WO2011064905A1 - 超音波式流体計測構造および超音波式流体計測装置 - Google Patents

超音波式流体計測構造および超音波式流体計測装置 Download PDF

Info

Publication number
WO2011064905A1
WO2011064905A1 PCT/JP2010/000692 JP2010000692W WO2011064905A1 WO 2011064905 A1 WO2011064905 A1 WO 2011064905A1 JP 2010000692 W JP2010000692 W JP 2010000692W WO 2011064905 A1 WO2011064905 A1 WO 2011064905A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
side wall
flow path
input
fluid
Prior art date
Application number
PCT/JP2010/000692
Other languages
English (en)
French (fr)
Inventor
藤井裕史
宮田肇
尾崎行則
渡辺葵
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/511,433 priority Critical patent/US8925390B2/en
Priority to EP10832761.0A priority patent/EP2505968B1/en
Publication of WO2011064905A1 publication Critical patent/WO2011064905A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Definitions

  • the present invention provides a flow path member along the flow direction of the fluid, an ultrasonic measurement unit is adjacent to the flow path member, and the ultrasonic measurement unit transmits an ultrasonic wave to the reflection surface of the flow path member and the reflection surface.
  • the present invention relates to an ultrasonic fluid measurement structure that measures the flow rate of fluid by receiving reflected ultrasonic waves at an ultrasonic measurement unit, and an ultrasonic fluid measurement device that includes the ultrasonic fluid measurement structure.
  • a flow path member is accommodated in a measurement flow path accommodating section, and a first ultrasonic measurement section and a second ultrasonic measurement section are provided adjacent to the flow path member.
  • the flow path member is formed in a rectangular tube shape by the first side wall part, the second side wall part, the top plate part, and the bottom plate part, whereby a fluid flow path (hereinafter referred to as “flow path”) is formed by the flow path member.
  • a first ultrasonic output unit and a second ultrasonic output unit are provided adjacent to the first side wall, and the first ultrasonic output unit and the second ultrasonic output unit are arranged to face the flow path.
  • a reflection surface is provided on the second side wall, and the reflection surface is disposed so as to face the flow path (see, for example, Patent Document 1).
  • the ultrasonic fluid measuring device 120 of Patent Document 1 has a flow path 122 formed by a flow path member 121.
  • the ultrasonic wave 127 transmitted from the first transducer 123 is reflected by the reflecting surface 128 and transmitted to the second transducer 125 in a V shape (V path), and the transmitted ultrasonic wave 127 is transmitted to the second transducer wave. Received by the device 125.
  • the ultrasonic wave 129 transmitted from the second transducer 125 is reflected by the reflecting surface 128 and transmitted to the first transducer 123 in a V shape (V path), and the transmitted ultrasonic wave 129 is the first. It is received by the transducer 123. Based on the ultrasonic waves (signals) received by the first transducer 123 and the second transducer 125, the flow rate of the fluid 131 flowing in the flow path 122 is obtained.
  • the first ultrasonic output unit 135 and the second ultrasonic output unit 136 are provided on the first side wall part 133 at a predetermined interval. Therefore, the first side wall part 133 is provided with the column part 137 between the first ultrasonic output part 135 and the second ultrasonic output part 136.
  • the column portion 137 is a portion that protrudes (protrudes) toward the flow path 122.
  • the fluid 131 may be disturbed 155 due to the steps 141 and 143 and the gaps 142 and 144 formed by the column portion 137.
  • the steps 141 and 143 and the gaps 142 and 144 are located inside the sandwiching angle ⁇ 2 of the ultrasonic wave 127 transmitted in a V shape (V path) or in the ultrasonic wave transmitted in a V shape (V path). It exists inside the sandwiching angle ⁇ 2 of 129. Then, the turbulence generated inside the sandwich angle ⁇ 2 of the ultrasonic wave 129 may disturb the ultrasonic wave.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ultrasonic fluid measurement structure and an ultrasonic fluid measurement device capable of preventing the ultrasonic waves from being disturbed by fluid disturbance. Is to provide.
  • An ultrasonic fluid measurement structure includes a flow path member having a rectangular opening continuous along a fluid flow direction, and an ultrasonic measurement unit adjacent to the flow path member. Is a first side wall portion adjacent to the ultrasonic measurement unit, a second side wall portion parallel to the first side wall portion, and a top plate portion spanned between the first side wall portion and the second side wall portion.
  • a measurement unit transmits an ultrasonic wave to the reflection surface through the first ultrasonic wave input / output unit and receives the ultrasonic wave reflected on the reflection surface, and the second ultrasonic wave input / output unit through the second ultrasonic wave input / output unit.
  • the ultrasonic wave is transmitted to the reflection surface and the ultrasonic wave reflected on the reflection surface is received.
  • Two ultrasonic transmitters / receivers, the first ultrasonic input / output unit and the second ultrasonic input / output unit are adjacent to each other, and an ultrasonic transmission film that transmits the ultrasonic waves is the first ultrasonic input / output unit and The second ultrasonic entrance / exit part is collectively covered.
  • the first ultrasonic input / output unit and the second ultrasonic input / output unit are provided adjacent to each other, and the first ultrasonic input / output unit and the second ultrasonic input / output unit are collectively covered with the ultrasonic transmission film. It was configured as follows. By the way, an ultrasonic wave is transmitted from the first transducer to the reflective surface through the first ultrasonic input / output unit, and the ultrasonic wave reflected by the reflective surface is received by the second transducer, so that the ultrasonic wave is V-shaped (V Pass).
  • the ultrasonic wave is transmitted in a V shape (V-shaped by transmitting the ultrasonic wave from the second transmitter / receiver to the reflecting surface through the second ultrasonic input / output unit and receiving the ultrasonic wave reflected on the reflecting surface by the first transmitter / receiver. Pass).
  • the ultrasonic transmission membrane is covered with the first ultrasonic input / output unit and the second ultrasonic input / output unit in a lump so that the portion inside the ultrasonic wave transmitted in a V shape is flattened. It can be secured. There is no possibility that the fluid flowing in the flow path member will be disturbed at a portion inside the ultrasonic wave transmitted in a V shape. Thereby, it is possible to prevent the ultrasonic waves from being disturbed due to the fluid disturbance.
  • the ultrasonic fluid measurement structure according to the present invention is characterized in that the first side wall, the second side wall, the top plate, and the bottom plate are integrated.
  • the number of parts can be reduced by integrating the first side wall, the second side wall, the top plate, and the bottom plate.
  • the flow path member has a partition plate that divides the interior of the flow path member into a plurality of flat flow paths, and the partition plate includes the first side wall portion and the It is formed integrally with the second side wall.
  • the partition plate integrally with the first side wall portion and the second side wall portion, it is possible to save the trouble of attaching the partition plate to the first side wall portion and the second side wall portion.
  • the ultrasonic fluid measurement structure according to the present invention is characterized in that the ultrasonic permeable membrane and the partition plate are in contact with each other.
  • the gap between the ultrasonic transmission membrane and the partition plate can be eliminated by bringing the ultrasonic transmission membrane and the partition plate into contact. Therefore, there is no possibility that the fluid is disturbed in the gap between the ultrasonic transmission membrane and the partition plate. Thereby, it is possible to prevent the ultrasonic waves from being disturbed due to the fluid disturbance.
  • the ultrasonic fluid measurement structure according to the present invention is characterized in that the first ultrasonic input / output unit and the second ultrasonic input / output unit are continuous.
  • the step portion (column portion) can be removed from between the first ultrasonic input / output unit and the second ultrasonic input / output unit by making the first ultrasonic input / output unit and the second ultrasonic input / output unit continuous. Therefore, the ultrasonic transmission film covering the first ultrasonic input / output part and the second ultrasonic input / output part is divided into the back side (that is, the flow path side) of the first side wall part and the front side (that is, the flow path) of the first side wall part. Any one of the other side) can be selected and provided.
  • the ultrasonic transmission film on the back surface side of the first side wall portion, the first side wall portion, the second side wall portion, the top plate portion, and the bottom plate portion are individually configured, and the respective members are assembled integrally. Is possible.
  • the ultrasonic transmission film on the surface side of the first side wall portion, the first side wall portion, the second side wall portion, the top plate portion, and the bottom plate portion can be integrally formed. Thereby, when forming a flow path member, the freedom degree of design can be raised.
  • An ultrasonic fluid measurement structure includes a flow path member having a rectangular opening continuous along a fluid flow direction, and an ultrasonic measurement unit adjacent to the flow path member.
  • a flow path member having a rectangular opening continuous along a fluid flow direction
  • an ultrasonic measurement unit adjacent to the flow path member.
  • a reflection surface provided on the inner surface of the second side wall, and the ultrasonic measurement unit transmits ultrasonic waves to the reflection surface through the first ultrasonic input / output unit, and the reflection surface.
  • a first transmitter / receiver for receiving the ultrasonic wave reflected on the second ultrasonic wave, and a second transmitter / receiver for transmitting the ultrasonic wave to the reflecting surface through the second ultrasonic wave input / output unit and receiving the ultrasonic wave reflected on the reflecting surface.
  • a first ultrasonic entry / exit part and a second ultrasonic entry / exit part are adjacent to each other. Match, characterized in that is.
  • the first ultrasonic input / output unit and the second ultrasonic input / output unit are configured to be adjacent to each other.
  • the ultrasonic wave is V-shaped by transmitting the ultrasonic wave from the first transmitter / receiver to the reflecting surface through the first ultrasonic input / output unit and receiving the ultrasonic wave reflected on the reflecting surface by the second transmitter / receiver. (V path).
