WO2011065373A1 - レーザ加工方法 - Google Patents

レーザ加工方法 Download PDF

Info

Publication number
WO2011065373A1
WO2011065373A1 PCT/JP2010/070915 JP2010070915W WO2011065373A1 WO 2011065373 A1 WO2011065373 A1 WO 2011065373A1 JP 2010070915 W JP2010070915 W JP 2010070915W WO 2011065373 A1 WO2011065373 A1 WO 2011065373A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing
laser
positions
workpiece
cutting line
Prior art date
Application number
PCT/JP2010/070915
Other languages
English (en)
French (fr)
Inventor
中野 誠
卓 井上
信治 神山
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201080053436.7A priority Critical patent/CN102665999B/zh
Priority to KR1020127012520A priority patent/KR101757948B1/ko
Priority to US13/511,664 priority patent/US10322526B2/en
Publication of WO2011065373A1 publication Critical patent/WO2011065373A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the present invention relates to a laser processing method for forming a modified region on a workpiece.
  • the modified region is formed with high accuracy in order to improve the processing quality.
  • the modified spots are densely formed along the planned cutting lines (to each other). It may be desirable to form them in close proximity.
  • an object of the present invention is to provide a laser processing method capable of shortening the tact time in laser processing and forming the modified region with high accuracy.
  • a laser processing method is a laser processing method in which a plurality of laser beams are focused on a processing target and a modified region is formed on the processing target along a planned cutting line.
  • a condensing step of condensing a plurality of laser beams simultaneously at a plurality of condensing positions separated from each other along the planned cutting line, and a plurality of laser beams relative to each other along the planned cutting line while repeating the condensing step Forming a plurality of modified spots along a planned cutting line, and forming a modified region by using the plurality of modified spots.
  • the light positions do not overlap each other, and at least one of the plurality of light collection positions in the subsequent light collection step is positioned between the plurality of light collection positions in the previous light collection process.
  • a modified region can be formed by simultaneously condensing a plurality of laser beams at a plurality of condensing positions that are separated from each other along a planned cutting line. It becomes.
  • the modified spot is scheduled to be cut in the workpiece.
  • the plurality of condensing positions in the repeated condensing process do not overlap each other, it is possible to prevent the laser beam from being irradiated to the existing modified spot (so-called laser beam overstrike).
  • the tact time in laser processing can be shortened, and the modified region can be formed with high accuracy.
  • the modified region can be formed with high accuracy. In this case, it is possible to suppress an increase in beam intensity due to the overlap of a plurality of laser beams on the processing target, and it is possible to prevent the processing target from deteriorating.
  • a plurality of laser beams do not overlap means that a plurality of laser beams do not substantially overlap. That is, for example, even if a plurality of laser beams are partially overlapped, the plurality of laser beams should not be substantially overlapped if the energy density of the superimposed laser beams is below a predetermined intensity that does not degrade the workpiece. Means.
  • At least one of the plurality of condensing positions in the latter condensing step is such that the plurality of modified spots are formed at equal intervals along the scheduled cutting line in the workpiece. It is preferable to be located between a plurality of condensing positions. In this case, a plurality of modified spots can be formed at equal intervals along the planned cutting line, and the workpiece can be accurately cut along the planned cutting line.
  • the interval H between the plurality of condensing positions in the condensing step is an equal interval, and is a divisor (except for 1) of the number of modified spot intervals and the number N of the plurality of condensing positions. May be a product of a predetermined number other than an integer multiple of.
  • the above-described operation and effect that a plurality of light collection positions in a repeated light collection step do not overlap with each other, and the above-described operation and effect that a plurality of modified spots are formed at equal intervals along a planned cutting line on a workpiece. And can be suitably exhibited.
  • a plurality of laser beams may be relatively moved along the planned cutting line from the outside to the inside of the workpiece in the direction along the planned cutting line or from the inside to the outside while repeating the condensing process.
  • the plurality of laser beams are relatively moved along the scheduled cutting line while repeating the condensing process, for example, as shown in FIG. Even if the light process is repeated, it is difficult to locate the condensing positions P that are finally condensed at equal intervals.
  • the condensing process start side R1 or the condensing process end side R2 is performed by relatively moving the laser beams L1 to L3 from the outside to the inside of the workpiece 1 or from the inside to the outside. Can be positioned outside the workpiece 1, and as a result, only a plurality of condensing positions P located at equal intervals can be positioned on the workpiece 1. Therefore, a plurality of modified spots S can be suitably formed at equal intervals from one end along the planned cutting line 5 to the other end in the workpiece 1.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the workpiece in FIG. 2. It is a top view of the processing target after laser processing.
  • FIG. 5 is a cross-sectional view taken along the line VV of the workpiece in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along line VI-VI of the workpiece in FIG. 4.
  • FIG. 9 is an enlarged cross-sectional view of an object to be processed in which a plurality of laser beams are simultaneously condensed by the laser processing apparatus of FIG.
  • (A) is process drawing for demonstrating the laser processing of this embodiment
  • (b) is process drawing which shows the continuation of Fig.12 (a).
  • FIG. 13C is a process diagram illustrating a continuation of FIG.
  • FIG. 14A is a process diagram showing a continuation of FIG. 12B
  • FIG. 13B is a process diagram showing a continuation of FIG.
  • FIG. 14A is a process diagram showing a continuation of FIG. 13B
  • FIG. 14B is a process diagram showing a continuation of FIG.
  • FIG.14 It is process drawing which shows the continuation of FIG.14 (c). It is a graph which shows the relationship between the simultaneous condensing number and the space
  • A is a process diagram of laser processing for explaining the relationship between the number of simultaneous condensing and the interval between simultaneous condensing positions
  • (b) is a process diagram showing a continuation of FIG. 17 (a)
  • (c) is FIG. 18 is a process diagram illustrating the continuation of FIG. It is a figure which shows the simultaneous condensing position and condensing order of embodiment which concerns on another example. It is a figure which shows the simultaneous condensing position and condensing order of embodiment which concerns on another another example. It is a figure which shows the simultaneous condensing position and condensing order of embodiment which concerns on another example. It is a figure which shows the simultaneous condensing position and condensing order of embodiment which concerns on another example.
  • a plurality of pulsed laser beams are simultaneously focused on the processing object, and a plurality of modified spots are formed along the planned cutting line inside the processing object.
  • a modified region serving as a starting point for cutting is formed by a plurality of modified spots.
  • a laser processing apparatus 100 includes a laser light source 101 that oscillates a laser beam L, a dichroic mirror 103 that is arranged so as to change the direction of the optical axis (optical path) of the laser beam L, and A condensing lens 105 for condensing the laser light L. Further, the laser processing apparatus 100 includes a support base 107 for supporting the workpiece 1 irradiated with the laser light L condensed by the condensing lens 105, and a stage 111 for moving the support base 107. And a laser light source control unit 102 for controlling the laser light source 101 to adjust the output of the laser light L, the pulse width, and the like, and a stage control unit 115 for controlling the movement of the stage 111.
  • the laser light L emitted from the laser light source 101 has its optical axis changed by 90 ° by the dichroic mirror 103, and the inside of the processing object 1 placed on the support base 107.
  • the light is condensed by the condensing lens 105.
  • the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. As a result, a modified region along the planned cutting line 5 is formed on the workpiece 1.
  • a scheduled cutting line 5 for cutting the workpiece 1 is set in the workpiece 1.
  • the planned cutting line 5 is a virtual line extending linearly.
  • the laser beam L is scheduled to be cut in a state where the focusing point (focusing position) P is aligned with the inside of the workpiece 1. It moves relatively along the line 5 (that is, in the direction of arrow A in FIG. 2).
  • the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 formed along the planned cutting line 5 is formed. It becomes the cutting start area 8.
  • the condensing point P is a location where the laser light L is condensed.
  • the planned cutting line 5 is not limited to a straight line, but may be a curved line, or may be a line actually drawn on the surface 3 of the workpiece 1 without being limited to a virtual line.
  • the modified region 7 may be formed continuously or intermittently. Further, the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1.
  • a crack may be formed starting from the modified region 7, and the crack and modified region 7 may be exposed on the outer surface (front surface, back surface, or outer peripheral surface) of the workpiece 1.
  • the laser light L here passes through the workpiece 1 and is particularly absorbed near the condensing point inside the workpiece 1, thereby forming the modified region 7 in the workpiece 1. (Ie, internal absorption laser processing). Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted. In general, when a removed portion such as a hole or a groove is formed by being melted and removed from the front surface 3 (surface absorption laser processing), the processing region gradually proceeds from the front surface 3 side to the back surface side.
  • the modified region formed in the present embodiment refers to a region in which density, refractive index, mechanical strength, and other physical characteristics are different from the surroundings.
  • the modified region include a melt treatment region, a crack region, a dielectric breakdown region, a refractive index change region, and the like, and there is a region where these are mixed.
  • the modified region there are a region where the density of the modified region in the material to be processed is changed compared to the density of the non-modified region, and a region where lattice defects are formed. Also known as the metastatic region).
  • the area where the density of the melt-processed area, the refractive index changing area, the modified area is changed compared with the density of the non-modified area, or the area where lattice defects are formed is In some cases, cracks (cracks, microcracks) are included in the interface between the non-modified region and the non-modified region. The included crack may be formed over the entire surface of the modified region, or may be formed in only a part or a plurality of parts.
  • Examples of the processing object 1 include those containing or consisting of silicon, glass, LiTaO 3 or sapphire (Al 2 O 3 ).
  • the modified region 7 is formed by forming a plurality of modified spots (processing marks) along the planned cutting line 5.
  • the modified spot is a modified portion formed by one pulse shot of pulsed laser light (that is, one pulse of laser irradiation: laser shot).
  • Examples of the modified spot include a crack spot, a melting treatment spot, a refractive index change spot, or a mixture of at least one of these.
  • the size of the modified spot and the length of the crack to be generated are appropriately determined. It is preferable to control.
  • FIG. 7 is a plan view showing an object to be processed that is an object of the laser processing method of the present embodiment.
  • the workpiece 1 includes a sapphire substrate 11, a GaN (gallium nitride) layer 16 formed on the surface 11 a of the sapphire substrate 11 via a buffer layer, and a plurality of functional elements 15. And a functional element layer (not shown) formed on the GaN layer 16.
  • GaN gallium nitride
  • the functional element 15 is, for example, a semiconductor operation layer formed by crystal growth, a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit, and the orientation flat 6 of the silicon wafer 11.
  • a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit
  • the orientation flat 6 of the silicon wafer 11. Are formed in a matrix form in a direction parallel to and perpendicular to. Such a workpiece 1 is cut along the scheduled cutting lines 5 set in a lattice shape so as to pass between adjacent functional elements.
  • FIG. 8 is a schematic configuration diagram showing a laser processing apparatus for performing the laser processing method according to the embodiment of the present invention.
  • the laser processing apparatus 300 includes a laser light source 202, a reflective spatial light modulator 203, a 4f optical system 241 and a condensing optical system 204 in a housing 231.
  • the laser light source 202 emits laser light L, which is pulse laser light having a wavelength of 532 nm, for example, and a fiber laser is used, for example.
  • the laser light source 202 here is fixed to the top plate 236 of the housing 231 with screws or the like so as to emit laser light in the horizontal direction.
  • the reflective spatial light modulator 203 modulates the laser light L emitted from the laser light source 202, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). Is used.
  • the reflective spatial light modulator 203 modulates the pulsed laser light L incident from the horizontal direction while reflecting it obliquely upward with respect to the horizontal direction, and moves along the scheduled cutting line 5 for relatively moving the pulsed laser light L.
  • the light is condensed (simultaneously condensed) at a plurality of condensing positions that are separated in the same direction.
  • FIG. 9 is a partial cross-sectional view of the reflective spatial light modulator of the laser processing apparatus of FIG.
