WO2011065559A1 - 不要信号判別装置、不要信号判別方法、不要信号判別プログラム、gnss受信装置および移動端末 - Google Patents

不要信号判別装置、不要信号判別方法、不要信号判別プログラム、gnss受信装置および移動端末 Download PDF

Info

Publication number
WO2011065559A1
WO2011065559A1 PCT/JP2010/071330 JP2010071330W WO2011065559A1 WO 2011065559 A1 WO2011065559 A1 WO 2011065559A1 JP 2010071330 W JP2010071330 W JP 2010071330W WO 2011065559 A1 WO2011065559 A1 WO 2011065559A1
Authority
WO
WIPO (PCT)
Prior art keywords
correlation data
unnecessary signal
signal
unnecessary
code phase
Prior art date
Application number
PCT/JP2010/071330
Other languages
English (en)
French (fr)
Inventor
美喜 佐藤
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2011543360A priority Critical patent/JP5483750B2/ja
Priority to US13/512,501 priority patent/US9081089B2/en
Publication of WO2011065559A1 publication Critical patent/WO2011065559A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/22Multipath-related issues

Definitions

  • the present invention relates to an unnecessary signal discriminating apparatus that discriminates an unnecessary signal included in a received signal, and a GNSS receiving apparatus that includes the unnecessary signal discriminating apparatus and acquires a desired positioning signal included in the received signal.
  • GNSS systems such as GPS and Galileo
  • positioning signals from a plurality of GNSS satellites are received, and the positioning signals are demodulated and used for positioning and the like.
  • Patent Document 2 determines that an unnecessary signal is present when the number of spectrum peaks of the received signal is detected to be a predetermined value or more.
  • the identification is simply performed by the CN of the received signal, but if it exceeds the CN, the signal is adopted as a positioning signal. Therefore, an interference wave caused by a communication signal other than the target system, There is a possibility that an unnecessary signal due to multipath or even cross-correlation is erroneously captured as a positioning signal.
  • Patent Document 2 can determine that there is an unnecessary signal, but cannot determine the type of unnecessary signal as described above.
  • the present invention relates to an unnecessary signal discriminating apparatus for discriminating an unnecessary signal from a received signal including a target signal code-modulated with a predetermined spreading code.
  • the unnecessary signal discriminating apparatus includes a correlation data string acquisition unit and a discrimination unit.
  • the correlation data string acquisition unit acquires a correlation data string on the code phase axis and a correlation data string on the frequency axis from the correlation data between the replica code for the spreading code and the received signal.
  • the discriminating unit discriminates an unnecessary signal based on the correlation data string on the code phase axis and the correlation data string on the frequency axis.
  • the correlation data string acquisition unit stores the correlation data for a predetermined time, and converts the stored correlation data into data in the frequency domain, whereby the correlation data string on the code phase axis and the frequency axis Get correlation data string.
  • the present invention also relates to an unnecessary signal determining method and an unnecessary signal determining program for determining an unnecessary signal from a received signal including a target signal code-modulated with a predetermined spreading code.
  • the unnecessary signal determination method and the unnecessary signal determination program acquire a correlation data string on the code phase axis and a correlation data string on the frequency axis from the correlation data between the replica code for the spreading code and the received signal. Then, the unnecessary signal determination method and the unnecessary signal determination program determine an unnecessary signal based on the correlation data string on the code phase axis and the correlation data string on the frequency axis.
  • the target signal (FIG.
  • the difference between the reference signal and the unnecessary signal (see FIGS. 4B to 4D) is used.
  • the unnecessary signal is discriminated by obtaining the above-mentioned biaxial characteristics of the correlation data of the received signal, that is, the correlation data string on the code phase axis and the correlation data string on the frequency axis.
  • the discriminating unit of the unnecessary signal discriminating apparatus of the present invention stores in advance, as reference characteristics, a correlation data string on the code phase axis and a correlation data string on the frequency axis of correlation data obtained by correlating the target signal with a replica code. .
  • the discriminating unit compares the reference characteristic with the correlation data string on the code phase axis of the correlation data obtained by correlating the received signal with the replica code and the actual measurement characteristic based on the correlation data string on the frequency axis, and generates an unnecessary signal. Determine.
  • the discriminating unit of the unnecessary signal discriminating apparatus of the present invention corrects the correlation data of the reference characteristic or the actually measured characteristic so that the peak levels of the correlation data in the reference characteristic and the actually measured characteristic coincide with each other, and after the correction
  • the unnecessary signal is discriminated by calculating the similarity in the code phase axis and the frequency axis using the above characteristics.
  • the similarity is specifically composed of a difference value between the corrected characteristics.
  • the result of observing the correlation data of the target signal along the two axes of the code phase axis and the frequency axis is acquired in advance as a reference characteristic. Then, the measured characteristic based on the correlation data of the received signal is compared with the reference characteristic, and if the similarity is not higher than a predetermined level, it is determined that the received signal is an unnecessary signal. By comparing such measured characteristics with reference characteristics, unnecessary signals can be accurately determined. And by performing discrimination based on such similarity, it is possible to suppress the influence due to the change in the C / N of the received signal, and to accurately discriminate unnecessary signals. In particular, if the similarity is calculated and determined after matching the peak levels of the reference characteristics and measured characteristics, the influence of the level of the received signal itself and the setting level of the reference characteristics can be suppressed. Can be determined.
  • the discriminating unit of the unnecessary signal discriminating apparatus of the present invention uses both the similarity on the frequency axis and the similarity on the code phase axis to change the type of the unnecessary signal to multipath, cross-correlation, and interference wave. judge.
  • the discriminating unit of the unnecessary signal discriminating apparatus of the present invention based on the number of peak levels of the correlation data on the code phase axis and the number of peak levels of the correlation data on the frequency axis and the positional relationship between the peaks, Discriminate between interference, multipath, and cross-correlation.
  • This configuration shows a method for discriminating unnecessary signals when the above-described similarity is not used.
  • unnecessary signals such as multipaths, cross-correlation, and interference waves have correlation data string characteristics different from the target signal on the frequency axis and code phase axis. Specifically, the number of peaks and the positional relationship between the peaks are different. Furthermore, the characteristics of the correlation data string are different even among multipaths, cross-correlation, and interference waves. Therefore, it is also possible to determine the unnecessary signal and the type of the unnecessary signal by using such a difference in the characteristics of the correlation data string.
  • the present invention also relates to a GNSS receiver that receives a positioning signal using a positioning signal transmitted from a GNSS satellite as a target signal.
  • the demodulator of the GNSS receiver has the above-described unnecessary signal discriminating device, tracks the target signal discriminated by the unnecessary signal discriminating device, and demodulates the target signal.
  • a GNSS receiving device including the above-described unnecessary signal discriminating device is shown. And this GNSS receiver can demodulate only the received signal determined as the target signal by having the above-mentioned unnecessary signal discriminating device.
  • the demodulator of the GNSS receiver of the present invention continues the discrimination process between the target signal and the unnecessary signal until the target signal is captured and tracked.
  • loop processing is performed so that the target signal can be acquired while executing the above-described unnecessary signal discrimination processing. This makes it possible to capture and track the required number of target signals more reliably without capturing and tracking unnecessary signals.
  • the present invention also relates to a mobile terminal equipped with the above-described GNSS receiver.
  • the mobile terminal includes a positioning calculation unit that measures the position of the mobile device using the target signal acquired by the GNSS receiving device.
  • interference waves, multipaths, and cross-correlation in the received signal can be accurately determined with respect to the target signal.
  • only the positioning signal that is the target signal included in the received signal can be captured and tracked more reliably.
  • the GNSS receiver is simply described as an example.
  • various mobile terminals for example, mobile phones
  • the following acquisition method and configuration can also be applied to telephones, car navigation devices, PNDs, cameras, watches, and the like.
  • FIG. 1 is a block diagram showing a main configuration of a GNSS receiver 100 including a demodulator 13 having an unnecessary signal discriminating apparatus 300 according to this embodiment.
  • the GNSS receiver 100 includes a positioning signal receiving antenna 11, an RF processing unit 12, a demodulation unit 13, and a positioning calculation unit 14.
  • the positioning signal receiving antenna 11 receives a positioning radio wave signal transmitted from a positioning satellite such as a GPS satellite or a Galileo satellite.
  • a radio wave signal for positioning (hereinafter referred to as “positioning signal”) is a signal obtained by spectrum-spreading a carrier wave having a predetermined single frequency using a spreading code and a navigation message set for each positioning satellite.
  • the received signal does not necessarily contain only the positioning signal, it contains various unnecessary signals with the positioning signal, or contains only unnecessary signals, and includes more significant signals. Sometimes it is not.
  • the positioning signal receiving antenna 11 converts the received signal into electrical signal conversion and outputs it to the RF processing unit 12.
  • the RF processing unit 12 down-converts the frequency of the received signal, generates a correlated signal including an intermediate frequency signal and a baseband signal having a predetermined frequency, and supplies the correlated signal to the demodulation unit 13.
  • the demodulator 13 includes an unnecessary signal discriminating device 300 as shown in FIG.
  • the unnecessary signal discriminating apparatus 300 calculates the frequency spectrum and code phase spectrum of the correlation data sequence based on the correlation data sequence in which the correlation data obtained by the code correlation process is sequentially stored over a predetermined time.
  • the unnecessary signal discriminating apparatus 300 discriminates an unnecessary signal included in the correlated signal based on the received signal from these spectra. Then, based on the determination result, the demodulation unit 13 captures and tracks a received signal having a significant level that is not determined as an unnecessary signal as a positioning signal (target signal), and despreads the received signal.
  • the basic acquisition processing of the code phase and the basic tracking loop processing of the code phase and the carry phase can use known ones, and the description thereof is omitted.