  • the ultrasonic wave is transmitted in a V shape (V-shaped by transmitting the ultrasonic wave from the second transmitter / receiver to the reflecting surface through the second ultrasonic input / output unit and receiving the ultrasonic wave reflected on the reflecting surface by the first transmitter / receiver. Pass).
  • the first ultrasonic input / output unit and the second ultrasonic input / output unit can be provided continuously. Therefore, the step part (column part) can be removed from between the first ultrasonic input / output part and the second ultrasonic input / output part, and the part inside the ultrasonic wave transmitted in a V shape can be ensured flat. Thereby, there is no possibility that the fluid flowing in the flow path member is disturbed in the portion inside the ultrasonic wave transmitted in a V shape, and it is possible to prevent the ultrasonic wave from being disturbed due to the fluid disturbance.
  • the ultrasonic fluid measuring device is characterized by using the ultrasonic fluid measuring structure.
  • the ultrasonic fluid measurement structure in the ultrasonic fluid measurement device by using the ultrasonic fluid measurement structure in the ultrasonic fluid measurement device, it is possible to provide an ultrasonic fluid measurement device capable of preventing the ultrasonic waves from being disturbed by the fluid disturbance. Thereby, the flow volume of the fluid can be accurately measured by the ultrasonic fluid measuring device.
  • the first ultrasonic input / output unit and the second ultrasonic input / output unit are collectively covered with the ultrasonic transmission film and transmitted in a V shape. As a result, it is possible to prevent the ultrasonic waves from being disturbed due to the fluid disturbance.
  • 1 is an exploded perspective view showing the ultrasonic fluid measurement structure of FIG. AA line sectional view of FIG. BB sectional view of FIG. C arrow view of FIG.
  • DD sectional view of FIG. EE sectional view of FIG. The perspective view explaining the relationship between the fluid main body and partition plate of 1st Embodiment. Sectional drawing explaining the example which integrally molds the fluid main body of 1st Embodiment. Sectional drawing which shows the fluid member of 2nd Embodiment which concerns on this invention.
  • Sectional drawing explaining the example which integrally molds the fluid main body of 4th Embodiment Sectional drawing which shows the fluid member of 5th Embodiment which concerns on this invention.
  • the disassembled perspective view explaining the example which assembles the fluid main part of a 5th embodiment Sectional drawing which shows the fluid member of 6th Embodiment which concerns on this invention.
  • the perspective view which shows the ultrasonic fluid measuring device of 7th Embodiment which concerns on this invention.
  • the schematic diagram which shows the ultrasonic fluid measuring apparatus of 8th Embodiment which concerns on this invention.
  • the ultrasonic fluid measurement device 10 As shown in FIGS. 1 to 5, the ultrasonic fluid measurement device 10 according to the first embodiment of the present invention includes an ultrasonic fluid measurement structure 12 that measures the flow rate of fluid.
  • the ultrasonic fluid measurement structure 12 includes a flow path member 15 and an ultrasonic measurement unit 16 adjacent to the flow path member 15.
  • the flow path member 15 has a flow path main body (main body) 17 in which rectangular openings 18 are continuous along the fluid flow direction.
  • the flow path body 17 is formed on the first side wall 21 adjacent to the ultrasonic measurement unit 16, the second side wall 22 parallel to the first side wall 21, and the tops of the first side wall 21 and the second side wall 22. It has a spanned top plate portion 23 and a bottom plate portion 24 spanned on the bottoms of the first side wall portion 21 and the second side wall portion 22.
  • the first side wall portion 21, the second side wall portion 22, the top plate portion 23, and the bottom plate portion 24 are integrally formed (specifically, resin molding), and the first side wall portion 21, the second side wall portion 22, and the top plate are formed.
  • This is a resin member in which a rectangular tubular channel 26 (that is, “a channel in which a rectangular opening 18 continues along the fluid flow direction”) is formed by the portion 23 and the bottom plate portion 24.
  • the flow path body 17 is provided adjacent to a plurality of partition plates 28 that divide the interior of the flow path body 17 (that is, the flow path 26) into a plurality of flat flow paths 27 and the first side wall portion 21.
  • Ultrasonic waves covering the first ultrasonic input / output part 32 and the second ultrasonic input / output part 33, the reflection surface 35 provided on the inner surface of the second side wall part 22, and the first ultrasonic input / output part 32 and the second ultrasonic input / output part 33 And a sound-transmitting film 38.
  • the plurality of partition plates 28 are integrally formed (insert molding) with the first side wall portion 21 and the second side wall portion 22 when the flow path body 17 is resin-molded. Specifically, the upper corners 28a of the plurality of partition plates 28 are formed integrally with the first side wall portion 21 (insert molding), and the lower projecting pieces 28b of the plurality of partition plates 28 as shown in FIGS. Is formed integrally (insert molding) with the second side wall portion 22 penetrating and the tip not projecting outside the second side wall portion 22. These partition plates 28 are held in a relative position with respect to the mold by bringing the upper corners 28a and the tips of the lower protrusions 28b into contact with the inner surface of the mold. In this state, the resin can be easily positioned at a predetermined position with respect to the flow path body 17 by injecting the resin into the mold.
  • the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33 which are adjacent to each other are formed in succession to thereby generate ultrasonic waves.
  • An entrance / exit 31 is formed.
  • the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33 (that is, the ultrasonic input / output unit 31) provided continuously are collectively covered with the ultrasonic transmission film 38.
  • the ultrasonic transmission film 38 a mesh member that transmits the ultrasonic waves 36 is illustrated, but the present invention is not limited to this, and other members such as a punching metal member may be used.
  • End portions 28c (see also FIG. 4) of the plurality of partition plates 28 are in contact with the ultrasonic transmission film 38.
  • a gap between the ultrasonic transmission film 38 and the end portions 28c of the partition plate 28 can be eliminated. Therefore, there is no possibility that the fluid is disturbed in the gap between the ultrasonic transmission film 38 and the end portion 28 c of the partition plate 28. Thereby, it is possible to prevent the ultrasonic waves from being disturbed due to the fluid disturbance.
  • the ultrasonic measurement unit 16 is provided on the first side wall portion 21 of the flow path body 17.
  • the ultrasonic measurement unit 16 includes a sensor block 41 provided in the first side wall portion 21 of the flow path body 17, a first transducer 42 provided in an upstream portion of the sensor block 41, and a downstream of the sensor block 41. And a second transducer 43 provided at the side portion. That is, the first transducer 42 and the second transducer 43 are provided so as to be adjacent to the first side wall portion 21 of the flow path body 17 via the sensor block 41.
  • the first transducer 42 is attached to a predetermined attachment site with a first sensor packing 45 and a first sensor fixing member 46.
  • the second transducer 43 is attached to a predetermined attachment site with the second sensor packing 47 and the second sensor fixing member 48.
  • the first transducer 42 is a transducer that transmits an ultrasonic wave 36 to the reflecting surface 35 through the first ultrasonic wave input / output unit 32 and receives an ultrasonic wave 37 reflected by the reflecting surface 35.
  • the second transducer 43 is a transducer that transmits the ultrasonic wave 37 to the reflection surface 35 through the second ultrasonic wave input / output unit 33 and receives the ultrasonic wave 36 reflected from the reflection surface 35.
  • an ultrasonic entrance / exit 31 is formed on the first side wall 21.
  • the ultrasonic entrance / exit part 31 is formed with a first ultrasonic entrance / exit part 32 and a second ultrasonic entry / exit part 33 that are adjacent to each other.
  • the ultrasonic transmission film 38 By removing the step portion (column portion) 51 from between the first ultrasonic input / output portion 32 and the second ultrasonic input / output portion 33, the ultrasonic transmission film 38 is placed on the back surface 21 a side (that is, the flow path) of the first side wall portion 21. 26 side). Therefore, the ultrasonic transmission film 38 covering the first ultrasonic input / output part 32 and the second ultrasonic input / output part 33 can be provided on the surface 21b side of the first side wall part 21 (that is, the opposite side of the flow path 26). .
  • the stepped portion 54 was formed on the peripheral wall portion 53 of the ultrasonic wave entrance / exit portion 31, and the housing recess 55 was formed on the surface 21 b side of the first side wall portion 21 (that is, the opposite side of the flow path 26). Then, by inserting the ultrasonic transmission film 38 into the housing recess 55, the ultrasonic transmission film 38 can be attached from the surface 21 b side of the first side wall portion 21 (that is, the opposite side of the flow path 26). Here, by attaching the ultrasonic transmission film 38 from the surface 21 b side of the first side wall portion 21 (that is, the opposite side of the flow channel 26), the peripheral wall portion 53 of the ultrasonic wave entrance / exit portion 31 is stepped with respect to the flow channel 26. Part.
  • the ultrasonic wave inlet / outlet part 31 is attached from the surface 21b side of the first side wall part 21 (that is, the side opposite to the flow path 26), so that the flow path body 17 is integrated as shown in FIG. Resin molding is possible. That is, as shown in FIG. 10, the central portion 26a of the flow path 26 is formed by extracting the mold 57 from the ultrasonic wave entrance / exit 31 of the flow path member 15 (flow path body 17) in the direction of arrow A, and A storage recess 55 is formed on the surface 21 b side of the one side wall portion 21 (that is, the side opposite to the flow path 26).
  • the one end portion 26 b of the flow channel 26 can be formed by extracting the slide mold 58 from the one end portion 17 a of the flow channel body 17 in the arrow B direction.
  • the other end portion 26 c of the flow channel 26 can be formed by extracting the slide mold 59 from the other end portion 17 b of the flow channel body 17 in the direction of arrow C.
  • the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 which comprise the flow-path main body 17 are integrally resin-molded.
  • the plurality of partition plates 28 are insert-molded into the first side wall portion 21 and the second side wall portion 22.