  • the reflective spatial light modulator 203 includes a silicon substrate 213, a drive circuit layer 914, a plurality of pixel electrodes 214, a reflective film 215 such as a dielectric multilayer mirror, an alignment film 999a, a liquid crystal layer 216, An alignment film 999b, a transparent conductive film 217, and a transparent substrate 218 such as a glass substrate are provided, and these are stacked in this order.
  • the transparent substrate 218 has a surface 218 a along the XY plane, and the surface 218 a constitutes the surface of the reflective spatial light modulator 203.
  • the transparent substrate 218 mainly contains a light transmissive material such as glass, for example, and the laser light L having a predetermined wavelength incident from the surface 218 a of the reflective spatial light modulator 203 is converted into the interior of the reflective spatial light modulator 203. To penetrate.
  • the transparent conductive film 217 is formed on the back surface 218a of the transparent substrate 218, and mainly includes a conductive material (for example, ITO) that transmits the laser light L.
  • the plurality of pixel electrodes 214 are two-dimensionally arranged according to the arrangement of the plurality of pixels, and are arranged on the silicon substrate 213 along the transparent conductive film 217.
  • Each pixel electrode 214 is made of a metal material such as aluminum, for example, and the surface 214a is processed flat and smoothly.
  • the plurality of pixel electrodes 214 are driven by an active matrix circuit provided in the drive circuit layer 914.
  • the active matrix circuit is provided between the plurality of pixel electrodes 214 and the silicon substrate 213, and controls the voltage applied to each pixel electrode 214 in accordance with the optical image to be output from the reflective spatial light modulator 203.
  • Such an active matrix circuit includes, for example, a first driver circuit that controls the applied voltage of each pixel column arranged in the X-axis direction (not shown) and a first driver circuit that controls the applied voltage of each pixel column arranged in the Y-axis direction. And a predetermined voltage is applied to the pixel electrode 214 of the pixel designated by both of the driver circuits by the control unit 250.
  • the alignment films 999a and 999b are arranged on both end faces of the liquid crystal layer 216, and the liquid crystal molecule groups are arranged in a certain direction.
  • the alignment films 999a and 999b are made of, for example, a polymer material such as polyimide, and the contact surface with the liquid crystal layer 216 is subjected to a rubbing process or the like.
  • the liquid crystal layer 216 is disposed between the plurality of pixel electrodes 214 and the transparent conductive film 217, and modulates the laser light L in accordance with an electric field formed by each pixel electrode 214 and the transparent conductive film 217. That is, when a voltage is applied to a certain pixel electrode 214 by the active matrix circuit, an electric field is formed between the transparent conductive film 217 and the pixel electrode 214.
  • This electric field is applied to each of the reflective film 215 and the liquid crystal layer 216 at a rate corresponding to the thickness of each. Then, the alignment direction of the liquid crystal molecules 216a changes according to the magnitude of the electric field applied to the liquid crystal layer 216.
  • the laser light L passes through the transparent substrate 218 and the transparent conductive film 217 and enters the liquid crystal layer 216, the laser light L is modulated by the liquid crystal molecules 216 a while passing through the liquid crystal layer 216 and reflected by the reflective film 215. Then, the light is again modulated by the liquid crystal layer 216 and taken out.
  • the wavefront of the laser light L incident on and transmitted through the modulation pattern is adjusted, and the phase of a component in a predetermined direction perpendicular to the traveling direction is shifted in each light beam constituting the laser light L.
  • the laser beam L is modulated so that the laser beam L is condensed at multiple points in the three-dimensional direction in the workpiece 1 by the focusing optical system 204.
  • the condensing optical system 204 adjusts the intensity, amplitude, phase, polarization, and the like of the laser light L so as to be birefringent, and a plurality of light condensings separated along the planned cutting line 5 in the workpiece 1. At the same time, the light is focused on the position.
  • the 4f optical system 241 adjusts the wavefront shape of the laser light L modulated by the reflective spatial light modulator 203.
  • the 4f optical system 241 includes a first lens 241a and a second lens 241b.
  • the distance between the reflective spatial light modulator 203 and the first lens 241a is the focal length f1 of the first lens 241a
  • the distance between the condensing optical system 204 and the lens 241b is the focal length f2 of the lens 241b.
  • the reflective spatial light modulator 203 and the condensing optics are set so that the distance between the first lens 241a and the second lens 241b is f1 + f2 and the first lens 241a and the second lens 241b are both-side telecentric optical systems. It is arranged between the system 204.
  • the 4f optical system 241 it is possible to suppress the laser beam L modulated by the reflective spatial light modulator 203 from changing its wavefront shape due to spatial propagation and increasing aberration.
  • the condensing optical system 204 condenses the laser light L modulated by the 4f optical system 241 inside the workpiece 1.
  • the condensing optical system 204 includes a plurality of lenses and is installed on the bottom plate 233 of the housing 231 via a drive unit 232 including a piezoelectric element and the like.
  • the laser processing apparatus 300 includes a surface observation unit 211 for observing the surface 3 of the workpiece 1 and an AF (AutoFocus) unit for finely adjusting the distance between the condensing optical system 204 and the workpiece 1. 212 in the housing 231.
  • AF AutoFocus
  • the surface observation unit 211 includes an observation light source 211a that emits visible light VL1, and a detector 211b that receives and detects the reflected light VL2 of the visible light VL1 reflected by the surface 3 of the workpiece 1. ing.
  • the visible light VL1 emitted from the observation light source 211a is reflected and transmitted by the mirror 208 and the dichroic mirrors 209, 210, and 238, and is condensed toward the object to be processed by the condensing optical system 204.
  • the reflected light VL2 reflected by the surface 2 of the workpiece 1 is collected by the condensing optical system 204, transmitted and reflected by the dichroic mirrors 238 and 210, and then transmitted through the dichroic mirror 209. Light is received at 211b.
  • the AF unit 212 emits the AF laser beam LB1 and receives and detects the reflected light LB2 of the AF laser beam LB1 reflected by the surface 3 of the workpiece 1, thereby detecting the surface along the planned cutting line 5 3 displacement data is acquired. Then, when forming the modified region 7, the AF unit 212 drives the drive unit 232 based on the acquired displacement data, and moves the condensing optical system 204 along the waviness of the surface 3 of the workpiece 1. Reciprocate in the optical axis direction.
  • the laser processing apparatus 300 includes a control unit 250 including a CPU, a ROM, a RAM, and the like as a unit for controlling the laser processing apparatus 300.
  • the control unit 250 controls the laser light source 202 and adjusts the output, pulse width, and the like of the laser light L emitted from the laser light source 202.
  • the simultaneous focusing position of the laser light L is located at a predetermined distance from the surface 3 of the workpiece 1 and relatively moves along the scheduled cutting line 5.
  • the position of the housing 231 and the stage 111 and the drive of the drive unit 232 are controlled.
  • the control unit 250 applies a predetermined voltage to the electrode units 214 a and 217 a in the reflective spatial light modulator 203 to display a predetermined modulation pattern on the liquid crystal layer 216.
  • the laser beam L is modulated as desired by the reflective spatial light modulator 203, and the laser beam L is simultaneously condensed at any of a plurality of simultaneous focusing positions in the three-dimensional direction in the workpiece 1, and at least cut.
  • a plurality of modified spots S that are separated along the planned line 5 are simultaneously formed (details will be described later).
  • the predetermined modulation pattern is derived in advance based on, for example, the position where the modified region 7 is to be formed, the wavelength of the laser beam L to be irradiated, the refractive index of the condensing optical system 204 and the workpiece 1, and the like. Are stored in the control unit 250.
  • an expand tape is attached to the surface 3 of the workpiece 1, and the workpiece 1 is placed on the stage 111. Subsequently, the processing object 1 and the laser light L are relatively moved (scanned) along the planned cutting line 5 while irradiating the processing object 1 with a pulse of the laser light L with the back surface 21 as the laser light irradiation surface. A quality region 7 is formed.
  • the laser light L emitted from the laser light source 202 travels in the horizontal direction in the housing 231, is then reflected downward by the mirror 205 a, and the light intensity is adjusted by the attenuator 207.
  • the laser light L is reflected in the horizontal direction by the mirror 205 b, the intensity distribution is made uniform by the beam homogenizer 260, and is incident on the reflective spatial light modulator 203.
  • the laser beam L incident on the reflective spatial light modulator 203 passes through the modulation pattern displayed on the liquid crystal layer 216 and is modulated in accordance with the modulation pattern, and then obliquely upward with respect to the horizontal direction as laser beams L1 to L3. Is emitted. Subsequently, after being reflected upward by the mirror 206a, the polarization direction is changed by the ⁇ / 2 wave plate 228 so as to be along the line 5 to be cut, and is reflected in the horizontal direction by the mirror 206b and is reflected on the 4f optical system 241. Incident.
  • the wavefront shape is adjusted so that the laser beams L1 to L3 incident on the condensing optical system 204 become parallel beams. Specifically, it is transmitted and converged through the first lens 241a, reflected downward by the mirror 219, diverged through the confocal O, and transmitted through the second lens 241b and converged again to become parallel light. .
  • the laser beams L1 to L3 are sequentially transmitted through the dichroic mirrors 210 and 218, enter the condensing optical system 204, and are simultaneously condensed by the condensing optical system 204 inside the workpiece 1 placed on the stage 111. Is done. As a result, three modified spots S (see FIG. 11) arranged at equal intervals are simultaneously formed at a predetermined depth in the thickness direction in the workpiece 1.
  • the above-described three-point simultaneous focusing of the laser beams L1 to L3 is repeated along the scheduled cutting line 5, and a plurality of modified spots S are formed in the workpiece 1, and modified by these modified spots. Region 7 is formed. Thereafter, by expanding the expanded tape, the workpiece 1 is cut along the planned cutting line 5 using the modified region 7 as a starting point of cutting, and the workpiece 1 is divided into a plurality of chips (for example, a memory, an IC, a light emitting element). , Light receiving elements, etc.).
  • chips for example, a memory, an IC, a light emitting element. , Light receiving elements, etc.
  • the step of simultaneously condensing the laser beams L1 to L3 at the simultaneous condensing positions that are a plurality of condensing positions to be condensed simultaneously (hereinafter simply referred to as “condensing step”).
  • the laser beams L1 to L3 are relatively moved along the scheduled cutting line 5.
  • a predetermined diffraction grating pattern is used as a modulation pattern of the condensing optical system 204, the number N of simultaneous condensing is set, and the size of the grating width is controlled, whereby the interval H between the simultaneous condensing positions P1 to P3 is set. Is set.
  • the interval B is a distance between adjacent condensing positions P and P among a plurality of condensing positions P where the laser beams L1 to L3 are finally condensed in a plurality of repeated condensing steps. It can also be said that the interval.
  • FIG. 10 is a schematic view showing the main part of the optical system of the laser processing apparatus of FIG.
  • the interval H is set by the focal length f of the condensing optical system 204 and the incident angle ⁇ of the laser beams L1 to L3 to the condensing optical system 204.
  • H f ⁇ tan ⁇ .
  • the incident angle ⁇ is controlled by the reflective spatial light modulator 203, but the incident angle ⁇ may be controlled by controlling the 4f optical system 241 and adjusting the reduction magnification.
  • the maximum value of the incident angle ⁇ is a limit incident angle caused by the angle of view of the condensing optical system 204.
  • FIG. 11 is an enlarged cross-sectional view of an object to be processed in which a plurality of laser beams are simultaneously condensed by the laser processing apparatus of FIG.
  • the laser beams L1 to L3 relatively move from the left side to the right side.
  • the simultaneous condensing position P1 is the condensing position located at the rearmost position
  • the simultaneous condensing position P3 is the condensing position located at the most forward position.
  • the simultaneous condensing position P2 is a condensing position located in the middle of the simultaneous condensing positions P1 and P3.
  • the simultaneous condensing positions P1 and P2 are indicated by circles for convenience (the same applies to FIGS. 12 to 15 and 17 below).
  • the interval H between the simultaneous focusing positions P1 to P3 of the present embodiment is such that the laser beams L1 to L3 simultaneously focused are on the surface 3 side of the workpiece 1 (opposite surface of the laser beam irradiation surface). Side), back surface 21 side (irradiation surface side), or both, the distances are separated from each other.
  • the interval H is a product of [interval B] and [a predetermined number other than an integral multiple of the divisor of the simultaneous condensing number N (however, excluding 1 and the same shall apply hereinafter)].
  • “Laser beams L1 to L3 do not overlap” means that laser beams L1 to L3 do not substantially overlap.
  • the laser beams L1 to L3 are substantially reduced if the energy density of the superimposed laser beams is not more than a predetermined intensity that does not deteriorate the workpiece 1. It means not to overlap.
  • the scanning speed is [number of simultaneous focusing N / 4 / repetition frequency ⁇ ⁇ interval]. H].
  • the interval H is 40 ⁇ m
  • the repetition frequency is 10 kHz