  • the demodulator 13 When successful in steady tracking, the demodulator 13 provides the positioning calculator 14 with data obtained by despreading using the obtained code phase and carrier frequency information, and the pseudo distance calculated from the code phase and carrier frequency information. .
  • the demodulator 13 continuously performs acquisition and tracking including such unnecessary signal discrimination processing so that the number of positioning signals necessary for positioning can be constantly tracked.
  • the positioning calculation unit 14 acquires a navigation message based on the despread signal on which the navigation message from the demodulation unit 13 is superimposed.
  • the positioning calculation unit 14 performs a positioning calculation based on the navigation message, the pseudo distance from the demodulation unit 13, the carrier frequency information, and the like, and calculates the position of the positioning device.
  • the GNSS receiver 100 performs capture and tracking using a received signal having a significant level that has not been determined as an unnecessary signal, so that accurate demodulation can be performed.
  • a highly accurate positioning result can be obtained from such an accurate demodulation result.
  • a highly accurate positioning result can be constantly obtained.
  • FIG. 2 is a block diagram showing the main configuration of the unnecessary signal discriminating apparatus 300.
  • the unnecessary signal discriminating apparatus 300 includes a code generator 30, a code delay unit 31, correlators 321 to 32n, buffers 331 to 33n, FFT processing units 341 to 34n, and a discriminating unit 35.
  • “n” indicates the number of channels that can be processed in parallel corresponding to the number of positioning satellites that can be captured and tracked as a device, and is a predetermined positive number.
  • the code generator 30, the code delay unit 31, and the correlators 321 to 32n are used at the time of the code capturing process and the code tracking process. Further, the correlators 321 to 32n, the buffers 331 to 33n, and the FFT processing units 341 to 34n correspond to the “correlation data string acquisition unit” of the present invention.
  • the code generator 30 generates a replica code for the spreading code assigned to each positioning satellite at a designated timing if it is acquired, and outputs it to the code delay unit 31.
  • the code generator 30 generates the replica code based on the code phase information set by the code NCO (not shown) based on the tracking result of the code tracking loop (not shown) at the time of tracking, and sends it to the code delay unit 31. Output.
  • the code delay unit 31 shifts the replica code for each channel to each correlator 321 to 32n for each predetermined sampling timing while shifting the code for each predetermined code phase amount.
  • the correlators 321 to 32n generate correlation data by multiplying the correlated signal based on the received signal and the replica code, and output the correlation data to the buffers 331 to 33n, respectively. For example, the correlator 321 multiplies the correlated signal and the first replica code to generate first correlation data, and outputs the first correlation data to the buffer 331. Similarly, the correlator 322 multiplies the correlated signal and the second replica code to generate second correlation data, and outputs the second correlation data to the buffer 332. Correlators 333 to 33n also perform similar correlation processing.
  • the buffers 331 to 33n sequentially store the input correlation data along the time axis, and output 2 m pieces (m is a predetermined positive number) to the FFT processing units 341 to 34n at predetermined timings.
  • the buffer 331 sequentially stores the first correlation data and outputs 2 m pieces of data to the FFT processing unit 341.
  • the buffers 332 to 33n execute similar buffer processing.
  • the buffers 331 to 33n output the correlation data string to the determination unit 35 together with the FFT processes 341 to 34n.
  • the FFT processing units 341 to 34n perform FFT (Fast Fourier Transform) processing using the sequence of correlation data input along the time axis input from the buffers 331 to 33n, and obtain the frequency spectrum and code phase spectrum of the correlation data. To do.
  • the FFT processes 341 to 34n output the acquired frequency spectrum and code phase spectrum to the determination unit 35.
  • the FFT process 341 obtains a first frequency spectrum and a code phase spectrum by performing an FFT process on the first correlation data string, and outputs the first frequency spectrum and the code phase spectrum to the determination unit 35.
  • the same frequency conversion processing is executed for the FFT processing 342 to 34n.
  • a frequency spectrum may be acquired using simple DFT (discrete Fourier transform) processing, wavelet transform processing, or the like. .
  • the discriminating unit 35 discriminates an unnecessary signal based on the frequency spectrum and code phase spectrum of the correlation data from the FFT processes 341 to 34n.
  • FIG. 3 is a flowchart showing an unnecessary signal determination processing flow.
  • FIG. 4 is a diagram illustrating a characteristic example representing the characteristic on the code phase axis and the characteristic on the frequency axis of the correlation data string based on the target signal and the correlation data based on the unnecessary signal.
  • 4A shows the correlation data of the target signal
  • FIG. 4B shows the correlation data of the interference wave of the unnecessary signal
  • FIG. 4C shows the multipath correlation data of the unnecessary signal
  • FIG. (D) shows correlation data of unnecessary signal cross-correlation.
  • FIGS. 4A to 4D show the characteristics of the correlation data string along one axis of the code phase axis and the frequency axis, and the correlation data string over two axes orthogonal to the code phase axis and the frequency axis.
  • the characteristics of The characteristics of the correlation data string on the code phase axis shown in FIGS. 4A to 4D indicate a specific frequency, and the characteristics of the correlation data string on the frequency axis indicate a specific one.
  • One code phase is shown.
  • processing for one channel for example, a system passing through the correlator 321, the buffer 331, and the FFT processing unit 341 will be described. It is executed for the following channels.
  • the determination unit 35 acquires the correlation data string on the code phase axis and the correlation data string on the frequency axis, that is, the code phase spectrum and frequency spectrum of the correlation data (S101).
  • the determining unit 35 determines whether or not the correlation data string in the two-dimensional region obtained from the code phase axis and the frequency axis is equal to or greater than the threshold Th (S101 ⁇ S102).
  • the determination unit 35 determines that the received signal is not significant during the period of these correlation data strings (S120). This is because a positioning signal that can reliably execute acquisition and tracking processing needs to exceed a threshold Th set in a two-dimensional region as shown in FIG. In other words, if it is determined that the correlation data signal exceeds the threshold value Th and is not an unnecessary signal as described below, the capture and tracking process can be executed reliably.
  • the determination unit 35 detects a significant peak on the frequency axis for each code phase that is correlation data equal to or greater than the threshold Th. Then, the determination unit 103 detects whether there is a significant peak at a location where the correlation level is high on the code phase axis at the peak frequency (S103). Note that the notable peak indicates that the correlation data has a local maximum value greater than or equal to a predetermined level difference with respect to the phase region before and after the code phase axis, and the determination unit 35 performs a differentiation process on the characteristics of the code phase axis. By performing the above, it is possible to detect the maximum value and obtain a remarkable peak.
  • the discriminating unit 35 determines that the frequency is an interference wave (S140). This is based on the characteristics of the interference wave.
  • an interference wave for example, a communication signal of another communication system can be considered. As shown in FIG. 4B, a peak appears at the frequency position of the communication signal on the frequency axis, but the target on the code phase axis. The level of the correlation data with the spreading code of the positioning signal to be constantly increased, and no significant peak appears.
  • the determination unit 35 detects a prominent peak on the code phase axis (S104: Yes), it similarly determines the interference wave for another frequency at which the level of the correlation data equal to or higher than the threshold Th is detected. It performs (S105: No-> S103).
  • the determination unit 35 determines the interference wave for all frequencies for which the level of the correlation data equal to or greater than the threshold Th is detected (S105: Yes)
  • the determination unit 35 performs the determination for all the frequencies within the determination range and for all the code phase shifts. It is determined whether the number of peaks is one.
  • the determining unit 35 determines that the peak is due to a significant positioning signal (S106: Yes).
  • the determination unit 35 proceeds to a flow for determining the type of unnecessary signal from the positional relationship between the peaks on the code phase axis and the frequency axis and the number of peaks ( S106: No).
  • the determination unit 35 determines that the path is multipath. (S161). This is based on multipath characteristics. Multipath is caused not only by a positioning signal from a single positioning satellite being directly received, but also by being reflected on a building or the like and received with a delay. Therefore, in multipath, as shown in FIG. 4C, the same code phase does not appear on a single frequency axis, and two correlation data level peaks appear at positions close to the code phase axis. Arise.
  • the determination unit 35 may have three peaks on the code phase axis, each of the three peaks may exist independently with a certain code phase difference, and the number of peaks on the frequency axis may be three. If (S160: No), it is determined that cross-correlation occurs (S162). This is based on the characteristics of cross correlation. Cross-correlation is caused by receiving a positioning signal from a satellite different from the target positioning satellite. That is, since a plurality of codes are received by receiving positioning signals from a plurality of positioning satellites, peaks on the code phase axis appear independently. Further, since the positioning satellites are at different positions with respect to the GNSS signal receiving apparatus 100 and are moving at different relative speeds, the Doppler frequency is different for each positioning satellite. Thereby, a plurality of peaks also appear on the frequency axis.
  • the determination unit 35 when the unintentional received signal, unnecessary signal, and significant positioning signal are determined, and when the unnecessary signal is determined to be interference wave, multipath, and cross-correlation, the determination unit 35 outputs the determination result to the demodulation unit 13. (S108).
  • the demodulator 13 performs reception signal acquisition and tracking processing according to the determination result.
  • an unnecessary signal can be determined for a significant positioning signal. At this time, since it does not depend solely on the C / N of the received signal, it can be reliably determined even if the level of the unnecessary signal is high.
  • the configuration and processing of the present embodiment it is possible to accurately determine whether the unnecessary signal is a disturbance wave, multipath, or cross-correlation as well as a category of unnecessary signal. it can.
  • FIG. 5 is a flowchart showing an unnecessary signal determination processing flow of the present embodiment.
  • FIG. 6 is a diagram for explaining a comparison process between the reference characteristic and the actual measurement characteristic.
  • FIG. 6A shows the relationship between the reference characteristic before correction of the reference characteristic and the actual measurement characteristic on the code phase axis and the frequency axis.
  • FIG. 6B shows the relationship between the reference characteristic after correction of the reference characteristic (reference characteristic after correction) and the measured characteristic on the code phase axis and the frequency axis.