  • the plurality of partition plates 28 are insert-molded into the first side wall portion 21 and the second side wall portion 22.
  • the ultrasonic input / output unit 31 is formed by continuously providing the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33.
  • the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33 (that is, the ultrasonic input / output unit 31) provided continuously are collectively covered with the ultrasonic transmission film 38.
  • the peripheral wall portion 53 of the ultrasonic wave entrance / exit portion 31 is connected to the flow channel 26 (back surface 21a). On the other hand, it becomes a stepped portion.
  • the ultrasonic wave 36 transmitted from the first transducer 42 is transmitted to the reflecting surface 35 through the first ultrasonic wave input / output unit 32, and the ultrasonic wave 36 reflected by the reflecting surface 35 is received by the second transducer 43.
  • the sound wave 36 is transmitted in a V shape (V path).
  • the ultrasonic wave 37 transmitted from the second transducer 43 is transmitted to the reflecting surface 35 through the second ultrasonic wave input / output unit 33, and the ultrasonic wave 37 reflected by the reflecting surface 35 is received by the first transducer 42.
  • the ultrasonic wave 36 is transmitted in a V shape (V path).
  • the ultrasonic input / output unit 31 is formed by continuously providing the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33, and the ultrasonic input / output unit 31 is collectively covered with the ultrasonic transmission film 38.
  • the inner portion of the ultrasonic wave 36 transmitted in a V-shape (the portion on the side of the sandwich angle ⁇ 1, that is, the ultrasonic transmission film 38) can be ensured flat.
  • the fluid (as an example, gas) flowing through the inside of the flow channel body 17 (the flow channel 26) is a part inside the ultrasonic wave 36 transmitted in a V shape or the ultrasonic wave 36 transmitted in a V shape. There is no possibility of turbulence occurring in the inner part of the.
  • the peripheral wall portion 53 of the ultrasonic inlet / outlet portion 31 becomes a step portion with respect to the flow channel 26 (back surface 21a), so that the fluid (as an example, gas) 60 that flows inside the flow channel body 17 (flow channel 26).
  • the peripheral wall portion 53 that is, the step portion
  • the peripheral wall portion 53 is located outside the sandwiching angle ⁇ 1 of the ultrasonic wave 36 transmitted in a V shape or outside the sandwiching angle ⁇ 1 of the ultrasonic wave 37 transmitted in a V shape. . Therefore, even if the fluid 60 is disturbed in the peripheral wall portion 53 (that is, the step portion), there is no possibility that the ultrasound 36 and the ultrasound 37 are disturbed. Thereby, it is possible to prevent the ultrasonic wave 36 and the ultrasonic wave 36 from being disturbed due to the disturbance of the fluid 60, and the ultrasonic fluid measuring device 10 can accurately measure the flow rate of the fluid.
  • the flow path member 70 of the second embodiment of the present invention has a flow path body (main body) 71 instead of the flow path body 17.
  • the flow path main body 71 is formed with an accommodation recess 72 on the back surface 21 a side (that is, the flow path 26 side) of the first side wall portion 21, and the ultrasonic transmission film 38 is fitted into the accommodation recess 72. 38 is configured to be attached from the back surface 21a side (that is, the flow path 26 side) of the first side wall portion 21.
  • the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33 that is, the ultrasonic input / output unit 31) that are continuously provided are the ultrasonic transmission film 38 and the back surface 21a side (that is, the flow of the first side wall unit 21). Covered collectively from the road 26 side). Therefore, the part inside the ultrasonic wave 36 transmitted in a V-shape (the part on the side of the sandwiching angle ⁇ 1, that is, the ultrasonic transmission film 38), or the part inside the ultrasonic wave 37 transmitted in a V-shape (the sandwiching angle). The portion on the ⁇ 1 side, that is, the ultrasonic transmission film 38) can be ensured flat. Further, by providing the ultrasonic transmission film 38 from the back surface 21a side (that is, the flow channel 26 side) of the first side wall portion 21, the ultrasonic transmission film 38 is provided flat with respect to the flow channel 26 (back surface 21a). Can do.
  • the fluid 60 flowing inside the flow channel main body 71 (flow channel 26) is transmitted to the inside and outside of the ultrasonic wave 36 transmitted in a V shape, or the ultrasonic wave 37 transmitted in a V shape.
  • the ultrasonic wave 36 and the ultrasonic wave 37 can accurately measure the flow rate of the fluid. .
  • the storage recess 72 is formed on the back surface 21a side (that is, the flow path 26 side) of the first side wall portion 21. Yes. Therefore, it is difficult to integrally mold the flow path main body 71 like the flow path main body 17 of the first embodiment. Then, as shown in FIG. 12, the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 were each comprised by the separate member.
  • the flow path member 70 (flow path main body 71) of 2nd Embodiment is comprised by each comprising the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 with an individual member. Can be assembled.
  • the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 are each formed with the members made from resin.
  • the flow path member 80 of the third embodiment of the present invention has a flow path body (main body) 81 instead of the flow path body 17.
  • the flow path body 81 is formed so that the ultrasonic input / output unit 31 (the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33) can fit the sensor block 41 of the ultrasonic measurement unit 16.
  • a storage recess 82 is formed in the sensor block 41 of the ultrasonic measurement unit 16, and the ultrasonic transmission film 38 is fitted in the storage recess 82. Therefore, the ultrasonic input / output part 31 is covered with the ultrasonic transmission film 38 by fitting the sensor block 41 to the ultrasonic input / output part 31.
  • the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33 (that is, the ultrasonic input / output unit 31) provided continuously are collectively covered with the ultrasonic transmission film 38. Therefore, the part inside the ultrasonic wave 36 transmitted in a V-shape (the part on the side of the sandwiching angle ⁇ 1, that is, the ultrasonic transmission film 38), or the part inside the ultrasonic wave 37 transmitted in a V-shape (the sandwiching angle) The portion on the ⁇ 1 side, that is, the ultrasonic transmission film 38) can be ensured flat.
  • the ultrasonic transmission film 38 can be disposed flat with respect to the bottom surface 41 a of the sensor block 41.
  • the ultrasonic transmission film 38 can be disposed flat with respect to the bottom surface 41 a of the sensor block 41.
  • the sensor block 41 to the ultrasonic input / output unit 31 (the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33), the bottom surface 41a of the sensor block 41 and the ultrasonic transmission film 38 flow. It can be provided flat with respect to the path 26 (back surface 21a).
  • the fluid 60 flowing inside the flow channel body 81 (the flow channel 26) is transmitted to the inside or outside of the ultrasonic wave 36 transmitted in a V shape, or the ultrasonic wave 37 transmitted in a V shape.
  • the disturbance of the ultrasonic wave 36 and the ultrasonic wave 37 due to the disturbance of the fluid 60 can be prevented, and the flow rate of the fluid 60 can be accurately measured by the ultrasonic fluid measuring device 10. it can.
  • the peripheral wall portion 53 of the ultrasonic wave entrance / exit 31 is formed flat. Therefore, the flow path body 81 can be integrally molded with the resin in the same manner as the flow path body 17 of the first embodiment.
  • the central portion 26a of the flow path 26 is formed by extracting the mold 57 from the ultrasonic wave entrance / exit 31 of the flow path main body 81 in the direction of arrow D, and the first side wall 21 is A sonic entrance / exit 31 is formed.
  • the one end portion 26 b of the flow channel 26 can be formed by extracting the slide mold 58 from the one end portion 81 a of the flow channel body 81 in the direction of arrow E.
  • the other end portion 26 c of the flow channel 26 can be formed by extracting the slide mold 59 from the other end portion 81 b of the flow channel body 81 in the direction of arrow F.
  • the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 which comprise the flow-path main body 81 are integrally resin-molded similarly to 1st Embodiment. ing.
  • the number of components can be reduced.
  • a plurality of partition plates 28 are insert-molded into the first side wall portion 21 and the second side wall portion 22 as in the first embodiment. .
  • the plurality of partition plates 28 integrally with the first side wall portion 21 and the second side wall portion 22, it is possible to save the trouble of attaching the plurality of partition plates 28 to the first side wall portion 21 and the second side wall portion 22. .
  • the flow path member 90 of the fourth embodiment of the present invention has a flow path body (main body) 91 instead of the flow path body 17.
  • the flow path body 91 is formed such that the first side wall portion 21 and the sensor block 41 can sandwich the ultrasonic transmission film 38. That is, the ultrasonic transmission / reception part 31 is covered with the ultrasonic transmission film 38 by sandwiching the ultrasonic transmission film 38 between the first side wall part 21 and the sensor block 41 of the flow path body 91.
  • the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33 (that is, the ultrasonic input / output unit 31) provided continuously are collectively covered with the ultrasonic transmission film 38. Therefore, the part inside the ultrasonic wave 36 transmitted in a V-shape (the part on the side of the sandwiching angle ⁇ 1, that is, the ultrasonic transmission film 38), or the part inside the ultrasonic wave 37 transmitted in a V-shape (the sandwiching angle). The portion on the ⁇ 1 side, that is, the ultrasonic transmission film 38) can be ensured flat.
  • the peripheral wall portion 53 of the ultrasonic wave entrance / exit portion 31 becomes a stepped portion with respect to the flow path 26 (back surface 21a). Therefore, there is a possibility that the fluid 60 flowing inside the flow path main body 91 (flow path 26) may be disturbed at the peripheral wall portion 53 (that is, the stepped portion).
  • the peripheral wall portion 53 that is, the step portion
  • the peripheral wall portion 53 is located outside the ultrasonic wave 36 transmitted in a V shape or outside the ultrasonic wave 37 transmitted in a V shape. Therefore, even if the fluid 60 is disturbed in the peripheral wall portion 53 (that is, the step portion), there is no possibility that the ultrasonic wave 36 is disturbed.
  • the fluid 60 flowing inside the flow channel main body 91 (flow channel 26) is transmitted to the inner and outer portions of the ultrasonic wave 36 transmitted in a V shape and the ultrasonic wave 37 transmitted in a V shape.
  • the ultrasonic wave 36 and the ultrasonic wave 37 can accurately measure the flow rate of the fluid. .
