08-25 Ushio Inc 色素増感型太陽電池
JP2014154414A (ja) * 2013-02-12 2014-08-25 Ushio Inc 色素増感型太陽電池
JP2015142041A (ja) * 2014-01-29 2015-08-03 ウシオ電機株式会社 色素増感型太陽電池

Also Published As

Publication number Publication date
GB201209518D0 (en) 2012-07-11
US9236195B2 (en) 2016-01-12
GB2488472B (en) 2016-06-29
US20120234385A1 (en) 2012-09-20
CN102714340B (zh) 2015-05-13
JPWO2011068058A1 (ja) 2013-04-18
CN102714340A (zh) 2012-10-03
JP4840540B2 (ja) 2011-12-21
GB2488472A (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP4840540B2 (ja) 色素増感型太陽電池
JP5273709B2 (ja) 色素増感太陽電池、その製造方法および色素増感太陽電池モジュール
WO2007122965A1 (ja) 機能デバイス及びその製造方法
PT104282A (pt) Processo de selagem com vidro de células solares dsc
JP2011165641A (ja) 湿式太陽電池および湿式太陽電池モジュール
JP4788848B2 (ja) 色素増感型太陽電池
JP2011029131A (ja) 光電変換装置
JP2012009374A (ja) 色素増感太陽電池およびその製造方法、並びに色素増感太陽電池モジュール
US20110277807A1 (en) Photoelectric conversion module
WO2013077317A1 (ja) 光電変換素子および光電変換素子モジュール
WO2011111592A1 (ja) 色素増感太陽電池
US8785764B2 (en) Photoelectric conversion device
JP2010103094A (ja) 光電変換装置
US8802967B2 (en) Photoelectric conversion module
JP2014238969A (ja) 太陽電池
US9230747B2 (en) Dye-sensitized type solar cell
JP5930970B2 (ja) 光電変換素子および光電変換素子モジュール
JP6289175B2 (ja) 光電変換素子および光電変換モジュール
WO2012169302A1 (ja) 色素増感型太陽電池
EP3499531A1 (en) Dye-sensitized solar battery and method for producing same
JP5956929B2 (ja) 光電変換素子およびその製造方法
US20140096815A1 (en) Dye-sensitized solar cell
JP5313278B2 (ja) 光電変換素子および光電変換素子モジュール
JP6036365B2 (ja) 色素増感型太陽電池
JP6534325B2 (ja) 光電変換素子および光電変換モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050404.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011514992

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1209518

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20101124

WWE Wipo information: entry into national phase

Ref document number: 1209518.8

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 13513423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834510

Country of ref document: EP

Kind code of ref document: A1