  • the unnecessary signal discriminating apparatus stores, as reference characteristics, a correlation data string in a two-dimensional region of a code phase axis and a frequency axis corresponding to a target positioning signal obtained by correlating a replica code in advance. .
  • the reference characteristics are set and stored for each positioning satellite, and the following processing is performed for each reference satellite corresponding to each positioning satellite. To be executed.
  • the discriminating unit 35 acquires a correlation data string on the code phase axis and a correlation data string (measured characteristic) on the frequency axis obtained by correlation processing between the received signal and the replica code (S201).
  • the determination unit 35 determines whether or not the peak level is equal to or higher than the threshold Th with respect to the correlation data string (measured characteristics) in the two-dimensional region between the code phase axis and the frequency axis based on the received signal (S201 ⁇ S202).
  • the determination unit 35 determines that the correlation data string is not a significant reception signal but an inadvertent reception signal (S220).
  • the determination unit 35 determines that the peak level of the actual measurement characteristic is equal to or greater than the threshold Th (S202: Yes)
  • the correlation data string of the actual measurement characteristic acquired from the received signal and a reference based on the previously stored positioning signal Compare with the correlation data string of the characteristic.
  • the determination unit 35 first performs level matching correction between the actually measured characteristic and the reference characteristic. Specifically, the determination unit 35 acquires the peak level of the reference characteristic and the peak level of the actual measurement characteristic on the code phase axis, and as shown in FIG. Then, the level of each correlation data of the reference characteristic is corrected (S203). In this description, the level of the reference characteristic is corrected, but it can be dealt with by correcting the measured characteristic.
  • the discriminating unit 35 compares the two-dimensional correlation data of the measured characteristics with the two-dimensional correlation data of the reference characteristics after level correction (hereinafter referred to as “corrected reference characteristics”) and is similar.
  • the degree is calculated (S204 ⁇ S205).
  • this comparison method for example, cross-correlation processing between the measured characteristic and the corrected reference characteristic, or comparison based on a difference value or ratio between frequency correlation data at each code phase in the measured characteristic and the corrected reference characteristic It may be a value.
  • the similarity is calculated based on an average value or a variance (standard deviation) of the difference values between the respective correlation data.
  • the similarity is set to be higher as the average value of the difference values is closer to “0” and the variance and the standard deviation are higher.
  • the determining unit 35 determines that the received signal to be determined is a positioning signal if the similarity is equal to or greater than a previously stored determination threshold (S206: Yes). On the other hand, if the two-dimensional similarity is less than the threshold, the determination unit 35 determines that the signal is an unnecessary signal (S206: No ⁇ S260).
  • the determination unit 35 calculates a one-dimensional similarity in units of frequency axis and code phase axis.
  • the similarity in each axis unit may be calculated at the same time as the above-described two-dimensional similarity is calculated.
  • the discriminating unit 35 detects the type of unnecessary signal based on the similarity on the frequency axis and the similarity on the code phase axis (S261).
  • the interference wave has the characteristics shown in FIG. 4B, the characteristics shown in FIG. 4A showing the positioning signal are completely different on the code phase axis and have no similarity at all. Furthermore, since the peak frequency is different on the frequency axis, there is almost no similarity. For this reason, when the similarity on the frequency axis and the code phase axis is low, especially when the similarity on the code phase axis is significantly low, it can be determined as an interference wave.
  • the multipath has the characteristics shown by the solid line in FIG. 4C and FIG. 6, the characteristics in FIG. 4A showing the positioning signal are similar in the frequency axis, and the similarity in the frequency axis is determined by the positioning. It is almost the same as the signal.
  • the code phase axis has two adjacent peaks, the characteristic differs from that of the positioning signal, and the similarity on the code phase axis is slightly lower than that of the positioning signal.
  • the similarity on the frequency axis is equal to or higher than the threshold and is as high as that of the positioning signal, and the similarity on the code phase axis is low in a predetermined range, that is, low compared to the positioning signal, the level of similarity decrease If there is little, it can be determined as multipath.
  • cross-correlation has the characteristics shown in FIG. 4 (D)
  • the characteristics shown in FIG. 4 (A) showing the positioning signal are low in similarity on both the frequency axis and the code phase axis. More specifically, in cross correlation, since there are three adjacent peaks on the frequency axis, the similarity on the frequency axis is slightly lower than the positioning signal. On the other hand, since the code phase axis has three independent peaks at positions separated from the axis, the degree of similarity is further reduced as compared with the case of multipath.
  • a first frequency axis threshold and a second frequency axis threshold lower than the first frequency axis threshold are set.
  • the threshold for the first frequency axis is calculated in advance as a similarity in the case of multipath and a similarity in the case of cross-correlation, and is set to a predetermined value between these similarities.
  • the second frequency axis threshold value is set to a predetermined value between the similarities in the case of cross-correlation and the similarity in the case of interference waves.
  • the threshold value on the first code phase axis is calculated in advance for the similarity in the case of multipath, the similarity in the case of being a positioning signal, and a predetermined value between these similarities Set to.
  • the threshold value of the second code phase axis is set to a predetermined value between these similarities after calculating the similarity in the case of multipath and the similarity in the case of cross-correlation. Furthermore, the threshold value of the third code phase axis is set to a predetermined value between the similarities in the case of cross-correlation and the similarity in the case of interference waves.
  • the similarity on the frequency axis and the similarity on the code phase axis are compared with each threshold value, and the multipath, cross-correlation, or interference wave is determined based on the level relationship with respect to each threshold value.
  • the judging unit 35 obtains the judgment result as in the first embodiment. 13 (S207).
  • the demodulator 13 performs reception signal acquisition and tracking processing according to the determination result.
  • FIG. 7A is a diagram illustrating a state in which the above-described reference characteristic is stored as two-dimensional correlation data of two orthogonal axes of the code phase axis and the frequency axis
  • FIG. 7B is a reception including the above-described multipath. It is a figure which shows the two-dimensional correlation data of the measured characteristic of a signal.
  • FIG. 7C is a diagram showing two-dimensional correlation data of the corrected reference characteristic
  • FIG. 7D is a diagram showing two-dimensional data of a difference result between the actually measured characteristic and the corrected reference characteristic.
  • Such two-dimensional data is sampled at a predetermined frequency interval on the low frequency side and the high frequency side with the frequency of the target signal as f00 with one axis as the frequency axis, and replicated with respect to the target signal with the other axis as the code phase axis.
  • This is data obtained by sampling at a predetermined code phase difference interval on the side where the code phase advances and the side where the code phase advances, assuming c00 as the code timing at which an ideal correlation peak is obtained when the code is correlated.
  • the determination unit 35 obtains the reference characteristics shown in FIG. The level of the entire two-dimensional correlation data of the reference characteristic so that the correlation value of the frequency f00 and code phase c00 of the two-dimensional correlation data matches the correlation value of the frequency f00 and code phase c00 of the two-dimensional correlation data of the measured characteristics. Correct. Thereby, the determination unit 35 acquires the two-dimensional correlation data of the corrected reference characteristic as shown in FIG.
  • the discriminating unit 35 uses the two-dimensional correlation data of the actually measured characteristics shown in FIG. 7B and the two-dimensional correlation data of the corrected reference characteristics shown in FIG.
  • the data level is differentiated for each element data, and two-dimensional correlation data having a difference value as shown in FIG. 7D is calculated.
  • the determination unit 35 determines whether the received signal corresponding to the actual measurement characteristic is the target signal or not from the two-dimensional data of the difference value. Specifically, if the received signal is a target signal, ideally, the level of all element data of the two-dimensional data of the difference value is “0”. Therefore, the determination unit 35 acquires the total value or average value of the element data levels of the two-dimensional data of the difference value, and if the total value or average value is less than a predetermined threshold value close to “0”, the target signal and If it is determined that the signal is equal to or greater than a predetermined threshold value, the signal is determined to be an unnecessary signal. At this time, the determination unit 35 may calculate variance and standard deviation and include them in the determination criterion.
  • the determination unit 35 calculates a total value or an average value of the difference values for each frequency (for example, f01 or f20 in FIG. 7), or performs a difference for each code phase (for example, c10 or c02 in FIG. 7).
  • the type of unnecessary signal is determined by calculating a total value or an average value of the values. For example, in the case of multipath, as shown in FIG. 6B and FIG. 7B, different characteristics are generated with respect to the code phase axis, and a region where the difference value increases on the side where the code phase is delayed occurs. Therefore, if the average value or the total value of the difference values for each code phase is calculated, data that is equal to or greater than the threshold appears on the code phase delay side. The determination unit 35 detects this to determine that the unnecessary signal is multipath.
  • an unnecessary signal can also be determined by comparing with a preset reference characteristic. If the method of this embodiment is used, it is possible to determine an unnecessary signal based on similarity without depending on a change in reception level.
  • the difference value is used as the similarity, but any calculation value that can detect a difference between two correlation data may be used, and a division value or the like may be used.
  • the cross-correlation is determined after the multi-path is determined.
  • the order may be reversed.
  • the method of frequency conversion of the result of correlation processing between the replica code and the received signal is shown.
  • the received signal is decomposed into a plurality of frequency band components, even if each frequency component and the replica code are subjected to correlation processing, it is possible to obtain interphase data by two axes of the code axis and the frequency axis as described above. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Noise Elimination (AREA)