  • the peripheral wall 53 of the ultrasonic wave entrance / exit 31 is formed flat. Therefore, the flow path main body 91 can be integrally resin-molded similarly to the flow path main body 17 of the first embodiment.
  • the central portion 26 a of the flow path 26 is formed by extracting the mold 57 from the ultrasonic inlet / outlet portion 31 of the flow path main body 91 in the direction of arrow G, and the first side wall 21 is A sonic entrance / exit 31 is formed.
  • the one end portion 26 b of the flow channel 26 can be formed by extracting the slide mold 58 from the one end portion 91 a of the flow channel main body 91 in the arrow H direction.
  • the other end portion 26 c of the flow channel 26 can be formed by extracting the slide mold 59 in the direction of arrow I from the other end portion 91 b of the flow channel body 91.
  • the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 which comprise the flow-path main body 91 are integrally resin-molded like 1st Embodiment. ing.
  • the number of components can be reduced.
  • a plurality of partition plates 28 are insert-molded into the first side wall portion 21 and the second side wall portion 22 as in the first embodiment. .
  • the plurality of partition plates 28 integrally with the first side wall portion 21 and the second side wall portion 22, it is possible to save the trouble of attaching the plurality of partition plates 28 to the first side wall portion 21 and the second side wall portion 22. .
  • the flow path member 100 of the fifth embodiment of the present invention includes a flow path body (main body) 101 instead of the flow path body 17.
  • the flow path body 101 is provided with the first ultrasonic input / output part 32 and the second ultrasonic input / output part 33 adjacent to the first side wall part 21, and the back surface 21 a side of the first side wall part 21 (that is, the flow path). 26) and the ultrasonic wave permeable film 38 is inserted into the concave part 102, so that the ultrasonic wave permeable film 38 is removed from the back surface 21a side (that is, the flow channel 26 side) of the first side wall part 21. It is configured to be attached.
  • a stepped portion (column portion) 51 is formed between the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33. Is done.
  • the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33 provided so as to be adjacent to each other are ultrasonic transmission films 38 from the back surface 21a side (that is, the flow channel 26 side) of the first side wall unit 21. Covered together. Therefore, the step portion (column portion) 51 can be covered with the ultrasonic transmission film 38.
  • a portion inside the ultrasonic wave 36 transmitted in a V shape (a portion on the side of the sandwich angle ⁇ 1, that is, the ultrasonic transmission film 38) or a portion inside the ultrasonic wave 37 transmitted in a V shape (pinching)
  • a portion on the angle ⁇ 1 side, that is, the ultrasonic transmission film 38) can be ensured flat.
  • the ultrasonic transmission film 38 is provided flat with respect to the flow channel 26 (back surface 21a). Can do.
  • the fluid 60 flowing through the inside of the flow channel body 101 is a part of the ultrasonic wave 36 transmitted in a V shape or inside or outside the ultrasonic wave 36 transmitted in a V shape.
  • the ultrasonic fluid measuring device 10 can accurately measure the flow rate of the fluid. .
  • a housing recess 102 is formed on the back surface 21a side (that is, the flow path 26 side) of the first side wall portion 21. Therefore, it is difficult to integrally mold the flow path body 101 like the flow path body 17 of the first embodiment. Then, as shown in FIG. 20, the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 were comprised by the separate member, respectively.
  • the housing recess 102 (see FIG. 5) from the back surface 21a side (that is, the flow channel 26 side) of the first side wall portion 21. 19), an ultrasonic transmission film 38 was assembled.
  • a plurality of partition plates 28 are assembled.
  • the flow path member 100 (flow path main body 101) of 5th Embodiment is comprised by each comprising the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 with an individual member. Can be assembled.
  • the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 are each formed with the resin-made members.
  • the flow path member 110 As shown in FIG. 21, the flow path member 110 according to the sixth embodiment of the present invention has a flow path body (main body) 111 instead of the flow path body 17.
  • the flow path main body 111 has an ultrasonic input / output unit 31 (the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33) of the ultrasonic measurement unit 16.
  • the sensor block 41 is formed so that it can be fitted.
  • An ultrasonic transmission film 38 is provided on the bottom surface 41 a of the sensor block 41. Therefore, the ultrasonic input / output part 31 is covered with the ultrasonic transmission film 38 by fitting the sensor block 41 to the ultrasonic input / output part 31.
  • the first ultrasonic input / output unit 32 and the second ultrasonic input / output unit 33 (that is, the ultrasonic input / output unit 31) provided continuously are collectively covered with the ultrasonic transmission film 38. Therefore, the part inside the ultrasonic wave 36 transmitted in a V-shape (the part on the side of the sandwiching angle ⁇ 1, that is, the ultrasonic transmission film 38), or the part inside the ultrasonic wave 37 transmitted in a V-shape (the sandwiching angle). The portion on the ⁇ 1 side, that is, the ultrasonic transmission film 38) can be ensured flat.
  • the ultrasonic transmission film 38 can be provided flat with respect to the flow path 26 (back surface 21a).
  • the fluid 60 flowing through the inside of the flow channel body 111 is a part of the ultrasonic wave 37 transmitted in the V shape or inside or outside the ultrasonic wave 36 transmitted in the V shape.
  • the disturbance of the ultrasonic wave 36 and the ultrasonic wave 37 due to the disturbance of the fluid 60 can be prevented, and the flow rate of the fluid 60 can be accurately measured by the ultrasonic fluid measuring device 10. it can.
  • the peripheral wall 53 of the ultrasonic wave entrance / exit 31 is formed flat. Therefore, the flow path main body 81 can be integrally resin-molded like the flow path main body 17 of the first embodiment and the flow path main body 81 of the third embodiment.
  • the 1st side wall part 21, the 2nd side wall part 22, the top-plate part 23, and the baseplate part 24 (not shown) which comprise the flow-path main body 111 are integrated like 1st Embodiment and 3rd Embodiment. It is resin molded. By integrating the first side wall portion 21, the second side wall portion 22, the top plate portion 23, and the bottom plate portion 24, the number of components can be reduced.
  • a plurality of partition plates 28 are insert-molded into the first side wall portion 21 and the second side wall portion 22 as in the first embodiment and the third embodiment.
  • the partition plate 28 the upper protrusion piece 28d protrudes from the upper corner
  • the upper protruding pieces 28d of the plurality of partition plates 28 are integrally molded (insert molding) with the first side wall portion 21, and the lower protruding pieces 28b of the plurality of partition plates 28 are passed through the second side wall portion 22. It is molded integrally (insert molding).
  • the partition plate 28 By enabling insert molding with the lower protrusion piece 28b penetrating through the second side wall portion 22, when the partition plate 28 is insert-molded, the lower protrusion piece 28b is held by a mold and the partition plate 28 is predetermined. It can be easily positioned at the position.
  • the partition plate 28 By forming the plurality of partition plates 28 integrally with the first side wall portion 21 and the second side wall portion 22, labor for attaching the plurality of partition plates 28 to the first side wall portion 21 and the second side wall portion 22 can be saved. be able to.
  • the end portions 28 c of the plurality of partition plates 28 are formed on the ultrasonic transmission film 38 in the same manner as the first embodiment. Is touched.
  • a gap between the ultrasonic transmission film 38 and the end portions 28c of the partition plate 28 can be eliminated. Therefore, there is no possibility that the fluid is disturbed in the gap between the ultrasonic transmission film 38 and the end portion 28 c of the partition plate 28. Thereby, it is possible to prevent the ultrasonic waves from being disturbed due to the fluid disturbance.
  • a flow path member 130 according to the seventh embodiment of the present invention shown in FIG. 22 has an ultrasonic fluid measurement structure 12 that is basically the same as that of the first embodiment.
  • the ultrasonic fluid measurement structure 12 is accommodated in the accommodating portion 13 of the measurement flow path 11 that guides a fluid such as gas to a fluid consuming device (not shown).
  • the ultrasonic fluid measurement structure 12 includes a flow channel member 15 accommodated in the accommodating portion 13 and an ultrasonic measurement portion 16 adjacent to the flow channel member 15. Also in the seventh embodiment, the same effect as that of the first embodiment described above can be obtained.
  • the ultrasonic fluid measurement structure 142 is accommodated in a box-shaped device housing 141, and is fixed by, for example, screws.
  • the ultrasonic fluid measurement structure 142 is basically the same as the ultrasonic fluid measurement structure shown in the first embodiment.
  • the apparatus housing 141 has an inlet pipe 143 and an outlet pipe 144 that communicate between the inside and the outside.
  • the inlet pipe 143 is opened through a shut-off valve 145 inside the apparatus housing 141.
  • the outlet pipe 144 is connected to the opening 18 of the ultrasonic fluid measurement structure 142 inside the apparatus housing 141. Therefore, in the ultrasonic fluid measuring device 140, the fluid 60 that has flowed into the device housing 141 via the inlet pipe 143 enters from the inlet of the ultrasonic fluid measuring structure 142 and passes through the outlet pipe 144. It is discharged to the outside of the body 141. According to such 7th Embodiment, a structure becomes simple and low cost is realizable.
  • the ultrasonic fluid measurement device 10 and the ultrasonic fluid measurement structure 12 according to the present invention are not limited to the first to sixth embodiments described above, and can be changed or improved as appropriate.
  • the example in which the flow path members (flow path main bodies) 15, 70, 80, 90, 100, and 110 are formed of resin members has been described.
  • the present invention is not limited to this. Thus, it can be formed of a metal member.
  • the ultrasonic fluid measurement device 10 the measurement flow channel 11, the ultrasonic fluid measurement structure 12, the accommodating portion 13, and the flow channel members 15, 70, 80, 90 used in the first to sixth embodiments.
  • the shapes and configurations of the 42 and the second transducer 43 are not limited to those illustrated, and can be changed as appropriate.
  • Ultrasonic fluid measurement apparatus 11 Measurement flow path 12 Ultrasonic fluid measurement structure 13 Housing

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 流体の乱れにより超音波に乱れが発生することを防止できる超音波式流体計測構造および超音波式流体計測装置を提供する。 超音波式流体計測構造12は、流路部材に隣接する超音波計測部16とを備えている。流路部材は、第1側壁部21に設けられた第1超音波出入部32および第2超音波出入部33と、第2側壁部22の内面に設けられた反射面35とを有している。さらに、第1超音波出入部および第2超音波出入部が隣り合っているとともに、超音波36,37を透過させる超音波透過膜38が第1超音波出入部および第2超音波出入部を一括して覆うように構成されている。

Description

超音波式流体計測構造および超音波式流体計測装置
 本発明は、流体の流れ方向に沿って流路部材を設け、流路部材に超音波計測部を隣接させ、超音波計測部で流路部材の反射面に超音波を発信するとともに反射面に反射した超音波を超音波計測部で受信することで流体の流量を計測する超音波式流体計測構造、および超音波式流体計測構造を備えた超音波式流体計測装置に関するものである。
 一般的なVパスの超音波式流体計測装置として、計測流路の収容部に流路部材が収容され、流路部材に第1超音波計測部および第2超音波計測部が隣接して設けられたものが知られている。
 すなわち、流路部材が第1側壁部、第2側壁部、天板部および底板部で角筒状に形成されることにより流路部材で流体流路(以下「流路」という)が形成されている。第1側壁部に第1超音波出力部および第2超音波出力部が隣接して設けられるとともに、第1超音波出力部および第2超音波出力部が流路に臨むように配置されている。
 また、第2側壁部に反射面が設けられるとともに、反射面が流路に臨むように配置されている(例えば、特許文献1参照)。
日本国特開2004-279224号公報
 特許文献1の超音波式流体計測装置120は、図24に示すように、流路部材121で流路122が形成されている。
 第1送受波器123から送信された超音波127が反射面128で反射されて第2送受波器125までV字状(Vパス)に伝達され、伝達された超音波127が第2送受波器125で受信される。
 一方、第2送受波器125から送信された超音波129が反射面128で反射されて第1送受波器123までV字状(Vパス)に伝達され、伝達された超音波129が第1送受波器123で受信される。
 第1送受波器123および第2送受波器125で受信した超音波(信号)に基づいて、流路122内を流れる流体131の流量を求める。
 ところで、第1超音波出力部135および第2超音波出力部136は、第1側壁部133に所定間隔をおいて設けられている。
 よって、第1側壁部133には、第1超音波出力部135および第2超音波出力部136間に柱部137が設けられている。柱部137は、流路122に向けて突出する(張り出す)部位である。
 このため、流路122に流体131が流れる際に、柱部137により形成される段差141,143や隙間142,144により流体131に乱れ155が生じる可能性がある。
 ここで、これらの段差141,143、隙間142,144は、V字状(Vパス)に伝達された超音波127の挟み角θ2内側や、V字状(Vパス)に伝達された超音波129の挟み角θ2内側に存在する。そして、超音波127は超音波129の挟み角θ2内側に発生する乱れは超音波を乱れさせる可能性がある。
 本発明は、前述した課題を解決するためになされたものであり、その目的は、流体の乱れにより超音波に乱れが発生することを防止できる超音波式流体計測構造および超音波式流体計測装置を提供することにある。
 本発明に係る超音波式流体計測構造は、流体の流れ方向に沿って矩形状の開口が連続する流路部材と、前記流路部材に隣接する超音波計測部とを備え、前記流路部材が、前記超音波計測部に隣り合う第1側壁部と、前記第1側壁部と平行な第2側壁部と、前記第1側壁部および前記第2側壁部間に掛け渡された天板部および底板部と、前記第1側壁部に設けられた第1超音波出入部および第2超音波出入部と、前記第2側壁部の内面に設けられた反射面とを有し、前記超音波計測部が、前記第1超音波出入部を通じて前記反射面に超音波を発信するとともに前記反射面に反射した前記超音波を受信する第1送受波器と、前記第2超音波出入部を通じて前記反射面に前記超音波を発信するとともに前記反射面に反射した前記超音波を受信する第2送受波器とを有し、前記第1超音波出入部および前記第2超音波出入部が隣り合っているとともに、前記超音波を透過させる超音波透過膜が前記第1超音波出入部および前記第2超音波出入部を一括して覆うことを特徴とする。
 本発明においては、第1超音波出入部および第2超音波出入部を隣り合うように設け、かつ、第1超音波出入部および第2超音波出入部を超音波透過膜で一括して覆うように構成した。
 ところで、第1超音波出入部を通じて反射面に第1送受波器から超音波を発信するとともに反射面に反射した超音波を第2送受波器で受信することで超音波がV字状(Vパス)に伝達される。
 一方、第2超音波出入部を通じて反射面に第2送受波器から超音波を発信するとともに反射面に反射した超音波を第1送受波器で受信することで超音波がV字状(Vパス)に伝達される。
 ここで、前述したように、超音波透過膜を第1超音波出入部および第2超音波出入部を一括して覆うことで、V字状に伝達される超音波の内側の部位を平坦に確保できる。
 流路部材内を流れる流体が、V字状に伝達される超音波の内側の部位において乱れを生じる可能性がない。
 これにより、流体の乱れにより超音波に乱れが発生することを防ぐことができる。
 本発明に係る超音波式流体計測構造は、前記第1側壁部、前記第2側壁部、前記天板部、前記底板部が一体であることを特徴とする。
 本発明においては、第1側壁部、第2側壁部、天板部、底板部を一体とすることで、部品数の減少を図ることができる。
 本発明に係る超音波式流体計測構造は、前記流路部材が、当該流路部材の内部を複数の扁平流路に区画する仕切板を有し、前記仕切板が前記第1側壁部および前記第2側壁部と一体に成形されていることを特徴とする。
 本発明においては、仕切板を第1側壁部および第2側壁部と一体に成形することで、仕切板を第1側壁部および第2側壁部に取り付ける手間を省くことができる。
 本発明に係る超音波式流体計測構造は、前記超音波透過膜および前記仕切板が接触していることを特徴とする。
 本発明においては、超音波透過膜および仕切板を接触させることで、超音波透過膜および仕切板間の隙間をなくすことができる。
 よって、超音波透過膜および仕切板間の隙間で流体に乱れを生じる可能性がない。これにより、流体の乱れにより超音波に乱れが発生することを防ぐことができる。
 本発明に係る超音波式流体計測構造は、前記第1超音波出入部および前記第2超音波出入部が連続していることを特徴とする。
 本発明においては、第1超音波出入部および第2超音波出入部を連続させることで、第1超音波出入部および第2超音波出入部間から段部(柱部)を除去できる。
 よって、第1超音波出入部および第2超音波出入部を覆う超音波透過膜を、第1側壁部の裏面側(すなわち、流路側)、および第1側壁部の表面側(すなわち、流路の反対側)のいずれか一方を選択して設けることができる。
 すなわち、第1側壁部の裏面側に超音波透過膜を設けることで、第1側壁部、第2側壁部、天板部および底板部をそれぞれ個別に構成して、各部材を一体に組み立てることが可能になる。
 一方、第1側壁部の表面側に超音波透過膜を設けることで、第1側壁部、第2側壁部、天板部および底板部を一体成形することが可能になる。
 これにより、流路部材を形成する際に設計の自由度を高めることができる。
 本発明に係る超音波式流体計測構造は、流体の流れ方向に沿って矩形状の開口が連続する流路部材と、前記流路部材に隣接する超音波計測部とを備え、前記流路部材が、前記超音波計測部に隣り合う第1側壁部と、前記第1側壁部と平行な第2側壁部と、前記第1側壁部に設けられた第1超音波出入部および第2超音波出入部と、前記第2側壁部の内面に設けられた反射面とを有し、前記超音波計測部が、前記第1超音波出入部を通じて前記反射面に超音波を発信するとともに前記反射面に反射した前記超音波を受信する第1送受波器と、前記第2超音波出入部を通じて前記反射面に前記超音波を発信するとともに前記反射面に反射した前記超音波を受信する第2送受波器とを有し、前記第1超音波出入部および前記第2超音波出入部が隣り合っていることを特徴とする。
 本発明においては、第1超音波出入部および第2超音波出入部を隣り合うように構成した。
 前述したように、第1超音波出入部を通じて反射面に第1送受波器から超音波を発信するとともに反射面に反射した超音波を第2送受波器で受信することで超音波がV字状(Vパス)に伝達される。
 一方、第2超音波出入部を通じて反射面に第2送受波器から超音波を発信するとともに反射面に反射した超音波を第1送受波器で受信することで超音波がV字状(Vパス)に伝達される。
 ここで、第1超音波出入部および第2超音波出入部を隣り合うように構成することで、第1超音波出入部および第2超音波出入部を連続させて設けることが可能になる。
 よって、第1超音波出入部および第2超音波出入部間から段部(柱部)を除去でき、V字状に伝達される超音波の内側の部位を平坦に確保できる。
 これにより、流路部材内を流れる流体が、V字状に伝達される超音波の内側の部位において乱れる虞がなく、流体の乱れにより超音波に乱れが発生することを防ぐことができる。
 本発明に係る超音波式流体計測装置は、前記超音波式流体計測構造を用いたものであることを特徴とする。
 本発明においては、超音波式流体計測装置に前記超音波式流体計測構造を用いることで、流体の乱れにより超音波に乱れが発生することを防止できる超音波式流体計測装置を提供できる。
 これにより、超音波式流体計測装置で流体の流量を正確に計測できる。
 本発明の超音波式流体計測構造および超音波式流体計測装置によれば、第1超音波出入部および第2超音波出入部を超音波透過膜で一括して覆い、V字状に伝達される超音波の内側の部位を平坦に確保することで、流体の乱れにより超音波に乱れが発生することを防止できるという効果を有する。
本発明に係る第1実施形態の超音波式流体計測装置を示す斜視図 図1の超音波式流体計測構造を示す分解斜視図 図1のA-A線断面図 図3のB-B線断面図 図6のC矢視図 第1実施形態の流体部材を示す斜視図 図5のD-D線断面図 図5のE-E線断面図 第1実施形態の流体本体および仕切板の関係を説明する斜視図 第1実施形態の流体本体を一体成形する例を説明する断面図 本発明に係る第2実施形態の流体部材を示す断面図 第2実施形態の流体本体を組み付ける例を説明する分解斜視図 本発明に係る第3実施形態の流体部材および超音波計測部を組み付けた状態を示す断面図 図13の流体部材および超音波計測部を分解した状態を示す断面図 第3実施形態の流体本体を一体成形する例を説明する断面図 本発明に係る第4実施形態の流体部材および超音波計測部を組み付けた状態を示す断面図 図16の流体部材および超音波計測部を分解した状態を示す断面図 第4実施形態の流体本体を一体成形する例を説明する断面図 本発明に係る第5実施形態の流体部材を示す断面図 第5実施形態の流体本体を組み付ける例を説明する分解斜視図 本発明に係る第6実施形態の流体部材を示す断面図 本発明に係る第7実施形態の超音波式流体計測装置を示す斜視図 本発明に係る第8実施形態の超音波式流体計測装置を示す模式図 従来の超音波式流体計測装置を示す断面図
 以下、本発明の複数の実施の形態に係る超音波式流体計測装置10、および流路部材15,70,80,90,100,110,130,140について図面を参照して説明する。
(第1実施形態)
 図1~図5に示すように、本発明の第1実施形態である超音波式流体計測装置10は、流体の流量を計測する超音波式流体計測構造12を備えている。
 超音波式流体計測構造12は、流路部材15と、流路部材15に隣接する超音波計測部16とを備えている。
 流路部材15は、流体の流れ方向に沿って矩形状の開口18が連続する流路本体(本体)17を有する。
 流路本体17は、超音波計測部16に隣り合う第1側壁部21と、第1側壁部21と平行な第2側壁部22と、第1側壁部21および第2側壁部22の頂部に掛け渡された天板部23と、第1側壁部21および第2側壁部22の底部に掛け渡された底板部24とを有する。
 第1側壁部21、第2側壁部22、天板部23および底板部24は、一体に形成(具体的には、樹脂成形)され、第1側壁部21、第2側壁部22、天板部23および底板部24で角筒状の流路26(すなわち、「流体の流れ方向に沿って矩形状の開口18が連続する流路」)が形成された樹脂製の部材である。
 この流路本体17は、流路本体17の内部(すなわち、流路26)を複数の扁平流路27に区画する複数の仕切板28と、第1側壁部21に隣り合って設けられた第1超音波出入部32および第2超音波出入部33と、第2側壁部22の内面に設けられた反射面35と、第1超音波出入部32および第2超音波出入部33を覆う超音波透過膜38とを有している。
 複数の仕切板28は、流路本体17を樹脂成形する際に、第1側壁部21および第2側壁部22と一体に成形(インサート成形)されている。
 具体的には、複数の仕切板28の上角部28aが第1側壁部21に一体に成形(インサート成形)され、図7、図8に示すように複数の仕切板28の下突片28bが第2側壁部22に貫通させ、かつ、先端が第2側壁部22の外側に突出しない状態で一体に成形(インサート成形)されている。
 これらの仕切板28は、金型の内面に上角部28aおよび下突片28bの先端を当接させることにより、金型に対する相対位置が保持される。そして、この状態のままで金型内に樹脂を射出することにより、流路本体17に対して所定の位置に容易に位置決めすることができる。
 ここで、第1実施形態においては、図6~図8に示すように、隣り合っている第1超音波出入部32および第2超音波出入部33が連続して形成されることで超音波出入部31が形成されている。
 連続して設けられた第1超音波出入部32および第2超音波出入部33(すなわち、超音波出入部31)が超音波透過膜38で一括して覆われている。
 超音波透過膜38としては、一例として超音波36を透過させるメッシュ部材を例示するが、これに限定するものではなく、パンチングメタル部材などの他の部材を用いることも可能である。
 この超音波透過膜38に複数の仕切板28の端部28c(図4も参照)が接触されている。
 超音波透過膜38および複数の仕切板28の端部28cを接触させることで、超音波透過膜38および仕切板28の端部28c間の隙間をなくすことができる。
 よって、超音波透過膜38および仕切板28の端部28c間の隙間で流体に乱れを生じる可能性がない。これにより、流体の乱れにより超音波に乱れが発生することを防ぐことができる。
 図3に示すように、流路本体17の第1側壁部21に超音波計測部16が設けられている。
 超音波計測部16は、流路本体17の第1側壁部21に設けられたセンサブロック41と、センサブロック41の上流側部位に設けられた第1送受波器42と、センサブロック41の下流側部位に設けられた第2送受波器43とを備えている。
 すなわち、第1送受波器42および第2送受波器43は、流路本体17の第1側壁部21にセンサブロック41を介して隣り合うように設けられている。
 第1送受波器42は、第1センサパッキン45および第1センサ固定部材46で所定の取付部位に取り付けられている。
 同様に、第2送受波器43は、第2センサパッキン47および第2センサ固定部材48で所定の取付部位に取り付けられている。
 第1送受波器42は、第1超音波出入部32を通じて反射面35に超音波36を発信するとともに反射面35に反射した超音波37を受信する送受波器である。
 第2送受波器43は、第2超音波出入部33を通じて反射面35に超音波37を発信するとともに反射面35に反射した超音波36を受信する送受波器である。
 つぎに、図7に基づいて流路本体17の第1側壁部21に超音波透過膜38を取り付ける構成について詳しく説明する。
 図7に示すように、第1側壁部21に超音波出入部31が形成されている。超音波出入部31は、隣り合っている第1超音波出入部32および第2超音波出入部33が連続して形成されている。
 第1超音波出入部32および第2超音波出入部33を連続することで、第1超音波出入部32および第2超音波出入部33間から段部(柱部)51(図19参照)を除去できる。
 第1超音波出入部32および第2超音波出入部33間から段部(柱部)51を除去することで、超音波透過膜38を第1側壁部21の裏面21a側(すなわち、流路26側)に設ける必要がない。
 よって、第1超音波出入部32および第2超音波出入部33を覆う超音波透過膜38を、第1側壁部21の表面21b側(すなわち、流路26の反対側)に設けることができる。
 すなわち、超音波出入部31の周壁部53に段差部54を形成して、第1側壁部21の表面21b側(すなわち、流路26の反対側)に収納凹部55を形成した。
 そして、収納凹部55に超音波透過膜38を嵌入することで、超音波透過膜38を第1側壁部21の表面21b側(すなわち、流路26の反対側)から取り付けられるようにした。
 ここで、超音波透過膜38を第1側壁部21の表面21b側(すなわち、流路26の反対側)から取り付けることで、超音波出入部31の周壁部53が流路26に対して段差部となる。
 以上説明したように、超音波出入部31を第1側壁部21の表面21b側(すなわち、流路26の反対側)から取り付けることで、図9に示すように、流路本体17を一体に樹脂成形できる。
 すなわち、図10に示すように、流路部材15(流路本体17)の超音波出入部31から金型57を矢印A方向に抜き出すことで流路26の中央部26aを形成するとともに、第1側壁部21の表面21b側(すなわち、流路26の反対側)に収納凹部55を形成する。
 また、流路本体17の一端部17aからスライド金型58を矢印B方向に抜き出すことで流路26の一端部26bを形成できる。
 さらに、流路本体17の他端部17bからスライド金型59を矢印C方向に抜き出すことで流路26の他端部26cを形成できる。
 これにより、流路本体17を構成する第1側壁部21、第2側壁部22、天板部23および底板部24(図9参照)が一体に樹脂成形されている。
 第1側壁部21、第2側壁部22、天板部23、底板部24を一体とすることで、部品数の減少を図ることができる。
 ここで、図9に示すように、流路本体17を樹脂成形する際に、複数の仕切板28が第1側壁部21および第2側壁部22にインサート成形される。
 複数の仕切板28を第1側壁部21および第2側壁部22と一体に成形することで、複数の仕切板28を第1側壁部21および第2側壁部22に取り付ける手間を省くことができる。
 ついで、超音波式流体計測装置10で流体の流量を計測する例を図3に基づいて説明する。
 前述したように、第1超音波出入部32および第2超音波出入部33が連続して設けられることで超音波出入部31が形成されている。
 連続して設けられた第1超音波出入部32および第2超音波出入部33(すなわち、超音波出入部31)が超音波透過膜38で一括して覆われている。
 また、超音波透過膜38を第1側壁部21の表面21b側(すなわち、流路26の反対側)から取り付けることで、超音波出入部31の周壁部53が流路26(裏面21a)に対して段差部となる。
 第1送受波器42から発信した超音波36を第1超音波出入部32を通じて反射面35に伝達し、反射面35において反射した超音波36を第2送受波器43で受信することで超音波36がV字状(Vパス)に伝達される。
 一方、第2送受波器43から発信した超音波37を第2超音波出入部33を通じて反射面35に伝達し、反射面35において反射した超音波37を第1送受波器42で受信することで超音波36がV字状(Vパス)に伝達される。
 ここで、第1超音波出入部32および第2超音波出入部33を連続して設けることで超音波出入部31を形成し、超音波出入部31を超音波透過膜38で一括して覆うことで、V字状に伝達される超音波36の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)を平坦に確保できる。
 また、V字状に伝達される超音波37の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)を平坦に確保できる。
 よって、流路本体17の内部(流路26)を流れる流体(一例として、ガス)が、V字状に伝達される超音波36の内側の部位や、V字状に伝達される超音波36の内側の部位において乱れを生じる可能性がない。
 また、超音波出入部31の周壁部53が流路26(裏面21a)に対して段差部となることで、流路本体17の内部(流路26)を流れる流体(一例として、ガス)60が周壁部53(すなわち、段差部)で乱れを生じる可能性がある。
 しかし、周壁部53(すなわち、段差部)は、V字状に伝達される超音波36の挟み角θ1の外側や、V字状に伝達される超音波37の挟み角θ1の外側に位置する。
 よって、周壁部53(すなわち、段差部)において流体60に乱れが生じても、超音波36および超音波37に乱れが発生する虞がない。
 これにより、流体60の乱れにより超音波36および超音波36に乱れが発生することを防ぐことができ、超音波式流体計測装置10で流体の流量を正確に計測できる。
 つぎに、第2実施形態~第5実施形態を図11~図20に基づいて説明する。
 なお、第2実施形態~第5実施形態において第1実施形態の流路部材15と同一・類似部材については同じ符号を付して説明を省略する。
(第2実施形態)
 図11に示すように、本発明の第2実施形態の流路部材70は、流路本体17に代えて流路本体(本体)71を有する。
 流路本体71は、第1側壁部21の裏面21a側(すなわち、流路26側)に収納凹部72を形成し、収納凹部72に超音波透過膜38を嵌入することで、超音波透過膜38を第1側壁部21の裏面21a側(すなわち、流路26側)から取り付けられるように構成したものである。
 連続して設けられた第1超音波出入部32および第2超音波出入部33(すなわち、超音波出入部31)が超音波透過膜38で第1側壁部21の裏面21a側(すなわち、流路26側)から一括して覆われている。
 よって、V字状に伝達される超音波36の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)や、V字状に伝達される超音波37の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)を平坦に確保できる。
 さらに、第1側壁部21の裏面21a側(すなわち、流路26側)から超音波透過膜38を設けることで、流路26(裏面21a)に対して超音波透過膜38を平坦に設けることができる。
 これにより、流路本体71の内部(流路26)を流れる流体60が、V字状に伝達される超音波36の内側や外側の各部位、あるいはV字状に伝達される超音波37の内側や外側の各部位において乱れを生じる可能性がない。
 したがって、第1実施形態と同様に、流体60の乱れにより超音波36および超音波37に乱れが発生することを防ぐことができ、超音波式流体計測装置10で流体の流量を正確に計測できる。
 ここで、前述したように、第2実施形態の流路部材70(流路本体71)は、第1側壁部21の裏面21a側(すなわち、流路26側)に収納凹部72が形成されている。
 よって、流路本体71を第1実施形態の流路本体17のように一体に樹脂成形することは難しい。
 そこで、図12に示すように、第1側壁部21、第2側壁部22、天板部23および底板部24をそれぞれ個別の部材で構成した。
 そして、第1側壁部21、第2側壁部22、天板部23および底板部24を組み付ける際に、第1側壁部21の裏面21a側(すなわち、流路26側)から収納凹部72(図11参照)に超音波透過膜38を組み付けるようにした。
 加えて、第1側壁部21、第2側壁部22、天板部23および底板部24を組み付ける際に、複数の仕切板28(具体的には、複数の仕切板28の上角部28aや下突片28b)を組み付けるようにした。
 このように、第1側壁部21、第2側壁部22、天板部23および底板部24をそれぞれ個別の部材で構成することで、第2実施形態の流路部材70(流路本体71)を組み付けることができる。
 ここで、流路本体71は、第1側壁部21、第2側壁部22、天板部23および底板部24がそれぞれ樹脂製の部材で形成されている。
 ここで、第2実施形態の流路部材70によれば、第1実施形態の流路部材15と同様の効果を得ることができる。
(第3実施形態)
 図13、図14に示すように、本発明の第3実施形態の流路部材80は、流路本体17に代えて流路本体(本体)81を有する。
 流路本体81は、超音波出入部31(第1超音波出入部32および第2超音波出入部33)が超音波計測部16のセンサブロック41を嵌合可能に形成されたものである。
 そして、超音波計測部16のセンサブロック41に収納凹部82が形成され、収納凹部82に超音波透過膜38が嵌入されている。よって、センサブロック41を超音波出入部31に嵌合することで、超音波出入部31が超音波透過膜38で覆われている。
 連続して設けられた第1超音波出入部32および第2超音波出入部33(すなわち、超音波出入部31)が超音波透過膜38で一括して覆われている。
 よって、V字状に伝達される超音波36の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)や、V字状に伝達される超音波37の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)を平坦に確保できる。
 さらに、センサブロック41の収納凹部82に超音波透過膜38を嵌入することで、センサブロック41の底面41aに対して超音波透過膜38を平坦に配置できる。
 加えて、センサブロック41を超音波出入部31(第1超音波出入部32および第2超音波出入部33)に嵌合することで、センサブロック41の底面41aおよび超音波透過膜38を流路26(裏面21a)に対して平坦に設けることができる。
 これにより、流路本体81の内部(流路26)を流れる流体60が、V字状に伝達される超音波36の内側や外側の各部位、あるいはV字状に伝達される超音波37の内側や外側の各部位において乱れを生じる可能性がない。
 したがって、第1実施形態と同様に、流体60の乱れにより超音波36および超音波37に乱れが発生することを防ぐことができ、超音波式流体計測装置10で流体60の流量を正確に計測できる。
 ここで、第3実施形態の流路部材80(流路本体81)は、超音波出入部31の周壁部53が平坦に形成されている。
 よって、流路本体81を第1実施形態の流路本体17と同様に一体に樹脂成形することができる。
 すなわち、図15に示すように、流路本体81の超音波出入部31から金型57を矢印D方向に抜き出すことで流路26の中央部26aを形成するとともに、第1側壁部21に超音波出入部31を形成する。
 また、流路本体81の一端部81aからスライド金型58を矢印E方向に抜き出すことで流路26の一端部26bを形成できる。
 さらに、流路本体81の他端部81bからスライド金型59を矢印F方向に抜き出すことで流路26の他端部26cを形成できる。
 これにより、流路本体81を構成する第1側壁部21、第2側壁部22、天板部23および底板部24(図9参照)が、第1実施形態と同様に、一体に樹脂成形されている。
 第1側壁部21、第2側壁部22、天板部23、底板部24を一体とすることで、部品数の減少を図ることができる。
 ここで、流路本体81を樹脂成形する際に、第1実施形態と同様に、複数の仕切板28(図9参照)が第1側壁部21および第2側壁部22とにインサート成形される。
 複数の仕切板28を第1側壁部21および第2側壁部22と一体に成形することで、複数の仕切板28を第1側壁部21および第2側壁部22に取り付ける手間を省くことができる。
 ここで、第3実施形態の流路部材80によれば、第1実施形態の流路部材15と同様の効果を得ることができる。
(第4実施形態)
 図16、図17に示すように、本発明の第4実施形態の流路部材90は、流路本体17に代えて流路本体(本体)91を有する。
 流路本体91は、第1側壁部21がセンサブロック41ともに超音波透過膜38を挟持可能に形成されたものである。
 すなわち、流路本体91の第1側壁部21およびセンサブロック41間に超音波透過膜38を挟持することで、超音波出入部31が超音波透過膜38で覆われている。
 連続して設けられた第1超音波出入部32および第2超音波出入部33(すなわち、超音波出入部31)が超音波透過膜38で一括して覆われている。
 よって、V字状に伝達される超音波36の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)や、V字状に伝達される超音波37の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)を平坦に確保できる。
 ここで、第1側壁部21およびセンサブロック41間に超音波透過膜38を挟持することで超音波出入部31の周壁部53が流路26(裏面21a)に対して段差部となる。
 よって、流路本体91の内部(流路26)を流れる流体60が周壁部53(すなわち、段差部)で乱れを生じる可能性がある。
 しかし、周壁部53(すなわち、段差部)は、V字状に伝達される超音波36の外側や、V字状に伝達される超音波37の外側に位置する。
 よって、周壁部53(すなわち、段差部)において流体60に乱れが生じても、超音波36に乱れが発生する虞がない。
 これにより、流路本体91の内部(流路26)を流れる流体60が、V字状に伝達される超音波36の内側や外側の各部位、およびV字状に伝達される超音波37の内側や外側の各部位において乱れを生じる可能性がない。
 したがって、第1実施形態と同様に、流体60の乱れにより超音波36および超音波37に乱れが発生することを防ぐことができ、超音波式流体計測装置10で流体の流量を正確に計測できる。
 ここで、第4実施形態の流路部材90(流路本体91)は、超音波出入部31の周壁部53が平坦に形成されている。
 よって、流路本体91を第1実施形態の流路本体17と同様に一体に樹脂成形することができる。
 すなわち、図18に示すように、流路本体91の超音波出入部31から金型57を矢印G方向に抜き出すことで流路26の中央部26aを形成するとともに、第1側壁部21に超音波出入部31を形成する。
 また、流路本体91の一端部91aからスライド金型58を矢印H方向に抜き出すことで流路26の一端部26bを形成できる。
 さらに、流路本体91の他端部91bからスライド金型59を矢印I方向に抜き出すことで流路26の他端部26cを形成できる。
 これにより、流路本体91を構成する第1側壁部21、第2側壁部22、天板部23および底板部24(図9参照)が、第1実施形態と同様に、一体に樹脂成形されている。
 第1側壁部21、第2側壁部22、天板部23、底板部24を一体とすることで、部品数の減少を図ることができる。
 ここで、流路本体91を樹脂成形する際に、第1実施形態と同様に、複数の仕切板28(図9参照)が第1側壁部21および第2側壁部22とにインサート成形される。
 複数の仕切板28を第1側壁部21および第2側壁部22と一体に成形することで、複数の仕切板28を第1側壁部21および第2側壁部22に取り付ける手間を省くことができる。
 ここで、第4実施形態の流路部材90によれば、第1実施形態の流路部材15と同様の効果を得ることができる。
(第5実施形態)
 図19に示すように、本発明の第5実施形態の流路部材100は、流路本体17に代えて流路本体(本体)101を有する。
 流路本体101は、第1側壁部21に第1超音波出入部32および第2超音波出入部33を隣り合うように設け、かつ、第1側壁部21の裏面21a側(すなわち、流路26側)に収納凹部102を形成し、収納凹部102に超音波透過膜38を嵌入することで、超音波透過膜38が第1側壁部21の裏面21a側(すなわち、流路26側)から取り付けられるように構成したものである。
 第1超音波出入部32および第2超音波出入部33を隣り合うように設けることで、第1超音波出入部32および第2超音波出入部33間に段差部(柱部)51が形成される。
 ここで、隣り合うように設けられた第1超音波出入部32および第2超音波出入部33が超音波透過膜38で第1側壁部21の裏面21a側(すなわち、流路26側)から一括して覆われている。
 よって、段差部(柱部)51を超音波透過膜38で覆うことができる。
 これにより、V字状に伝達される超音波36の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)や、V字状に伝達される超音波37の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)を平坦に確保できる。
 さらに、第1側壁部21の裏面21a側(すなわち、流路26側)から超音波透過膜38を設けることで、流路26(裏面21a)に対して超音波透過膜38を平坦に設けることができる。
 これにより、流路本体101の内部(流路26)を流れる流体60が、V字状に伝達される超音波36の内側や外側の各部位、あるいはV字状に伝達される超音波37の内側や外側の各部位において乱れを生じる可能性がない。
 したがって、第1実施形態と同様に、流体60の乱れにより超音波36および超音波37に乱れが発生することを防ぐことができ、超音波式流体計測装置10で流体の流量を正確に計測できる。
 ここで、第5実施形態の流路部材100(流路本体101)は、第1側壁部21の裏面21a側(すなわち、流路26側)に収納凹部102が形成されている。
 よって、流路本体101を第1実施形態の流路本体17のように一体に樹脂成形することは難しい。
 そこで、図20に示すように、第1側壁部21、第2側壁部22、天板部23および底板部24をそれぞれ個別の部材で構成した。
 そして、第1側壁部21、第2側壁部22、天板部23および底板部24を組み付ける際に、第1側壁部21の裏面21a側(すなわち、流路26側)から収納凹部102(図19参照)に超音波透過膜38を組み付けるようにした。
 加えて、第1側壁部21、第2側壁部22、天板部23および底板部24を組み付ける際に、複数の仕切板28を組み付けるようにした。
 このように、第1側壁部21、第2側壁部22、天板部23および底板部24をそれぞれ個別の部材で構成することで、第5実施形態の流路部材100(流路本体101)を組み付けることができる。
 ここで、流路本体101は、第1側壁部21、第2側壁部22、天板部23および底板部24がそれぞれ樹脂製の部材で形成されている。
 ここで、第5実施形態の流路部材100によれば、第1実施形態の流路部材15と同様の効果を得ることができる。
(第6実施形態)
 図21に示すように、本発明の第6実施形態の流路部材110は、流路本体17に代えて流路本体(本体)111を有する。
 流路本体111は、図13、図14に示す第3実施形態と同様に、超音波出入部31(第1超音波出入部32および第2超音波出入部33)が超音波計測部16のセンサブロック41を嵌合可能に形成されたものである。
 そして、センサブロック41の底面41aに超音波透過膜38が設けられている。よって、センサブロック41を超音波出入部31に嵌合することで、超音波出入部31が超音波透過膜38で覆われている。
 すなわち、連続して設けられた第1超音波出入部32および第2超音波出入部33(すなわち、超音波出入部31)が超音波透過膜38で一括して覆われている。
 よって、V字状に伝達される超音波36の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)や、V字状に伝達される超音波37の内側の部位(挟み角θ1側の部位、すなわち超音波透過膜38)を平坦に確保できる。
 加えて、センサブロック41を超音波出入部31に嵌合した状態において、超音波透過膜38を流路26(裏面21a)に対して平坦に設けることができる。
 これにより、流路本体111の内部(流路26)を流れる流体60が、V字状に伝達される超音波36の内側や外側の各部位、あるいはV字状に伝達される超音波37の内側や外側の各部位において乱れを生じる可能性がない。
 したがって、第1実施形態と同様に、流体60の乱れにより超音波36および超音波37に乱れが発生することを防ぐことができ、超音波式流体計測装置10で流体60の流量を正確に計測できる。
 ここで、第3実施形態の流路部材110(流路本体111)は、超音波出入部31の周壁部53が平坦に形成されている。
 よって、流路本体81を第1実施形態の流路本体17や第3実施形態の流路本体81と同様に一体に樹脂成形することができる。
 すなわち、流路本体111を構成する第1側壁部21、第2側壁部22、天板部23および底板部24(図示せず)は、第1実施形態や第3実施形態と同様に、一体に樹脂成形されている。
 第1側壁部21、第2側壁部22、天板部23、底板部24を一体とすることで、部品数の減少を図ることができる。
 ここで、流路本体111を樹脂成形する際に、第1実施形態や第3実施形態と同様に、複数の仕切板28が第1側壁部21および第2側壁部22とにインサート成形される。
 仕切板28は、上角部28aから上突片28dが突出され、さらに下角部から下突片28bが突出されている。
 そして、複数の仕切板28の上突片28dが第1側壁部21に一体に成形(インサート成形)され、複数の仕切板28の下突片28bが第2側壁部22に貫通させた状態で一体に成形(インサート成形)されている。
 下突片28bを第2側壁部22に貫通させた状態でインサート成形可能にすることで、仕切板28をインサート成形する際に、下突片28bを金型で保持して仕切板28を所定の位置に容易に位置決めすることができる。
 加えて、複数の仕切板28を第1側壁部21および第2側壁部22と一体に成形することで、複数の仕切板28を第1側壁部21および第2側壁部22に取り付ける手間を省くことができる。
 第6実施形態の流路部材110は、センサブロック41を超音波出入部31に嵌合した状態において、第1実施形態と同様に、超音波透過膜38に複数の仕切板28の端部28cが接触される。
 超音波透過膜38および複数の仕切板28の端部28cを接触させることで、超音波透過膜38および仕切板28の端部28c間の隙間をなくすことができる。
 よって、超音波透過膜38および仕切板28の端部28c間の隙間で流体に乱れを生じる可能性がない。これにより、流体の乱れにより超音波に乱れが発生することを防ぐことができる。
 ここで、第6実施形態の流路部材110によれば、第1実施形態の流路部材15と同様の効果を得ることができる。
(第7実施形態)
 図22に示す本発明の第7実施形態である流路部材130は、基本的に第1実施形態と同様な超音波式流体計測構造12を有している。
 超音波式流体計測構造12は、ガス等の流体を流体消費機器(図示せず)に案内する計測流路11の収容部13に収容されている。この超音波式流体計測構造12は、収容部13に収容された流路部材15と、流路部材15に隣接する超音波計測部16とを備えている。
 このような第7実施形態においても、前述した第1実施形態と同様な効果が得られる。
(第8実施形態)
 また、図23に示す本発明の第7実施形態である流路部材140は、箱状の装置筐体141内に超音波式流体計測構造142が収容され、例えばビス等により固定されている。
 超音波式流体計測構造142は、基本的に第1実施形態において示した超音波式流体計測構造と同様である。
 装置筐体141は、内外を連通する入口パイプ143および出口パイプ144を有している。
 入口パイプ143は、装置筐体141の内部において遮断弁145を介して開放されている。出口パイプ144は、装置筐体141の内部において超音波式流体計測構造142の開口18に連結されている。
 従って、超音波式流体計測装置140は、入口パイプ143を介して装置筐体141内に流入した流体60が、超音波式流体計測構造142の入口から入って、出口パイプ144を介して装置筐体141の外部に排出される。
 このような第7実施形態によれば、構造が簡単となり、低コストを実現できる。
 なお、本発明に係る超音波式流体計測装置10および超音波式流体計測構造12は、前述した第1実施形~第6実施形態に限定されるものではなく適宜変更、改良などが可能である。
 例えば、第1実施形~第6実施形態では、流路部材(流路本体)15,70,80,90,100,110を樹脂製の部材で形成した例について説明したが、これに限らないで、金属製の部材で形成することも可能である。
 また、前記第1実施形~第6実施形態で使用した超音波式流体計測装置10、計測流路11、超音波式流体計測構造12、収容部13、流路部材15,70,80,90,100,110、超音波計測部16、流路本体17,71,81,91,101,111、開口18、第1側壁部21、第2側壁部22、天板部23、底板部24、流路26、扁平流路27、仕切板28、超音波出入部31、第1超音波出入部32、第2超音波出入部33、反射面35、超音波透過膜38、第1送受波器42および第2送受波器43などの形状や構成は例示したものに限定するものではなく適宜変更が可能である。
 本出願は、2009年11月24日出願の日本特許出願(特願2009-266425)に基づくものであり、それらの内容はここに参照として取り込まれる。
 10 超音波式流体計測装置
 11 計測流路
 12 超音波式流体計測構造
 13 収容部
 15,70,80,90,100,110,130,140 流路部材
 16 超音波計測部
 18 開口
 21 第1側壁部
 22 第2側壁部
 23 天板部
 24 底板部
 26 流路
 27 扁平流路
 28 仕切板
 31 超音波出入部
 32 第1超音波出入部
 33 第2超音波出入部
 35 反射面
 36,37 超音波
 38 超音波透過膜
 42 第1送受波器
 43 第2送受波器
 60 流体

Claims (7)

  1.  流体の流れ方向に沿って矩形状の開口が連続する流路部材と、前記流路部材に隣接する超音波計測部とを備え、
     前記流路部材が、前記超音波計測部に隣り合う第1側壁部と、前記第1側壁部と平行な第2側壁部と、前記第1側壁部および前記第2側壁部間に掛け渡された天板部および底板部と、前記第1側壁部に設けられた第1超音波出入部および第2超音波出入部と、前記第2側壁部の内面に設けられた反射面とを有し、
     前記超音波計測部が、前記第1超音波出入部を通じて前記反射面に超音波を発信するとともに前記反射面に反射した前記超音波を受信する第1送受波器と、前記第2超音波出入部を通じて前記反射面に前記超音波を発信するとともに前記反射面に反射した前記超音波を受信する第2送受波器とを有し、
     前記第1超音波出入部および前記第2超音波出入部が隣り合っているとともに、前記超音波を透過させる超音波透過膜が前記第1超音波出入部および前記第2超音波出入部を一括して覆う超音波式流体計測構造。
  2.  前記第1側壁部、前記第2側壁部、前記天板部、前記底板部が一体である請求項1に記載の超音波式流体計測構造。
  3.  前記流路部材が、当該流路部材の内部を複数の扁平流路に区画する仕切板を有し、
     前記仕切板が前記第1側壁部および前記第2側壁部と一体に成形されている請求項1に記載の超音波式流体計測構造。
  4.  前記超音波透過膜および前記仕切板が接触している請求項3に記載の超音波式流体計測構造。
  5.  前記第1超音波出入部および前記第2超音波出入部が連続している請求項1に記載の超音波式流体計測構造。
  6.  流体の流れ方向に沿って矩形状の開口が連続する流路部材と、前記流路部材に隣接する超音波計測部とを備え、
     前記流路部材が、前記超音波計測部に隣り合う第1側壁部と、前記第1側壁部と平行な第2側壁部と、前記第1側壁部に設けられた第1超音波出入部および第2超音波出入部と、前記第2側壁部の内面に設けられた反射面とを有し、
     前記超音波計測部が、前記第1超音波出入部を通じて前記反射面に超音波を発信するとともに前記反射面に反射した前記超音波を受信する第1送受波器と、前記第2超音波出入部を通じて前記反射面に前記超音波を発信するとともに前記反射面に反射した前記超音波を受信する第2送受波器とを有し、
     前記第1超音波出入部および前記第2超音波出入部が隣り合っている超音波式流体計測構造。
  7.  請求項1ないし請求項6のうちのいずれかに記載した超音波式流体計測構造を用いた超音波式流体計測装置。
PCT/JP2010/000692 2009-11-24 2010-02-04 超音波式流体計測構造および超音波式流体計測装置 WO2011064905A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/511,433 US8925390B2 (en) 2009-11-24 2010-02-04 Ultrasonic fluid-measuring structure and ultrasonic fluid-measuring apparatus
EP10832761.0A EP2505968B1 (en) 2009-11-24 2010-02-04 Ultrasonic fluid-measuring structure and ultrasonic fluid-measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-266425 2009-11-24
JP2009266425A JP5712358B2 (ja) 2009-11-24 2009-11-24 超音波式流体計測構造および超音波式流体計測装置

Publications (1)

Publication Number Publication Date
WO2011064905A1 true WO2011064905A1 (ja) 2011-06-03

Family

ID=44031386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000692 WO2011064905A1 (ja) 2009-11-24 2010-02-04 超音波式流体計測構造および超音波式流体計測装置

Country Status (5)

Country Link
US (1) US8925390B2 (ja)
EP (1) EP2505968B1 (ja)
JP (1) JP5712358B2 (ja)
CN (1) CN102072751B (ja)
WO (1) WO2011064905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164859A1 (ja) * 2011-05-27 2012-12-06 パナソニック株式会社 超音波式流量計測ユニットおよびこれを用いたガス流量計

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132801A (ja) * 2010-12-22 2012-07-12 Panasonic Corp 超音波流量計
JP5963294B2 (ja) * 2011-11-30 2016-08-03 矢崎エナジーシステム株式会社 ガスメータ
EP4235114A3 (en) * 2012-08-22 2023-10-25 Apator Miitors ApS A compact ultrasonic flow meter
JP6229143B2 (ja) * 2013-04-23 2017-11-15 パナソニックIpマネジメント株式会社 流量計測装置
JP6330141B2 (ja) * 2014-02-07 2018-05-30 パナソニックIpマネジメント株式会社 ガス流量計
JP6368916B2 (ja) * 2015-04-16 2018-08-08 パナソニックIpマネジメント株式会社 流量計測装置
US10281307B2 (en) * 2016-06-10 2019-05-07 Virginia Tech Intellectual Properties, Inc. System and method of non-intrusive anemometry
ES2955002T3 (es) * 2016-07-13 2023-11-28 Gwf Messsysteme Ag Caudalímetro con canal de medición
WO2018174122A1 (ja) * 2017-03-23 2018-09-27 愛知時計電機 株式会社 超音波流量計
DE102017006909A1 (de) * 2017-07-20 2019-01-24 Diehl Metering Gmbh Messmodul zur Ermittlung einer Fluidgröße
JP2019191040A (ja) * 2018-04-26 2019-10-31 アズビル金門株式会社 超音波流量計
JP7126048B2 (ja) * 2018-08-08 2022-08-26 パナソニックIpマネジメント株式会社 超音波流量計
JP7223956B2 (ja) 2018-08-31 2023-02-17 パナソニックIpマネジメント株式会社 超音波流量計
FR3086388B1 (fr) 2018-09-25 2021-06-04 Buerkert Werke Gmbh & Co Kg Moyen de mesure de fluide presentant un boitier de fluide, et procede de fabrication de boitier de fluide
US11371869B2 (en) * 2019-06-05 2022-06-28 Neptune Technology Group Inc. Unitized measuring element for water meter assembly
CN110487340B (zh) * 2019-07-23 2021-08-17 广东美的白色家电技术创新中心有限公司 流量计管道及具有其的流量计装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162815A (ja) * 1982-03-24 1983-09-27 Honda Motor Co Ltd 内燃エンジン吸入空気用超音波流量計
JPS62811A (ja) * 1985-06-27 1987-01-06 Yazaki Corp 超音波流量計
JPH0921666A (ja) * 1995-07-05 1997-01-21 Matsushita Electric Ind Co Ltd 超音波流量計
JPH11510610A (ja) * 1996-05-28 1999-09-14 クローネ アクチェンゲゼルシャフト 超音波流量計
JP2004279224A (ja) * 2003-03-17 2004-10-07 Matsushita Electric Ind Co Ltd 超音波流量計測装置
JP2005257444A (ja) * 2004-03-11 2005-09-22 Yazaki Corp 計測流路部及びガスメータ
JP2005283565A (ja) * 2004-03-02 2005-10-13 Yazaki Corp 流量計測装置
JP2008111690A (ja) * 2006-10-30 2008-05-15 Aichi Tokei Denki Co Ltd 超音波流量計

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286470A (en) * 1979-10-19 1981-09-01 Lfe Corporation Clamp-on ultrasonic transducer
US5515733A (en) * 1991-03-18 1996-05-14 Panametrics, Inc. Ultrasonic transducer system with crosstalk isolation
JPH062811A (ja) * 1992-06-22 1994-01-11 Ishikawajima Harima Heavy Ind Co Ltd 循環流動床ボイラにおける起動バーナの燃料流量制御装置
US6189389B1 (en) 1996-05-28 2001-02-20 Krohne A.G. Ultrasonic flowmeter
KR100694937B1 (ko) 2003-02-24 2007-03-14 마츠시타 덴끼 산교 가부시키가이샤 초음파식 유체 계측 장치
JP4186645B2 (ja) * 2003-02-24 2008-11-26 松下電器産業株式会社 超音波流量計測装置
US8141434B2 (en) * 2009-12-21 2012-03-27 Tecom As Flow measuring apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162815A (ja) * 1982-03-24 1983-09-27 Honda Motor Co Ltd 内燃エンジン吸入空気用超音波流量計
JPS62811A (ja) * 1985-06-27 1987-01-06 Yazaki Corp 超音波流量計
JPH0921666A (ja) * 1995-07-05 1997-01-21 Matsushita Electric Ind Co Ltd 超音波流量計
JPH11510610A (ja) * 1996-05-28 1999-09-14 クローネ アクチェンゲゼルシャフト 超音波流量計
JP2004279224A (ja) * 2003-03-17 2004-10-07 Matsushita Electric Ind Co Ltd 超音波流量計測装置
JP2005283565A (ja) * 2004-03-02 2005-10-13 Yazaki Corp 流量計測装置
JP2005257444A (ja) * 2004-03-11 2005-09-22 Yazaki Corp 計測流路部及びガスメータ
JP2008111690A (ja) * 2006-10-30 2008-05-15 Aichi Tokei Denki Co Ltd 超音波流量計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2505968A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164859A1 (ja) * 2011-05-27 2012-12-06 パナソニック株式会社 超音波式流量計測ユニットおよびこれを用いたガス流量計

Also Published As

Publication number Publication date
CN102072751B (zh) 2015-07-15
CN102072751A (zh) 2011-05-25
US8925390B2 (en) 2015-01-06
EP2505968A4 (en) 2013-10-16
JP2011112377A (ja) 2011-06-09
JP5712358B2 (ja) 2015-05-07
EP2505968A1 (en) 2012-10-03
US20120272750A1 (en) 2012-11-01
EP2505968B1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP5712358B2 (ja) 超音波式流体計測構造および超音波式流体計測装置
WO2011064906A1 (ja) 流路部材および超音波式流体計測装置
WO2012164859A1 (ja) 超音波式流量計測ユニットおよびこれを用いたガス流量計
JP4702668B2 (ja) 流量測定装置
US9372105B2 (en) Ultrasonic flow rate measurement device
EP2639559B1 (en) Ultrasonic flow rate measuring device
CN108463693B (zh) 气量计
JP5728639B2 (ja) 超音波流量計
CN112601939B (zh) 超声波流量计
JP5046330B2 (ja) 超音波流量計及び超音波送受波器ユニット
EP2037231A1 (en) Ultrasonic flow measurement device
EP3382351B1 (en) Ultrasonic flow meter
WO2015105042A1 (ja) 流量計測装置
JP5259313B2 (ja) 超音波流量計
JP2014074728A (ja) 超音波式流体計測構造
JP4979056B2 (ja) 超音波流量計のセンサ取付構造
JP7373771B2 (ja) 物理量計測装置
JP2017090269A (ja) 超音波流量計
CN108700447B (zh) 气量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13511433

Country of ref document: US

Ref document number: 2010832761

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE