WO2011065257A1 - 淡水化装置及び淡水化方法 - Google Patents

淡水化装置及び淡水化方法 Download PDF

Info

Publication number
WO2011065257A1
WO2011065257A1 PCT/JP2010/070393 JP2010070393W WO2011065257A1 WO 2011065257 A1 WO2011065257 A1 WO 2011065257A1 JP 2010070393 W JP2010070393 W JP 2010070393W WO 2011065257 A1 WO2011065257 A1 WO 2011065257A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
water
chlorine
reverse osmosis
osmosis membrane
Prior art date
Application number
PCT/JP2010/070393
Other languages
English (en)
French (fr)
Inventor
竹内 和久
嘉晃 伊藤
英正 垣上
英夫 岩橋
克憲 松井
賢次 田中
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to ES10833104.2T priority Critical patent/ES2625159T3/es
Priority to US13/508,155 priority patent/US8920653B2/en
Priority to EP10833104.2A priority patent/EP2508481B1/en
Publication of WO2011065257A1 publication Critical patent/WO2011065257A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a desalination apparatus and a desalination method that can be smoothly and efficiently performed when neutralizing chlorinated raw water with a reducing agent.
  • seawater desalination equipment In seawater desalination facilities, seawater desalination equipment (hereinafter referred to as desalination equipment) is used for desalinating raw water (seawater) and using it as clean water.
  • Such a desalination apparatus uses an MO membrane (reverse osmosis membrane), a UF membrane (ultrafiltration membrane), an MF membrane (microfiltration membrane), etc., in order to remove turbid components in seawater that is raw water.
  • the pre-treatment device that was used is used.
  • chlorination is generally performed on raw water by adding a chlorinating agent (chlorine-containing water) to the raw water for the purpose of sterilization, algicide, organic matter, iron, manganese, ammonia and the like.
  • chlorinating agent chlorine-containing water
  • liquefied chlorine, sodium hypochlorite, chlorine generated by electrolysis of salt water, or the like is used.
  • This chlorinated and filtered product is desalted with a reverse osmosis membrane device equipped with an RO membrane.
  • a reverse osmosis membrane device equipped with an RO membrane.
  • the RO membrane uses a chlorine-resistant material (for example, cellulose acetate), there is no problem, but when the material that does not have chlorine resistance (for example, a polyamide membrane) is used as the RO membrane, the reverse is true. It is necessary to neutralize chlorine using a reducing agent on the front side of the osmosis membrane device.
  • SBS sodium bisulfate soda
  • the conventional desalination apparatus 100 includes a pretreatment apparatus 13 having a pretreatment film 13 a for filtering turbid components in the raw water 11 supplied with the chlorine-containing water 12, and the pretreatment apparatus 13.
  • a reducing agent tank 19 for supplying turbid components and chlorination.
  • reference numeral 20 is concentrated water
  • 21 a and 21 b are liquid feed pumps
  • 22 is a raw water line
  • 23 is a filtered water line
  • 24 is a concentrated water line
  • 25 is a permeate line.
  • the analyzer is expensive, the redox potential (ORP) in the filtered water 14 is high. ) Is measured by an ORP meter (not shown), and the completion of neutralization is confirmed.
  • the ORP meter is characterized by the nature of the raw water 11 (pH, etc.), electrode contamination due to continuous use of the ORP electrode, and the ORP meter itself. The absolute value may fluctuate due to factors such as fluctuations in manufacturing factors.
  • the SBS solution 18 when the SBS solution 18 is added to the filtered water 14, the absolute value of the ORP of the raw water 11 after the addition is directly measured, and if the supply amount of the SBS solution 18 is controlled to the target value, the above error will occur. Under the influence, the injection amount of the SBS solution 18 is insufficient, or the injection amount is excessive. As a result, when the injection amount is insufficient, the reverse osmosis membrane 16 in the subsequent stage is damaged, or when the injection amount is excessive, the running In some cases, the cost increases, or a sulfur compound derived from SBS adheres to the reverse osmosis membrane 16 and causes problems such as blockage.
  • the present invention provides a desalination apparatus and a desalination method that can be performed smoothly and efficiently when neutralizing a raw water after chlorination using a reducing agent. Is an issue.
  • the first invention of the present invention for solving the above-described problems is a reverse osmosis membrane device having a reverse osmosis membrane for producing permeated water by removing salt from raw water added with chlorine-containing water, and the reverse A reducing agent injection device for neutralizing the added chlorine on the upstream side of the osmosis membrane device, the reducing agent injection device withdrawing a part of the raw water and adding a reducing agent solution for determination The maximum change part of the redox potential between the reducing agent and chlorine is obtained, the reducing agent addition concentration corresponding to this equivalence point is obtained, the reducing agent solution corresponding to this concentration is supplied to the raw water, and the chlorine is neutralized. It is in the desalination apparatus characterized by this.
  • the second invention is the desalination apparatus according to the first invention, further comprising a pretreatment membrane for filtering turbid components in raw water to which chlorine-containing water is added.