Abstract

【課題】受信信号から不要信号を正確に判別できる不要信号判別装置を実現する。 【解決手段】相関器321~32nは、受信信号とレプリカコードとを所定タイミング毎に相関処理して相関データを出力する。バッファ331~33nは、相関データをコード位相軸に沿って所定サンプリング数分記憶し、FFT処理341~34nと判別部35とに出力する。FFT処理341~34nは、所定サンプリング数分の相関データをFFT処理して周波数スペクトルを取得し、判別部35へ出力する。判別部35は、コード位相軸での相関データ列と周波数スペクトルとからコード位相軸と周波数軸との二次元領域での相関データの特性を取得し、当該特性から不要信号の特徴に一致するものを、不要信号として判別する。

Description

不要信号判別装置、不要信号判別方法、不要信号判別プログラム、GNSS受信装置および移動端末
 この発明は、受信信号に含まれる不要信号を判別する不要信号判別装置、および該不要信号判別装置を備え、受信信号に含まれる所望とする測位信号を取得するGNSS受信装置に関するものである。
 従来、GPSやGalileo等のGNSSシステムでは、複数のGNSS衛星からの測位信号を受信し、当該測位信号を復調することで、測位等に利用している。
 このようなGNSS受信装置では、受信信号から目的信号である測位信号のみを選択して、捕捉、追尾する必要があり、例えば、特許文献1では、受信信号のCNに閾値を設定することで、捕捉、追尾に利用する測位信号を選択的に取得している。
 また、目的信号である測位信号以外の不要信号を検出する方法として、特許文献2では、受信信号のスペクトルピーク数が所定値以上検出された場合に、不要信号が存在すると判断している。
特開2003-139843号公報 米国特許7127011明細書
 しかしながら、特許文献1に示す方法では、単に受信信号のCNで識別を行っているが、当該CNを超えれば測位信号として採用されてしまうので、対象とするシステム以外の通信信号による妨害波や、マルチパスや、さらにはクロスコリレーション等による不要信号を、誤って測位信号として捕捉してしまう可能性がある。
 特に、近年では、GNSS受信装置の受信感度が向上し、目的とする測位信号のみでなく、上述の各不要信号も高レベルで受信し易くなっている。このため、不要信号を測位信号と間違って捕捉してしまう可能性が高くなる。
 一方、特許文献2に示す方法では、不要信号があることは判別できるものの、上述のような不要信号の種類を判別することはできない。
 本発明の目的は、受信信号から不要信号を正確に判別できる不要信号判別装置を実現することにある。また、このような不要信号判別装置を備えることで、目的とする測位信号を正確に捕捉、追尾できるGNSS受信装置を実現することにある。
 この発明は、所定の拡散コードでコード変調された目的信号を含む受信信号から不要信号を判別する不要信号判別装置に関するものである。この不要信号判別装置は相関データ列取得部と判別部とを備える。相関データ列取得部は、拡散コードに対するレプリカコードと受信信号との相関データから、コード位相軸における相関データ列と周波数軸における相関データ列を取得する。判別部は、コード位相軸における相関データ列と周波数軸における相関データ列とに基づいて不要信号を判別する。
 より具体的には、相関データ列取得部は、相関データを所定時間に亘り記憶し、該記憶した相関データを周波数領域のデータに変換することで、コード位相軸における相関データ列と周波数軸における相関データ列とを取得する。
 また、この発明は、所定の拡散コードでコード変調された目的信号を含む受信信号から不要信号を判別する不要信号判別方法および不要信号判別プログラムに関するものである。この不要信号判別方法および不要信号判別プログラムは、拡散コードに対するレプリカコードと受信信号との相関データから、コード位相軸における相関データ列と周波数軸における相関データ列を取得する。そして、不要信号判別方法および不要信号判別プログラムは、コード位相軸における相関データ列と周波数軸における相関データ列とに基づいて不要信号を判別する。
 この構成、方法およびプログラムでは、相関データ列をコード位相軸と周波数軸との二軸に沿って二次元的に観測した場合、後述する図4に示すように、目的信号(図4(A)参照)と不要信号(図4(B)~(D)参照)とで異なることを利用している。そして、受信信号の相関データの上記二軸の特性、すなわちコード位相軸での相関データ列と周波数軸における相関データ列とを得ることで、不要信号を判別している。
 また、この発明の不要信号判別装置の判別部は、目的信号をレプリカコードで相関処理した相関データのコード位相軸における相関データ列と周波数軸における相関データ列とを基準特性として予め記憶している。そして、判別部は、基準特性と、受信信号をレプリカコードで相関処理した相関データのコード位相軸における相関データ列および前記周波数軸における相関データ列に基づく実測特性と、を比較して不要信号を判別する。
 より具体的には、この発明の不要信号判別装置の判別部は、基準特性と実測特性とにおける相関データのピークレベルを一致させるように、基準特性もしくは実測特性の相関データを補正し、補正後の特性を用いてコード位相軸および周波数軸における類似度を算出することで、不要信号を判別する。ここで、例えば、具体的に類似度は、補正後の特性間の差分値からなる。
 この構成では、予め目的信号の相関データをコード位相軸と周波数軸との二軸に沿って観測した結果を基準特性として取得しておく。そして、受信信号の相関データによる実測特性と基準特性とを比較し、類似性が所定レベル以上でなければ受信信号が不要信号であることを判別する。このような実測特性と基準特性とを比較することで、不要信号を正確に判別することができる。そして、このような類似性による判別を行うことで、受信信号のC/Nが変化による影響を抑制でき、正確に不要信号を判別することができる。特に、基準特性と実測特性とのピークレベルを一致させてから類似度を算出して判別すれば、受信信号自身のレベルや、基準特性の設定レベルによる影響も抑制でき、さらに正確に不要信号を判別することができる。
 また、この発明の不要信号判別装置の判別部は、周波数軸での類似度とコード位相軸での類似度の双方を用いて、不要信号の種類を、マルチパス、クロスコリレーション、妨害波に判定する。
 この構成では、判別する上述の不要信号の種類を、より具体的に示したものである。これは、マルチパス、クロスコリレーション、妨害波が周波数軸とコード位相軸とでそれぞれが個別の特性を有し、類似度が異なることを利用している。
 また、この発明の不要信号判別装置の判別部は、コード位相軸における相関データのピークレベルの個数および周波数軸における相関データのピークレベルの個数およびピーク間の位置関係に基づいて、不要信号を、妨害波、マルチパス、またはクロスコリレーションのいずれかに判別する。
 この構成では、上述の類似度を用いない場合の不要信号の判別方法を示したものである。上述のように、不要信号であるマルチパス、クロスコリレーション、妨害波は、周波数軸やコード位相軸において、目的信号とは異なる相関データ列の特性を有する。具体的には、ピーク数やピーク間の位置関係が異なる。さらに、マルチパス、クロスコリレーション、妨害波同士であっても相関データ列の特性が異なる。したがって、このような相関データ列の特性の相違を利用することでも、不要信号の判別および不要信号の種類の判別を行うことができる。
 また、この発明は、目的信号としてGNSS衛星から送信される測位信号を用い、当該測位信号を受信するGNSS受信装置に関するものである。このGNSS受信装置の復調部は、上述の不要信号判別装置を有し、該不要信号判別装置で判別した目的信号を追尾して該目的信号の復調を行う。
 この構成では、上述の不要信号判別装置を備えたGNSS受信装置について示している。そして、このGNSS受信装置では、上述の不要信号判別装置を有することで、目的信号と判断された受信信号のみ復調することができる。
 また、この発明のGNSS受信装置の復調部は、目的信号が捕捉、追尾されるまでは目的信号と不要信号との判別処理を継続する。
 この構成では、上述の不要信号判別処理を実行しながら、目的信号が取得できるように、ループ処理を行っている。これにより、不要信号を捕捉、追尾することなく、より確実に必要数の目的信号を捕捉、追尾することができる。
 また、この発明は、上述のGNSS受信装置を備えた移動端末に関するものである。この移動端末は、GNSS受信装置で取得した目的信号を用いて自装置位置を測位する測位演算部を、備える。
 この構成では、上述の不要信号判別装置を備えたGNSS受信装置で取得した目的信号により測位が行われるので、高精度な測位が可能になる。
 この発明によれば、受信信号中の妨害波、マルチパス、およびクロスコリレーションを目的信号に対して正確に判別することができる。これにより、受信信号に含まれる目的信号である測位信号のみを、より確実に捕捉、追尾することができる。
第1の実施形態に係る不要信号判別装置300を有する復調部13を含むGNSS受信装置100の主要構成を示すブロック図である。 第1の実施形態に係る不要信号判別装置300の主要構成を示すブロック図である。 第1の実施形態の不要信号判別処理フローを示すフローチャートである。 目的信号に基づく相関データおよび不要信号に基づく相関データのコード位相軸の特性および周波数軸での特徴を表す特性例を示す図である。 第2の実施形態の不要信号判別処理フローを示すフローチャートである。 第2の実施形態における基準特性と実測特性との比較処理を説明するための図である。 第2の実施形態における処理の一例を説明するための図である。
 本発明の第1の実施形態に係る不要信号判別装置の構成について、図を参照して説明する。本実施形態では、GNSSシステムで用いられるGNSS受信装置に備えられた不要信号判別装置について説明する。
 また、本実施形態では、単にGNSS受信装置を例に説明するが、当該GNSS受信装置を備え、当該GNSS受信装置で算出された測位結果を利用したアプリケーションを実装した各種の移動端末(例えば、携帯電話機、カーナビゲーション装置、PND、カメラ、時計等)に対しても、以下の取得方法および構成を適用することができる。
 図1は本実施形態の不要信号判別装置300を有する復調部13を備えたGNSS受信装置100の主要構成を示すブロック図である。 
 GNSS受信装置100は、測位信号受信アンテナ11、RF処理部12、復調部13、測位演算部14を備える。
 測位信号受信アンテナ11は、GPS衛星やGalileo衛星等の測位用衛星から送信される測位用の電波信号を受信する。測位用の電波信号(以下、「測位信号」と称する。)は、所定の単一周波数からなる搬送波を、測位用衛星毎に設定された拡散コードと航法メッセージによりスペクトル拡散した信号である。受信信号には、受信条件によって、測位信号のみが含まれているとは限らず、測位信号とともに各種の不要信号が含まれていたり、不要信号のみが含まれており、さらに有意な信号が含まれていない場合もある。
 測位信号受信アンテナ11は、受信信号を電気信号変換に変換して、RF処理部12へ出力する。
 RF処理部12は、受信信号の周波数をダウンコンバートして、所定周波数の中間周波数信号やベースバンド信号からなる被相関処理信号を生成し、復調部13へ与える。
 復調部13は、具体的な構成および処理は後述するが、図2に示すような不要信号判別装置300を内包している。不要信号判別装置300は、コード相関処理で得られる相関データを所定時間に亘り順次記憶した相関データ列に基づいて、相関データ列の周波数スペクトルおよびコード位相スペクトルを算出する。不要信号判別装置300は、これらのスペクトルから受信信号に基づく被相関処理信号内に含まれる不要信号を判別する。そして、復調部13は、この判別結果に基づいて、不要信号として判別されない有意なレベルからなる受信信号を測位信号(目的信号)として捕捉、追尾し、受信信号の逆拡散を行う。ここで、追尾精度が十分に追い込まれ、コードがロックして、高精度なコード相関結果が得られれば、この逆拡散信号には航法メッセージのみが重畳された状態になる。なお、コード位相の基本的な捕捉処理および、コード位相及びキャリ位相の基本的な追尾ループ処理は、既知のものを利用することができ、説明は省略する。
 復調部13は、定常追尾に成功すると、得られたコード位相及びキャリア周波数情報によって逆拡散処理されたデータと、コード位相及びキャリア周波数情報から算出した擬似距離等とを、測位演算部14へ与える。ここで、復調部13は、常に測位に必要な個数の測位信号を定常追尾できるように、このような不要信号の判別処理を含んだ捕捉、追尾を継続的に実行する。
 測位演算部14は、復調部13からの航法メッセージが重畳された逆拡散信号に基づいて航法メッセージを取得する。測位演算部14は、航法メッセージと、復調部13からの擬似距離やキャリア周波数情報等に基づいて測位演算を行い、測位装置の位置を算出する。
 このように本実施形態のGNSS受信装置100では、不要信号として判別されていない有意なレベルの受信信号を用いて捕捉、追尾を行うので、正確な復調を行うことができる。そして、このような正確な復調結果により、高精度な測位結果を得ることができる。また、不要信号を排除しながら常に有意な測位信号を必要数得られるので、高精度な測位結果を定常的に得ることができる。
 次に、不要信号判別装置300の具体的構成および具体的処理について、図2~図4を参照して説明する。図2は不要信号判別装置300の主要構成を示すブロックである。
 不要信号判別装置300は、コード発生器30、コードディレイ部31、相関器321~32n、バッファ331~33n、FFT処理部341~34n、および判別部35を備える。ここで、「n」は、装置として捕捉、追尾可能な測位用衛星数に相当する並列処理可能なチャンネル数を示し、所定の正数である。また、コード発生器30、コードディレイ部31、相関器321~32nは、コード捕捉処理およびコード追尾処理時に利用するものである。また、相関器321~32n、バッファ331~33n、およびFFT処理部341~34nが本発明の「相関データ列取得部」に相当する。
 コード発生器30は、捕捉時であれば指定されたタイミングでそれぞれの測位用衛星に割り当てられた拡散コードに対するレプリカコードを生成し、コードディレイ部31へ出力する。コード発生器30は、追尾時であればコード追尾ループ(図示せず)の追尾結果に基づいて図示しないコードNCOで設定されたコード位相情報によって、前記レプリカコードを生成し、コードディレイ部31へ出力する。
 コードディレイ部31は、チャンネル毎のレプリカコードを所定のコード位相量毎にシフトさせながら、所定のサンプリングタイミング毎に各相関器321~32nへ与える。
 相関器321~32nは、受信信号に基づく被相関処理信号とレプリカコードとを乗算処理することで、相関データを生成し、バッファ331~33nへそれぞれ出力する。例えば、相関器321は、被相関処理信号と第1のレプリカコードとを乗算処理して第1相関データを生成し、バッファ331へ出力する。同様に、相関器322は、被相関処理信号と第2のレプリカコードとを乗算して第2相関データを生成し、バッファ332へ出力する。相関器333~33nも同様の相関処理を実行する。
 バッファ331~33nは、入力された相関データを時間軸に沿って順次記憶し、決められたタイミング毎に2個(mは所定の正数)ずつFFT処理部341~34nへ出力する。例えば、バッファ331は、第1相関データを順次記憶し、2個ずつFFT処理部341へ出力する。バッファ332~33nも同様のバッファ処理を実行する。また、バッファ331~33nは、FFT処理341~34nとともに、判別部35にも、相関データ列を出力する。
 FFT処理部341~34nは、バッファ331~33nから入力された、時間軸に沿って並ぶ相関データの列を用いてFFT(高速フーリエ変換)処理し、相関データの周波数スペクトルおよびコード位相スペクトルを取得する。FFT処理341~34nは、取得した周波数スペクトルおよびコード位相スペクトルを判別部35へ出力する。例えば、FFT処理341は、第1相関データ列をFFT処理して第1周波数スペクトルおよびコード位相スペクトルを取得し、判別部35へ出力する。FFT処理342~34nも同様の周波数変換処理を実行する。なお、本実施形態では、相関データを2個用いてFFT処理を行う例を示したが、単なるDFT(離散フーリエ変換)処理や、ウェーブレット変換処理等を用いて周波数スペクトルを取得してもよい。
 判別部35は、FFT処理341~34nからの相関データの周波数スペクトルおよびコード位相スペクトルに基づいて、不要信号を判別する。図3は不要信号判別処理フローを示すフローチャートである。図4は、目的信号に基づく相関データ列および不要信号に基づく相関データのコード位相軸の特性および周波数軸での特徴を表す特性例を示す図である。図4(A)は目的信号の相関データを示し、図4(B)は不要信号の妨害波の相関データを示し、図4(C)は不要信号のマルチパスの相関データを示し、図4(D)は不要信号のクロスコリレーションの相関データを示す。ここで、図4(A)~(D)は、コード位相軸および周波数軸のそれぞれ一軸に沿った相関データ列の特性と、コード位相軸と周波数軸とを直交する二軸に亘る相関データ列の特性とを示す。なお、図4(A)~(D)に示すコード位相軸における相関データ列の特性は或る特定の一つの周波数を示すものであり、周波数軸における相関データ列の特性は或る特定の一つのコード位相を示すものである。
 なお、以下では、説明を簡単にするために、一つのチャンネルに対する処理(例えば、相関器321、バッファ331、FFT処理部341を通る系)を説明するが、以下の不要信号判別処理は、全てのチャンネルに対して実行される。
 判別部35は、コード位相軸における相関データ列と周波数軸における相関データ列、すなわち相関データのコード位相スペクトルと周波数スペクトルを取得する(S101)。
 判別部35は、コード位相軸と周波数軸から得られる二次元領域の相関データ列に対して、閾値Th以上となるどうかを判定する(S101→S102)。ここで、判別部35は、閾値Th以上の相関データが存在しない場合(S102:No)、これら相関データ列の期間では有意な受信信号ではないと判断する(S120)。これは、捕捉、追尾処理が確実に実行できる測位信号であれば、図4(A)に示すように、二次元領域に設定した閾値Thを超える必要があるからである。逆に言えば、このような閾値Thを超える相関データの信号であって、下記に示す不要信号でないと判断されれば、捕捉、追尾処理を確実に実行することができる。
 判断部35は、閾値Th以上の相関データが存在した場合(S102:Yes)、閾値Th以上の相関データとなる各コード位相に対して、周波数軸での顕著なピークを検出する。そして、判定部103は、当該ピークとなる周波数においてコード位相軸で相関レベルが高い箇所が顕著なピークがあるかどうかを検出する(S103)。なお、顕著なピークとは、コード位相軸の前後の位相領域に対して相関データが所定レベル差以上の極大値となることを示し、判断部35は、コード位相軸の特性に対して微分処理等を行うことで当該極大値を検出して、顕著なピークを得ることができる。
 判別部35は、閾値Th以上の顕著なピーク(極大)を検出しなければ(S104:No)、当該周波数は妨害波であるを判断する(S140)。これは、妨害波の特性に基づくものである。妨害波の場合、例えば、他の通信システムの通信信号等が考えられるが、図4(B)に示すように、周波数軸では通信信号の周波数位置にピークが現れるが、コード位相軸では目的とする測位信号の拡散コードとの相関データのレベルが定常的に高くなり、顕著なピークが現れない。
 次に、判断部35は、コード位相軸での顕著なピークを検出すると(S104:Yes)、閾値Th以上の相関データのレベルが検出された別の周波数についても同様に、妨害波の判定を行う(S105:No→S103)。
 判断部35は、閾値Th以上の相関データのレベルが検出された全ての周波数について、妨害波の判断を行うと(S105:Yes)、判断範囲内の全ての周波数で且つ全てのコード移相において、ピークの個数が1個であるかどうかを判定する。
 判断部35は、ピークの個数が1個であれば、当該ピークが有意な測位信号によるものであると判断する(S106:Yes)。
 一方、判断部35は、ピークの個数が複数個であると判断すると、コード位相軸と周波数軸とでのピーク間の位置関係およびピークの個数から不要信号の種類を判定するフローへ移行する(S106:No)。
 判断部35は、コード位相軸でピーク数が2個であって当該2個のピークが近接し、周波数軸でピーク数が1個であれば(S160:Yes)、マルチパスであると判断する(S161)。これは、マルチパスの特性に基づくものである。マルチパスは、単独の測位用衛星からの測位信号が、直接的に受信されるものだけでなく、建築物等に反射し、遅延して受信されることにより生じる。このため、マルチパスでは、図4(C)に示すように、単一の周波数軸において、同一のコード位相とならず、コード位相軸の近接する位置に2個の相関データのレベルのピークが生じる。
 一方、判断部35は、コード位相軸でピーク数が3個であって当該3個のピークがそれぞれ或程度のコード位相差で独立して存在し、周波数軸でのピーク数も3個であれば(S160:No)、クロスコリレーションであると判断する(S162)。これは、クロスコリレーションの特性に基づくものである。クロスコリレーションは、目的とする測位用衛星とは異なる衛星からの測位信号を受信したことによるものである。すなわち、複数の測位用衛星から測位信号を受信していることにより、受信するコードが複数になるので、コード位相軸でのピークがそれぞれ独立に現れる。さらに、測位用衛星は、GNSS信号受信装置100に対して異なる位置であり、異なる相対速度で移動しているので、測位用衛星毎にドップラ周波数が異なる。これにより、周波数軸においても複数のピークが現れる。
 このように、無意な受信信号、不要信号、有意な測位信号を判別し、さらに不要信号を妨害波、マルチパス、クロスコリレーションと判断すると、判断部35は、判定結果を復調部13へ出力する(S108)。復調部13は、判定結果に準じて受信信号の捕捉、追尾処理を実行する。
 以上のように、本実施形態の構成および処理を行うことで、有意な測位信号に対して、不要信号を判別することができる。この際、単に受信信号のC/Nのみに依存しないので、不要信号のレベルが高くても確実に判別を行うことができる。
 さらに、本実施形態の構成および処理を用いることで、単に不要信号というカテゴリだけでなく、当該不要信号が妨害波か、マルチパスによるものか、クロスコリレーションによるものかを正確に判別することができる。
 次に、第2の実施形態に係る不要信号判別装置について図を参照して説明する。 