  • the interval B is 10 ⁇ m
  • the scan speed is 300 mm / s.
  • the interval H is 24 ⁇ m
  • the repetition frequency is 15 kHz
  • the interval B is 6 ⁇ m
  • the scan speed is 270 mm / s.
  • the laser beams L1 to L3 are relatively aligned in one direction along the planned cutting line 5 from the outer region R1 of the workpiece 1 to the outer region R3 through the inner region R2. Pulse irradiation is performed while moving, and the condensing process is repeated. At this time, at least one of the simultaneous condensing positions P1 to P3 in the subsequent condensing process is positioned between the simultaneous condensing positions P1 to P3 in the preceding condensing process. Specifically, the simultaneous condensing positions P1 to P3 in the subsequent condensing process are respectively positioned on the front side in the movement direction between the simultaneous condensing positions P1 to P3 in the preceding condensing process.
  • pulse irradiation is started while the laser beams L1 to L3 are relatively moved along the planned cutting line 5, and the laser beams L1 to L3 are simultaneously focused at the condensing position P11. Condensed simultaneously at P13 to form the modified spots S simultaneously.
  • the simultaneous condensing positions P11 and P12 here are located in the outer region R1, and the simultaneous condensing position P13 is located in front of the moving direction by a predetermined length with respect to the outer edge E of the workpiece 1 in the inner region R2. .
  • the expanded tape 274 is directly irradiated with the laser beams L1 and L2, but the laser beam that does not pass through the workpiece 1 is likely to spread and the energy density is relatively low.
  • the expanded tape 274 is hardly deteriorated by the lights L1 and L2.
  • the laser beams L1 to L3 are irradiated with pulses while being relatively moved along the planned cutting line 5, and the laser beams L1 to L3 are focused on the simultaneous focusing positions P21 to P23.
  • two modified spots S are simultaneously formed at the simultaneous condensing positions P22 and P23.
  • the interval A between the simultaneous condensing positions P11 and 21 (between P12 and 22 or between P13 and 23) is determined by the laser repetition frequency and the scan speed processing speed, and is set as the interval B ⁇ the number N of simultaneous condensing. ing.
  • the simultaneous condensing position P21 is close to the rear side in the movement direction of the simultaneous condensing position P12 between the simultaneous condensing positions P11 and 12 in the outer region R1.
  • the simultaneous condensing position P22 is close to the rear side in the movement direction of the simultaneous condensing position P12 between the simultaneous condensing positions P12 and 13 in the inner region R2.
  • the simultaneous condensing position P31 is located on the front side in the movement direction with respect to the simultaneous condensing position P13 in the inner region R2.
  • the laser beams L1 to L3 are irradiated with pulses while continuing relative movement along the planned cutting line 5, and the simultaneous focusing positions P31 to P33 are simultaneously detected.
  • the laser beams L1 to L3 are simultaneously condensed at the condensing positions P41 to P43, the simultaneous condensing positions P51 to P53, and the simultaneous condensing positions P61 to P63 so that a plurality of modified spots S are not overlapped with each other.
  • the laser beams L1 to L3 are irradiated with pulses while continuing relative movement along the planned cutting line 5, and the laser beams L1 to L3 are condensed at the simultaneous condensing positions P71 to P73.
  • a reforming spot S is formed at the condensing position P71.
  • a plurality of modified spots S are formed so as not to overlap each other at equal intervals from one end to the other end along the planned cutting line 5 inside the workpiece 1, and these modified spots are formed.
  • the modified region 7 is formed by S.
  • the tact time can be shortened as compared with the normal laser processing. It becomes.
  • the simultaneous condensing positions P1 to P3 in the subsequent condensing process are respectively positioned between the respective simultaneous condensing positions P1 to P3 in the former condensing process, the processing object 1 is modified.
  • the quality spots S can finally be formed densely along the planned cutting line 5.
  • the condensing position P in the repeated condensing process that is, the condensing position P finally collected
  • the laser beam L1 to L3 is irradiated to the existing modified spot S. This can be prevented (so-called laser beam L1 to L3 overstrike). Therefore, it is possible to prevent waste of tact and to prevent the modified spot S from becoming unnecessarily large and adversely affecting the formation of the modified region 7. Therefore, according to the present embodiment, the tact time in laser processing can be shortened, and the modified region 7 can be formed with high accuracy.
  • the simultaneous condensing positions P1 to P3 are separated from each other so that the laser beams L1 to L3 do not overlap on the front surface 3 side, the back surface 21 side, or both in the workpiece 1. Further, the laser beams L1 to L3 are superimposed on the surface 3 side (for example, the GaN layer 16) of the workpiece 1 to cause interference, thereby suppressing an unintentional increase in beam intensity. As a result, it is possible to prevent the processing object 1 (particularly, the surface 3 side of the processing object 1) from deteriorating, and thus to prevent the GaN layer 16 from deteriorating.
  • the interval B of the modified spot S has a range suitable for cutting, there is a concern that if the interval H between the simultaneous condensing positions P1 to P3 is excessively widened, it becomes difficult to cut or the cutting accuracy is lowered.
  • the simultaneous condensing positions P1 to P3 in the subsequent condensing step are respectively positioned between the respective simultaneous condensing positions P1 to P3 in the preceding condensing step as in the present embodiment, for example, processing It is possible to prevent the plurality of modified spots S finally formed on the object 1 from being separated too much from each other (the modified spots S can be arranged as if the modified regions 7 were formed without increasing the interval H).
  • the modified region 7 can be formed with high accuracy.
  • the laser beams L1 to L3 are likely to overlap and interfere with each other, so that the energy density tends to increase.
  • the laser beam L1 to L3 is not absorbed by the workpiece 1 and easily passes through the workpiece 1.
  • the energy density on the surface 3 side tends to be high. Therefore, in the present embodiment, the above-described effect of preventing the laser beams L1 to L3 on the surface 3 side of the workpiece 1 from overlapping and preventing deterioration is particularly effective.
  • the modified spots S are formed at equal intervals along the planned cutting line 5 in the processing target 1, so that the processing target 1 is accurately aligned along the planned cutting line 5. Can be cut well.
  • FIG. 16 is a chart showing the relationship between the number of simultaneous focusing and the interval between the simultaneous focusing positions
  • FIG. 17A is a laser processing for explaining the relationship between the number of simultaneous focusing and the interval between the simultaneous focusing positions.
  • FIG. 17B is a schematic process diagram showing a continuation of FIG. 17A
  • FIG. 17C is a schematic process diagram showing a continuation of FIG. 17B.
  • “NG” in FIG. 16 indicates that, under the row and column processing conditions in the chart, at least one of the simultaneous light collection positions in the preceding light collection step overlaps with the simultaneous light collection position in the subsequent light collection process, This means that the formation of 7 is inappropriate.
  • the interval H of the simultaneous condensing positions is set based on the interval B as described above. Therefore, in FIG. 16, a value based on the interval B (a value divided by the interval B). Is shown. Further, the numbers given to the simultaneous light condensing positions P′1 to P′3 in FIG. 16 represent the light condensing order.
  • the modified spots S can be accurately formed at equal intervals without becoming “NG”.
  • the interval H is an integral multiple of the divisor of the simultaneous condensing number N, it is understood that “NG” is obtained.
  • the condensing position P′3 overlaps each other and the modified spot S cannot be formed with high accuracy.
  • the interval H between the simultaneous condensing positions P1 to P3 is a predetermined number other than an integer multiple of the interval B of the modified spot S and the divisor of the simultaneous condensing number N. It is a product of. Therefore, while the modified spots S are formed at equal intervals along the planned cutting line 5 in the workpiece 1, it is preferable to prevent the simultaneous condensing positions P1 to P3 from overlapping in the pre-stage and post-stage condensing processes. It becomes possible.
  • the laser beams L1 to L3 are cut along the planned cutting line 5 from the outer region R1 of the workpiece 1 through the inner region R2 to the outer region R3 while repeating the focusing process. Relative movement in one direction.
  • the laser beams L1 to L3 are relatively moved to the regions R1 to R3, and the simultaneous condensing position P on the condensing process start side 401 or the condensing process end side 402 is set to the outside of the workpiece 1.
  • the regions R1 and R3 it is possible to position only a plurality of simultaneous condensing positions P positioned at equal intervals in the inner region R2.
  • the modified spots S can be accurately formed at regular intervals on the workpiece 1.
  • FIG. 18 is a diagram showing the positions and order of simultaneous focusing of a plurality of laser beams in an embodiment according to another example.
  • a virtual machining position t along the planned cutting line is shown in the left-right direction, and this virtual machining position t is shown with reference to the interval B of the modified spots S.
  • a cell to which a number is attached means that the virtual processing position t is a simultaneous light collection position, and the number means a processing order.
  • the moving directions of the laser beams L1 to L3 are from the left side to the right side of the page. The same applies to FIGS. 19 and 20.
  • the interval H between the simultaneous condensing positions P1 to P3 is not limited to this embodiment, and the laser beams L1 to L3 do not overlap on the opposite surface side of the laser beam irradiation surface of the workpiece 1. As long as they are separated from each other, they may be of various sizes.
  • the interval H is widened, the overlap of the laser beams L1 to L3 is further suppressed, but the spatial frequency becomes high, so that it is difficult to express (display) the modulation pattern in the reflective spatial light modulator 203.
  • the spatial frequency is low, which is advantageous in expressing (displaying) the modulation pattern in the reflective spatial light modulator 203, but the overlap of the laser beams L1 to L3 becomes large.
  • the positional relationship between the simultaneous condensing positions P1 to P3 in the former stage and the latter stage condensing process is not limited to this embodiment, and at least one of the simultaneous condensing positions P1 to P3 in the latter stage condensing process is the former stage.
  • various positional relationships may be used. For example, as shown in FIG. 18 (a), the interval H is set to 5, and the simultaneous condensing positions in the subsequent condensing process are respectively positioned on the front side in the middle between the simultaneous condensing positions in the preceding condensing process. May be.
  • the intervals H are set to 7 and 8, respectively, and between the simultaneous light condensing positions in the preceding light condensing process, simultaneously in the previous light condensing process. Position the condensing position and position the condensing position in the subsequent condensing process between the condensing positions in the condensing process in the preceding stage and between the condensing positions in the preceding condensing process. Also good. It can be seen that even in these cases, the modified spots S can be formed at equal intervals on the workpiece 1.
  • the condensing order jN + 1 can be expressed by the following equation (1).
  • the condensing order j N ⁇ 1 can be expressed by the following equation (2).
  • j N + 1 Round up (t / N) ⁇ Remainder (t ⁇ 1, N) (1)
  • j N-1 rounded up (t / N) + residue (residue (t ⁇ 1, N), ⁇ N + 1) (2)
  • t virtual processing position
  • N the number of simultaneous condensing.
  • the energy of the laser beams L1 to L3 focused at the simultaneous focusing position may be an arbitrary value, and at least one energy of the laser beams L1 to L3 may be set to zero or cut. May be.
  • the energy of the laser beams L1 to L3 focused at the simultaneous focusing position may be an arbitrary value, and at least one energy of the laser beams L1 to L3 may be set to zero or cut. May be.
  • Such an irradiation method can be used when, for example, a space is provided at the intersection of the intersecting scheduled cutting lines 5.
  • the number N of simultaneous condensing is set to 3, but the number N of simultaneous condensing may be set to 2 as shown in FIG. 20, for example, and may be at least 2 or more.
  • the laser light incident surface when forming the modified region 7 is not limited to the back surface 21 of the workpiece 1 and may be the surface 3 of the workpiece 1.
  • the LCOS-SLM is used as the reflective spatial light modulator 203.
  • a MEMS-SLM, a DMD (deformable mirror device), or the like may be used.
  • a transmissive spatial light modulator may be used. Examples of the spatial light modulator include a liquid crystal cell type and an LCD type.
  • the present invention is not limited to irradiating a plurality of laser beams by using the reflective spatial light modulator 203.
  • a plurality of laser beams are emitted at a plurality of simultaneous condensing positions separated from each other at least along a planned cutting line. What is necessary is just to be able to collect light simultaneously.
  • a plurality of simultaneous condensing positions may be separated from each other in the thickness direction of the workpiece 1.
  • the reflective spatial light modulator 203 of the above embodiment includes the dielectric multilayer mirror, the reflection of the pixel electrode of the silicon substrate may be used.
  • the 4f optical system 241 is used. However, the 4f optical system 241 may be omitted when there is no problem in the change of the wavefront shape.
  • SYMBOLS 1 Processing object, 3 ... Front surface (opposite surface), 5 ... Planned cutting line, 7 ... Modified area
  • Simultaneous condensing position Interval of multiple condensing positions
  • N Simultaneous condensing number (number of con

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 切断予定ライン5に沿って互いに離れた集光位置P1~P2にレーザ光L1~L3を同時集光させる集光工程を繰り返しながら、レーザ光L1~L3を切断予定ライン5に沿って相対移動させる。これにより、複数の改質スポットSを切断予定ライン5に沿って形成し、これらの複数の改質スポットSによって改質領域7を形成する。ここで、繰り返される集光工程における集光位置P1~P3は、互いに重畳せず、また、後段の集光工程における集光位置P21~P23のうち少なくとも1つは、前段の集光工程における集光位置P11~P13間に位置されている。

Description

レーザ加工方法
 本発明は、加工対象物に改質領域を形成するためのレーザ加工方法に関する。
 従来のレーザ加工方法としては、加工対象物の内部に集光位置を合わせてレーザ光を照射することにより、切断予定ラインに沿って加工対象物に改質領域を形成するものが知られている(例えば、特許文献1参照)。
特開2004-343008号公報
 ここで、上述したレーザ加工方法では、ランニングコストの低減等のため、レーザ加工におけるタクトタイムのさらなる短縮化が強く望まれている。加えて、上述したレーザ加工方法においては、加工品質の向上等のため、改質領域を精度よく形成することが求められており、例えば、改質スポットを切断予定ラインに沿って密に(互いに近接させて)形成することが望まれる場合がある。
 そこで、本発明は、レーザ加工におけるタクトタイムを短縮化し、且つ改質領域を精度よく形成することができるレーザ加工方法を提供することを課題とする。
 上記課題を解決するために、本発明に係るレーザ加工方法は、加工対象物に複数のレーザ光を集光させ、加工対象物に改質領域を切断予定ラインに沿って形成するレーザ加工方法であって、切断予定ラインに沿って互いに離れた複数の集光位置に複数のレーザ光を同時に集光させる集光工程と、集光工程を繰り返しながら複数のレーザ光を切断予定ラインに沿って相対移動させることで、複数の改質スポットを切断予定ラインに沿って形成し、これらの複数の改質スポットによって改質領域を形成する形成工程と、を含み、繰り返される集光工程における複数の集光位置は、互いに重畳せず、且つ、後段の集光工程における複数の集光位置のうち少なくとも1つは、前段の集光工程における複数の集光位置間に位置されることを特徴とする。
 この本発明に係るレーザ加工方法では、切断予定ラインに沿って互いに離れた複数の集光位置に複数のレーザ光を同時に集光させて改質領域を形成できるため、タクトタイムの短縮化が可能となる。加えて、後段の集光工程における複数の集光位置のうち少なくとも1つが前段の集光工程における複数の集光位置間に位置されていることから、加工対象物において改質スポットを切断予定ラインに沿って最終的に密に形成することが可能となる。このとき、繰り返される集光工程における複数の集光位置が互いに重畳しないため、既成の改質スポットにレーザ光が照射されること(いわゆる、レーザ光の重ね打ち)を防止でき、よって、タクトの無駄を防止できると共に、改質スポットが無駄に大きくなって改質領域の形成に悪影響が及ぶのを抑制することができる。従って、本発明によれば、レーザ加工におけるタクトタイムを短縮化し、且つ改質領域を精度よく形成することが可能となる。
 なお、このように後段の集光工程における複数の集光位置のうち少なくとも1つを前段の集光工程における複数の集光位置間に位置させる場合、集光工程にて同時に集光させる複数のレーザ光の間隔を、加工対象物のレーザ光照射面の反対面側又は照射面側若しくはその両方で重畳しないよう互いに離間させても、改質領域を精度よく形成することが可能となる。この場合、加工対象物において複数のレーザ光が重畳しビーム強度が高まることを抑制でき、加工対象物が劣化することを防止できる。ちなみに、「複数のレーザ光が重畳しない」とは、複数のレーザ光が実質的に重畳しないことを意味している。すなわち、例えば複数のレーザ光が一部重畳しても、この重畳したレーザ光によるエネルギ密度が加工対象物を劣化させないような所定強度以下の場合、当該複数のレーザ光は実質的に重畳しないことを意味する。
 また、後段の集光工程における複数の集光位置のうち少なくとも1つは、加工対象物において複数の改質スポットが切断予定ラインに沿って等間隔に形成されるように、前段の集光工程における複数の集光位置間に位置されることが好ましい。この場合、複数の改質スポットを切断予定ラインに沿って等間隔に形成し、加工対象物を切断予定ラインに沿って精度よく切断することができる。
 このとき、集光工程における複数の集光位置の間隔Hは、等間隔であって、複数の改質スポットの間隔と複数の集光位置の数Nにおける約数(但し、1を除く)についての整数倍以外の所定数との積にされる場合がある。この場合、繰り返される集光工程における複数の集光位置が互いに重畳しないという上記作用効果と、加工対象物にて複数の改質スポットを切断予定ラインに沿って等間隔に形成するという上記作用効果と、を好適に発揮することができる。
 また、形成工程においては、集光工程を繰り返しながら切断予定ラインに沿う方向における加工対象物の外側から内側まで、又は内側から外側まで複数のレーザ光を切断予定ラインに沿って相対移動させることが好ましい。ここで、集光工程を繰り返しながら複数のレーザ光を切断予定ラインに沿って相対移動させる場合、例えば図15に示すように、集光工程開始側401及び集光工程終了側402においては、集光工程を繰り返しても、最終的に集光される集光位置Pを等間隔に位置させるのが困難となる。これに対し、上述したように、加工対象物1の外側から内側まで、又は内側から外側までレーザ光L1~L3を相対移動することで、かかる集光工程開始側R1又は集光工程終了側R2の集光位置Pを加工対象物1の外側に位置させることが可能となり、その結果、等間隔に位置する複数の集光位置Pのみを加工対象物1に位置させることが可能となる。よって、加工対象物1において切断予定ライン5に沿う一端から他端に亘り、複数の改質スポットSを好適に等間隔に形成することができる。
 本発明によれば、レーザ加工におけるタクトタイムを短縮化し、且つ改質領域を精度よく形成することが可能となる。
改質領域の形成に用いられるレーザ加工装置の概略構成図である。 改質領域の形成の対象となる加工対象物の平面図である。 図2の加工対象物のIII-III線に沿っての断面図である。 レーザ加工後の加工対象物の平面図である。 図4の加工対象物のV-V線に沿っての断面図である。 図4の加工対象物のVI-VI線に沿っての断面図である。 加工対象物を示す平面図である。 実施形態に係るレーザ加工方法を実施するレーザ加工装置を示す概略構成図である。 反射型空間光変調器の部分断面図である。 図8のレーザ加工装置の光学系の要部を示す概略図である。 図8のレーザ加工装置により複数のレーザ光を同時集光させた加工対象物の拡大断面図である。 (a)は本実施形態のレーザ加工を説明するための工程図、(b)は図12(a)の続きを示す工程図である。(c)は図12(b)の続きを示す工程図である。 (a)は図12(b)の続きを示す工程図、(b)は図13(a)の続きを示す工程図である。 (a)は図13(b)の続きを示す工程図、(b)は図14(a)の続きを示す工程図である。 図14(c)の続きを示す工程図である。 同時集光数と同時集光位置の間隔との関係を示す図表である。 (a)は、同時集光数と同時集光位置の間隔との関係を説明するためのレーザ加工の工程図、(b)は図17(a)の続きを示す工程図、(c)は図17(b)の続きを示す工程図である。 他の例に係る実施形態の同時集光位置及び集光順序を示す図である。 別の他の例に係る実施形態の同時集光位置及び集光順序を示す図である。 さらに別の他の例に係る実施形態の同時集光位置及び集光順序を示す図である。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当要素には同一符号を付し、重複する説明を省略する。
 本実施形態に係るレーザ加工装置及びレーザ加工方法では、加工対象物に複数のパルスレーザ光を同時に集光させ、加工対象物の内部に改質スポットを切断予定ラインに沿って複数形成し、これら複数の改質スポットによって、切断の起点となる改質領域を形成する。そこで、まず、この改質領域の形成について、図1~図6を参照して説明する。
 図1に示すように、レーザ加工装置100は、レーザ光Lをパルス発振するレーザ光源101と、レーザ光Lの光軸(光路)の向きを90°変えるように配置されたダイクロイックミラー103と、レーザ光Lを集光するための集光用レンズ105と、を備えている。また、レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107を移動させるためのステージ111と、レーザ光Lの出力やパルス幅等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、ステージ111の移動を制御するステージ制御部115と、を備えている。
 このレーザ加工装置100においては、レーザ光源101から出射されたレーザ光Lは、ダイクロイックミラー103によってその光軸の向きを90°変えられ、支持台107上に載置された加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して切断予定ライン5に沿って相対移動させられる。これにより、切断予定ライン5に沿った改質領域が加工対象物1に形成されることとなる。
 加工対象物1としては、半導体材料や圧電材料等が用いられ、図2に示すように、加工対象物1には、加工対象物1を切断するための切断予定ライン5が設定されている。切断予定ライン5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示すように、加工対象物1の内部に集光点(集光位置)Pを合わせた状態で、レーザ光Lを切断予定ライン5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4~図6に示すように、改質領域7が切断予定ライン5に沿って加工対象物1の内部に形成され、切断予定ライン5に沿って形成された改質領域7が切断起点領域8となる。
 なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、切断予定ライン5は、直線状に限らず曲線状であってもよいし、仮想線に限らず加工対象物1の表面3に実際に引かれた線であってもよい。また、改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。また、改質領域7は列状でも点状でもよく、要は、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面、裏面、若しくは外周面)に露出していてもよい。