  • the reducing agent injecting device includes a withdrawal line for extracting a part of the filtered water, and a quantitative reduction agent for supplying a quantitative reducing agent solution to the extracted drained water.
  • an oxidation-reduction potential (ORP) meter for measuring the oxidation-reduction potential (ORP) meter of the mixed liquid to which the reducing agent solution for quantification is added, and oxidizing while supplying the reducing agent solution for quantification to the extracted water
  • the equivalence point which is the maximum change part of both is calculated
  • concentration corresponding to the obtained equivalence point is calculated
  • a desalination apparatus characterized by calculating the amount of reducing agent solution added to the filtered water on the upstream side of the membrane apparatus and performing control for supplying the reducing agent solution from the reducing agent tank to the raw water by an arithmetic control processing unit. It is in.
  • a fourth invention is a method for desalination using a reverse osmosis membrane device having a reverse osmosis membrane for producing permeated water by removing salt from raw water, wherein a portion of the raw water is extracted and reduced for quantitative determination. While adding the reductant solution, the equivalence point that is the maximum change portion of the redox potential between the reductant and chlorine is obtained, the reductant addition concentration corresponding to this equivalence point is obtained, and the reductant solution corresponding to this concentration is added to the raw water. In the desalination method, the raw water supplied to the reverse osmosis membrane device is neutralized.
  • the raw water after chlorination is neutralized with a reducing agent
  • a part of the filtered water is extracted, ORP measurement is separately performed, and neutralization information at the equivalent point is obtained. Therefore, the supply of the SBS solution supplied to the raw water can be optimized, and the neutralization treatment can be performed reliably and efficiently.
  • FIG. 1 is a schematic view of a desalination apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram of a reducing agent injection apparatus according to the present embodiment.
  • FIG. 3 is a relationship diagram between the sample water reference SBS concentration (mol / l) and the ORP measurement value (mV).
  • FIG. 4 is a relationship diagram between the ORP value and the SBS / ClO molar ratio when the pH of the raw water is changed.
  • FIG. 5 is a schematic diagram of a desalination apparatus according to the prior art.
  • FIG. 1 is a schematic diagram of a desalination apparatus according to an embodiment.
  • a desalination apparatus 10 according to the present embodiment includes a pretreatment apparatus 13 having a pretreatment film 13a for filtering turbid components in raw water 11 to which chlorine-containing water 12 is added, and the pretreatment.
  • a reducing agent injection device 30 for neutralizing chlorine extracts a portion 14a of the filtered water 14 and an SBS solution 18a as a quantitative reducing agent (see FIG. 2).
  • the maximum change part (equivalent point) of the oxidation-reduction potential between the reducing agent and chlorine is obtained, and the reducing agent addition concentration (Csm) corresponding to the equivalent point is obtained, and the reducing agent corresponds to this concentration.
  • SBS solution 18 is filtered using flow controller 39 Was fed into 14, it is to neutralize the chlorine.
  • a pretreatment device 13 having a pretreatment membrane 13a is installed in order to filter turbid components in raw water 11 to which chlorine-containing water 12 has been added.
  • the present invention is not limited to this, and the pretreatment device 13 may not be installed.
  • FIG. 2 shows an example of a reducing agent injection apparatus according to this embodiment.
  • the reducing agent injection device 30 extracts a part of drained water 14 a from the filtered water 14 flowing through the filtered water line 23 from the pretreatment device (not shown) as sample water.
  • An extraction line 31, a quantitative SBS supply tank 32 that is a quantitative reducing agent supply unit that supplies an SBS solution 18a, which is a quantitative reducing agent solution, to the extracted partially extracted water 14a, and a quantitative SBS solution It comprises an electrode 33a for measuring the oxidation-reduction potential of the mixed liquid 14b to which 18a is added and an oxidation-reduction potential (ORP) meter 33 having a measurement part 33b.
  • ORP oxidation-reduction potential
  • the ORP meter 33 obtains the equivalent point which is the maximum change part of both, and the reducing agent addition concentration of the quantitative SBS solution 18a corresponding to the obtained equivalent point (Csm) is calculated, and the amount of SBS solution 18 to be supplied to the filtered water 14 on the upstream side of the reverse osmosis membrane device 17 is calculated so as to be this reducing agent addition concentration (Csm).
  • An arithmetic control process of the flow rate adjustment control for supplying the SBS solution 18 to the filtered water 14 is performed by the arithmetic unit 34. In FIG.
  • reference numeral 35 is a metering pump that supplies a part of the extracted water 14 a to the measuring unit 33 b
  • 36 is a variable flow rate metering pump that supplies the SBS solution 18 a for metering
  • 37 is a sequencer
  • 38 is the amount of SBS solution 18 supplied.
  • a control valve to be controlled, 39 is a flow controller, and 46 is a drain.
  • the filtered water 14 pretreated by the pretreatment device 13 contains chlorine, a metered pump using a partially extracted water 14 a of the filtered water 14 including the chlorine-containing water 12 as sample water.