 本実施形態の不要信号判別装置は、判別部35の判別処理が異なるのみで、他の構成は第1の実施形態と同じであるので、必要箇所についてのみ説明する。 
 図5は、本実施形態の不要信号判別処理フローを示すフローチャートである。 
 図6は、基準特性と実測特性との比較処理を説明するための図であり、図6(A)が基準特性補正前の基準特性と実測特性とのコード位相軸および周波数軸での関係を示し、図6(B)が基準特性補正後の基準特性(補正後基準特性)と実測特性とのコード位相軸および周波数軸での関係を示す。
 本実施形態の不要信号判別装置は、予め目的とする測位信号にレプリカコードを相関処理したものに相当するコード位相軸と周波数軸との二次元領域における相関データ列を基準特性として記憶している。
 なお、受信信号は、いずれの測位衛星からの測位信号であるかは分からないため、基準特性は測位衛星毎に設定、記憶しておき、以下の処理は、各測位衛星に対応する基準特性毎に実行される。
 判別部35は、受信信号とレプリカコードとの相関処理により得られるコード位相軸における相関データ列と周波数軸における相関データ列(実測特性)を取得する(S201)。判別部35は、受信信号によるコード位相軸と周波数軸との二次元領域における相関データ列(実測特性)に対して、ピークレベルが閾値Th以上となるかどうかを判定する(S201→S202)。ここで、判別部35は、閾値Th以上の相関データが存在しない場合(S202:No)、これら相関データ列の期間では有意な受信信号ではなく、無意な受信信号として判断する(S220)。
 次に、判断部35は、実測特性のピークレベルが閾値Th以上であると判別した場合(S202:Yes)、受信信号によって取得した実測特性の相関データ列と、予め記憶した測位信号に基づく基準特性の相関データ列とを比較する。
 この際、判別部35は、まず、実測特性と基準特性とのレベル一致補正を行う。具体的には、判別部35は、コード位相軸での基準特性のピークレベルと実測特性のピークレベルとを取得し、図6(B)に示すように、これらのピークレベルが一致するように、基準特性の各相関データをレベル補正する(S203)。なお、この説明では、基準特性のレベル補正を行う場合を示すが、実測特性を補正することでも対応できる。
 次に、判別部35は、実測特性の二次元の各相関データと、レベル補正後の基準特性(以下、「補正後基準特性」と称する。)の二次元の相関データとを比較して類似度を算出する(S204→S205)。
 この比較方法としては、例えば、実測特性と補正後基準特性との相互相関処理であったり、実測特性と補正後基準特性とにおける各コード位相で周波数の相関データ間の差分値や比に基づく比較値であってもよい。
 そして、類似度の算出方法としては、例えば、差分値を用いる場合、それぞれの相関データ間の差分値の平均値や分散(標準偏差)に基づいて類似度を算出する。この際、差分値の平均値が「0」に近くなり、分散や標準偏差が高くなるほど、類似度が高くなるように設定する。
 判別部35は、類似度が予め記憶した判別閾値以上であれば、判別対象の受信信号が測位信号であると判断する(S206:Yes)。一方、判別部35は、二次元での類似度が閾値未満であれば、不要信号であると判断する(S206:No→S260)。
 判別部35は、不要信号であると判断すると、周波数軸単位およびコード位相軸単位での一次元の類似度を算出する。なお、この各軸単位での類似度は、上述の二次元の類似度を算出する際に、同時に算出してもよい。判別部35は、周波数軸での類似度やコード位相軸での類似度に基づいて、不要信号の種類を検出する(S261)。
 例えば、妨害波は図4(B)の特性となるので、測位信号を示す図4(A)の特性とはコード位相軸では全くことなる特性となり、全く類似性を有さない。さらに、周波数軸でもピークの周波数が異なるので、殆ど類似性を有さない。このため、周波数軸およびコード位相軸での類似度が低く、特にコード位相軸での類似度が大幅に低い場合に妨害波として判別することができる。
 また、マルチパスは図4(C)や図6の実線の特性となるので、測位信号を示す図4(A)の特性とは周波数軸で類似な特性となり、周波数軸での類似度が測位信号と略同じになる。一方、コード位相軸では、近接するピークを2個有するので、測位信号とは異なる特性となり、測位信号よりもコード位相軸での類似度が若干低くなる。このため、周波数軸での類似度が閾値以上で測位信号の場合と同等に高く、コード位相軸での類似度が所定範囲で低い場合、すなわち測位信号に比較すると低いが、類似度の低下レベルが少ない場合、マルチパスとして判別することができる。
 さらには、クロスコリレーションは図4(D)に示す特性となるので、測位信号を示す図4(A)の特性とは周波数軸でもコード位相軸でも類似度が低い特性となる。より具体的には、クロスコリレーションでは、周波数軸では近接するピークを3個有するので、測位信号よりも周波数軸での類似度が若干低くなる。一方、コード位相軸では当該軸に離間した位置に独立した3個のピークを有するので、マルチパスの場合よりもさらに類似度が低下する。このため、周波数軸での類似度が所定の範囲内で測位信号の場合よりも若干低く、コード位相軸での類似度がマルチパスの判断基準の類似度よりもさらに低い場合、クロスコリレーションとして判別することができる。
 このような妨害波、マルチパス、クロスコリレーションの判別は、例えば、次に示す用に、判定する。まず、周波数軸での類似度に対して、第1の周波数軸の閾値と、当該第1の周波数軸の閾値よりも低い第2の周波数軸の閾値を設定する。ここで、第1の周波数軸の閾値は、予めマルチパスの場合の類似度とクロスコリレーションの場合の類似度とを算出しておき、これら類似度の間の所定値に設定する。さらに、第2の周波数軸の閾値は、クロスコリレーションの場合の類似度と妨害波の場合の類似度を算出しておき、これら類似度の間の所定値に設定する。
 次に、コード位相軸での類似度に対して、第1のコード位相軸での閾値と、当該第1のコード位相軸の閾値よりも低い第2のコード位相軸の閾値と、当該第2のコード位相軸の閾値よりも低い第3のコード位相軸の閾値と、を設定する。ここで、第1のコード位相軸の閾値は、予めマルチパスの場合の類似度を算出しておくとともに、測位信号であるとした場合の類似度を算出し、これら類似度の間の所定値に設定する。
 また、第2のコード位相軸の閾値は、マルチパスの場合の類似度とクロスコリレーションの場合の類似度を算出しておき、これら類似度の間の所定値に設定する。さらに、第3のコード位相軸の閾値は、クロスコリレーションの場合の類似度と妨害波の場合の類似度を算出しておき、これら類似度の間の所定値に設定する。
 そして、周波数軸での類似度とコード位相軸での類似度と、各閾値とを比較し、各閾値に対する高低関係から、マルチパス、クロスコリレーション、妨害波のいずれかに判定する。
 次に、このように、無意な受信信号、不要信号、有意な測位信号を判別し、さらに不要信号の種類を判別すると、判断部35は、第1の実施形態と同様に判定結果を復調部13へ出力する(S207)。復調部13は、判定結果に準じて受信信号の捕捉、追尾処理を実行する。
 次に、図7を用いて、具体的な類似度による不要信号の判別方法について説明する。図7(A)は上述の基準特性をコード位相軸と周波数軸との直交二軸の2次元相関データとして記憶した状態を示す図であり、図7(B)は上述のマルチパスを含む受信信号の実測特性の2次元相関データを示す図である。さらに、図7(C)は補正後基準特性の2次元相関データを示す図であり、図7(D)は実測特性と補正後基準特性との差分結果の2次元データを示す図である。
 このような2次元データは、一軸を周波数軸として目的信号の周波数をf00として、低周波数側および高周波数側に所定の周波数間隔でサンプリングし、もう一軸をコード位相軸として目的信号に対してレプリカコードを相関処理した場合に理想的な相関ピークが得られるコードタイミングをc00として、コード位相が進む側および遅れる側に所定のコード位相差間隔でサンプリングしてなるデータである。
 判別部35は、実測特性を上述のように周波数f00,コード位相c00を中心とした図7(B)に示すような2次元相関データで取得すると、図7(A)に示した基準特性の2次元相関データの周波数f00,コード位相c00の相関値と、実測特性の2次元相関データの周波数f00,コード位相c00の相関値とが一致するように、基準特性の2次元相関データ全体のレベルを補正する。これにより、判別部35は、図7(C)に示すような補正後基準特性の2次元相関データを取得する。
 次に、判別部35は、図7(B)の実測特性の2次元相関データと、図7(C)の補正後基準特性の2次元相関データと、をそれぞれに対応する周波数およびコード位相の要素データ毎にデータレベルを差分し、図7(D)に示すような差分値の2次元相関データを算出する。
 次に、判別部35は、差分値の2次元データから、実測特性に対応する受信信号が目的信号であるか不要信号を判別する。具体的には、受信信号が目的信号であれば、理想的には差分値の2次元データの全ての要素データのレベルは「0」になる。したがって、判別部35は、差分値の2次元データの要素データのレベルの合計値や平均値を取得して、合計値や平均値が「0」に近い所定閾値未満であれば、目的信号と判断し、所定閾値以上であれば不要信号と判断する。この際、判別部35は、分散や標準偏差を算出し、これらを判断基準に含めてもよい。
 また、判別部35は、周波数毎(例えば、図7のf01やf20等)に差分値の合計値や平均値を算出したり、コード位相毎(例えば、図7のc10やc02等)に差分値の合計値や平均値を算出することで、不要信号の種類を判別する。例えば、マルチパスの場合、図6(B)や図7(B)に示すように、コード位相軸に対して異なる特性となり、コード位相の遅れる側に差分値が大きくなる領域が発生する。したがって、コード位相毎の差分値の平均値や合計値を算出すれば、コード位相の遅れる側に閾値以上のデータが現れる。判別部35は、これを検出することで、当該不要信号がマルチパスであることを判別する。
 以上のように、予め設定した基準特性と比較することで不要信号を判別することもできる。そして、本実施形態の方法を用いれば、受信レベルの変化によることなく類似度での不要信号の判別を行うことができる。なお、上述の説明では、類似度は差分値を用いているが、二つの相関データ間の違いが検出できる演算値であればよく、除算値等を用いてもよい。
 なお、上述の第1の実施形態では、マルチパスの判別後にクロスコリレーションの判別を行っているが、これらの順は逆になってもよい。
 また、上述の説明では、レプリカコードと受信信号とを相関処理した結果を周波数変換する方法を示した。しかしながら、受信信号を複数の周波数帯域成分に分解した後に、各周波数成分とレプリカコードとを相関処理しても、上述のようなコード軸と周波数軸との二軸による相間データを取得することができる。
 また、上述の説明では、GNSS受信装置の復調部に備えられた不要信号判別装置を説明したが、スペクトル拡散方式を用いた無線通信の受信装置の復調部にも、同様の構成の不要信号判別装置を適用することもできる。
100-GNSS受信装置、11-測位信号受信アンテナ、12-RF処理部、13-復調部、14-測位演算部、300-不要信号判別装置、30-コード発生器、31-コードディレイ部、321~32n-相関器、331~33n-バッファ、341~34n-FFT処理部、35-判別部

Claims (24)

  1.  所定の拡散コードでコード変調された目的信号を含む受信信号から不要信号を判別する不要信号判別装置であって、
     前記拡散コードに対するレプリカコードと前記受信信号との相関データから、コード位相軸における相関データ列と周波数軸における相関データ列を取得する相関データ列取得部と、
     前記コード位相軸における相関データ列と前記周波数軸における相関データ列とに基づいて前記不要信号を判別する判別部と、
     を備えた不要信号判別装置。
  2.  請求項1に記載の不要信号判別装置であって、
     前記相関データ列取得部は、前記相関データを所定時間に亘り記憶し、該記憶した相関データを周波数領域のデータに変換することで、前記コード位相軸における相関データ列と前記周波数軸における相関データ列とを取得する、不要信号判別装置。
  3.  請求項1または請求項2に記載の不要信号判別装置であって、
     前記判別部は、
      前記目的信号を前記レプリカコードで相関処理した相関データのコード位相軸における相関データ列と周波数軸における相関データ列とを基準特性として予め記憶しており、
      該基準特性と、前記受信信号を前記レプリカコードで相関処理した相関データの前記コード位相軸における相関データ列および前記周波数軸における相関データ列に基づく実測特性と、を比較して前記不要信号を判別する、不要信号判別装置。
  4.  請求項3に記載の不要信号判別装置であって、
     前記判別部は、前記基準特性と前記実測特性とにおける相関データのピークレベルを一致させるように、前記基準特性もしくは前記実測特性の相関データを補正し、補正後の特性を用いて前記コード位相軸および前記周波数軸における類似度を算出することで、前記不要信号を判別する、不要信号判別装置。
  5.  請求項4に記載の不要信号判別装置であって、
     前記判別部は、
     周波数軸での類似度とコード位相軸での類似度の双方を用いて、前記不要信号の種類を、マルチパス、クロスコリレーション、妨害波に判定する、不要信号判別装置。
  6.  請求項4または請求項5に記載の不要信号判別装置であって、
     前記判別部は、前記類似度として、前記補正後の特性間の差分値を算出する、不要信号判別装置。
  7.  請求項1に記載の不要信号判別装置であって、
     前記判別部は、
     前記コード位相軸における相関データのピークレベルの個数および前記周波数軸における相関データのピークレベルの個数およびピーク間の位置関係に基づいて、前記不要信号を、妨害波、マルチパス、またはクロスコリレーションのいずれかに判別する、不要信号判別装置。
  8.  所定の拡散コードでコード変調された目的信号を含む受信信号から不要信号を判別する不要信号判別方法であって、
     前記拡散コードに対するレプリカコードと前記受信信号との相関データから、コード位相軸における相関データ列と周波数軸における相関データ列を取得する工程と、
     前記コード位相軸における相関データ列と前記周波数軸における相関データ列とに基づいて前記不要信号を判別する工程と、
     を有する不要信号判別方法。
  9.  請求項8に記載の不要信号判別方法であって、
     前記相関データ列を取得する工程は、前記相関データを所定時間に亘り記憶し、該記憶した相関データを周波数領域のデータに変換することで、前記コード位相軸における相関データ列と前記周波数軸における相関データ列とを取得する、不要信号判別方法。
  10.  請求項8または請求項9に記載の不要信号判別方法であって、
     前記不要信号を判別する工程は、
      前記目的信号を前記レプリカコードで相関処理した相関データのコード位相軸における相関データ列と周波数軸における相関データ列とを基準特性として予め記憶しており、
      該基準特性と、前記受信信号を前記レプリカコードで相関処理した相関データの前記コード位相軸における相関データ列および前記周波数軸における相関データ列に基づく実測特性と、を比較して前記不要信号を判別する、不要信号判別方法。
  11.  請求項10に記載の不要信号判別方法であって、
     前記不要信号を判別する工程は、前記基準特性と前記実測特性とのコード位相軸でのピークレベルを一致させるように、前記基準特性もしくは前記実測特性の相関データを補正し、補正後の特性を用いて前記コード位相軸および前記周波数軸における類似度を算出することで、前記不要信号を判別する、不要信号判別方法。
  12.  請求項11に記載の不要信号判別方法であって、
     前記不要信号を判別する工程は、周波数軸での類似度とコード位相軸での類似度の双方を用いて、前記不要信号の種類を、マルチパス、クロスコリレーション、妨害波に判定する、不要信号判別方法。
  13.  請求項11または請求項12に記載の不要信号判別方法であって、
     前記不要信号を判別する工程は、前記類似度として、前記補正後の特性間の差分値を算出する、不要信号判別方法。
  14.  請求項8に記載の不要信号判別方法であって、
     前記不要信号を判別する工程は、前記コード位相軸における相関データのピークレベルの個数および前記周波数軸における相関データのピークレベルの個数およびピーク間の位置関係に基づいて、前記不要信号を、妨害波、マルチパス、またはクロスコリレーションのいずれかに判別する、不要信号判別方法。
  15.  所定の拡散コードでコード変調された目的信号を含む受信信号から不要信号を判別するための不要信号判別プログラムであって、
     前記拡散コードに対するレプリカコードと前記受信信号との相関データから、コード位相軸における相関データ列と周波数軸における相関データ列を取得する処理と、
     前記コード位相軸における相関データ列と前記周波数軸における相関データ列とに基づいて前記不要信号を判別する処理と、
     を含む不要信号判別プログラム。
  16.  請求項15に記載の不要信号判別プログラムであって、
     前記相関データ列を取得する処理は、前記相関データを所定時間に亘り記憶し、該記憶した相関データを周波数領域のデータに変換することで、前記コード位相軸における相関データ列と前記周波数軸における相関データ列とを取得する、不要信号判別プログラム。
  17.  請求項15または請求項16に記載の不要信号判別プログラムであって、
     前記不要信号を判別する処理は、
      前記目的信号を前記レプリカコードで相関処理した相関データのコード位相軸における相関データ列と周波数軸における相関データ列とを基準特性として予め記憶しており、
      該基準特性と、前記受信信号を前記レプリカコードで相関処理した相関データの前記コード位相軸における相関データ列および前記周波数軸における相関データ列に基づく実測特性と、を比較して前記不要信号を判別する、不要信号判別プログラム。
  18.  請求項17に記載の不要信号判別プログラムであって、
     前記不要信号を判別する処理は、前記基準特性と前記実測特性とのコード位相軸でのピークレベルを一致させるように、前記基準特性もしくは前記実測特性の相関データを補正し、補正後の特性を用いて前記コード位相軸および前記周波数軸における類似度を算出することで、前記不要信号を判別する、不要信号判別プログラム。
  19.  請求項18に記載の不要信号判別プログラムであって、
     前記不要信号を判別する処理は、周波数軸での類似度とコード位相軸での類似度の双方を用いて、前記不要信号の種類を、マルチパス、クロスコリレーション、妨害波に判定する、不要信号判別プログラム。
  20.  請求項18または請求項19に記載の不要信号判別プログラムであって、
     前記不要信号を判別する処理は、前記類似度として、前記補正後の特性間の差分値を算出する、不要信号判別プログラム。
  21.  請求項15に記載の不要信号判別プログラムであって、
     前記不要信号を判別するプログラムは、前記コード位相軸における相関データのピークレベルの個数および前記周波数軸における相関データのピークレベルの個数およびピーク間の位置関係に基づいて、前記不要信号を、妨害波、マルチパス、またはクロスコリレーションのいずれかに判別する、不要信号判別プログラム。
  22.  前記目的信号としてGNSS衛星から送信される測位信号を用い、当該測位信号を受信するGNSS受信装置であって、
     請求項1乃至請求項7のいずれかに記載の不要信号判別装置を有し、該不要信号判別装置で判別した前記目的信号を追尾して該目的信号の復調を行う復調部を備えたGNSS受信装置。
  23.  請求項22に記載のGNSS受信装置であって、
     前記復調部は、前記目的信号が捕捉、追尾されるまでは、該目的信号と前記不要信号との判別処理を継続する、GNSS受信装置。
  24.  自装置位置を利用するアプリケーションを実行する移動端末であって、
     請求項22または請求項23に記載のGNSS受信装置を備え、
     該GNSS受信装置で取得した前記目的信号を用いて、自装置位置を測位する測位演算部を、備えた移動端末。
PCT/JP2010/071330 2009-11-30 2010-11-30 不要信号判別装置、不要信号判別方法、不要信号判別プログラム、gnss受信装置および移動端末 WO2011065559A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011543360A JP5483750B2 (ja) 2009-11-30 2010-11-30 不要信号判別装置、不要信号判別方法、不要信号判別プログラム、gnss受信装置および移動端末
US13/512,501 US9081089B2 (en) 2009-11-30 2010-11-30 Device, method and program for identifying unnecessary signal, GNSS receiving apparatus and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009270921 2009-11-30
JP2009-270921 2009-11-30

Publications (1)

Publication Number Publication Date
WO2011065559A1 true WO2011065559A1 (ja) 2011-06-03

Family

ID=44066663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071330 WO2011065559A1 (ja) 2009-11-30 2010-11-30 不要信号判別装置、不要信号判別方法、不要信号判別プログラム、gnss受信装置および移動端末

Country Status (3)

Country Link
US (1) US9081089B2 (ja)
JP (1) JP5483750B2 (ja)
WO (1) WO2011065559A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928854A (zh) * 2012-11-23 2013-02-13 江苏东大集成电路系统工程技术有限公司 一种基于匹配滤波器的gps捕获单元设计方法
WO2013140911A1 (ja) * 2012-03-22 2013-09-26 古野電気株式会社 信号サーチ方法、信号サーチプログラム、信号サーチ装置、gnss信号受信装置、および情報機器端末
WO2013140910A1 (ja) * 2012-03-22 2013-09-26 古野電気株式会社 信号サーチ方法、信号サーチプログラム、信号サーチ装置、gnss信号受信装置、および情報機器端末
US10545245B2 (en) 2014-09-16 2020-01-28 Nottingham Scientific Limited GNSS jamming signal detection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226968B (zh) * 2018-01-03 2021-05-11 电子科技大学 一种导航信号快速捕获方法
WO2020144679A1 (en) 2019-01-07 2020-07-16 Regulus Cyber Ltd. Detection and mitigation of satellite navigation spoofing
US11086021B1 (en) 2020-06-24 2021-08-10 Regulus Cyber Ltd. Duplicate peak detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237744A (ja) * 1999-12-09 2001-08-31 Nokia Mobile Phones Ltd 受信機を同期させる方法、受信機及び電子装置
JP2006038486A (ja) * 2004-07-22 2006-02-09 Japan Radio Co Ltd Gps受信装置およびgps測位装置
JP2008522558A (ja) * 2004-12-01 2008-06-26 クゥアルコム・インコーポレイテッド ジャマー拒否に関するシステム、方法、および装置
JP2009027305A (ja) * 2007-07-18 2009-02-05 Seiko Epson Corp 受信回路、電子機器及びノイズキャンセル方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173630A (ja) * 1996-12-13 1998-06-26 Nec Corp Cdmaチップ同期回路
US6483814B1 (en) * 1999-08-25 2002-11-19 Hrl Laboratories, Llc Channel-adaptive radio modem
JP3748805B2 (ja) 2001-11-06 2006-02-22 クラリオン株式会社 Gps受信装置
US7127011B2 (en) 2002-08-29 2006-10-24 Qualcomm Incorporated Procedure for jammer detection
US7817084B2 (en) * 2006-08-23 2010-10-19 Qualcomm Incorporated System and/or method for reducing ambiguities in received SPS signals
JP4888110B2 (ja) 2006-12-26 2012-02-29 セイコーエプソン株式会社 相関演算制御回路及び相関演算制御方法
US20080238772A1 (en) * 2007-01-24 2008-10-02 Ohio University Method and apparatus for using multipath signal in gps architecture
JP5499435B2 (ja) 2007-11-20 2014-05-21 セイコーエプソン株式会社 相互相関判定方法、測位装置及び電子機器
US20090196378A1 (en) * 2008-01-31 2009-08-06 Mediatek Inc. Post correlation system for gnss receiver
JP5526492B2 (ja) * 2008-04-22 2014-06-18 セイコーエプソン株式会社 擬似距離算出方法、測位方法、プログラム及び測位装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237744A (ja) * 1999-12-09 2001-08-31 Nokia Mobile Phones Ltd 受信機を同期させる方法、受信機及び電子装置
JP2006038486A (ja) * 2004-07-22 2006-02-09 Japan Radio Co Ltd Gps受信装置およびgps測位装置
JP2008522558A (ja) * 2004-12-01 2008-06-26 クゥアルコム・インコーポレイテッド ジャマー拒否に関するシステム、方法、および装置
JP2009027305A (ja) * 2007-07-18 2009-02-05 Seiko Epson Corp 受信回路、電子機器及びノイズキャンセル方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140911A1 (ja) * 2012-03-22 2013-09-26 古野電気株式会社 信号サーチ方法、信号サーチプログラム、信号サーチ装置、gnss信号受信装置、および情報機器端末
WO2013140910A1 (ja) * 2012-03-22 2013-09-26 古野電気株式会社 信号サーチ方法、信号サーチプログラム、信号サーチ装置、gnss信号受信装置、および情報機器端末
JPWO2013140911A1 (ja) * 2012-03-22 2015-08-03 古野電気株式会社 信号サーチ方法、信号サーチプログラム、信号サーチ装置、gnss信号受信装置、および情報機器端末
CN102928854A (zh) * 2012-11-23 2013-02-13 江苏东大集成电路系统工程技术有限公司 一种基于匹配滤波器的gps捕获单元设计方法
US10545245B2 (en) 2014-09-16 2020-01-28 Nottingham Scientific Limited GNSS jamming signal detection

Also Published As

Publication number Publication date
JP5483750B2 (ja) 2014-05-07
US20120235862A1 (en) 2012-09-20
JPWO2011065559A1 (ja) 2013-04-18
US9081089B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
JP5483750B2 (ja) 不要信号判別装置、不要信号判別方法、不要信号判別プログラム、gnss受信装置および移動端末
EP1540368B1 (en) Signal search procedure for a position determination system
US8442095B2 (en) Multiple correlation processing in code space search
US8934522B2 (en) Circuits, devices, and processes for improved positioning satellite reception and other spread spectrum reception
EP2793050B1 (en) Gnss signal processing method, positioning method, gnss signal processing program, positioning program, gnss signal processing device, positioning device, and mobile terminal
EP1173778A1 (en) Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US9581700B2 (en) Method and apparatus tracking global navigation satellite system (GNSS)
US20140132446A1 (en) Method and apparatus for detecting cross correlation based in limited range code phase offset observations
US7605751B2 (en) Global navigation satellite system repeater disruption monitoring
US7903026B2 (en) Positioning apparatus and positioning apparatus control method
JP2003098244A (ja) 偽信号相互相関検出方法、送信源選択制限方法及び衛星選択制限方法
JP2007520100A (ja) 微分相関を用いたgps受信機
EP2793051B1 (en) Gnss signal processing method, positioning method, gnss signal processing program, positioning program, gnss signal processing device, positioning device, and mobile terminal
JP2008209287A (ja) 衛星航法受信機
US9236903B2 (en) Multi-path detection
JP5126527B2 (ja) 測位信号追尾処理装置および測位装置
KR101440692B1 (ko) Gnrss 대역확산 신호의 신속한 신호 획득 및 강건한 추적을 위한 2차원 압축 상관기
WO2016202746A1 (en) A method of processing offset carrier modulated ranging signals
JP2014041025A (ja) マルチパス推定装置、マルチパス検出装置、gnss受信機、マルチパス推定方法、情報機器端末及びマルチパス推定プログラム
Benedetto et al. Recent patents in spread spectrum systems
JP2011196807A (ja) 偽信号相互相関検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543360

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13512501

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833403

Country of ref document: EP

Kind code of ref document: A1