 ちなみに、ここでのレーザ光Lは、加工対象物1を透過すると共に加工対象物1の内部の集光点近傍にて特に吸収され、これにより、加工対象物1に改質領域7が形成される(すなわち、内部吸収型レーザ加工)。よって、加工対象物1の表面3ではレーザ光Lが殆ど吸収されないので、加工対象物1の表面3が溶融することはない。一般的に、表面3から溶融され除去されて穴や溝等の除去部が形成される(表面吸収型レーザ加工)場合、加工領域は表面3側から徐々に裏面側に進行する。
 ところで、本実施形態で形成される改質領域は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。改質領域としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等があり、これらが混在した領域もある。さらに、改質領域としては、加工対象物の材料において改質領域の密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。
 また、溶融処理領域や屈折率変化領域、改質領域の密度が非改質領域の密度と比較して変化した領域、格子欠陥が形成された領域は、さらに、それら領域の内部や改質領域と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は改質領域の全面に渡る場合や一部分のみや複数部分に形成される場合がある。加工対象物1としては、例えばシリコン、ガラス、LiTaO又はサファイア(Al)を含む、又はこれらからなるものが挙げられる。
 また、本実施形態においては、切断予定ライン5に沿って改質スポット(加工痕)を複数形成することによって、改質領域7を形成している。改質スポットとは、パルスレーザ光の1パルスのショット(つまり1パルスのレーザ照射:レーザショット)で形成される改質部分であり、改質スポットが集まることにより改質領域7となる。改質スポットとしては、クラックスポット、溶融処理スポット若しくは屈折率変化スポット、又はこれらの少なくとも1つが混在するもの等が挙げられる。
 この改質スポットについては、要求される切断精度、要求される切断面の平坦性、加工対象物の厚さ、種類、結晶方位等を考慮して、その大きさや発生する亀裂の長さを適宜制御することが好ましい。
 次に、本発明に係る実施形態について詳細に説明する。図7は、本実施形態のレーザ加工方法の対象となる加工対象物を示す平面図である。図7に示すように、加工対象物1は、サファイア基板11と、このサファイア基板11の表面11a上にバッファ層を介して形成されたGaN(窒化ガリウム)層16と、複数の機能素子15を含んでGaN層16上に形成された機能素子層(不図示)と、を備えている。
 機能素子15は、例えば、結晶成長により形成された半導体動作層、フォトダイオード等の受光素子、レーザダイオード等の発光素子、或いは回路として形成された回路素子等であり、シリコンウェハ11のオリエンテーションフラット6に平行な方向及び垂直な方向にマトリックス状に多数形成されている。このような加工対象物1は、隣り合う機能素子間を通るように格子状に設定された切断予定ライン5に沿って切断される。
 図8は、本発明の実施形態に係るレーザ加工方法を実施するレーザ加工装置を示す概略構成図である。図8に示すように、レーザ加工装置300は、レーザ光源202、反射型空間光変調器203、4f光学系241及び集光光学系204を筐体231内に備えている。
 レーザ光源202は、例えば波長532nmのパルスレーザ光であるレーザ光Lを出射するものであり、例えばファイバレーザが用いられている。ここでのレーザ光源202は、水平方向にレーザ光を出射するように、筐体231の天板236にねじ等で固定されている。
 反射型空間光変調器203は、レーザ光源202から出射されたレーザ光Lを変調するものであり、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)が用いられている。ここでの反射型空間光変調器203は、水平方向から入射するパルスレーザ光Lを、水平方向に対し斜め上方に反射しつつ変調し、パルスレーザ光Lを相対移動させる切断予定ライン5に沿った方向に離間する複数の集光位置に同時に集光(同時集光)させる。
 図9は、図8のレーザ加工装置の反射型空間光変調器の部分断面図である。図9に示すように、反射型空間光変調器203は、シリコン基板213、駆動回路層914、複数の画素電極214、誘電体多層膜ミラー等の反射膜215、配向膜999a、液晶層216、配向膜999b、透明導電膜217、及びガラス基板等の透明基板218を備え、これらがこの順に積層されている。
 透明基板218は、XY平面に沿った表面218aを有しており、該表面218aは反射型空間光変調器203の表面を構成する。透明基板218は、例えばガラス等の光透過性材料を主に含んでおり、反射型空間光変調器203の表面218aから入射した所定波長のレーザ光Lを、反射型空間光変調器203の内部へ透過する。透明導電膜217は、透明基板218の裏面218a上に形成されており、レーザ光Lを透過する導電性材料(例えばITO)を主に含んで構成されている。
 複数の画素電極214は、複数の画素の配列に従って二次元状に配列されており、透明導電膜217に沿ってシリコン基板213上に配列されている。各画素電極214は、例えばアルミニウム等の金属材料からなり、これらの表面214aは、平坦且つ滑らかに加工されている。複数の画素電極214は、駆動回路層914に設けられたアクティブ・マトリクス回路によって駆動される。
 アクティブ・マトリクス回路は、複数の画素電極214とシリコン基板213との間に設けられ、反射型空間光変調器203から出力しようとする光像に応じて各画素電極214への印加電圧を制御する。このようなアクティブ・マトリクス回路は、例えば図示しないX軸方向に並んだ各画素列の印加電圧を制御する第1のドライバ回路と、Y軸方向に並んだ各画素列の印加電圧を制御する第2のドライバ回路とを有しており、制御部250によって双方のドライバ回路で指定された画素の画素電極214に所定電圧が印加されるよう構成されている。
 なお、配向膜999a,999bは、液晶層216の両端面に配置されており、液晶分子群を一定方向に配列させる。配向膜999a,999bは、例えばポリイミドといった高分子材料からなり、液晶層216との接触面にラビング処理等が施されたものが適用される。
 液晶層216は、複数の画素電極214と透明導電膜217との間に配置されており、各画素電極214と透明導電膜217とにより形成される電界に応じてレーザ光Lを変調する。すなわち、アクティブ・マトリクス回路によって或る画素電極214に電圧が印加されると、透明導電膜217と該画素電極214との間に電界が形成される。
 この電界は、反射膜215及び液晶層216のそれぞれに対し、各々の厚さに応じた割合で印加される。そして、液晶層216に印加された電界の大きさに応じて液晶分子216aの配列方向が変化する。レーザ光Lが透明基板218及び透明導電膜217を透過して液晶層216に入射すると、このレーザ光Lは液晶層216を通過する間に液晶分子216aによって変調され、反射膜215において反射した後、再び液晶層216により変調されてから取り出されることとなる。
 これにより、変調パターンに入射し透過するレーザ光Lにあっては、その波面が調整され、該レーザ光Lを構成する各光線において進行方向に直交する所定方向の成分の位相にずれが生じる。その結果、図10に示すように、加工対象物1内の3次元方向の任意の複数位置に集光光学系204でレーザ光Lが多点集光されるように、レーザ光Lが変調される。具体的には、集光光学系204でレーザ光Lの強度、振幅、位相、偏光等が調整されて複屈折され、加工対象物1内において切断予定ライン5に沿って離れた複数の集光位置に同時集光されることになる。
 図8に戻り、4f光学系241は、反射型空間光変調器203によって変調されたレーザ光Lの波面形状を調整するものである。この4f光学系241は、第1レンズ241a及び第2レンズ241bを有している。
 レンズ241a,241bは、反射型空間光変調器203と第1レンズ241aとの距離が第1レンズ241aの焦点距離f1となり、集光光学系204とレンズ241bとの距離がレンズ241bの焦点距離f2となり、第1レンズ241aと第2レンズ241bとの距離がf1+f2となり、且つ第1レンズ241aと第2レンズ241bとが両側テレセントリック光学系となるように、反射型空間光変調器203と集光光学系204との間に配置されている。この4f光学系241では、反射型空間光変調器203で変調されたレーザ光Lが空間伝播によって波面形状が変化し収差が増大するのを抑制することができる。
 集光光学系204は、4f光学系241によって変調されたレーザ光Lを加工対象物1の内部に集光するものである。この集光光学系204は、複数のレンズを含んで構成されており、圧電素子等を含んで構成された駆動ユニット232を介して筐体231の底板233に設置されている。
 また、レーザ加工装置300は、加工対象物1の表面3を観察するための表面観察ユニット211と、集光光学系204と加工対象物1との距離を微調整するためのAF(AutoFocus)ユニット212と、を筐体231内に備えている。
 表面観察ユニット211は、可視光VL1を出射する観察用光源211aと、加工対象物1の表面3で反射された可視光VL1の反射光VL2を受光して検出する検出器211bと、を有している。表面観察ユニット211では、観察用光源211aから出射された可視光VL1が、ミラー208及びダイクロイックミラー209,210,238で反射・透過され、集光光学系204で加工対象物に向けて集光される。そして、加工対象物1の表面2で反射された反射光VL2が、集光光学系204で集光されてダイクロイックミラー238,210で透過・反射された後、ダイクロイックミラー209を透過して検出器211bにて受光される。
 AFユニット212は、AF用レーザ光LB1を出射し、加工対象物1の表面3で反射されたAF用レーザ光LB1の反射光LB2を受光し検出することで、切断予定ライン5に沿った表面3の変位データを取得する。そして、AFユニット212は、改質領域7を形成する際、取得した変位データに基づいて駆動ユニット232を駆動させ、加工対象物1の表面3のうねりに沿うように集光光学系204をその光軸方向に往復移動させる。
 さらにまた、レーザ加工装置300は、該レーザ加工装置300を制御するためのものとして、CPU、ROM、RAM等からなる制御部250を備えている。この制御部250は、レーザ光源202を制御し、レーザ光源202から出射されるレーザ光Lの出力やパルス幅等を調節する。また、制御部250は、改質領域7を形成する際、レーザ光Lの同時集光位置が加工対象物1の表面3から所定距離に位置し且つ切断予定ライン5に沿って相対的に移動するように、筐体231やステージ111の位置、及び駆動ユニット232の駆動を制御する。
 また、制御部250は、改質領域7を形成する際、反射型空間光変調器203における各電極部214a,217aに所定電圧を印加し、液晶層216に所定の変調パターンを表示させる。これにより、レーザ光Lを反射型空間光変調器203で所望に変調し、加工対象物1内の3次元方向に任意の複数の同時集光位置にレーザ光Lを同時に集光させ、少なくとも切断予定ライン5に沿って離れた複数の改質スポットSを同時形成する(詳しくは、後述)。
 なお、所定の変調パターンは、例えば、改質領域7を形成しようとする位置、照射するレーザ光Lの波長、及び集光光学系204や加工対象物1の屈折率等に基づいて予め導出され、制御部250に記憶されている。
 次に、上記レーザ加工装置300を用いて加工対象物1を加工する場合について説明する。ここでは、一例として、切断予定ライン5に沿って離れた3点の同時集光位置にレーザ光Lを同時集光させる場合を説明する。
 まず、加工対象物1の表面3に例えばエキスパンドテープを貼り付け、該加工対象物1をステージ111上に載置する。続いて、裏面21をレーザ光照射面として加工対象物1にレーザ光Lをパルス照射しながら、加工対象物1とレーザ光Lとを切断予定ライン5に沿って相対移動(スキャン)させ、改質領域7を形成する。
 具体的には、レーザ光源202から出射されたレーザ光Lが、筐体231内において水平方向に進行した後、ミラー205aによって下方に反射され、アッテネータ207によって光強度が調整される。このレーザ光Lは、ミラー205bによって水平方向に反射され、ビームホモジナイザ260によって強度分布が均一化されて反射型空間光変調器203に入射する。
 反射型空間光変調器203に入射したレーザ光Lは、液晶層216に表示された変調パターンを透過し該変調パターンに応じて変調された後、レーザ光L1~L3として水平方向に対し斜め上方に出射される。続いて、ミラー206aによって上方に反射された後、λ/2波長板228によって偏光方向が切断予定ライン5に沿う方向となるよう変更され、ミラー206bによって水平方向に反射されて4f光学系241に入射される。
 続いて、集光光学系204に入射するレーザ光L1~L3が平行光となるように波面形状が調整される。具体的には、第1レンズ241aを透過し収束され、ミラー219によって下方へ反射され、共焦点Oを経て発散すると共に、第2レンズ241bを透過し、平行光となるように再び収束される。レーザ光L1~L3は、ダイクロイックミラー210,218を順次透過して集光光学系204に入射し、ステージ111上に載置された加工対象物1の内部に集光光学系204によって同時集光される。その結果、加工対象物1内の厚さ方向の所定深さに、等間隔で並ぶ3つの改質スポットS(図11参照)が同時形成される。
 そして、上述したレーザ光L1~L3の3点同時集光が切断予定ライン5に沿って繰り返され、加工対象物1内に複数の改質スポットSが形成され、これらの改質スポットによって改質領域7が形成される。その後、エキスパンドテープを拡張することで、改質領域7を切断の起点として加工対象物1が切断予定ライン5に沿って切断され、加工対象物1が複数のチップ(例えばメモリ、IC、発光素子、受光素子等)として互いに離間される。
 ここで、本実施形態では、前述のように、同時に集光させる複数の集光位置である同時集光位置にレーザ光L1~L3を同時集光する工程(以下、単に「集光工程」ともいう)を繰り返しながら、レーザ光L1~L3を切断予定ライン5に沿って相対移動している。以下、図10~14を参照しつつ詳細に説明する。
 まず、加工対象物1において最終的に形成する複数の改質スポットSの間隔B(図14参照)と、レーザ光Lの繰返し周波数と、に基づいて制御部250を制御し、スキャン速度を設定する。そして、反射型空間光変調器203を制御し、同時集光させる集光数としての同時集光数N(ここでは、N=3)を設定すると共に、集光光学系204の入射角を制御して同時集光位置P1~P3の間隔H(図14参照)を設定する。つまり、所望の広間隔同時レーザ加工がなされるよう反射型空間光変調器203を制御する。
 ここでは、集光光学系204の変調パターンとして所定の回折格子パターンを用い同時集光数Nを設定すると共に、その格子幅の大小を制御することで、同時集光位置P1~P3の間隔Hを設定している。なお、図14に示すように、間隔Bは、繰り返される複数の集光工程においてレーザ光L1~L3が最終的に集光する複数の集光位置Pのうち隣接する集光位置P,P間の間隔ともいえる。
 図10は、図8のレーザ加工装置の光学系の要部を示す概略図である。図10に示すように、間隔Hは、集光光学系204の焦点距離f、及び集光光学系204へのレーザ光L1~L3の入射角θにより設定され、例えば、H=f×tanθで求められる。なお、本実施形態では、反射型空間光変調器203により入射角θを制御するが、4f光学系241を制御し縮小倍率を調整することで入射角θを制御してもよい。ちなみに、この入射角度θの最大値は、集光光学系204の画角に起因した限界入射角度とされる。
 図11は、図8のレーザ加工装置により複数のレーザ光を同時集光させた加工対象物の拡大断面図である。図中において、レーザ光L1~L3は左側から右側に相対移動する。また、図中では、レーザ光L1~L3の移動方向に関し、同時集光位置P1は最も後方に位置する集光位置であり、同時集光位置P3は最も前方に位置する集光位置であり、同時集光位置P2は同時集光位置P1,P3の中間に位置する集光位置である。なお、同時集光位置P1~P2は、便宜上、丸印で示されている(以下の図12~15,17において同じ)。
 図11に示すように、本実施形態の同時集光位置P1~P3の間隔Hは、同時集光されたレーザ光L1~L3が加工対象物1の表面3側(レーザ光照射面の反対面側)、又は裏面21側(照射面側)、若しくはその両方で重畳しないよう互いに離間する距離とされている。ここでは、間隔Hは、[間隔B]と[同時集光数Nの約数(但し、1を除く、以下同じ)についての整数倍以外の所定数]との積にされている。なお、「レーザ光L1~L3が重畳しない」とは、レーザ光L1~L3が実質的に重畳しないことを意味している。すなわち、例えばレーザ光L1~L3が一部重畳しても、この重畳したレーザ光によるエネルギ密度が加工対象物1を劣化させないような所定強度以下の場合、これらレーザ光L1~L3は実質的に重畳しないことを意味している。
 以上により、本実施形態では、間隔Hが[4×間隔B]とされ、繰返し周波数がαkHzのレーザ光Lを用いたとき、スキャン速度が[同時集光数N/4/繰返し周波数α×間隔H]とされる。例えば、間隔Hが40μmとされ、繰返し周波数が10kHzとされ、間隔Bが10μmとされ、スキャン速度が300mm/sとされる。また例えば、間隔Hが24μmとされ、繰返し周波数が15kHzとされ、間隔Bが6μmとされ、スキャン速度が270mm/sとされる。
 続いて、図12~14に示すように、加工対象物1の外側領域R1から内側領域R2を通り外側領域R3に至るまで、レーザ光L1~L3を切断予定ライン5に沿って一方向に相対移動させつつパルス照射し、集光工程を繰返し実施する。このとき、後段の集光工程における同時集光位置P1~P3のうち少なくとも1つを、前段の集光工程における同時集光位置P1~P3間に位置させる。具体的には、前段の集光工程における各同時集光位置P1~P3間のそれぞれにおいて移動方向前側に、後段の集光工程における同時集光位置P1~P3をそれぞれ位置させる。
 より具体的には、図12(a)に示すように、レーザ光L1~L3を切断予定ライン5に沿って相対移動させつつパルス照射を開始し、レーザ光L1~L3を同時集光位置P11~P13に同時集光させ、改質スポットSを同時形成する。ここでの同時集光位置P11,P12は、外側領域R1に位置され、同時集光位置P13は、内側領域R2において加工対象物1の外縁Eに対し所定長だけ移動方向前側に位置されている。
 なお、このとき、上記のように、エキスパンドテープ274にレーザ光L1,L2が直接照射されることになるが、加工対象物1を通過しないレーザ光は拡がり易くエネルギ密度が比較的低いため、レーザ光L1,L2によってエキスパンドテープ274が劣化することはほとんどない。
 続いて、図12(b)に示すように、レーザ光L1~L3を切断予定ライン5に沿って相対移動させつつパルス照射し、レーザ光L1~L3を同時集光位置P21~P23に集光させる。これにより、同時集光位置P22,23に2つの改質スポットSを同時形成する。
 同時集光位置P11,21間(P12,22間又はP13,23間)の間隔Aは、レーザの繰り返し周波数及びスキャン速度加工速度で定められるものであり、間隔B×同時集光数Nとされている。同時集光位置P21は、外側領域R1において同時集光位置P11,12間における同時集光位置P12の移動方向後側に近接されている。同時集光位置P22は、内側領域R2において同時集光位置P12,13間における同時集光位置P12の移動方向後側に近接されている。同時集光位置P31は、内側領域R2において同時集光位置P13に対し移動方向前側に位置されている。
 同様に、図13(a)~図14(b)に示すように、レーザ光L1~L3を切断予定ライン5に沿って引き続き相対移動させつつパルス照射し、同時集光位置P31~P33、同時集光位置P41~P43、同時集光位置P51~P53、同時集光位置P61~P63にレーザ光L1~L3を順に同時集光させ、複数の改質スポットSを互いに重畳しないように形成する。
 そして、図15に示すように、レーザ光L1~L3を切断予定ライン5に沿って引き続き相対移動させつつパルス照射し、レーザ光L1~L3を同時集光位置P71~P73に集光させ、同時集光位置P71に改質スポットSを形成する。これにより、加工対象物1の内部の切断予定ライン5に沿う一端から他端に亘り、複数の改質スポットSが等間隔で互いに重畳せず、且つ近接するよう形成され、これらの改質スポットSによって改質領域7が形成されることとなる。
 以上、本実施形態では、切断予定ライン5に沿って互いに離れた同時集光位置P1~P3にレーザ光L1~L3を同時集光させるため、通常レーザ加工に比べ、タクトタイムの短縮化が可能となる。加えて、前段の集光工程における各同時集光位置P1~P3間のそれぞれに、後段の集光工程における同時集光位置P1~P3をそれぞれ位置させていることから、加工対象物1において改質スポットSを切断予定ライン5に沿って最終的に密に形成することが可能となる。このとき、繰り返される集光工程における集光位置P(つまり、最終的に集光される集光位置P)が互いに重畳しないため、既成の改質スポットSにレーザ光L1~L3が照射されること(いわゆる、レーザ光L1~L3の重ね打ち)を防止することが可能となる。よって、タクトの無駄を防止できると共に、改質スポットSが無駄に大きくなって改質領域7の形成に悪影響が及ぶのを抑制することができる。従って、本実施形態によれば、レーザ加工におけるタクトタイムを短縮化し、且つ改質領域7を精度よく形成することが可能となる。
 さらに、上述のように、同時集光位置P1~P3は、加工対象物1において表面3側、又は裏面21側、若しくはその両方でレーザ光L1~L3が重畳しないよう互いに離間されていることから、加工対象物1の表面3側(例えば、GaN層16)でレーザ光L1~L3が重畳して干渉を起こし、ビーム強度が意図せず高まることが抑制される。その結果、加工対象物1(特に、加工対象物1の表面3側)が劣化するのを防止し、ひいては、GaN層16が劣化するのを防止することができる。
 なお、改質スポットSの間隔Bには切断に適した範囲があるため、同時集光位置P1~P3の間隔Hを拡げすぎると切断が困難になったり切断精度が低下したりすることが懸念されるが、本実施形態のように、前段の集光工程における各同時集光位置P1~P3間のそれぞれに後段の集光工程における同時集光位置P1~P3をそれぞれ位置させると、例えば加工対象物1に最終的に複数形成される改質スポットSが互いに離れ過ぎるのを抑制でき(あたかも間隔Hを広げずに改質領域7を形成したかのように改質スポットSを配列でき)、改質領域7を精度よく形成することが可能となる。
 ちなみに、表面3側では、レーザ光照射面の反対面側であってレーザ光L1~3が拡がることから、レーザ光L1~L3が重畳して干渉し易く、よって、エネルギ密度が高くなり易い。特に本実施形態のように、高い光透過性を有するサファイア基板11を加工対象物1に利用すると、加工対象物1でレーザ光L1~L3が吸収されずに加工対象物1を透過し易く、この点においても、表面3側のエネルギ密度が高くなり易い。従って、本実施形態においては、加工対象物1の表面3側でのレーザ光L1~L3が重畳を防止して劣化を防止するという上記作用効果は、特に有効である。
 また、本実施形態では、上述したように、加工対象物1において改質スポットSが切断予定ライン5に沿って等間隔に形成されるため、加工対象物1を切断予定ライン5に沿って精度よく切断することができる。
 図16は、同時集光数と同時集光位置の間隔との関係を示す図表、図17(a)は、同時集光数と同時集光位置の間隔との関係を説明するためのレーザ加工の概略工程図、図17(b)は、図17(a)の続きを示す概略工程図、図17(c)は、図17(b)の続きを示す概略工程図である。図16中の「NG」は、図表における行及び列の加工条件では、前段の集光工程における同時集光位置の少なくとも1つと後段の集光工程における同時集光位置とが重なり、改質領域7の形成が不適であることを意味している。また、同時集光位置の間隔Hにあっては、上述したように、間隔Bを基準に設定されることから、図16中では、間隔Bを基準にした値(間隔Bで除した値)を示している。また、図16中の同時集光位置P´1~P´3に付される数字は、集光順序を表している。
 図16に示すように、間隔Hが、同時集光数Nの約数についての整数倍以外の所定数であると、「NG」とならずに改質スポットSを等間隔に精度よく形成できる。一方、間隔Hが、同時集光数Nの約数についての整数倍であると、「NG」となってしまうことがわかる。例えば、同時集光数が6、同時集光位置の間隔Hが4(枠内の加工条件)の場合には、図16に示すように、前段の同時集光位置P´1と後段の同時集光位置P´3とが互いに重複し、改質スポットSを精度よく形成できないことがわかる。
 この点、本実施形態では、上述したように、同時集光位置P1~P3の間隔Hが、改質スポットSの間隔Bと同時集光数Nの約数についての整数倍以外の所定数との積にされている。よって、加工対象物1にて改質スポットSを切断予定ライン5に沿って等間隔に形成しつつ、前段及び後段の集光工程における同時集光位置P1~P3が重なるのを好適に防止することが可能となる。
 また、本実施形態においては、上述したように、集光工程を繰り返しながら加工対象物1の外側領域R1から内側領域R2を通り外側領域R3まで、レーザ光L1~L3を切断予定ライン5に沿う一方向に相対移動させている。ここで、図15に示すように、集光工程開始側401及び集光工程終了側402では、集光工程を繰り返しても、レーザ光L1~L3が最終的に集光される同時集光位置Pを等間隔に位置させるのが困難となる。よって、本実施形態のように、領域R1~R3までレーザ光L1~L3を相対移動させ、集光工程開始側401又は集光工程終了側402の同時集光位置Pを加工対象物1の外側領域R1,R3に位置させることで、等間隔に位置する複数の同時集光位置Pのみを内側領域R2に位置させることが可能となる。その結果、加工対象物1に改質スポットSを精度よく等間隔に形成することができる。
 図18は、他の例に係る実施形態における複数のレーザ光の同時集光位置及び順序を示す図である。図18において、左右方向に切断予定ラインに沿う仮想加工位置tが示され、この仮想加工位置tは、改質スポットSの間隔Bを基準として示されている。また、数字が付されたセルは、その仮想加工位置tが同時集光位置とされたことを意味し、当該数字は、加工順番を意味している。また、レーザ光L1~L3の移動方向は、紙面左側から紙面右側としている。これについては、図19,20においても同様である。
 図17に示すように、同時集光位置P1~P3の間隔Hは、本実施形態に限定されず、レーザ光L1~L3が加工対象物1のレーザ光照射面の反対面側で重畳しないよう互いに離間されれば、種々の大きさにしてもよい。間隔Hを広げると、レーザ光L1~L3の重なりが一層抑制されるが、空間周波数が高くなるため、反射型空間光変調器203での変調パターンの表現(表示)が困難となる。他方、間隔Hを狭めると、空間周波数が低いため、反射型空間光変調器203での変調パターンの表現(表示)上有利であるが、レーザ光L1~L3の重なりが大きくなる。
 また、前段及び後段の集光工程での同時集光位置P1~P3の位置関係は、本実施形態に限定されず、後段の集光工程における同時集光位置P1~P3のうち少なくとも1つが前段の集光工程における同時集光位置P1~P3間に位置されば、種々の位置関係としてもよい。例えば、図18(a)に示すように、間隔Hを5とし、前段の集光工程における同時集光位置間のそれぞれの中央前側に、後段の集光工程における同時集光位置をそれぞれ位置させてもよい。
 また、図18(b),(c)のそれぞれに示すように、間隔Hを7,8とそれぞれし、前々段の集光工程における同時集光位置間に、前段の集光工程における同時集光位置を位置させると共に、前々段の集光工程における同時集光位置間で且つ前段の集光工程における同時集光位置間に、後段の集光工程における同時集光位置を位置させてもよい。これらの場合でも、加工対象物1に改質スポットSを等間隔で形成できることがわかる。
 ここで、間隔Hを[同時集光数N+1]とするタイプの広間隔同時レーザ加工の場合、集光順序jN+1は、下記(1)式で表すことができる。また、間隔Hを[同時集光数N-1]とするタイプの広間隔同時レーザ加工の場合、集光順序jN-1は、下記(2)式で表すことができる。
    jN+1=切り上げ(t/N)-剰余(t-1,N) …(1)
    jN-1=切り上げ(t/N)+剰余(剰余(t-1,N),-N+1) …(2)
但し、t:仮想加工位置、N:同時集光数。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明では、同時集光位置に集光させるレーザ光L1~L3のエネルギを任意の値としてもよく、さらには、レーザ光L1~L3の少なくとも1つのエネルギをゼロとしたりカットしたりしてもよい。この場合、例えば、図19に示すように、切断予定ライン5に沿って所定間隔で隙間を空けて(非等間隔で)同時集光位置を構成することも可能となる。このような照射方法は、例えば交差する切断予定ライン5の交差部分に間隔を空ける場合等に利用することができる。
 また、上記実施形態では、同時集光数Nを3としているが、例えば図20に示すように、同時集光数Nを2としてもよく、少なくとも2以上とすればよい。また、改質領域7を形成する際のレーザ光入射面は、加工対象物1の裏面21に限定されず、加工対象物1の表面3であってもよい。
 また、上記実施形態では、反射型空間光変調器203としてLCOS-SLMを用いたが、MEMS(メムス)-SLM、又はDMD(デフォーマブルミラーデバイス)等を用いてもよい。さらに、上記実施形態では、反射型空間光変調器203を用いたが、透過型の空間光変調器でもよい。空間光変調器としては、液晶セルタイプ、LCDタイプのものが挙げられる。
 また、反射型空間光変調器203を用いて複数のレーザ光を照射することに限定されず、要は、少なくとも切断予定ラインに沿って互いに離れた複数の同時集光位置に複数のレーザ光を同時集光できればよい。また、複数の同時集光位置が加工対象物1の厚さ方向に互いに離れていてもよい。
 また、上記実施形態の反射型空間光変調器203は誘電体多層膜ミラーを備えているが、シリコン基板の画素電極の反射を利用してもよい。また、上記実施形態では、4f光学系241を用いているが、波面形状の変化が問題ならない場合等には、4f光学系241を省いてもよい。
 本発明によれば、レーザ加工におけるタクトタイムを短縮化し、且つ改質領域を精度よく形成することが可能となる。
 1…加工対象物、3…表面(反対面)、5…切断予定ライン、7…改質領域、21…裏面(レーザ光照射面)、B…改質スポットの間隔、H…同時集光位置の間隔(複数の集光位置の間隔)、L1~L3…レーザ光、N…同時集光数(集光位置の数)、P1~P3,P´1~P´3,P11~P13,P21~P23,P31~P33,P41~P43,P51~P53,P61~P63,P71~P73…同時集光位置(集光位置)、S…改質スポット。

Claims (4)

  1.  加工対象物に複数のレーザ光を集光させ、前記加工対象物に改質領域を切断予定ラインに沿って形成するレーザ加工方法であって、
     前記切断予定ラインに沿って互いに離れた複数の集光位置に前記複数のレーザ光を同時に集光させる集光工程と、
     前記集光工程を繰り返しながら前記複数のレーザ光を前記切断予定ラインに沿って相対移動させることで、複数の改質スポットを前記切断予定ラインに沿って形成し、これらの複数の改質スポットによって前記改質領域を形成する形成工程と、を含み、
     繰り返される前記集光工程における複数の集光位置は、互いに重畳せず、且つ、
     後段の前記集光工程における前記複数の集光位置のうち少なくとも1つは、前段の前記集光工程における前記複数の集光位置間に位置されることを特徴とするレーザ加工方法。
  2.  後段の前記集光工程における前記複数の集光位置のうち少なくとも1つは、前記加工対象物において前記複数の改質スポットが前記切断予定ラインに沿って等間隔に形成されるように、前段の前記集光工程における前記複数の集光位置間に位置されることを特徴とする請求項1記載のレーザ加工方法。
  3.  前記集光工程における前記複数の集光位置の間隔Hは、等間隔であって、前記複数の改質スポットの間隔と前記複数の集光位置の数Nにおける約数(但し、1を除く)についての整数倍以外の所定数との積にされることを特徴とする請求項2記載のレーザ加工方法。
  4.  前記形成工程においては、前記レーザ光集光工程を繰り返しながら前記切断予定ラインに沿う方向における前記加工対象物の外側から内側まで、又は内側から外側まで前記複数のレーザ光を前記切断予定ラインに沿って相対移動させることを特徴とする請求項2又は3記載のレーザ加工方法。
PCT/JP2010/070915 2009-11-25 2010-11-24 レーザ加工方法 WO2011065373A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080053436.7A CN102665999B (zh) 2009-11-25 2010-11-24 激光加工方法
KR1020127012520A KR101757948B1 (ko) 2009-11-25 2010-11-24 레이저 가공 방법
US13/511,664 US10322526B2 (en) 2009-11-25 2010-11-24 Laser processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009267748A JP5410250B2 (ja) 2009-11-25 2009-11-25 レーザ加工方法及びレーザ加工装置
JP2009-267748 2009-11-25

Publications (1)

Publication Number Publication Date
WO2011065373A1 true WO2011065373A1 (ja) 2011-06-03

Family

ID=44066478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070915 WO2011065373A1 (ja) 2009-11-25 2010-11-24 レーザ加工方法

Country Status (6)

Country Link
US (1) US10322526B2 (ja)
JP (1) JP5410250B2 (ja)
KR (1) KR101757948B1 (ja)
CN (1) CN102665999B (ja)
TW (1) TWI515068B (ja)
WO (1) WO2011065373A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004889A (ja) * 2018-06-29 2020-01-09 三星ダイヤモンド工業株式会社 基板の分断方法及び分断装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9001172B2 (en) * 2008-09-04 2015-04-07 Vardex Laser Solutions, Inc. System for laser-based digital marking of objects with images or digital image projection with the laser beam shaped and amplified to have uniform irradiance distribution over the beam cross-section
KR101770836B1 (ko) * 2009-08-11 2017-08-23 하마마츠 포토닉스 가부시키가이샤 레이저 가공장치 및 레이저 가공방법
JP6121733B2 (ja) * 2013-01-31 2017-04-26 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
WO2016033494A1 (en) * 2014-08-28 2016-03-03 Ipg Photonics Corporation System and method for laser beveling and/or polishing
CN105436710B (zh) * 2015-12-30 2019-03-05 大族激光科技产业集团股份有限公司 一种硅晶圆的激光剥离方法
JP2018123041A (ja) * 2017-02-03 2018-08-09 日本電気硝子株式会社 ガラス管製造方法及びガラス管製造装置
CN112955279B (zh) * 2018-10-30 2022-09-30 浜松光子学株式会社 激光加工装置
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method
JP7120903B2 (ja) * 2018-10-30 2022-08-17 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
TW202116468A (zh) * 2019-07-18 2021-05-01 日商東京威力科創股份有限公司 處理裝置及處理方法
CN110900015B (zh) * 2020-01-02 2022-02-01 北京理工大学重庆创新中心 一种自由曲面光学透镜的多激光复合精密加工方法
CN110900016B (zh) * 2020-01-02 2022-02-01 北京理工大学重庆创新中心 一种基于激光分离的复杂微纳结构加工方法
JP7507599B2 (ja) * 2020-05-12 2024-06-28 株式会社ディスコ レーザー加工方法
WO2022203983A1 (en) * 2021-03-24 2022-09-29 Applied Materials, Inc. Methods to dice optical devices with optimization of laser pulse spatial distribution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129225A (ja) * 2005-10-31 2007-05-24 Advanced Laser Separation Internatl Bv 基板の表面内に一つもしくはそれ以上の離間した切断溝を形成するための装置および方法
JP2007319882A (ja) * 2006-05-31 2007-12-13 Seiko Epson Corp 積層体の製造方法、レーザ加工装置、表示装置、電気光学装置、電子機器
JP2009166103A (ja) * 2008-01-17 2009-07-30 Laser System:Kk レーザ割断方法およびレーザ加工装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037565A (en) 1996-06-17 2000-03-14 The Regents Of The University Of California Laser illuminator and optical system for disk patterning
CN1081341C (zh) 1998-04-09 2002-03-20 中国科学院上海光学精密机械研究所 连续激光的时间调制和空间分束装置
JP3792639B2 (ja) * 2002-11-08 2006-07-05 株式会社日本エミック 切断装置
JP2004343008A (ja) 2003-05-19 2004-12-02 Disco Abrasive Syst Ltd レーザ光線を利用した被加工物分割方法
GB2402230B (en) 2003-05-30 2006-05-03 Xsil Technology Ltd Focusing an optical beam to two foci
EP2269765B1 (en) 2003-07-18 2014-10-15 Hamamatsu Photonics K.K. Cut semiconductor chip
JPWO2005084874A1 (ja) * 2004-03-05 2008-01-17 オリンパス株式会社 レーザ加工装置
US7435927B2 (en) * 2004-06-18 2008-10-14 Electron Scientific Industries, Inc. Semiconductor link processing using multiple laterally spaced laser beam spots with on-axis offset
US7897487B2 (en) 2006-07-03 2011-03-01 Hamamatsu Photonics K.K. Laser processing method and chip
CN101135856B (zh) 2006-08-31 2010-09-08 中芯国际集成电路制造(上海)有限公司 激光直写装置及激光直写方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129225A (ja) * 2005-10-31 2007-05-24 Advanced Laser Separation Internatl Bv 基板の表面内に一つもしくはそれ以上の離間した切断溝を形成するための装置および方法
JP2007319882A (ja) * 2006-05-31 2007-12-13 Seiko Epson Corp 積層体の製造方法、レーザ加工装置、表示装置、電気光学装置、電子機器
JP2009166103A (ja) * 2008-01-17 2009-07-30 Laser System:Kk レーザ割断方法およびレーザ加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004889A (ja) * 2018-06-29 2020-01-09 三星ダイヤモンド工業株式会社 基板の分断方法及び分断装置

Also Published As

Publication number Publication date
JP2011110567A (ja) 2011-06-09
KR101757948B1 (ko) 2017-07-13
US10322526B2 (en) 2019-06-18
TW201141642A (en) 2011-12-01
CN102665999A (zh) 2012-09-12
JP5410250B2 (ja) 2014-02-05
CN102665999B (zh) 2014-12-24
KR20120100992A (ko) 2012-09-12
TWI515068B (zh) 2016-01-01
US20120234808A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5410250B2 (ja) レーザ加工方法及びレーザ加工装置
JP6353683B2 (ja) レーザ加工装置及びレーザ加工方法
JP6258787B2 (ja) レーザ加工装置及びレーザ加工方法
JP6272145B2 (ja) レーザ加工装置及びレーザ加工方法
JP5632751B2 (ja) 加工対象物切断方法
JP6272301B2 (ja) レーザ加工装置及びレーザ加工方法
KR101757952B1 (ko) 레이저 가공방법
KR101839439B1 (ko) 레이저 가공시스템
TWI647043B (zh) Laser processing device and laser processing method
JP6272302B2 (ja) レーザ加工装置及びレーザ加工方法
JP5905274B2 (ja) 半導体デバイスの製造方法
JP5840215B2 (ja) レーザ加工方法及びレーザ加工装置
JP6715632B2 (ja) レーザ加工方法及びレーザ加工装置
JP2011031284A (ja) レーザ加工方法
WO2013039006A1 (ja) レーザ加工方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053436.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127012520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13511664

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10833219

Country of ref document: EP

Kind code of ref document: A1