  • the redox potential (ORP) meter 33 is continuously supplied to the measuring unit 33b.
  • the variable flow rate metering pump 36 that has received a signal from the sequencer 37 supplies and mixes the sampled water 14a as sample water in a constant pattern while changing the supply flow rate of the SBS solution 18a for quantification.
  • the redox potential (ORP) of the mixed solution 14b is measured by the measuring unit 33b, and the maximum change portion (equivalent point) of the redox potential of the reducing agent and chlorine is determined by a signal from the ORP meter 33 and the sequencer 37. Then, the reducing agent addition concentration (Csm) corresponding to this equivalence point is obtained, the supply flow rate of the SBS solution 18 corresponding to this concentration is calculated, and an arithmetic function for transmitting a signal to the control valve 38 for adjusting the flow rate is provided in the arithmetic unit 34. To do.
  • the reference SBS concentration (Cs) supplied to the measuring unit 33b of the ORP meter 33 can be calculated by the equation (1). Further, the flow rate (F3) of the SBS solution 18 added to the filtered water 14 supplied to the reverse osmosis membrane device 17 so that the reducing agent addition concentration (Csm) that gives the maximum change in the ORP value with respect to the change in the reference SBS (Cs) is obtained. Can be calculated by equation (2).
  • the SBS solution 18a for quantification is mixed with the sample water 14a having a constant flow rate while changing the supply flow rate, and the oxidation-reduction potential (ORP) of the mixed solution 14b after the mixing is measured with the electrode 33a of the measurement unit 33b.
  • ORP oxidation-reduction potential
  • the supply flow rate of the quantitative SBS solution 18a is changed by changing the variable flow rate quantitative pump 36 in accordance with a signal from the sequencer 37 in which a change pattern is programmed in advance.
  • FIG. 3 is a relationship diagram between the sample water reference SBS concentration (mol / l) and the ORP measurement value (mV). Note that the horizontal axis in the upper part of FIG.
  • the horizontal axis represents the sample water reference SBS concentration (Cs) to be supplied to the ORP measurement unit 33b by the above formula (1)
  • the vertical axis represents the relationship between the detected ORP values. Plot.
  • variables C1 and F2 are input to the arithmetic unit 34 in advance, and F1 is automatically input from the sequencer 37 every time the supply flow rate changes.
  • the arithmetic unit 34 obtains the sample water reference SBS equivalent concentration that maximizes the change in ORP with respect to the change in SBS concentration from FIG. This is the reducing agent addition concentration (Csm) corresponding to the equivalence point.
  • the signal transmitted from the arithmetic unit 34 to the flow rate controller 39 is set every time the series of steps 1) to 5) is completed, and the interval is set in advance.
  • the value of the ORP fluctuates due to factors such as seawater properties (pH, etc.), contamination of the ORP electrode, lot difference of the ORP sensor itself, and the like. Therefore, when adding the SBS solution, the absolute value of the ORP of the filtered water after the addition is directly measured, and when trying to control the SBS supply amount to the target value, the SBS injection amount is insufficient due to the influence of the error, Or the injection amount becomes excessive. If the injection amount is insufficient, the subsequent RO membrane may be damaged. If the injection amount is excessive, the running cost will increase, or SBS-derived sulfur compounds may adhere to the RO membrane and cause clogging problems. I was causing it.
  • the ORP value changes abruptly at the equivalent point of chlorine and the SBS solution as the reducing agent
  • the equivalent point is the property of seawater, the contamination of the ORP electrode, the ORP
  • the supply flow rate of the SBS solution 18 to the filtered water 14 that is the RO supply water is calculated by the above-described equation (2) so that the reducing agent addition concentration (Csm) corresponding to this equivalent point is obtained, and the SBS supply flow rate is adjusted.
  • this invention since SBS can be stably injected without excess or deficiency, the above-mentioned problems caused by insufficient injection amount and excessive injection are solved, and stable SBS supply control becomes possible.
  • this invention is not limited to seawater as the raw water 11, but is applicable also to brine water, such as river water and groundwater.
  • the present invention can be applied to any chlorine compound containing effective chlorine such as hypochlorous acid, chloric acid, or chlorine gas-dissolved water as the chlorine-containing water 12.
  • FIG. 4 is a relationship diagram between the ORP value and the SBS / ClO molar ratio when the pH of the raw water is changed.
  • SBS which is a reducing agent
  • SBS can be stably injected without excess or deficiency, so that various problems in the prior art due to insufficient injection amount and excessive injection can be solved, and stable supply control of SBS becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 塩素含有水12を添加した原水11中の濁質分を濾過する前処理膜13aを有する前処理装置13と、前記前処理装置13からの濾過水14から塩分を除去して透過水15を生産する逆浸透膜16を有する逆浸透膜装置17と、前記逆浸透膜装置17の前流側において、添加した塩素を中和する還元剤注入装置30とを具備してなり、前記還元剤注入装置30が、濾過水14の一部14aを抜き出して、定量用のSBS溶液18を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部(当量点)を求め、この当量点に対応する還元剤添加濃度(Csm)を求め、この濃度に対応したSBS溶液18を濾過水14中に供給し、塩素を中和する。

Description

淡水化装置及び淡水化方法
 本発明は、塩素処理した後の原水を還元剤により中和処理する際に、円滑且つ効率的に行うことができる淡水化装置及び淡水化方法に関する。
 海水淡水化設備においては、脱塩処理することにより原水(海水)を淡水化させて上水として使用するための海水淡水化装置(以下、淡水化装置という)が用いられている。
 このような淡水化装置は、原水である海水中の濁質分を除去するために、MO膜(逆浸透膜)、UF膜(限外濾過膜)又はMF膜(精密濾過膜)等を用いた前処理装置が用いられている。また、原水に対しては、一般に殺菌、殺藻や有機物、鉄、マンガン、アンモニアなどを除去する目的で、塩素剤(塩素含有水)を原水に加える塩素処理を行っている。この塩素処理は、例えば液化塩素、次亜塩素酸ソーダ、塩水の電解によって生成する塩素などを用いるようにしている。
 この塩素処理及び濾過処理したものを、RO膜を備えた逆浸透膜装置で脱塩処理している。
 ところで、前記RO膜が塩素耐性の材料(例えば酢酸セルロール等)を用いている場合には、問題がないが、塩素耐性を有しない材料(例えばポリアミド膜)をRO膜としている場合には、逆浸透膜装置の前段側において、還元剤を用いて塩素の中和処理をする必要がある。
 この還元剤として、例えば重亜硫酸ソーダ(Sodium bisulfate soda「SBS」という)が用いられている(特許文献1~3)。
 この従来の塩素処理及び中和処理を行う淡水化装置の一例を図5に示す。
 図5に示すように、従来の淡水化装置100は、塩素含有水12を供給した原水11中の濁質分を濾過する前処理膜13aを有する前処理装置13と、前記前処理装置13からの濾過水14から塩分を除去して透過水15を生産する逆浸透膜(RO膜)16を有する逆浸透膜装置17と、逆浸透膜装置17の前流側で濾過水14にSBS溶液18を供給する還元剤タンク19とを具備してなり、濁質分の除去と塩素処理とを行っている。なお、図5中、符号20は濃縮水、21a、21bは送液ポンプ、22は原水ライン、23は濾過水ライン、24は濃縮水ライン、25は透過水ラインを各々図示する。
特開平7-308671号公報 特開平7-171565号公報 特開平9-57076号公報
 ところで、塩素含有水12をSBS溶液18で中和する際には、塩素を直接定量するのが理想的であるが、分析装置が高価であるために、濾過水14中の酸化還元電位(ORP)を図示しないORP計により計測して、中和の終了を確認しているが、該ORP計は、原水11の性状(pH等)や、ORP電極の連続使用による電極汚れや、ORP計自体の製造要因のぶれ等の要因で絶対値が変動することがある。
 このため、SBS溶液18を濾過水14に添加する際、添加後の原水11のORPの絶対値を直接測定し、これを目標値にSBS溶液18の供給量を制御しようとすると、前記誤差の影響を受けてSBS溶液18の注入量不足、又は注入量過剰となり、この結果、注入量不足の場合には、後段の逆浸透膜16の損傷を起こしたり、注入量過剰の場合には、ランニングコストが嵩んだり、SBS起因の硫黄化合物が逆浸透膜16に付着し、閉塞等の問題を引きおこしたりするような場合がある。
 本発明は、前記問題に鑑み、塩素処理した後の原水に対して還元剤を用いて中和処理する際に、円滑且つ効率的に行うことができる淡水化装置及び淡水化方法を提供することを課題とする。
 発明者は、上述した課題を解決するために、鋭意研究を行っていたが、ORP計の絶対値には個体差があるものの、酸化剤(塩素)とSBSの当量点でORP計の指示値が急激に変化する値については種々の変動要因の影響を受けずに、常に安定していることを見出し、本発明を完成させた。
 即ち、上述した課題を解決するための本発明の第1の発明は、塩素含有水を添加した原水から塩分を除去して透過水を生産する逆浸透膜を有する逆浸透膜装置と、前記逆浸透膜装置の前流側において、添加した塩素を中和する還元剤注入装置とを具備し、前記還元剤注入装置が、原水の一部を抜き出して、定量用の還元剤溶液を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部を求め、この当量点に対応する還元剤添加濃度を求め、この濃度に対応した還元剤溶液を原水に供給し、塩素を中和することを特徴とする淡水化装置にある。
 第2の発明は、第1の発明において、塩素含有水を添加した原水中の濁質分を濾過する前処理膜を有することを特徴とする淡水化装置にある。
 第3の発明は、第1又は2の発明において、還元剤注入装置は、濾過水の一部を抜き出す抜き出しラインと、抜出された抜出水に定量用の還元剤溶液を供給する定量用還元剤供給部と、定量用の還元剤溶液が添加された混合液の酸化還元電位を計測する酸化還元電位(ORP)計とを具備し、定量用の還元剤溶液を抜出水に供給しつつ酸化還元電位(ORP)計により両者の最大変化部である当量点を求め、求めた当量点に対応する還元剤添加濃度を求め、この当量点に対応する還元剤添加濃度となるように、逆浸透膜装置の前流側における濾過水に供給する還元剤溶液の添加量を算出し、還元剤タンクから還元剤溶液を原水に供給する制御を演算制御処理部により行うことを特徴とする淡水化装置にある。
 第4の発明は、原水から塩分を除去して透過水を生産する逆浸透膜を有する逆浸透膜装置を用いて淡水化する方法であって、原水の一部を抜き出して、定量用の還元剤溶液を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部である当量点を求め、この当量点に対応する還元剤添加濃度を求め、この濃度に対応した還元剤溶液を原水に供給し、逆浸透膜装置に供給する原水を中和することを特徴とする淡水化方法にある。
 本発明によれば、塩素処理した後の原水に対し、還元剤を用いて中和処理する際に、濾過水の一部を抜き出して、別途ORP計測を行い、その当量点での中和情報を元に、原水に供給するSBS溶液の供給を最適化することができ、中和処理を確実に且つ効率的に行うことができる。
図1は、本実施例に係る淡水化装置の概略図である。 図2は、本実施例に係る還元剤注入装置の概略図である。 図3は、サンプル水基準SBS濃度(mol/l)と、ORP計測値(mV)との関係図である。 図4は、原水のpHを変化させた際におけるORP値とSBS/ClOモル比との関係図である。 図5は、従来技術に係る淡水化装置の概略図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明に係る実施例に係る淡水化装置について、図面を参照して説明する。図1は、実施例に係る淡水化装置の概略図である。なお、従来技術で説明した淡水化装置の構成部材と同様の部材については、同一符号を付してその説明は省略する。
 図1に示すように、本実施例に係る淡水化装置10は、塩素含有水12を添加した原水11中の濁質分を濾過する前処理膜13aを有する前処理装置13と、前記前処理装置13からの濾過水14から塩分を除去して透過水15を生産する逆浸透膜(RO膜)16を有する逆浸透膜装置17と、前記逆浸透膜装置17の前流側において、添加した塩素を中和する還元剤注入装置30とを具備してなり、前記還元剤注入装置30が、濾過水14の一部14aを抜き出して、定量用還元剤であるSBS溶液18a(図2参照)を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部(当量点)を求め、この当量点に対応する還元剤添加濃度(Csm)を求め、この濃度に対応した還元剤であるSBS溶液18を、流量調節計39を用いて濾過水14中に供給し、塩素を中和するものである。
 なお、本発明においては、塩素含有水12を添加した原水11中の濁質分を濾過するために、前処理膜13aを有する前処理装置13を設置した一例を示しているが、本発明はこれに限定されず、当該前処理装置13の設置を不要としてもよい。
 図2は、本実施例に係る還元剤注入装置の一例を示す。
 図2に示すように、本実施例に係る還元剤注入装置30は、前処理装置(図示せず)からの濾過水ライン23を流れる濾過水14の一部抜出水14aをサンプル水として抜出す抜出ライン31と、抜出された一部抜出水14aに定量用の還元剤溶液であるSBS溶液18aを供給する定量用還元剤供給部である定量用SBS供給タンク32と、定量用SBS溶液18aが添加された混合液14bの酸化還元電位を計測する電極33a及び測定部33bを有する酸化還元電位(ORP)計33とを具備するものである。
 そして、定量用SBS溶液18aを一部抜出水14aに供給しつつORP計33により両者の最大変化部である当量点を求め、求めた当量点に対応する定量用SBS溶液18aの還元剤添加濃度(Csm)を求め、この還元剤添加濃度(Csm)となるように、逆浸透膜装置17の前流側における濾過水14に供給するSBS溶液18の添加量を算出し、還元剤タンク19からSBS溶液18を濾過水14に供給する流量調節制御の演算制御処理を演算装置34により行うようにしている。
 図2中、符号35は一部抜出水14aを測定部33bに供給する定量ポンプ、36は定量用SBS溶液18aを供給する流量可変定量ポンプ、37はシーケンサー、38はSBS溶液18の供給量を制御する制御弁、39は流量調節計、46は排水を各々図示する。
 図2に示すように、前処理装置13で前処理された濾過水14には塩素が含有されているので、塩素含有水12を含む濾過水14の一部抜出水14aをサンプル水として定量ポンプ35にて連続的に酸化還元電位(ORP)計33の測定部33bに供給する。
 シーケンサー37からの信号を受けた流量可変定量ポンプ36によりサンプル水である一部抜出水14aに定量用SBS溶液18aの供給流量を変えながら一定パターンで供給混合する。
 次いで、混合液14bの酸化還元電位(ORP)を測定部33bで計測し、ORP計33とシーケンサー37とからの信号により、還元剤と塩素との酸化還元電位の最大変化部(当量点)を求め、この当量点に対応する還元剤添加濃度(Csm)を求め、この濃度に対応したSBS溶液18の供給流量を算出し、流量調節の制御弁38に信号を発信する演算機能を演算装置34により行う。
 ここで、前記操作において、ORP計33の測定部33bに供給される基準SBS濃度(Cs)を(1)式にて算出することができる。
 また、基準SBS(Cs)の変化に対するORP値の最大変化を与える還元剤添加濃度(Csm)になるよう、逆浸透膜装置17に供給する濾過水14に添加するSBS溶液18の流量(F3)を(2)式にて算出することができる。
 Cs=(F1×C1)/F2 …(1)
 ここで、
   Cs:サンプル水基準SBS濃度(mol/L)
   C1:定量用SBS溶液濃度(mol/L)
   F1:定量用SBS溶液流量(L/h)
   F2:サンプル水流量(L/h)
 F3=(F4×Csm)/C3 …(2)
   F3:SBS溶液18の供給流量(L/h)
   F4:RO供給水流量(L/h)
   C3:SBS溶液濃度(mol/L)
   Csm:当量点に対応する還元剤添加濃度(mol/L)
 ここで、演算装置34での演算内容と、流量調節計39への出力内容について説明する。
 1) 一定流量のサンプル水14aに定量用SBS溶液18aを、供給流量を変えながら混合し、混合後の混合液14bの酸化還元電位(ORP)を、測定部33bの電極33aで測定し、ORP計33でその結果を求める。
 ここで、定量用SBS溶液18aの供給流量は、あらかじめ変化パターンをプログラミングしたシーケンサー37からの信号により、流量可変定量ポンプ36を変化させることで行う。
 2) 流量可変定量ポンプ36からORP測定部33bに至る液の滞留時間および電極33aの検出遅れ等を考慮し、上記供給流量はステップ状に変化させ、一定時間、定量用SBS溶液18aの供給量を維持する変化パターンとする。
 3) シーケンサー37からの定量用SBS溶液18aの供給流量信号は、同時に演算装置34にも送られ、ここでまず、ORP計33からのORP信号値と、サンプル水基準SBS濃度の関係を得る。
 図3は、サンプル水基準SBS濃度(mol/l)と、ORP計測値(mV)との関係図である。なお、図3の上段の横軸には、SBS/ClOモル比についても示している。
 図3に示すとおり、横軸にORPの測定部33bに供給するサンプル水基準SBS濃度(Cs)を前出(1)式により算出して示し、縦軸には検出されたORP値の関係をプロットする。
 前記(1)式にて、C1、F2の変数はあらかじめ演算装置34に入力しておき、F1は供給流量変化ごとにシーケンサー37から自動入力される。
 4) 次に、演算装置34では図3よりSBS濃度変化に対し、ORPの変化が最大となるサンプル水基準SBS当量濃度が求められる。これが、当量点に対応する還元剤添加濃度(Csm)となる。
 実測値を結んだスムージングカーブをSBS濃度(Cs)に対して微分することで自動的に求めることが可能である。
 5) さらに、演算装置34にて前記当量点に対応する還元剤添加濃度(Csm)となるよう、逆浸透膜装置17の前流に供給するSBS溶液18の流量(F3)を(2)式により算出し、対応する信号が流量調節計39に発信される。
 なお、(2)式にてF4、C3の変数はあらかじめ演算装置34に入力しておく。
 6) なお、各機器の検出誤差等を考慮した場合には、(2)式の当量点に対応する還元剤添加濃度(Csm)の代わりに(Csm+α)を代入して算出したF3に対応する信号を、流量調節計39に発信することもできる。ここで、αの値は調整値として機器仕様、実際の海水での実測値により適宜決められる。
 前記演算装置34から流量調節計39へ発信される信号は、前記1)~5)までの一連のステップが完了する毎とし、その間隔はあらかじめ設定しておく。
 ここで、従来においては、ORPの値は海水の性状(pH等)、ORP電極の汚れ、ORPセンサー自体のロット差等の要因で絶対値が変動している。したがってSBS溶液を添加する際、添加後の濾過水のORPの絶対値を直接測定し、これを目標値にSBS供給量を制御しようとすると、前記誤差の影響を受けてSBS注入量が不足、又は注入量が過剰となる。そして、注入量不足の場合には後段のRO膜の損傷を起こしたり、注入量過剰の場合には、ランニングコストが嵩んだり、SBS起因の硫黄化合物がRO膜に付着して閉塞の問題を引きおこしていた。
 これに対し、本発明においては、(1)塩素と還元剤であるSBS溶液との当量点でORP値が急激に変化すること、(2)当量点は海水の性状、ORP電極の汚れ、ORP電極等の従来では影響を受けていた変動要因の影響を受けず、常に安定していることを見出し、これに基づき、本発明の完成に至った。
 すなわち、塩素含有水12として、例えば次亜塩素酸ナトリウム(NaClO)溶液を使用した場合、SBS(NaHSO3)溶液との酸化還元反応は次の式で示される。
 NaClO+NaHSO3→NaHSO4+NaCl
 本反応式にもとづき、NaClO/NaHSO3 =1(mol/mol)が当量点となり、この付近でORPは最大変化する。
 NaClOを含むサンプル水14a中に加えるNaHSO3量を変化させ、図3に示したとおり、ORPが最大変化する当量点に対応する還元剤添加濃度((Csm)所謂還元剤添加濃度)を求めれば、これが当量濃度となる。
 この当量点に対応する還元剤添加濃度(Csm)となるようRO供給水である濾過水14へのSBS溶液18の供給流量を前述した(2)式により算出し、SBS供給流量を調節する。
 本発明により、SBSを過不足なく安定して注入できるので、注入量不足および過剰注入に起因する前記諸問題が解決され、安定したSBSの供給制御が可能となる。
 なお、本発明は原水11として海水に限定されるものでは無く、河川水、地下水等かん水に対しても適用可能である。
 また、塩素含有水12として次亜塩素酸、塩素酸、塩素ガス溶解水等の有効塩素を含む塩素化合物であれば、すべて本発明が適用可能である。
[試験例]
 次に、本発明の効果を示す試験例について説明する。ここで、図4は、原水のpHを変化させた際におけるORP値とSBS/ClOモル比との関係図である。
 本試験では、pHの値を三種類とした(pH=6.0、pH=6.5、pH=7.0)。
 図4に示すように、pHの変動(pH=6.0、pH=6.5、pH=7.0)があった場合においても、ORPが最大変化する当量点に対応する還元剤添加濃度(Csm)はほぼ同じであり、還元剤の添加を確実に行うことができることが確認された。
 よって、還元剤であるSBSを過不足なく安定して注入できるので、注入量不足および過剰注入に起因する従来技術における諸問題が解決され、安定したSBSの供給制御が可能となる。
 以上のように、本発明に係る淡水化装置によれば、塩素処理した後の原水に対して還元剤を用いて中和処理する際に、円滑且つ効率的に行うことができる。
 10、100 淡水化装置
 11 原水
 13a 前処理膜
 13 前処理装置
 14 濾過水
 15 透過水
 16 逆浸透膜
 17 逆浸透膜装置
 18 SBS溶液
 19 還元剤タンク
 30 還元剤注入装置

Claims (4)

  1.  塩素含有水を添加した原水から塩分を除去して透過水を生産する逆浸透膜を有する逆浸透膜装置と、
     前記逆浸透膜装置の前流側において、添加した塩素を中和する還元剤注入装置とを具備し、
     前記還元剤注入装置が、
     原水の一部を抜き出して、定量用の還元剤溶液を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部を求め、この当量点に対応する還元剤添加濃度を求め、この濃度に対応した還元剤溶液を原水に供給し、塩素を中和することを特徴とする淡水化装置。
  2.  請求項1において、
     塩素含有水を添加した原水中の濁質分を濾過する前処理膜を有することを特徴とする淡水化装置。
  3.  請求項1又は2において、
     還元剤注入装置は、
     濾過水の一部を抜き出す抜き出しラインと、
     抜出された抜出水に定量用の還元剤溶液を供給する定量用還元剤供給部と、
     定量用の還元剤溶液が添加された混合液の酸化還元電位を計測する酸化還元電位(ORP)計とを具備し、
     定量用の還元剤溶液を抜出水に供給しつつ酸化還元電位(ORP)計により両者の最大変化部である当量点を求め、求めた当量点に対応する還元剤添加濃度を求め、この当量点に対応する還元剤添加濃度となるように、逆浸透膜装置の前流側における濾過水に供給する還元剤溶液の添加量を算出し、還元剤タンクから還元剤溶液を原水に供給する制御を演算制御処理部により行うことを特徴とする淡水化装置。
  4.  原水から塩分を除去して透過水を生産する逆浸透膜を有する逆浸透膜装置を用いて淡水化する方法であって、
     原水の一部を抜き出して、定量用の還元剤溶液を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部である当量点を求め、この当量点に対応する還元剤添加濃度を求め、この濃度に対応した還元剤溶液を原水に供給し、逆浸透膜装置に供給する原水を中和することを特徴とする淡水化方法。
PCT/JP2010/070393 2009-11-30 2010-11-16 淡水化装置及び淡水化方法 WO2011065257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES10833104.2T ES2625159T3 (es) 2009-11-30 2010-11-16 Sistema de desalado y método de desalado
US13/508,155 US8920653B2 (en) 2009-11-30 2010-11-16 Desalination apparatus and desalination method
EP10833104.2A EP2508481B1 (en) 2009-11-30 2010-11-16 Desalting system and method of desalting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-271847 2009-11-30
JP2009271847A JP2011110531A (ja) 2009-11-30 2009-11-30 淡水化装置及び淡水化方法

Publications (1)

Publication Number Publication Date
WO2011065257A1 true WO2011065257A1 (ja) 2011-06-03

Family

ID=44066362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070393 WO2011065257A1 (ja) 2009-11-30 2010-11-16 淡水化装置及び淡水化方法

Country Status (6)

Country Link
US (1) US8920653B2 (ja)
EP (1) EP2508481B1 (ja)
JP (1) JP2011110531A (ja)
ES (1) ES2625159T3 (ja)
SA (1) SA110310860B1 (ja)
WO (1) WO2011065257A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291353B1 (ko) * 2011-03-23 2013-07-30 삼성중공업 주식회사 선박의 수처리 시스템
AR090505A1 (es) * 2012-04-09 2014-11-19 Nalco Co Metodo y dispositivo para la prevencion de la corrosion en sistemas de agua caliente
JP2014128748A (ja) * 2012-12-28 2014-07-10 Hitachi Ltd 淡水化システム
JP6118668B2 (ja) 2013-07-03 2017-04-19 三菱重工業株式会社 水処理システム
US20170073256A1 (en) * 2015-09-11 2017-03-16 Cameron Solutions, Inc. System And Process To Protect Chlorine-Susceptible Water Treatment Membranes From Chlorine Damage Without The Use Of Chemical Scavengers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308671A (ja) * 1994-05-16 1995-11-28 Nitto Denko Corp 逆浸透膜モジュ−ルによる海水淡水化での海水の前処理方法
JPH09192680A (ja) * 1996-01-16 1997-07-29 Hitachi Ltd オゾン処理方法及びオゾン処理装置
JPH1090212A (ja) * 1996-09-19 1998-04-10 Mitsubishi Gas Chem Co Inc 過酸化水素分解反応の終点を検出する方法及び該方法を用いた廃液からの硫酸の回収方法
JP2004000938A (ja) * 2002-04-02 2004-01-08 Toray Ind Inc 造水方法
JP2005246158A (ja) * 2004-03-02 2005-09-15 Kobelco Eco-Solutions Co Ltd 海水の淡水化処理法および装置
WO2006054351A1 (ja) * 2004-11-19 2006-05-26 Ebara Corporation 下水道システム
JP2007152192A (ja) * 2005-12-02 2007-06-21 Yokohama National Univ 水質監視装置及び水処理設備
JP2008212915A (ja) * 2007-03-02 2008-09-18 Yoshizaki Mekki Kakosho:Kk 六価クロム含有排水の還元処理後の排水に含まれる還元剤の適正濃度維持方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171565A (ja) 1993-12-20 1995-07-11 Toyobo Co Ltd 海水淡水化の前処理方法
JP3641854B2 (ja) 1995-08-28 2005-04-27 東レ株式会社 逆浸透膜分離方法および逆浸透膜分離装置
JP2004033800A (ja) * 2002-06-28 2004-02-05 Nomura Micro Sci Co Ltd 残留塩素濃度の管理方法、超純水の製造方法および注入塩素濃度の管理方法
EP2467336A1 (en) * 2009-05-14 2012-06-27 Omni Water Solutions LLC Self-contained portable multi-mode water treatment system and methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308671A (ja) * 1994-05-16 1995-11-28 Nitto Denko Corp 逆浸透膜モジュ−ルによる海水淡水化での海水の前処理方法
JPH09192680A (ja) * 1996-01-16 1997-07-29 Hitachi Ltd オゾン処理方法及びオゾン処理装置
JPH1090212A (ja) * 1996-09-19 1998-04-10 Mitsubishi Gas Chem Co Inc 過酸化水素分解反応の終点を検出する方法及び該方法を用いた廃液からの硫酸の回収方法
JP2004000938A (ja) * 2002-04-02 2004-01-08 Toray Ind Inc 造水方法
JP2005246158A (ja) * 2004-03-02 2005-09-15 Kobelco Eco-Solutions Co Ltd 海水の淡水化処理法および装置
WO2006054351A1 (ja) * 2004-11-19 2006-05-26 Ebara Corporation 下水道システム
JP2007152192A (ja) * 2005-12-02 2007-06-21 Yokohama National Univ 水質監視装置及び水処理設備
JP2008212915A (ja) * 2007-03-02 2008-09-18 Yoshizaki Mekki Kakosho:Kk 六価クロム含有排水の還元処理後の排水に含まれる還元剤の適正濃度維持方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508481A4 *

Also Published As

Publication number Publication date
JP2011110531A (ja) 2011-06-09
EP2508481B1 (en) 2017-04-19
ES2625159T3 (es) 2017-07-18
EP2508481A1 (en) 2012-10-10
EP2508481A4 (en) 2015-09-02
US20120211420A1 (en) 2012-08-23
US8920653B2 (en) 2014-12-30
SA110310860B1 (ar) 2014-09-10

Similar Documents

Publication Publication Date Title
Alventosa-deLara et al. Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt
AU2010285913C1 (en) Fresh water production method
Zhao et al. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion
WO2011065257A1 (ja) 淡水化装置及び淡水化方法
EP1834691B1 (en) Washing method and apparatus of separation membrane
JP5843921B2 (ja) 淡水化装置及び淡水化方法
Van Hoof et al. Dead-end ultrafiltration as alternative pre-treatment to reverse osmosis in seawater desalination: a case study
Lidén et al. Comparison between ultrafiltration and nanofiltration hollow-fiber membranes for removal of natural organic matter: a pilot study
JP2015186774A (ja) 造水方法および造水装置
KR100724707B1 (ko) 염소/탈염소제 주입량 결정 방법과 제어장치 및 그를 이용한 하수 정화장치
KR20170075085A (ko) 막여과 정수 시스템 및 이를 이용한 망간 저감방법
JP2012120970A (ja) 淡水化装置及び淡水化方法
US11524909B2 (en) Accurate biocide dosing for low concentration membrane biofouling control applications
WO2018138957A1 (ja) 電気伝導度によるpH制御方法
JP5669651B2 (ja) 淡水化装置及び淡水化方法
JP5634250B2 (ja) 膜の監視方法
EP3243562A1 (en) Method for improving inhibition performance of semipermeable membrane, semipermeable membrane, and semipermeable membrane water production device
WO2021216409A1 (en) Charge neutral biocide dosing control for membrane biofouling control applications
JP2015186773A (ja) 造水方法および造水装置
JP5421948B2 (ja) 水処理システム
SG193889A1 (en) Water treatment method
Taylor et al. Pilot plant demonstration of effluent desalination by electrodialysis at the Western Treatment Plant, Werribee
Albasheer et al. Wastewater Treatment with Nanofiltration in Pilot-scale
JP4965828B2 (ja) 膜濾過システム
JP2023057669A (ja) 飲料水製造方法、飲料水製造システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13508155

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010833104

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010833104

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE