WO2011064894A1 - ノイズ処理装置及びノイズ処理プログラム - Google Patents

ノイズ処理装置及びノイズ処理プログラム Download PDF

Info

Publication number
WO2011064894A1
WO2011064894A1 PCT/JP2009/070137 JP2009070137W WO2011064894A1 WO 2011064894 A1 WO2011064894 A1 WO 2011064894A1 JP 2009070137 W JP2009070137 W JP 2009070137W WO 2011064894 A1 WO2011064894 A1 WO 2011064894A1
Authority
WO
WIPO (PCT)
Prior art keywords
difference signal
potential difference
intensity
potential
calculated
Prior art date
Application number
PCT/JP2009/070137
Other languages
English (en)
French (fr)
Inventor
英樹 冨森
佐々木 健
泰彦 中野
佐野 聡
佳央 石田
Original Assignee
富士通株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 国立大学法人東京大学 filed Critical 富士通株式会社
Priority to JP2011543067A priority Critical patent/JP5138101B2/ja
Priority to PCT/JP2009/070137 priority patent/WO2011064894A1/ja
Priority to EP09851683.4A priority patent/EP2508125B1/en
Publication of WO2011064894A1 publication Critical patent/WO2011064894A1/ja
Priority to US13/483,350 priority patent/US9000931B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6893Cars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths

Definitions

  • the present invention relates to a noise processing device and a noise processing program.
  • a detection device that detects the physiological state of a subject using the state of the subject's pulse or heartbeat.
  • a detection device provided in a vehicle suppresses the occurrence of an accident due to deterioration of the physiological state by detecting the physiological state of the driver.
  • the detection device measures a potential difference signal between two electrodes in contact with the subject, and discriminates an electrocardiogram signal indicating the pulse or heartbeat of the subject from the measured potential difference signal. Then, the detection device detects drowsiness and arousal level as the physiological state of the subject using the identified electrocardiogram signal.
  • the electrodes that are in contact with the subject are provided on the steering part (steering wheel) or the seat surface of the vehicle.
  • the electrode provided on the seat surface comes into contact with the buttocks of the subject when the subject sits on the seat.
  • the electrode provided on the handle comes into contact with the subject's hand when the subject holds the handle.
  • a vehicle provided with a processing device has an electrode used as a reference potential, an electrode provided on a steering unit, and an electrode provided on a seating surface.
  • the processing device measures the potential difference signal between the electrode used as the reference potential and the electrode provided in the steering unit, and measures the potential difference signal between the electrode used as the reference potential and the electrode provided on the seating surface. To do. Then, the processing device reduces the noise included in the potential difference signal by calculating the difference between the two potential difference signals.
  • the heartbeat interval is calculated for each heartbeat, and the irregular heartbeat interval is removed from the calculated heartbeat interval by calculating the standard deviation of the heartbeat interval and the root mean square of successful difference.
  • the above-described processing apparatus has a problem that noise included in the potential difference signal is not appropriately reduced. Specifically, when the subject moved the body or the device vibrated, the amount of noise reduction was smaller than when the subject did not move the body or the device did not vibrate.
  • the disclosed technique has been made in view of the above, and an object thereof is to provide a noise processing device and a noise processing program capable of appropriately reducing noise included in a potential difference signal.
  • the disclosed noise processing device outputs a first potential difference signal between a first electrode provided at a location different from the steering unit of the device and a second electrode used as a reference electrode.
  • a first measurement unit for measurement is included.
  • the noise processing device includes a second measurement unit that measures a second potential difference signal between the third electrode and the second electrode provided in the steering unit of the device.
  • the noise processing device calculates the intensity of the first potential difference signal measured by the first measurement unit and the intensity of the second potential difference signal measured by the second measurement unit at predetermined intervals. It has an intensity calculator for calculating.
  • the noise processing apparatus includes a difference calculation unit that calculates a difference between the intensity of the first potential difference signal and the intensity of the second potential difference signal calculated at predetermined intervals by the intensity calculation unit. Further, the noise processing device uses the difference calculated by the difference calculation unit in a direction in which the difference between the intensity of the first potential difference signal and the intensity of the second potential difference signal is eliminated, at each predetermined interval. And a correction unit that corrects the first potential difference signal and / or the second potential difference signal. The noise processing device calculates a difference signal indicating a difference between the first potential difference signal and the second potential difference signal, using the potential difference signal after being corrected at predetermined intervals by the correction unit. A difference calculating unit. In addition, the noise processing apparatus includes an output processing unit that outputs the difference signal calculated by the difference calculation unit.
  • noise processing device there is an effect that noise included in the potential difference signal can be appropriately reduced.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the second embodiment.
  • FIG. 3 is a diagram illustrating an example of the handle electrode in the second embodiment.
  • FIG. 4 is a diagram for explaining an example of a seat upper electrode and a seat lower electrode provided on a vehicle seat.
  • FIG. 5 is a diagram illustrating the potential measured by the potential measurement unit in the second embodiment.
  • FIG. 6A is a diagram illustrating an example of the first potential difference signal in the second embodiment.
  • FIG. 6B is a diagram illustrating an example of the second potential difference signal in the second embodiment.
  • FIG. 7 is a diagram for explaining the number 2 for calculating the RMS.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the noise processing apparatus according
  • FIG. 8 is a diagram for explaining correction by the difference calculation unit in the second embodiment.
  • FIG. 9A is a diagram illustrating a subtraction process performed by a difference calculation unit according to the second embodiment.
  • FIG. 9B is a diagram illustrating the addition process performed by the difference calculation unit according to the second embodiment.
  • FIG. 10 is a diagram illustrating processing performed by the output processing unit according to the second embodiment.
  • FIG. 11 is a diagram illustrating an example of a heartbeat signal included in the difference signal.
  • FIG. 12 is a flowchart illustrating an example of a process flow performed by the noise processing apparatus according to the second embodiment.
  • FIG. 13A is a diagram illustrating an example of the effect of the second embodiment.
  • FIG. 13B is a diagram illustrating an example of the effect of the second embodiment.
  • FIG. 13C is a diagram illustrating an example of the effect of the second embodiment.
  • FIG. 14 is a diagram for explaining the relationship between the polarity and the phase of the potential difference signal.
  • FIG. 15 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the third embodiment.
  • FIG. 16 is a diagram illustrating an example of the waveform of the potential difference signal stored by the waveform storage unit according to the third embodiment.
  • FIG. 17 is a diagram for explaining the intervals associated with the waveform of the potential difference signal as shown in FIG.
  • FIG. 18 is a flowchart illustrating an example of the flow of interval change processing by the RMS calculation unit according to the third embodiment.
  • FIG. 19A is a diagram illustrating an example of a potential difference signal measured during idling.
  • FIG. 19A is a diagram illustrating an example of a potential difference signal measured during idling.
  • FIG. 19B is a diagram illustrating an example of a potential difference signal measured when traveling on a general road.
  • FIG. 19C is a diagram illustrating an example of a potential difference signal measured when traveling on a highway.
  • FIG. 20A is a diagram for describing an example of RMS calculated during idling.
  • FIG. 20B is a diagram illustrating an example of RMS calculated when traveling on a general road.
  • FIG. 20C is a diagram illustrating an example of RMS calculated when traveling on a highway.
  • FIG. 21 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the fourth embodiment.
  • FIG. 22 is a flowchart illustrating an example of a process flow by the threshold value changing unit according to the fourth embodiment.
  • FIG. 23A is a diagram illustrating a difference calculation unit according to the fifth embodiment.
  • FIG. 23B is a diagram illustrating a difference calculation unit according to the fifth embodiment.
  • FIG. 24 is a flowchart illustrating an example of a process flow performed by the noise processing apparatus according to the fifth embodiment.
  • FIG. 25 is a schematic diagram illustrating an example of a computer that executes a noise processing program according to the second embodiment.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the first embodiment.
  • the noise processing apparatus 100 includes a first measurement unit 101, a second measurement unit 102, an intensity calculation unit 103, a difference calculation unit 104, a correction unit 105, and a difference calculation unit 106. And an output processing unit 107.
  • the first measuring unit 101 measures a first potential difference signal between a first electrode provided at a location different from the steering unit of the apparatus and a second electrode used as a reference electrode.
  • the second measuring unit 102 measures a second potential difference signal between the third electrode and the second electrode provided in the steering unit of the apparatus.
  • the place where the first electrode is provided may be a place where the operator can make electrical contact with the operator on the side opposite to the steering part with respect to the position of the heart of the operator using the steering part. As an example, it may be provided on a seat surface of a seat on which an operator using the steering unit sits.
  • the intensity calculation unit 103 calculates the intensity of the first potential difference signal measured by the first measurement unit 101 and the intensity of the second potential difference signal measured by the second measurement unit 102 at predetermined intervals. To do. Then, the difference calculation unit 104 calculates the difference between the intensity of the first potential difference signal and the intensity of the second potential difference signal calculated by the intensity calculation unit 103 at predetermined intervals.
  • the correction unit 105 uses the difference calculated by the difference calculation unit 104 in a direction in which the difference between the intensity of the first potential difference signal and the intensity of the second potential difference signal disappears, at a predetermined interval.
  • the signal and the second potential difference signal are corrected.
  • the difference calculation unit 106 calculates a difference signal indicating a difference between the first potential difference signal and the second potential difference signal, using the potential difference signal corrected by the correction unit 105 at predetermined intervals. .
  • the output processing unit 107 outputs the difference signal calculated by the difference calculation unit 106.
  • the difference signal output by the output processing unit 107 is a potential difference signal indicating a potential difference between the first electrode and the third electrode, and is a potential difference signal between the electrodes in contact with two positions sandwiching the heart. It becomes.
  • the difference signal is also referred to as a potential difference signal.
  • the difference signal is calculated after correcting the intensity of the potential signal measured for each electrode to be the same while the subject and the electrode are in contact with each other at two positions sandwiching the heart.
  • noise can be appropriately reduced from a potential difference signal between electrodes in contact with two positions sandwiching the heart. Specifically, even when the subject moves the body or the device vibrates, the noise can be reduced in the same manner as when the subject does not move the body or the device does not vibrate.
  • the reason why the noise reduction amount is smaller than when the subject does not move the body or the device does not vibrate is examined.
  • the intensity of noise included in each potential difference signal is not the same unless the two potential difference signals have the same intensity. Even if the difference between the potential difference signals is calculated, the noise is not reduced appropriately.
  • the strength of the potential difference signal varies depending on the impedance of the electrode itself and the impedance of the contact portion between the electrode and the subject.
  • noise included in the potential difference signal becomes stronger and is added to the potential difference signal caused by the heartbeat, so that the strength of the potential difference signal also becomes stronger.
  • the impedance of the contact portion varies depending on the contact state between the electrode and the subject.
  • the contact state between the electrode provided on the seat and the subject is compared with the contact state between the electrode provided on the steering unit and the subject. It can be easily changed.
  • the contact state between the electrode provided on the seating surface and the subject is more likely to change than the contact state between the electrode provided on the steering unit and the subject, and the impedance of the electrode provided on the seating surface is determined by steering. It is thought that it is easy to change compared with the impedance of the electrode provided in the part. If the potential difference signal from the electrode provided on the seating surface and the potential difference signal from the electrode provided on the steering unit do not change in the same manner, the intensity of noise included in each potential difference signal will be different. It is done. As a result, even if the difference between the two potential difference signals is calculated, it is considered that the noise contained in the difference signal was not canceled well and the noise did not decrease.
  • the difference is calculated after correcting the intensities of the two potential difference signals to the same, so that the noise included in the difference signal can be appropriately reduced.
  • noise can be appropriately reduced even if two potential difference signals change differently.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the second embodiment.
  • the noise processing apparatus 200 includes a handle electrode 201, a seat upper electrode 202, a seat lower electrode 203, a potential measuring unit 204, an output unit 205, a storage unit 300, and a control unit 400.
  • a handle electrode 201 is provided as a second electrode on a vehicle handle, and a seat upper electrode 202 as a first electrode and a seat lower electrode 203 as a third electrode are seat seats of the vehicle.
  • a subject A person whose potential is to be measured.
  • Both the handle electrode 201 and the seat upper electrode 202 may be provided in a place where the subject can continuously make electrical contact with the subject during the period during which the potential is measured.
  • the handle electrode 201 and the seat upper electrode 202 are provided at a place where the subject can naturally come into electrical contact with the subject during the operation performed by the subject. It is conceivable to provide If the handle electrode 201 and the seat upper electrode 202 are provided in such a place, it is not necessary for the subject to intentionally measure the potential.
  • the handle electrode 201 and the seat upper electrode 202 may be provided at two positions sandwiching the heart of the subject.
  • the handle electrode 201 and the seat upper electrode 202 may be provided respectively on the handle of the vehicle and the back of the seat, and arbitrary positions may be combined.
  • seat lower electrode 203 should just be provided in one of two positions on both sides of a test subject's heart.
  • the seat upper electrode 202 and the seat lower electrode 203 may be provided on the backrest of the seat, or may be provided at an arbitrary place. If the potential is measured while the subject is standing, the seat upper electrode 202 and the seat lower electrode 203 may be provided at a place where the subject steps, for example.
  • the handle electrode 201 is connected to the potential measuring unit 204.
  • the handle is also referred to as a steering unit or a steering wheel.
  • An example of the structure of the handle electrode 201 will be described with reference to FIG.
  • FIG. 3 is a diagram illustrating an example of the handle electrode in the second embodiment.
  • Reference numeral 501 in FIG. 3 denotes a handle.
  • “1” and “2” in FIG. 3 indicate the handle electrode 201, respectively.
  • FIG. 3 (1) the case where the two handle electrodes 201 are provided in an equal size along the circumferential direction of the handle 501 is shown as an example.
  • each of “2” handle electrodes 201 is referred to as a handle electrode “1” or a handle electrode “2”.
  • the handle electrode 201 is in electrical contact with the subject when the handle 501 is gripped by the subject.
  • the handle electrode “1” is in contact with the subject's right hand
  • the handle electrode “2” is in contact with the subject's left hand.
  • the sheet upper electrode 202 and the sheet lower electrode 203 will be described.
  • the sheet upper electrode 202 and the sheet lower electrode 203 are connected to the potential measuring unit 204.
  • the seat upper electrode 202 is provided at a location different from the electrode provided on the handle 501.
  • the seat upper electrode 202 and the seat lower electrode 203 are provided on the vehicle seat 502.
  • the seat lower electrode 203 is grounded and equal to the potential of the vehicle.
  • the sheet lower electrode 203 is used as a reference electrode by the noise processing apparatus 100.
  • FIG. 4 is a diagram for explaining an example of a seat upper electrode and a seat lower electrode provided on a vehicle seat.
  • FIG. 4A is a view as seen from the upper part of the vehicle seat
  • FIG. 4B is a cross-sectional view of the vehicle seat.
  • reference numeral 502 denotes a vehicle seat
  • 503 denotes a seat member which is a member of the seat 502
  • 504 denotes a seat lower electrode 203
  • 505 denotes an insulating layer
  • 506 and 507 denote the seat upper electrode 202.
  • reference numeral 508 denotes a protective member
  • 509 denotes a conductive portion.
  • a sheet lower electrode 504, an insulating layer 505, sheet upper electrodes 506 and 507, and a protective member 508 are sequentially stacked on the sheet member 503. Further, the protective member 508 is provided with a conductive portion 509. The conductive portion 509 is connected to the sheet upper electrode 506 or 507.
  • the protection member 508 has an opening, and the conductive portion 509 is provided on the inner wall of the opening.
  • the sheet upper electrode 506 and 507 is illustrated as being separated into two. In this case, the sheet upper electrodes 506 and 507 correspond to the right side and the left side of the subject's buttocks, respectively.
  • the sheet lower electrode 504 faces the sheet upper electrodes 506 and 507 with the insulating layer 505 interposed therebetween.
  • seat upper electrode 202 is not limited to when isolate
  • the sheet upper electrodes 506 and 507 separated into two may be electrically independent from each other, and the potential measuring unit 204 described later may separately measure the potential of the sheet upper electrodes 506 and 507.
  • the seat upper electrode 202 is in electrical contact with the subject when the subject sits on the seat 502.
  • the seat upper electrode 202 contacts the subject's buttocks via the conductive portion 509.
  • Example 2 a case where the sheet upper electrode 202 is in contact with the subject will be described as an example unless otherwise specified. That is, in the second embodiment, a case where the subject sits on the seat 502 will be described as an example.
  • the potential measuring unit 204 is connected to the handle electrode 201, the seat upper electrode 202, the seat lower electrode 203, and the control unit 400.
  • the potential measuring unit 204 corresponds to an operational amplifier.
  • the potential measuring unit 204 measures the potentials at two positions with the subject's heart in between. Specifically, the potential measuring unit 204 measures the potentials of the handle electrode 201 and the seat upper electrode 202 when the potential of the vehicle is a reference potential. In other words, the potential measuring unit 204 measures the potential of the subject's hand by measuring the potential of the handle electrode “1” and the handle electrode “2”, and measures the potential of the seat upper electrode 202 to measure the potential of the subject's buttocks. Measure the potential.
  • the potential measurement unit 204 measures the potential difference between the sheet lower electrode 203 and the sheet upper electrode 202 used as the reference potential, and sets the measured potential difference as the potential of the sheet upper electrode 202.
  • the potential measuring unit 204 measures the potential difference between the lower seat electrode 203 and the handle electrode 201 used as the reference potential, and sets the measured potential difference as the potential of the handle electrode 201.
  • the potential difference signal measured for the sheet upper electrode 202 by the potential measuring unit 204 is referred to as a first potential difference signal.
  • the potential difference signal measured for the handle electrode 201 by the potential measuring unit 204 is referred to as a second potential difference signal.
  • FIG. 5 is a diagram illustrating the potential measured by the potential measurement unit in the second embodiment.
  • FIG. 5 for convenience of explanation, a case where “2” handle electrodes 201 are brought into contact with the left and right hands of the subject will be described as an example.
  • the test subject's heart to arm can be regarded as a resistance component electrically.
  • the subject's hand can be electrically regarded as an RC (resistor capacitor) parallel circuit. From the subject's heart to the buttocks, it can be regarded electrically as a resistance component. Also, clothes such as trousers and skirts can be electrically regarded as RC parallel circuits.
  • FIG. 5 an equivalent circuit including the subject himself is as shown in FIG.
  • reference numerals 510 to 512 denote operational amplifiers, which correspond to the potential measurement unit 204.
  • Reference numeral 513 denotes the subject's heart.
  • Reference numeral 514 denotes a resistance component from the subject's heart 513 to the right arm.
  • Reference numeral 515 denotes an RC parallel circuit corresponding to the right hand.
  • Reference numeral 516 denotes a resistance component from the heart 513 of the subject to the left arm.
  • Reference numeral 517 denotes an RC parallel circuit corresponding to the left hand.
  • Reference numeral 518 denotes a resistance component from the heart 513 to the buttocks.
  • Reference numeral 519 denotes an RC parallel circuit corresponding to the subject's clothes.
  • the operational amplifier 510 has two inputs.
  • the operational amplifier 510 receives the myocardial action potential of the heart 513 from the handle electrode “1” via the resistor 514 and the RC parallel circuit 515 for one input, and becomes the reference potential for the other input.
  • the potential of the vehicle body is input from the seat lower electrode 203.
  • the operational amplifier 510 amplifies the myocardial action potential when the potential of the vehicle body frame is the reference potential and outputs the amplified myocardial action potential. That is, in the example shown in FIG. 5, the operational amplifier 510 detects the myocardial action potential from the right hand of the subject, amplifies the detected myocardial action potential, and outputs it.
  • the operational amplifier 511 receives the myocardial action potential of the heart 513 from the handle electrode “2” via the resistor 516 and the RC parallel circuit 517, amplifies the myocardial action potential, and outputs it. . That is, the operational amplifier 511 detects the myocardial action potential from the left hand of the subject, amplifies it, and outputs it.
  • the operational amplifier 512 receives the myocardial action potential of the heart 513 from the seat upper electrode 202 via the resistor 518 and the RC parallel circuit 519, and amplifies the myocardial action potential and outputs it. That is, the operational amplifier 512 detects the myocardial action potential from the buttocks of the subject, amplifies it, and outputs it.
  • the operational amplifiers 510 to 512 amplify the myocardial action potential and send it because the myocardial action potential is weak when the body frame potential is used as a reference potential.
  • the operational amplifiers 510 to 512 perform amplification using a fixed amplification factor.
  • the myocardial action potential detected from the subject's buttocks is the result detected via the RC parallel circuit 519, that is, the result detected via the subject's clothes, and the myocardial action potential detected from the subject's hand. Small compared. In other words, the myocardial action potential detected from the subject's buttocks is noisy compared to the myocardial action potential detected from the subject's hand.
  • FIG. 6A is a diagram illustrating an example of the first potential difference signal in the second embodiment.
  • FIG. 6B is a diagram illustrating an example of the second potential difference signal in the second embodiment.
  • Reference numeral 601 denotes an example of the first potential difference signal
  • reference numeral 602 denotes an example of the second potential difference signal.
  • the vertical axis indicates the value of the potential difference signal
  • the horizontal axis indicates the time axis.
  • the time axis indicates the elapsed time from “0” indicating the time point when the process is started.
  • Reference numeral 611 denotes the amplitude of the first potential difference signal, which is about 40 mV in the example shown at 611 in FIG. 6A.
  • Reference numeral 612 denotes the amplitude of the second potential difference signal, which is about 25 mV in the example shown at 612 in FIG. 6B.
  • the output unit 205 is connected to the control unit 400.
  • the output unit 205 receives information from the control unit 400 and outputs the received information.
  • the details of the information output by the output unit 205 will be omitted here, and will be described together with the description of each related unit.
  • Storage unit 300 is connected to control unit 400.
  • the storage unit 300 stores data used for various processes by the control unit 400.
  • the storage unit 300 is, for example, a semiconductor memory device such as a random access memory (RAM), a read only memory (ROM), or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the control unit 400 is connected to the potential measurement unit 204, the output unit 205, and the storage unit 300.
  • the control unit 400 includes an internal memory that stores a program that defines various processing procedures and the like, and controls various processes.
  • the control unit 400 is an electronic circuit such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a central processing unit (CPU), or a micro processing unit (MPU).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPU central processing unit
  • MPU micro processing unit
  • the control unit 400 includes an RMS calculation unit 401, an amplification factor calculation unit 402, a difference calculation unit 403, an RMS recalculation unit 404, and an output processing unit 405.
  • RMS indicates “Root Mean Square Value”.
  • the RMS calculation unit 401 calculates the strength of the potential difference signal for each of the first potential difference signal and the second potential difference signal measured by the potential measurement unit 204 at predetermined intervals.
  • the RMS calculation unit 401 is also referred to as an intensity calculation unit. For example, the RMS calculation unit 401 calculates the intensity of the potential difference signal every 3 seconds using the potential difference signal from 3 seconds before to the processing time point.
  • the case where the RMS calculator 401 calculates the intensity of the potential difference signal every 3 seconds will be described as an example, but the present invention is not limited to this.
  • the RMS calculation unit 401 may calculate every 4 seconds, every 2 seconds, or an arbitrary value.
  • the RMS calculation unit 401 may continue to calculate the strength of the potential difference signal in real time.
  • the case where the RMS calculation unit 401 calculates using the potential difference signal from the time of processing to 2 seconds before is described as an example, but the present invention is not limited to this.
  • the RMS calculation unit 401 may calculate using the potential difference signal from the time of processing to 3 seconds before, or may be an arbitrary value.
  • the RMS calculation unit 401 calculates the intensity of the potential difference signal by calculating the RMS of the potential difference signal. For example, the RMS calculation unit 401 calculates RMS using “Equation 1” and “Equation 2”.
  • Equation 1 and [Equation 2] are equations for calculating the RMS from time “0” to “T”.
  • “I” in “Equation 1” and “Equation 2” indicates the value of the potential difference signal. That is, “Equation 1” indicates that an average value from time “0” to “T” is calculated for the square of “i”, and a square root of the calculated average value is calculated.
  • FIG. 7 is a diagram for explaining the number 2 for calculating the RMS.
  • (1) of FIG. 7 shows an example of a potential difference signal measured by the potential measuring unit 204.
  • (2) in FIG. 7 shows an offset applied to the potential difference signal measured by the potential measuring unit 204.
  • (3) in FIG. 7 shows the average intensity of the potential difference signal measured by the potential measuring unit 204.
  • (4) of FIG. 7 shows an example of the potential difference signal obtained by removing the offset from the potential difference signal measured by the potential measuring unit 204.
  • the RMS calculation unit 401 may calculate the RMS after removing the offset from the potential difference signal. That is, “Equation 2” calculates an average value from time “0” to “T” for the square of “a value obtained by subtracting (average value of i) from i”, and calculates a square root of the calculated average value. Indicates to do. Note that (average value of i) corresponds to the average intensity of the potential difference signal shown in (4) of FIG.
  • the RMS calculation unit 401 calculates the RMS for the first potential difference signal shown in FIG. 6A, “1.49 mV” is obtained. Further, when the RMS calculation unit 401 calculates the RMS for the second potential difference signal shown in FIG. 6B, “1 mV” is obtained.
  • the amplification factor calculation unit 402 calculates the difference between the intensity of the first potential difference signal and the intensity of the second potential difference signal calculated at predetermined intervals by the RMS calculation unit 401. Specifically, the amplification factor calculation unit 402 calculates the difference in the strength of the calculated potential difference signal every time the RMS calculation unit 401 calculates the strength of the potential difference signal.
  • the amplification factor calculation unit 402 is also referred to as a difference calculation unit. For example, the amplification factor calculation unit 402 calculates the difference “1.49” by dividing the RMS “1.49 mV” for the first potential difference signal by the RMS “1 mV” for the second potential difference signal. .
  • the difference calculation unit 403 uses the difference calculated by the amplification factor calculation unit 402 so that the first potential difference signal and the second potential difference signal have the same intensity, and the first potential difference is calculated at predetermined intervals. The signal and the second potential difference signal are corrected.
  • the difference calculation unit 403 is also referred to as a correction unit.
  • the difference calculation unit 403 corrects the second potential difference signal using the difference “1.49” calculated by the amplification magnification calculation unit 402. More specifically, the difference calculation unit 403 multiplies the second potential difference signal by “1.49”, and sets the potential difference signal resulting from the multiplication as the corrected second potential difference signal.
  • FIG. 8 is a diagram for explaining correction by the difference calculation unit in the second embodiment.
  • Reference numeral 603 denotes a corrected second potential difference signal.
  • the vertical axis indicates the value of the potential difference signal
  • the horizontal axis indicates the time axis.
  • Reference numeral 613 denotes the amplitude of the corrected second potential difference signal, which is about 40 mV in the example shown in FIG.
  • the difference calculation unit 403 multiplies the second potential difference signal before correction by “1.49”, and corrects the potential difference signal as a result of the multiplication after correction. 2 potential difference signal.
  • the amplitude of the second potential difference signal before correction is about 25 mV as indicated by 612 in FIG. 8
  • the second potential difference after correction is indicated as indicated by 613 in FIG.
  • the amplitude is about 40 mV.
  • the amplitude of the first potential difference signal is about 40 mV. That is, the intensity of the corrected second potential difference signal is equal to the intensity of the first potential difference signal.
  • the amplification factor calculation unit 402 calculates the difference by dividing the intensity of the first potential difference signal by the intensity of the second potential difference signal.
  • the difference calculation unit 403 corrects the second potential difference signal using the difference calculated by the amplification magnification calculation unit 402 has been described as an example.
  • the present invention is not limited to this. That is, as a result of the correction by the difference calculation unit 403, it is sufficient that the intensity of the first potential difference signal and the intensity of the second potential difference signal are the same, and any method may be used.
  • the amplification factor calculator 402 calculates the difference by dividing the intensity of the second potential difference signal by the intensity of the first potential difference signal
  • the difference calculator 403 calculates the difference calculated by the amplification factor calculator 402. May be used to correct the first potential difference signal.
  • the difference calculation unit 403 corrects both the first potential difference signal and the second potential difference signal, so that the intensity of the first potential difference signal and the intensity of the second potential difference signal are the same. You may correct
  • the difference calculation unit 403 calculates a difference signal indicating a difference between the first potential difference signal and the second potential difference signal using the potential difference signal after being corrected at predetermined intervals. Specifically, the difference calculation unit 403 executes a subtraction process for subtracting the second potential difference signal from the first potential difference signal, or performs a subtraction process for subtracting the first potential difference signal from the second potential difference signal. By doing so, the first difference signal is calculated. In addition, the difference calculation unit 403 calculates the second difference signal by executing an addition process of adding the second potential difference signal to the first potential difference signal.
  • FIG. 9A is a diagram illustrating a subtraction process performed by a difference calculation unit according to the second embodiment.
  • FIG. 9B is a diagram illustrating the addition process performed by the difference calculation unit according to the second embodiment.
  • 604 shows an example of the first difference signal obtained as a result of the subtraction process
  • 605 shows an example of the second difference signal obtained as a result of the addition process
  • 614 indicates the amplitude of the first difference signal obtained as a result of the subtraction process.
  • the vertical axis indicates the value of the differential signal
  • the horizontal axis indicates the time axis. In the example shown in FIG. 9A, it is about 10 mV.
  • Reference numeral 615 denotes the amplitude of the second difference signal obtained as a result of the addition process, and in the example shown in FIG. 9B, it is 20 mV or more.
  • the strength of the potential difference signal to be subjected to addition processing or subtraction processing is about 40 mV.
  • FIG. 9A will be described. As illustrated in reference numerals 601 and 603 in FIG. 9A, when the subtraction process is performed, the difference calculation unit 403 subtracts the corrected second potential difference signal from the first potential difference signal, for example. As a result, as shown at 604 in FIG. 9A, the difference calculation unit 403 calculates the first difference signal.
  • FIG. 9B will be described.
  • the difference calculation unit 403 adds the corrected second potential difference signal to the first potential difference signal.
  • the difference calculation unit 403 calculates a second difference signal. Note that the significance of the difference calculation unit 403 performing the subtraction process and the addition process will be described in the effect of the second embodiment, and thus the description thereof is omitted here.
  • the RMS recalculation unit 404 calculates the intensity of the difference signal for each of the first difference signal and the second difference signal calculated by the difference calculation unit 403. For example, the RMS recalculation unit 404 calculates the intensity of the potential difference signal by calculating RMS using “Equation 1” and “Equation 2” in the same manner as the RMS calculation unit 401. For example, the RMS is calculated for the first difference signal indicated by 604 in FIG. 9A, and the RMS is calculated for the second difference signal indicated by 605 in FIG. 9B.
  • the amplitude of the first difference signal is smaller than the amplitude of the second difference signal.
  • the RMS value for the first differential signal is smaller than the RMS value for the second differential signal.
  • the RMS recalculation unit 404 will be described by taking an example of calculating the strength of the potential difference signal using the same method as the RMS calculation unit 401, but the present invention is not limited to this. It is not something. That is, the RMS recalculation unit 404 and the RMS calculation unit 401 may calculate the strength of the potential difference signal using different methods.
  • the output processing unit 405 outputs, from the output unit 205, a difference signal whose intensity calculated by the RMS recalculating unit 404 is smaller than the other. That is, the output processing unit 405 outputs a difference signal whose calculated intensity is smaller than the other of the two difference signals obtained as a result of the reduction process by the difference calculation unit 403.
  • the output processing unit 405 outputs the difference signal to the identification device that identifies the pulse and heartbeat of the subject from the difference signal. Thereafter, for example, the identification device identifies the pulse or heartbeat of the subject from the difference signal, or measures the arousal level of the subject.
  • the noise processing device 200 and the identification device may be one device.
  • the noise processing apparatus 200 further identifies the subject's pulse or heart rate from the difference signal, or detects the subject's physiological state using the identified subject's pulse or heart rate state.
  • the noise processing device 200 may be one component of the identification device.
  • the output processing unit 405 outputs the difference signal to other components that identify the subject's pulse and heartbeat from the difference signal among the components included in the identification device.
  • the difference signal output by the output processing unit 405 is a potential difference signal indicating a potential difference between the handle electrode 201 and the seat upper electrode 202, and is a potential difference signal between electrodes in contact with two positions sandwiching the heart. .
  • FIG. 10 is a diagram illustrating processing performed by the output processing unit according to the second embodiment.
  • (1) in FIG. 10 shows the first difference signal
  • (2) in FIG. 10 shows the second difference signal
  • (3) in FIG. 10 shows the potential difference signal output by the output processing unit 405.
  • the vertical axis indicates the potential value
  • the horizontal axis indicates the time axis.
  • the output processing unit 405 compares the intensity of the first difference signal with the intensity of the second difference signal.
  • the RMS value for the first differential signal is smaller than the RMS value for the second differential signal.
  • the output processing unit 405 selects the first difference signal and outputs the selected first difference signal.
  • the difference used when the difference calculation unit 403 corrects is different for each predetermined interval.
  • the difference signal output from the output processing unit 405 is not always the same. For example, even if the output processing unit 405 outputs the first difference signal at a certain time, the output processing unit 405 does not necessarily output the first difference signal at another time, and the output processing unit 405 does not output the second difference signal. In some cases, a differential signal is output.
  • both of the two differential signals include a heartbeat signal having the same intensity.
  • strength of the noise contained in an electrical potential difference signal is large compared with the intensity
  • FIG. 11 is a diagram illustrating an example of a heartbeat signal included in the difference signal.
  • the difference signal illustrated in FIG. 11 is an example of the difference signal output by the output processing unit 405.
  • the vertical axis indicates the value of the difference signal
  • the horizontal axis indicates the time axis.
  • Reference numeral 701 in FIG. 11 is an arrow indicating a heartbeat signal included in the differential signal. As indicated by 701 in FIG. 11, the ratio of the intensity of the heartbeat signal to the intensity of the difference signal is small compared to the noise intensity.
  • the difference in intensity between the two difference signals is considered to correspond to the difference in the intensity of noise included in each of the two difference signals. That is, even if the difference signal having a smaller intensity is simply selected and output by the output processing unit 405, a difference signal having a noise intensity less than the other of the two difference signals is output. It is possible.
  • FIG. 12 is a flowchart illustrating an example of a process flow performed by the noise processing apparatus according to the second embodiment.
  • the amplification factor calculation unit 402 calculates the difference by dividing the intensity of the first potential difference signal by the intensity of the second potential difference signal.
  • the difference calculation unit 403 corrects the second potential difference signal using the difference calculated by the amplification magnification calculation unit 402.
  • the RMS value for the first differential signal is smaller than the RMS value for the second differential signal.
  • the RMS calculating unit 401 calculates the RMS for each of the first potential difference signal and the second potential difference signal.
  • the amplification factor calculation unit 402 calculates the difference between the intensity of the first potential difference signal and the intensity of the second potential difference signal (step S103). For example, the amplification factor calculation unit 402 calculates the difference “1.49” by dividing the RMS calculated for the first potential difference signal by the RMS calculated for the second potential difference signal.
  • the difference calculation unit 403 corrects the second potential difference signal so that the strength of the first potential difference signal and the strength of the second potential difference signal are the same (step S104). For example, the difference calculation unit 403 multiplies the second potential difference signal by “1.49”, and sets the potential difference signal resulting from the multiplication as the corrected second potential difference signal.
  • the difference calculation unit 403 calculates a difference signal indicating a difference between the first potential difference signal and the second potential difference signal using the potential difference signal corrected at predetermined intervals (step S105). .
  • the difference calculation unit 403 calculates the first difference signal by subtracting the corrected second potential difference signal from the first potential difference signal.
  • the difference calculation unit 403 calculates the second difference signal by adding the corrected second potential difference signal to the first potential difference signal.
  • the RMS recalculation unit 404 calculates the intensity of the difference signal for each of the first difference signal and the second difference signal calculated by the difference calculation unit 403 (step S106). For example, the RMS recalculation unit 404 calculates RMS as the intensity of the difference signal.
  • the output processing unit 405 outputs a difference signal whose intensity calculated by the RMS recalculation unit 404 is smaller than that of the other from the output unit 205 (step S107).
  • the RMS value for the first difference signal is smaller than the RMS value for the second difference signal, and the output processing unit 405 outputs the first difference signal.
  • the noise processing device 200 measures the first potential difference signal and the second potential difference signal. Then, the noise processing device 200 calculates the intensity of the first potential difference signal and the intensity of the second potential difference signal at predetermined intervals. Then, the noise processing device 200 calculates the difference between the intensity of the first potential difference signal and the intensity of the second potential difference signal calculated at predetermined intervals. Then, the noise processing device 200 uses the calculated difference so that the first potential difference signal and the second potential difference signal have the same intensity, and the first potential difference signal and the second potential difference signal are output at predetermined intervals. Correct the potential difference signal.
  • the noise processing apparatus 200 calculates a difference signal using the potential difference signal after correction
  • noise can be appropriately reduced from a potential difference signal between electrodes in contact with two positions sandwiching the heart.
  • FIGS. 13A, 13B, and 13C are diagrams illustrating an example of the effect of the second embodiment.
  • FIG. 13A illustrates an example of the first potential difference signal and the second potential difference signal.
  • FIG. 13B is obtained when the second potential difference signal is simply subtracted from the first potential difference signal without correcting the first potential difference signal and the second potential difference signal to be the same. It is an example of a signal.
  • FIG. 13C is an example of a differential signal output by the output processing unit 405 in the second embodiment.
  • the vertical axis indicates the value of the potential difference signal or the difference signal
  • the horizontal axis indicates the time axis.
  • the RMS of FIG. 13A was 186 mV
  • the RMS of FIG. 13B was 105 mV
  • the RMS of FIG. 13C was 10.4 mV.
  • the RMS decreased from 186 mV to 105 mV.
  • the RMS of FIG. 13A and the RMS of FIG. 13C were compared, it decreased from 186 mV to 10.4 mV. That is, in the second embodiment, focusing on the fact that the impedance of the handle electrode 201 and the impedance of the seat upper electrode 202 change differently, the difference is calculated after correcting the intensity of the two potential difference signals to be the same. To do. As a result, according to the second embodiment, it is possible to obtain an advantageous effect that the amount of noise reduction is increased as compared with the case where the intensities of the two potential difference signals are not corrected to be the same.
  • the noise processing device 200 performs a subtraction process for subtracting the second potential difference signal from the first potential difference signal or a subtraction process for subtracting the first potential difference signal from the second potential difference signal.
  • the first difference signal is calculated.
  • the noise processing device 200 calculates the second difference signal by executing an addition process of adding the second potential difference signal to the first potential difference signal.
  • the noise processing apparatus 200 calculates an intensity
  • noise can be reduced even if the phase of the first potential difference signal and the phase of the second potential difference signal are different.
  • the electrode may contact the subject through the subject's clothing.
  • the sheet upper electrode 202 is in electrical contact with the subject via a skirt or jeans.
  • the handle electrode 201 may be in electrical contact with the subject via a glove, a bandage, a bandage, or the like as a kind of clothes.
  • Static electricity is generated in the clothes due to friction between the subject and the clothes or between the clothes and the electrode.
  • the polarity of static electricity generated in the clothes varies depending on the material of the subject's clothes. Here, when the polarity of static electricity is different, the phase of the potential difference signal obtained from the electrode is different.
  • FIG. 14 is a diagram for explaining the relationship between the polarity and the phase of the potential difference signal.
  • reference numeral 702 denotes an example of a potential difference signal when the polarity is positive.
  • Reference numeral 703 denotes an example of a potential difference signal when the polarity is negative.
  • Reference numeral 704 denotes a heartbeat signal included in the potential difference signal. Further, in 702 and 703 in FIG. 14, the portion of the potential difference signal other than the strength corresponding to the heartbeat signal becomes the strength of the noise.
  • the phase of the potential difference signal is reversed when the polarity is positive and when the polarity is negative.
  • the noise included in the difference signal does not decrease, but increases.
  • the difference signal is calculated by subtracting the potential difference signal calculated when the polarity is negative from the potential difference signal calculated when the polarity is positive, the difference signal resulting from the calculation results in a potential difference signal.
  • the noise intensity was greater than the noise intensity included.
  • the noise intensity is considered to be smaller than the noise intensity of the potential difference signal.
  • the first difference signal and the second difference signal are calculated by performing the addition process and the subtraction process, respectively, and compared with the other of the calculated difference signals.
  • the one with the lower intensity is output.
  • noise can be reduced regardless of the phase of the potential difference signal.
  • Example 3 describes a case where the RMS calculation unit 401 calculates the strength of a potential difference signal at different predetermined intervals according to the state of the first potential difference signal or the second potential difference signal. For example, a case will be described in which the RMS calculation unit 401 calculates using a predetermined interval of 3 seconds or 5 seconds according to the state of the first potential difference signal or the second potential difference signal. .
  • the third embodiment as an example of the state of the first potential difference signal or the second potential difference signal, a case where the strength of the potential difference signal or the waveform of the potential difference signal is used will be described as an example.
  • the description of the same points as those of the noise processing apparatus according to the second embodiment will be omitted.
  • FIG. 15 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the third embodiment.
  • the noise processing device 200 a includes a waveform storage unit 301 in addition to the configuration of the noise processing device 200 described with reference to FIG. 2.
  • the waveform storage unit 301 stores the interval in association with the waveform of the potential difference signal. Information stored by the waveform storage unit 301 is used by the RMS calculation unit 401.
  • An example of the waveform of the potential difference signal stored in the waveform storage unit 301 according to the third embodiment will be described with reference to FIG.
  • FIG. 16 is a diagram illustrating an example of the waveform of the potential difference signal stored by the waveform storage unit according to the third embodiment.
  • FIG. 16 shows an example of a potential difference signal measured when the subject sits back.
  • the vertical axis indicates the value of the potential difference signal
  • the horizontal axis indicates the time axis.
  • the value of the potential difference signal varies greatly locally.
  • the waveform storage unit 301 stores a short interval in association with the waveform of the potential difference signal as shown in FIG. 16 as compared with the case where the waveform of the potential difference signal does not vary greatly locally. For example, the waveform storage unit 301 stores “2 seconds” in association with the waveform of the potential difference signal as shown in FIG.
  • FIG. 17 is a diagram for explaining the intervals associated with the waveform of the potential difference signal as shown in FIG.
  • FIG. 17 shows an example of the RMS calculated from the potential difference signal shown in FIG.
  • the vertical axis indicates the RMS value
  • the horizontal axis indicates the time axis.
  • the horizontal axis in FIG. 17 corresponds to the horizontal axis in FIG.
  • the value of the potential difference signal greatly fluctuates locally.
  • the RMS value also varies greatly locally.
  • the calculated RMS value becomes a small value when viewed from the part that has fluctuated greatly locally, and is large locally. It will be a large value when viewed from the non-fluctuating part. For this reason, it is desirable to calculate the RMS using the part that has largely fluctuated without using the part that does not fluctuate locally for the part that greatly fluctuates locally in the potential difference signal.
  • the RMS calculation unit 401 has a locally large variation portion and a locally large variation portion as described later. It is possible to calculate the RMS by distinguishing from a portion that has not changed.
  • the waveform storage unit 301 stores “2 seconds” in association with the waveform of the potential difference signal as shown in FIG. 16 will be described as an example.
  • the waveform storage unit 301 may store a value indicating an interval shorter than 2 seconds, may store a value indicating an interval longer than 2 seconds, or may store an arbitrary value.
  • the time interval of the waveform of the potential difference signal is used as a value stored in association with the waveform of the potential difference signal.
  • a characteristic waveform that is, a waveform pattern, is detected for 1 second from 29 to 30 and 1 second from 31 to 32 on the horizontal axis.
  • the interval between 29 and 30 and 1 second which is the interval between 31 and 32, may be stored in association with the waveform.
  • 3 seconds from 29 to 32 may be stored in association with the waveform.
  • a large local fluctuation of the potential difference signal can be regarded as the operating time of the subject.
  • the interval for calculating the RMS can be set according to the time required for the movement of the subject.
  • the waveform storage unit 301 stores a value indicating an interval in association with the waveform of the potential difference signal as an example, but the present invention is not limited to this.
  • the waveform storage unit 301 may store information indicating that the interval is shortened or information indicating that the interval is increased in association with the waveform of the potential difference signal.
  • the RMS calculation unit 401 calculates the strength of the potential difference signal at different predetermined intervals according to the state of the first potential difference signal or the second potential difference signal. Specifically, the RMS calculation unit 401 calculates the strength of the potential difference signal at different predetermined intervals according to the waveform and strength of the first potential difference signal and the second potential difference signal.
  • the RMS calculation unit 401 calculates the strength of the potential difference signal at different predetermined intervals according to the waveform pattern of the first potential difference signal and the second potential difference signal. For example, the RMS calculation unit 401 determines whether the waveform of the first potential difference signal or the second potential difference signal matches the waveform of the potential difference signal stored in the waveform storage unit 301. If the RMS calculation unit 401 determines that they match, the RMS calculation unit 401 reads information associated with the waveform of the matched potential difference signal from the waveform storage unit 301. Then, the RMS calculation unit 401 changes the interval according to the read information.
  • the RMS calculation unit 401 determines that the waveform pattern of the first potential difference signal or the second potential difference signal matches the waveform of the potential difference signal shown in FIG. 16, the RMS calculation unit 401 reads “2 seconds” from the waveform storage unit 301. The RMS calculation unit 401 changes the interval from “5 seconds” to “2 seconds”. As a result, thereafter, the RMS calculation unit 401 calculates the intensity of the potential difference signal every 2 seconds using the potential difference signal from 2 seconds before to the processing time point.
  • a case will be described in which execution is performed according to the intensity of the first potential difference signal or the second potential difference signal.
  • the RMS calculator 401 determines that the intensity of the first potential difference signal or the second potential difference signal is smaller than the threshold for a predetermined period.
  • the intensity is calculated using a longer interval compared to the case without it.
  • the threshold value used by the RMS calculation unit 401 is also referred to as an intensity calculation threshold value.
  • the intensity calculation threshold is “200 mV”, “1 minute” is used as the predetermined period, and “5 seconds” is used as the interval.
  • the RMS calculation unit 401 determines whether the RMS value is smaller than “200 mV” for one minute or more.
  • the RMS calculation unit 401 changes the interval from “5 seconds” to “10 seconds”. As a result, thereafter, the RMS calculation unit 401 calculates the intensity of the potential difference signal every 10 seconds using the potential difference signal from 10 seconds before to the processing time point.
  • the RMS calculation unit 401 when the intensity of the first potential difference signal or the second potential difference signal is greater than the threshold, the intensity of the first potential difference signal or the second potential difference signal is not greater than the threshold.
  • the intensity is calculated using a shorter interval than the case.
  • the intensity calculation threshold is “200 mV” and the case where “5 seconds” is used as the interval will be described in detail.
  • the RMS calculation unit 401 determines whether or not a value larger than “200 mV” is obtained as a calculation result. When the RMS calculation unit 401 determines that a large value is obtained, the RMS calculation unit 401 changes the interval from “5 seconds” to “3 seconds”. As a result, the RMS calculation unit 401 thereafter calculates the intensity of the potential difference signal every 3 seconds using the potential difference signal from 3 seconds before to the processing time point.
  • FIG. 18 is a flowchart illustrating an example of the flow of interval change processing by the RMS calculation unit according to the third embodiment.
  • an example will be described in which different predetermined intervals are used depending on the strengths of the first potential difference signal and the second potential difference signal.
  • the intensity calculation threshold is “200 mV”
  • the predetermined period is “1 minute”
  • “5 seconds” is used as an interval
  • the RMS calculation unit 401 determines whether the calculation result is smaller than the threshold for strength calculation (Step S202). For example, the RMS calculation unit 401 determines whether it is smaller than “200 mV”.
  • the RMS calculation unit 401 determines whether the value is smaller than a predetermined period (Step S203).
  • the RMS calculation unit 401 changes the interval to a short value (Step S204). For example, the RMS calculation unit 401 changes “5 seconds” to “3 seconds”. Note that the RMS calculation unit 401 does not change the interval unless it is determined to be smaller than the predetermined period (No in step S203).
  • the RMS calculation unit 401 does not determine that the calculation result is smaller than the intensity calculation threshold (No in step S202), that is, if the calculation result is larger than the intensity calculation threshold, the interval is changed to a longer value (step S205). ). For example, the RMS calculation unit 401 changes “5 seconds” to “10 seconds”.
  • the noise processing device 200a calculates the intensity at different predetermined intervals according to the states of the first potential difference signal and the second potential difference signal, and thus is included in the potential difference signal. Noise can be reduced appropriately. For example, when the value of RMS increases, that is, when the intensity of noise included in the potential difference signal increases, the influence of noise is quickly suppressed by calculating RMS after shortening the interval. Is possible. Also, if the RMS value is stable within the threshold, it is possible to reduce the number of calculations by calculating the RMS after increasing the interval.
  • Example 4 describes a case where the noise processing device 200b is provided in a vehicle and the intensity calculation threshold is changed according to the speed of the vehicle.
  • the RMS calculation unit 401 uses “300 mV” as the intensity calculation threshold when the vehicle speed is high, and uses “300 mV” as the intensity calculation threshold when the vehicle speed is low. The case of using “100 mV” will be described.
  • Briefly explain the significance of changing according to speed. It is considered that the contact state between the subject and the electrode changes when the subject moves the body or the device vibrates.
  • the strength of the potential difference signal varies depending on the impedance of the electrode itself and the impedance of the contact portion between the electrode and the subject. It is considered that when the impedance increases, the noise included in the potential difference signal becomes stronger and the strength of the potential difference signal becomes stronger.
  • the impedance of the contact portion is considered to change depending on the contact state between the electrode and the subject. As a result, the strength of the noise included in the potential difference signal changes depending on the vibration of the vehicle and the movement of the subject's body. Further, it is considered that the vibration of the vehicle increases as the speed of the vehicle increases.
  • FIG. 19A is a diagram illustrating an example of a potential difference signal measured during idling.
  • FIG. 19B is a diagram illustrating an example of a potential difference signal measured when traveling on a general road.
  • FIG. 19C is a diagram illustrating an example of a potential difference signal measured when traveling on a highway.
  • FIG. 20A is a diagram for describing an example of RMS calculated during idling.
  • FIG. 20B is a diagram illustrating an example of RMS calculated when traveling on a general road.
  • FIG. 20C is a diagram illustrating an example of RMS calculated when traveling on a highway.
  • the vertical axis indicates the value of the potential difference signal
  • the horizontal axis indicates the time axis.
  • 20A to 20C the vertical axis represents the RMS value
  • the horizontal axis represents the time axis.
  • the horizontal axes of FIGS. 19A to 19C correspond to the horizontal axes of FIGS. 20A to 20C, respectively.
  • the amplitude of the potential difference signal is “idling time ⁇ ordinary road driving ⁇ highway driving time”. That is, the amplitude of the potential difference signal when traveling on a highway is larger than the amplitude of the potential difference signal when traveling on a general road, and the amplitude of the potential difference signal when traveling on a general road is larger than the amplitude of the potential difference signal when idling.
  • the size of the RMS is also “idling time ⁇ ordinary road driving ⁇ highway driving time”. That is, the RMS during highway traveling is greater than the RMS during general road traveling, and the RMS during general road traveling is greater than the RMS during idling.
  • the noise processing device 200b according to the fourth embodiment uses an appropriate intensity calculation threshold according to the vehicle speed by changing the intensity calculation threshold according to the vehicle speed, as described below. It becomes possible to determine the interval.
  • FIG. 21 is a block diagram illustrating an example of the configuration of the noise processing apparatus according to the fourth embodiment.
  • the noise processing device 200b includes a threshold value changing unit 406 in addition to the configuration of the noise processing device 200 described with reference to FIG.
  • the RMS calculation unit 401 determines that the strength of the first potential difference signal or the second potential difference signal is lower than the threshold when the strength of the first potential difference signal or the second potential difference signal is smaller than the threshold by a predetermined period. Also, the intensity is calculated using a longer interval than when the predetermined period is not small. In addition, the RMS calculation unit 401, when the intensity of the first potential difference signal or the second potential difference signal is greater than the threshold value, the intensity of the first potential difference signal or the second potential difference signal is not greater than the threshold value. The intensity is calculated using a short interval compared to. Details of the processing using the intensity calculation threshold value are the same as those in the third embodiment, and thus description thereof is omitted. The RMS calculation unit 401 executes processing using the intensity calculation threshold controlled by the threshold changing unit 406.
  • the threshold value changing unit 406 changes the intensity calculation threshold value to a larger value when the vehicle speed is higher than the predetermined threshold value, compared with a case where the vehicle speed is lower than the predetermined threshold value. Further, the threshold value changing unit 406 changes the intensity calculation threshold value to a smaller value when the vehicle speed is slower than the predetermined threshold value as compared with the case where the vehicle speed is higher than the predetermined threshold value.
  • three traveling states of “when idling”, “when traveling on a general road”, and “when traveling on an expressway” are used as information indicating the speed of the vehicle.
  • the vehicle speed increases in the order of “when idling”, “when traveling on a general road”, and “when traveling on a highway”. In other words, the speed of the vehicle is the fastest of the three when “driving on the highway” and the slowest of the three when “idling”.
  • the threshold value changing unit 406 determines the traveling state of the vehicle. For example, the threshold value changing unit 406 acquires the vehicle speed from the vehicle's MCU (Memory Control Unit), or acquires the current traveling position from the GPS (Global Positioning System).
  • MCU Memory Control Unit
  • GPS Global Positioning System
  • the threshold value changing unit 406 determines that the vehicle is traveling at a high speed when the vehicle speed is 100 km or more, for example. For example, the threshold value changing unit 406 determines that the vehicle is traveling at a low speed when the vehicle speed is 40 km or less. Further, for example, the threshold value changing unit 406 determines that it is idling when the vehicle speed is 0 km and the engine speed is equal to or greater than a predetermined number.
  • an arbitrary threshold value is set. May be used.
  • an arbitrary threshold value may be used.
  • the threshold value changing unit 406 determines the running state of the vehicle using the waveform of the potential difference signal. For example, the threshold value changing unit 406 stores in advance the waveforms of the potential difference signals shown in FIGS. 19A to 19C in association with the traveling state of the vehicle. More specifically, the waveforms of the potential difference signals shown in FIGS. 19A to 19C are stored in the memory in association with “when idling”, “when driving on a general road”, and “when driving on an expressway”, respectively. Then, the threshold value changing unit 406 searches the memory for the waveform of the potential difference signal that matches the potential difference signal measured by the potential measuring unit 204, and obtains the running state corresponding to the waveform of the potential difference signal obtained as a result of the search. .
  • the threshold value changing unit 406 changes the intensity calculation threshold value to a larger value when the vehicle speed is faster than the predetermined threshold value as compared with the case where the vehicle speed is slower than the predetermined threshold value. Further, the threshold value changing unit 406 changes the intensity calculation threshold value to a smaller value when the vehicle speed is slower than the predetermined threshold value as compared with the case where the vehicle speed is higher than the predetermined threshold value. In the following, description will be made using a case where the intensity calculation threshold when traveling on a general road is “200 mV”.
  • Threshold change unit 406 changes to a threshold for intensity calculation that is smaller than when driving on a general road when idling. For example, the intensity calculation threshold is changed to “100 mV” smaller than “200 mV”. Further, the threshold value changing unit 406 changes the intensity calculation threshold value to “200 mV” when traveling on a general road. In addition, the threshold value changing unit 406 changes the intensity calculation threshold value to a value larger than that when driving on a general road when driving on an expressway. For example, the threshold value changing unit 406 changes the value to “300 mV”, which is larger than “200 mV”.
  • the threshold value changing unit 406 uses “100 mV”, “200 mV”, and “300 mV” as the intensity calculation threshold values respectively when “idling”, “road driving”, and “highway driving”.
  • “100 mV”, “200 mV”, and “300 mV” as the intensity calculation threshold values respectively when “idling”, “road driving”, and “highway driving”.
  • the present invention is not limited to this, and any value may be used.
  • the threshold changing unit 406 has described the case where three driving states of “when idling”, “when driving on a general road”, and “when driving on an expressway” are used, but the present invention is limited to this. It is not a thing.
  • the threshold value changing unit 406 may use the traveling speed of the vehicle itself, or may use arbitrary information.
  • the threshold value changing unit 406 may further use other driving states in addition to “when idling”, “when driving on a general road”, and “when driving on a highway”. It is not necessary to use a part of “when driving on an expressway”.
  • FIG. 22 is a flowchart illustrating an example of a process flow by the threshold value changing unit according to the fourth embodiment.
  • a case will be described below in which three traveling states of “when idling”, “when traveling on a general road”, and “when traveling on an expressway” are used as information indicating the speed of the vehicle.
  • the threshold value changing unit 406 when starting the process (Yes at Step S301), determines the state of the vehicle (Step S302). That is, the threshold value changing unit 406 determines whether the vehicle is “idling”, “running on a general road”, or “running on an expressway” using the vehicle speed and the waveform of the potential difference signal.
  • the threshold value changing unit 406 determines that it is during idling (Yes at Step S303), the threshold value changing unit 406 changes the threshold value for intensity calculation to be smaller than that when traveling on a general road (Step S304). For example, the threshold value changing unit 406 changes the intensity calculation threshold value to “100 mV” smaller than “200 mV”. If the threshold value changing unit 406 determines that the vehicle is traveling on a general road (No at Step S303 and Yes at Step S305), the threshold value changing unit 406 changes the threshold value for intensity calculation to be smaller than that when driving on an expressway (Step S306). . For example, the threshold value changing unit 406 changes the value to “200 mV” which is smaller than “300 mV”.
  • the threshold value changing unit 406 determines that the vehicle is traveling on an expressway (No at Step S303, No at Step S305, and Yes at Step S307), the threshold value changing unit 406 changes the threshold value for intensity calculation that is larger than that when driving on a general road. (Step S308). For example, the threshold value changing unit 406 changes the value to “300 mV”, which is larger than “200 mV”. When it is determined that neither “idling”, “road driving”, or “highway driving” (No in step S303, No in step S305, and No in step S307), the threshold changing unit 406 calculates the strength. Do not change the threshold.
  • the noise processing device 200b is provided in the vehicle.
  • the noise processing device 200b calculates the intensity using a longer interval when the intensity of the first potential difference signal or the second potential difference signal is smaller than the threshold by a predetermined period compared to the case where the intensity is not smaller than the predetermined period.
  • the noise processing device 200b calculates the intensity using a shorter interval when the intensity of the first potential difference signal or the second potential difference signal is larger than the threshold, compared to the case where the intensity is not larger than the threshold.
  • the noise processing device 200b changes the intensity calculation threshold, which is a threshold used by the intensity calculation unit, to a larger value when the vehicle speed is higher than the predetermined threshold as compared with a case where the vehicle speed is lower than the predetermined threshold. To do. Further, the noise processing device 200b changes the intensity calculation threshold value to a smaller value when the vehicle speed is slower than the predetermined threshold value, compared to when the vehicle speed is higher than the predetermined threshold value. As a result, it is possible to determine the interval using a threshold value for strength calculation suitable for the traveling speed of the vehicle.
  • the difference calculation unit 403 uses the difference calculated using the potential difference signal acquired at the time after the acquisition time of the potential difference signal to be corrected using the first potential difference signal and the first potential difference signal at the acquisition time. Two potential difference signals may be corrected. In other words, the difference calculation unit 403 corrects the first potential difference signal and the second potential difference signal at the time to be processed by using the difference in the interval at which the acquisition time is located between the start point and the end point. Also good.
  • the first potential difference signal and the second potential difference signal are corrected using a difference calculated using a potential difference signal acquired at a time point after the acquisition time point will be described.
  • FIG. 23A and FIG. 23B are diagrams illustrating a difference calculation unit in the fifth embodiment.
  • 23A and 23B show an example of a potential difference signal.
  • the vertical axis indicates the value of the potential difference signal
  • the horizontal axis indicates the time axis.
  • the interval is “2 seconds” and the potential difference signal at the time of 4 seconds is a correction target.
  • the interval at which the time point of 4 seconds to be corrected is positioned between the start point and the end point is, for example, a time point of 4 seconds is positioned between the start point and the end point, as indicated by 706 in FIG. 23B.
  • the interval is applicable.
  • the start point of the interval corresponds to a time point of 5 seconds
  • the end point of the interval corresponds to a time point of 3 seconds.
  • the significance of using the difference calculated using the potential difference signal acquired at a time point after the acquisition time point will be briefly described.
  • the signal intensity depends on the noise change state. It is thought that the calculation results of are different.
  • the difference for the range including the entire peak at the 4 second time point is compared to the difference for the range not including the entire peak at the 4 second time point, It is considered that the difference in intensity at the peak at 4 seconds is accurately represented.
  • the difference calculation unit 403 corrects the potential difference signal using the difference calculated for the interval at which the time point to be corrected is located between the start point and the end point.
  • the noise processing apparatus 200c will be described.
  • the RMS calculation part 401 demonstrates as an example the case where the intensity
  • the RMS calculation unit 401 calculates in real time will be described as an example, but the present invention is not limited to this.
  • the RMS calculation unit 401 may calculate every second using “2 seconds” as the interval. That is, the RMS calculation unit 401 may calculate using the potential difference signal from the processing time point to 2 seconds before every second.
  • the difference calculation unit 403 corrects the potential difference signal at the time point of 4 seconds by using the difference between the potential difference signals from 2 seconds to 4 seconds at the time point of 4 seconds. It will be.
  • the amplification factor calculation unit 402 calculates a difference in the potential difference signal from 2 seconds to 4 seconds at the time of 4 seconds. Also, as indicated by reference numeral 706 in FIG. 23B, the amplification factor calculation unit 402 calculates the difference for the potential difference signal from 3 seconds to 5 seconds at the time of 5 seconds.
  • the difference calculation unit 403 corrects the first potential difference signal and the second potential difference signal at the acquisition time using the difference calculated using the potential difference signal acquired at the time after the acquisition time. For example, the difference calculation unit 403 corrects the potential difference signal at the time point of 4 seconds using the difference between the potential difference signals from 3 seconds to 5 seconds at the time point of 5 seconds. That is, the potential difference signal is corrected using the difference regarding the interval at which the time point of 4 seconds is located between the start point and the end point. In this case, as a result of correcting the potential difference signal at the time point of 4 seconds using the difference calculated at the time point of 5 seconds, the output processing unit 405 outputs a potential difference signal delayed by 1 second.
  • the difference calculation unit 403 corrects using the difference calculated for the interval at which the acquisition time point is located between the start point and the end point. Therefore, the noise can be appropriately reduced. Is possible.
  • the noise processing device 200d may calculate a difference signal for each of a plurality of intervals including the acquisition point of the potential difference signal to be corrected, and output the difference signal with the least noise. Therefore, in the sixth embodiment, a case where the noise processing device 200d calculates a difference signal for each of a plurality of intervals and outputs a difference signal with the least noise will be described with reference to FIG.
  • FIG. 24 is a flowchart illustrating an example of a process flow performed by the noise processing apparatus 200d according to the fifth embodiment.
  • the potential difference signal at the time of 4 seconds is a correction target will be described as an example.
  • the RMS calculation unit 401 when the potential difference signal is measured (Yes in step S401), the RMS calculation unit 401 performs an interval for each of a plurality of intervals including the acquisition time point of the potential difference signal to be corrected.
  • the intensity of the potential difference signal is calculated using the potential difference signal included in (step S402).
  • the RMS calculation unit 401 calculates the strength of the potential difference signal at a plurality of different intervals such as 2 to 4 seconds, 3 to 5 seconds, 4 to 6 seconds, 2 to 5 seconds, 3 to 6 seconds, and the like. Is calculated. Note that the RMS calculation unit 401 may or may not use different widths of intervals.
  • the amplification factor calculation unit 402 calculates a difference using the intensity of the potential difference signal calculated by the RMS calculation unit 401 for each of a plurality of intervals including the acquisition time point of the potential difference signal to be corrected (step S403). .
  • the amplification factor calculation unit 402 sets the difference “1.49” for intervals of 2 to 4 seconds, 3 to 5 seconds, 4 to 6 seconds, 2 to 5 seconds, 3 to 6 seconds, and the like. “1.3” “1.9” “1.4” “1.8”.
  • the difference calculation unit 403 corrects the potential difference signal at the time of acquiring the potential difference signal to be corrected for each difference calculated by the amplification factor calculation unit 402 (step S404). For example, the difference calculation unit 403 corrects the potential difference signals for the differences “1.49”, “1.3”, “1.9”, “1.4”, and “1.8”, respectively. In other words, the difference calculation unit 403 corrects the potential difference signal using the difference “1.49” and the potential difference signal using the difference “1.3” for the potential difference signal at the time point of 4 seconds. The difference calculation unit 403 similarly corrects the potential difference signal for the differences “1.9”, “1.4”, and “1.8”.
  • the difference calculation unit 403 calculates, for each difference, the first difference signal and the second difference signal for the corrected potential difference signal at the time of acquisition of the potential difference signal to be corrected (step S405). For example, the difference calculation unit 403 calculates the first difference signal and the second difference signal using the potential difference signal corrected using the difference “1.49” for the potential difference signal at the time point of 4 seconds. Similarly, the difference calculation unit 403 calculates the first difference signal and the second difference signal for the differences “1.3”, “1.9”, “1.4”, and “1.8”. .
  • the RMS recalculation unit 404 calculates the intensity of the difference signal for each of the first difference signal and the second difference signal calculated for each difference by the difference calculation unit 403 (step S406). For example, the RMS recalculation unit 404 calculates the intensity of the difference signal for each of the first difference signal and the second difference signal corresponding to the difference “1.49”. In addition, the RMS recalculation unit 404 similarly applies the difference between “1.3”, “1.9”, “1.4”, and “1.8” to the first difference signal and the second difference signal. The intensity of the difference signal is calculated for each.
  • the output processing unit 405 outputs the difference signal having the smallest difference signal intensity among the first difference signal and the second difference signal calculated for each difference (step S407). That is, the output processing unit 405 identifies the smallest strength among the strengths calculated by the RMS recalculation unit 404 and outputs a difference signal corresponding to the identified strength.
  • the difference is calculated for each of a plurality of intervals including the time point to be corrected, and the difference that most reduces noise is used among the plurality of calculated differences. It is possible to reduce well.
  • the output processing unit 405 may calculate the ratio of the heartbeat signal in the two potential difference signals, and select and output the one with the calculated ratio of the heartbeat signal larger than the other.
  • each component of each illustrated apparatus is functionally conceptual, and does not necessarily need to be physically configured as illustrated. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or a part of the distribution / integration may be functionally or physically distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured.
  • the handle electrode 201 and the sheet upper electrode 202 are connected as an external device of the noise processing device via a network (wireless LAN (Local Area Network), etc.) to cooperate. May be.
  • FIG. 25 is a schematic diagram illustrating an example of a computer that executes a noise processing program according to the second embodiment.
  • the computer 3000 includes an input / output interface 3001, a communication unit 3006, a CPU 3010, and a ROM 3011.
  • the computer 3000 includes an HDD (Hard Disk Drive) 3012 and a RAM (Random Access Memory) 3013. Further, the computer 3000 is connected to each other by a bus 3009.
  • the computer 3000 is connected to the potential measuring device 4001 via the input / output interface 3001. Note that the potential measuring device 4001 corresponds to the potential measuring unit 204.
  • the ROM 3011 is a control program that exhibits the same functions as the RMS calculator 401, the amplification factor calculator 402, the difference calculator 403, the RMS recalculator 404, and the output processor 405 described in the second embodiment. Is stored in advance. That is, as shown in FIG. 25, the ROM 3011 stores in advance an RMS calculation program 3011a, an amplification factor calculation program 3011b, a difference calculation program 3011c, an RMS recalculation program 3011d, and an output processing program 3011e. Note that these programs 3011a to 3011e may be appropriately integrated or separated as in the case of each component of the noise processing apparatus 200 shown in FIG.
  • the CPU 3010 reads these programs 3011a to 3011e from the ROM 3011 and executes them.
  • the programs 3011a to 3011c function as an RMS calculation process 3010a, an amplification factor calculation process 3010b, and a difference calculation process 3010c.
  • the programs 3011d to 3011e function as an RMS recalculation process 3010d and an output processing process 3010e.
  • Each process 3010a to 3010e corresponds to the RMS calculator 401, the amplification factor calculator 402, the difference calculator 403, the RMS recalculator 404, and the output processor 405 shown in FIG. .
  • the CPU 3010 executes a noise processing program using the data stored in the RAM 3013.
  • the CPU 3010 uses first potential difference signal data 3013a, second potential difference signal data 3013b, potential difference signal intensity data 3013c, difference data 3013d, and first difference signal data 3013e.
  • the CPU 3010 uses the second difference signal data 3013f.
  • the noise processing program described in the present embodiment can be distributed via a network such as the Internet.
  • the noise processing program can also be executed by being recorded on a computer-readable recording medium such as a hard disk, a flexible disk (FD), a CD-ROM, an MO, and a DVD, and being read from the recording medium by the computer.
  • a computer-readable recording medium such as a hard disk, a flexible disk (FD), a CD-ROM, an MO, and a DVD

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Signal Processing (AREA)
  • Child & Adolescent Psychology (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 ノイズ処理装置は、装置の操舵部とは別の箇所に設けられた第1の電極と、基準電極として用いられる第2の電極との間の第1の電位差信号を測定し、装置の操舵部に設けられた第3の電極と第2の電極との間の第2の電位差信号を測定する。ノイズ処理装置は、第1の電位差信号の強度と第2の電位差信号の強度とを、所定間隔ごとに算出する。ノイズ処理装置は、所定間隔ごとに算出された第1の電位差信号の強度と第2の電位差信号の強度との差を算出する。ノイズ処理装置は、第1の電位差信号の強度と第2の電位差信号の強度との差が無くなる方向に、算出した差を用いて所定間隔ごとに第1の電位差信号や第2の電位差信号を補正する。ノイズ処理装置は、所定間隔ごとに補正された後の電位差信号を用いて、第1の電位差信号と第2の電位差信号との間の差分を示す差分信号を算出する。また、ノイズ処理装置は、差分信号を出力する。

Description

ノイズ処理装置及びノイズ処理プログラム
 本発明は、ノイズ処理装置及びノイズ処理プログラムに関する。
 被験者の脈拍や心拍の状態を用いて、被験者の生理状態を検出する検出装置がある。例えば、車両に設けられた検出装置は、運転者の生理状態を検出することで、生理状態悪化による事故発生を抑止する。
 例えば、検出装置は、被験者と接触した2つの電極間の電位差信号を測定し、測定した電位差信号から被験者の脈拍や心拍を示す心電信号を識別する。そして、検出装置は、識別した心電信号を用いて、被験者の生理状態として眠気や覚醒度などを検出する。
 例えば、被験者に接触される電極は、車両の操舵部(ハンドル)や座面などに設けられる。座面に設けられた電極は、被験者が座席に座わることで、被験者の臀部と接触する。ハンドルに設けられた電極は、被験者がハンドルを握ることで、被験者の手と接触する。
 ここで、電位差信号に含まれるノイズを減少させる減少処理を実行する処理装置がある。処理装置が設けられた車両は、基準電位として用いられる電極と、操舵部に設けられた電極と、座面に設けられた電極とを有する。処理装置は、基準電位として用いられる電極と操舵部に設けられた電極との間の電位差信号を測定し、基準電位として用いられる電極と座面に設けられた電極との間の電位差信号を測定する。そして、処理装置は、2つの電位差信号の差を算出することで、電位差信号に含まれるノイズを減少させる。
 なお、心拍ごとに心拍間隔を算出し、心拍間隔の標準偏差や逐次差分の2乗平均(root means square of successive difference)を算出することで、算出した心拍間隔から不規則な心拍間隔を除去する装置がある。
特開2009-142576号公報 特開2006-198403号公報
 しかしながら、上述の処理装置では、電位差信号に含まれるノイズが適切に減少しなかったという課題があった。具体的には、被験者が体を動かしたり装置が振動したりした場合に、ノイズの減少量は、被験者が体を動かしていなかったり装置が振動しない場合と比較して少なかった。
 開示の技術は、上記に鑑みてなされたものであって、電位差信号に含まれるノイズを適切に減少可能であるノイズ処理装置及びノイズ処理プログラムを提供することを目的とする。
 開示するノイズ処理装置は、一つの態様において、装置の操舵部とは別の箇所に設けられた第1の電極と、基準電極として用いられる第2の電極との間の第1の電位差信号を測定する第1の測定部を有する。また、ノイズ処理装置は、前記装置の操舵部に設けられた第3の電極と前記第2の電極との間の第2の電位差信号を測定する第2の測定部を有する。また、ノイズ処理装置は、前記第1の測定部によって測定された第1の電位差信号の強度と、前記第2の測定部によって測定された第2の電位差信号の強度とを、所定間隔ごとに算出する強度算出部を有する。また、ノイズ処理装置は、前記強度算出部によって所定間隔ごとに算出された前記第1の電位差信号の強度と前記第2の電位差信号の強度との差を算出する差算出部を有する。また、ノイズ処理装置は、前記第1の電位差信号の強度と前記第2の電位差信号の強度との差が無くなる方向に、前記差算出部によって算出された差を用いて所定間隔ごとに該第1の電位差信号及び/又は該第2の電位差信号を補正する補正部を有する。また、ノイズ処理装置は、前記補正部によって所定間隔ごとに補正された後の電位差信号を用いて、前記第1の電位差信号と前記第2の電位差信号との間の差分を示す差分信号を算出する差分算出部を有する。また、ノイズ処理装置は、前記差分算出部によって算出された差分信号を出力する出力処理部を有する。
 開示するノイズ処理装置の一つの態様によれば、電位差信号に含まれるノイズを適切に減少可能であるという効果を奏する。
図1は、実施例1に係るノイズ処理装置の構成の一例について説明するブロック図である。 図2は、実施例2に係るノイズ処理装置の構成の一例について説明するブロック図である。 図3は、実施例2におけるハンドル電極の一例について説明する図である。 図4は、車両のシートに設けられたシート上部電極やシート下部電極の一例について説明する図である。 図5は、実施例2における電位測定部により測定される電位について説明する図である。 図6Aは、実施例2における第1の電位差信号の一例について説明する図である。 図6Bは、実施例2における第2の電位差信号の一例について説明する図である。 図7は、RMSを算出する数2について説明する図である。 図8は、実施例2における差分算出部による補正について説明する図である。 図9Aは、実施例2における差分算出部による減算処理について説明する図である。 図9Bは、実施例2における差分算出部による加算処理について説明する図である。 図10は、実施例2における出力処理部による処理について説明する図である。 図11は、差分信号に含まれる心拍信号の一例について説明する図である。 図12は、実施例2に係るノイズ処理装置による処理の流れの一例について説明するフローチャートである。 図13Aは、実施例2の効果の一例について説明する図である。 図13Bは、実施例2の効果の一例について説明する図である。 図13Cは、実施例2の効果の一例について説明する図である。 図14は、極性と電位差信号の位相との関係について説明する図である。 図15は、実施例3に係るノイズ処理装置の構成の一例について説明するブロック図である。 図16は、実施例3における波形記憶部によって記憶された電位差信号の波形の一例について説明する図である。 図17は、図16に示すような電位差信号の波形に対応付けられた間隔について説明する図である。 図18は、実施例3におけるRMS算出部により間隔変更処理の流れの一例について説明するフローチャートである。 図19Aは、アイドリング時に測定される電位差信号の一例について説明する図である。 図19Bは、一般道走行時に測定される電位差信号の一例について説明する図である。 図19Cは、高速道路走行時に測定される電位差信号の一例について説明する図である。 図20Aは、アイドリング時に算出されるRMSの一例について説明する図である。 図20Bは、一般道走行時に算出されるRMSの一例について説明する図である。 図20Cは、高速道路走行時に算出されるRMSの一例について説明する図である。 図21は、実施例4に係るノイズ処理装置の構成の一例について説明するブロック図である。 図22は、実施例4における閾値変更部による処理の流れの一例について説明するフローチャートである。 図23Aは、実施例5における差分算出部について説明する図である。 図23Bは、実施例5における差分算出部について説明する図である。 図24は、実施例5に係るノイズ処理装置による処理の流れの一例を示すフローチャートである。 図25は、実施例2に係るノイズ処理プログラムを実行するコンピュータの一例について説明する図である。
 以下に、開示するノイズ処理装置及びノイズ処理プログラムの実施例を図面に基づいて詳細に説明する。なお、本実施例により開示する発明が限定されるものではない。各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
 図1を用いて、実施例1に係るノイズ処理装置100の構成の一例について説明する。図1は、実施例1に係るノイズ処理装置の構成の一例について説明するブロック図である。ノイズ処理装置100は、図1に示す例では、第1の測定部101と、第2の測定部102と、強度算出部103と、差算出部104と、補正部105と、差分算出部106と出力処理部107とを有する。
 第1の測定部101は、装置の操舵部とは別の箇所に設けられた第1の電極と、基準電極として用いられる第2の電極との間の第1の電位差信号を測定する。また、第2の測定部102は、装置の操舵部に設けられた第3の電極と第2の電極との間の第2の電位差信号を測定する。第1の電極が設けられる箇所は、操舵部を利用する操作者の心臓の位置に対して操舵部とは反対側で、操作者に電気的に接触できる箇所であれば良い。一例として、操舵部を利用する操作者が腰掛けるシートの座面に設けることが考えられる。
 強度算出部103は、第1の測定部101によって測定された第1の電位差信号の強度と、第2の測定部102によって測定された第2の電位差信号の強度とを、所定間隔ごとに算出する。そして、差算出部104は、強度算出部103によって所定間隔ごとに算出された第1の電位差信号の強度と第2の電位差信号の強度との差を算出する。
 そして、補正部105は、第1の電位差信号の強度と第2の電位差信号の強度との差が無くなる方向に、差算出部104によって算出された差を用いて所定間隔ごとに第1の電位差信号や第2の電位差信号を補正する。そして、差分算出部106は、補正部105によって所定間隔ごとに補正された後の電位差信号を用いて、第1の電位差信号と第2の電位差信号との間の差分を示す差分信号を算出する。そして、出力処理部107は、差分算出部106によって算出された差分信号を出力する。ここで、出力処理部107によって出力される差分信号は、第1の電極と第3の電極との間の電位差を示す電位差信号であり、心臓を挟む2つの位置と接触した電極間の電位差信号となる。差分信号は、電位差信号とも称される。
 すなわち、実施例1によれば、心臓を挟む2つの位置にて被験者と電極とが接触した状態にて、電極ごとに測定した電位信号の強度を同じに補正した上で差分信号を算出する。この結果、実施例1によれば、心臓を挟む2つの位置と接触した電極間の電位差信号から、ノイズを適切に減少可能である。具体的には、被験者が体を動かしたり装置が振動したりした場合であっても、被験者が体を動かさなかったり装置が振動しなかったりした場合と同じように、ノイズを減少可能である。
 ここで、被験者が体を動かしたり装置が振動したりした場合に、ノイズの減少量は、被験者が体を動かしていなかったり装置が振動しなかった場合と比較して少なくなる理由について検討する。まず、2つの電位差信号の差を算出することでノイズを減少させる場合には、2つの電位差信号の強度が同じでなければ、各電位差信号に含まれるノイズの強度が同じにならず、2つの電位差信号の差を算出したとしてもノイズが適切に減少しない。ここで、例えば、電極の面積を調整することで、2つの電位差信号の強度が同じになるように調整する手法がある。
 電位差信号の強さは、電極自体のインピーダンスや、電極と被験者との接触部のインピーダンスによって変化する。インピーダンスが上がると、電位差信号に含まれるノイズが強くなり、心拍に起因する電位差信号に加算されるため、電位差信号の強さも強くなる。接触部のインピーダンスは、電極と被験者との接触状態によって変化する。ここで、被験者が体を動かしたり、装置が振動したりすることで、座面に設けられた電極と被験者との接触状態は、操舵部に設けられた電極と被験者との接触状態と比較して簡単に変化すると考えられる。
 つまり、座面に設けられた電極と被験者との接触状態は、操舵部に設けられた電極と被験者との接触状態と比較して変化しやすく、座面に設けられた電極のインピーダンスは、操舵部に設けられた電極のインピーダンスと比較して変化しやすいと考えられる。そして、座面に設けられた電極からの電位差信号と、操舵部に設けられた電極からの電位差信号とが同じように変化しないと、各電位差信号に含まれるノイズの強度が異なってくると考えられる。この結果、2つの電位差信号の差分を算出したとしても、差分信号に含まれるノイズが上手く相殺されずにノイズが減少しなかったと考えられる。
 このことを踏まえ、実施例1によれば、2つの電位差信号の強度を同じに補正した上で差分を算出するので、差分信号に含まれるノイズを適切に減少可能である。つまり、実施例1によれば、2つの電位差信号が異なる変化をしたとしても、ノイズを適切に減少可能である。
[ノイズ処理装置の構成]
 次に、実施例2に係るノイズ処理装置200について説明する。図2を用いて、実施例2に係るノイズ処理装置200の構成の一例について説明する。図2は、実施例2に係るノイズ処理装置の構成の一例について説明するブロック図である。ノイズ処理装置200は、図2に示す例では、ハンドル電極201と、シート上部電極202と、シート下部電極203と、電位測定部204と、出力部205と、記憶部300と、制御部400とを有する。
(電極)
 以下では、特に言及しない限り、第2の電極としてハンドル電極201が車両のハンドルに設けられ、第1の電極としてシート上部電極202と第3の電極としてシート下部電極203とが車両のシート座面に設けられる場合を例に説明する。また、電位を測定する対象となる人を被験者と呼ぶことにする。しかしながら、本発明はこれに限定されるものではない。ハンドル電極201およびシート上部電極202とも、被験者が、電位を計測する対象となる期間において、継続して被験者に電気的に接触できる場所に設けられれば良い。例えば、被験者が装置の操作を行なっている間の心電に関する電位を計測する場合、被験者が操作をする動作の中で自然に被験者と電気的に接触できる場所にハンドル電極201およびシート上部電極202を設けることが考えられる。このような場所にハンドル電極201およびシート上部電極202を設ければ、被験者が意図的に電位を計測するための手間をとることを必要としないで済む。
 また、ハンドル電極201とシート上部電極202とは、被験者の心臓を間に挟む2つの位置に設けられれば良い。例えば、ハンドル電極201とシート上部電極202とは、車両のハンドルとシートの背もたれとにそれぞれ設けられても良く、任意の位置を組み合わせて良い。また、シート上部電極202とシート下部電極203とは、被験者の心臓を間に挟む2つの位置の一方に両方が設けられれば良い。例えば、シート上部電極202とシート下部電極203とは、シートの背もたれに設けられても良く、任意の場所に設けられて良い。被験者が立ったままの状態で電位を計測するのであれば、シート上部電極202とシート下部電極203とは、例えば、被験者が踏む場所に設けられても良い。
 ハンドル電極201は、電位測定部204と接続される。なお、ハンドルは、操舵部やステアリングホイールとも称される。図3を用いて、ハンドル電極201の構造の一例について説明する。図3は、実施例2におけるハンドル電極の一例について説明する図である。図3の501は、ハンドルを示す。図3の「1」及び「2」は、それぞれ、ハンドル電極201を示す。図3の(1)に示すように、2個のハンドル電極201が、ハンドル501の円周方向に沿って均等な大きさで設けられた場合を例に示した。以下では、「2」個あるハンドル電極201それぞれについて、ハンドル電極「1」やハンドル電極「2」と記載する。
 なお、以下では、特に言及しない限り、ハンドル電極201は、ハンドル501に2個設けられる場合を例に説明する。しかしながら、本発明はこれに限定されるものではなく、ハンドル501に1個設けられても良く、3個以上設けられても良く、任意の数設けられて良い。
 ハンドル電極201は、ハンドル501が被験者に握られることで、被験者と電気的に接触する。図3の(2)に示す例では、ハンドル電極「1」は被験者の右手と接触し、ハンドル電極「2」は被験者の左手と接触する。
 シート上部電極202とシート下部電極203とについて説明する。シート上部電極202とシート下部電極203とは、電位測定部204と接続される。シート上部電極202は、ハンドル501に設けられた電極とは別の箇所に設けられる。例えば、シート上部電極202とシート下部電極203とは、車両のシート502に設けられる。シート下部電極203は、アースと接地され、車両の電位と等しくなる。シート下部電極203は、ノイズ処理装置100によって基準電極として用いられる。
 図4を用いて、車両のシート502に設けられたシート上部電極202やシート下部電極203の一例について説明する。図4は、車両のシートに設けられたシート上部電極やシート下部電極の一例について説明する図である。図4の(1)は、車両のシート上部から見た図であり、図4の(2)は、車両のシートの断面図である。図4において、502は車両のシートを示し、503はシート502の部材であるシート部材を示し、504はシート下部電極203を示し、505は絶縁層を示し、506と507とはシート上部電極202を示す。また、図4において、508は保護部材を示し、509は導電部を示す。
 図4に示す例では、シート部材503上に、シート下部電極504、絶縁層505、シート上部電極506や507、保護部材508が順に積層される。また、保護部材508には、導電部509が設けられる。導電部509は、シート上部電極506や507と接続される。例えば、保護部材508は、開口部を有し、導電部509は、開口部の内壁に設けられる。図4に示す例では、図4の506と507とに示すように、シート上部電極506や507は、2つに分離している場合を例に示した。この場合、シート上部電極506と507とは、それぞれ、被験者の臀部の右側と左側とに対応する。シート下部電極504は、絶縁層505を介してシート上部電極506や507と対向する。なお、シート上部電極202は、複数に分離している場合に限定されるものではなく、分離していなくても良い。
 なお、以下では、2つに分離したシート上部電極506と507とを区別しない場合を例に説明するが、本発明はこれに限定されるものではない。例えば、2つに分離したシート上部電極506と507と、それぞれ電気的に独立し、後述する電位測定部204が、シート上部電極506と507とについて、別個に電位を測定しても良い。
 図2の説明に戻る。シート上部電極202は、被験者がシート502に着座することで被験者と電気的に接触する。図4に示す例では、被験者がシート502に着座する結果、シート上部電極202が導電部509を介して被験者の臀部と接触する。なお、実施例2では、特に言及しない限り、シート上部電極202が被験者と接触した場合を例に説明する。つまり、実施例2では、被験者がシート502に着座した場合を例に説明する。
(電位測定部)
 電位測定部204は、ハンドル電極201、シート上部電極202、シート下部電極203及び制御部400と接続される。電位測定部204は、オペアンプが該当する。電位測定部204は、被験者の心臓を間に挟む2つの位置の電位をそれぞれ測定する。具体的には、電位測定部204は、車両の電位を基準電位とした場合におけるハンドル電極201やシート上部電極202の電位をそれぞれ測定する。つまり、電位測定部204は、ハンドル電極「1」やハンドル電極「2」の電位を測定することで被験者の手の電位を測定し、シート上部電極202の電位を測定することで被験者の臀部の電位を測定する。
 より詳細には、電位測定部204は、基準電位として用いられるシート下部電極203とシート上部電極202との間の電位差を測定し、測定した電位差をシート上部電極202の電位とする。また、電位測定部204は、基準電位として用いられるシート下部電極203とハンドル電極201との間の電位差を測定し、測定した電位差をハンドル電極201の電位とする。
 以下では、ある瞬間の電位差の値に限定せず、ある時間位置から継続して測定された電位差の値各々を電位差信号と記載する。また、電位測定部204によってシート上部電極202について測定された電位差信号を第1の電位差信号と称する。電位測定部204によってハンドル電極201について測定された電位差信号を第2の電位差信号と称する。
 図5を用いて、電位測定部204により測定される電位について更に説明する。図5は、実施例2における電位測定部により測定される電位について説明する図である。図5では、説明の便宜上、「2」個あるハンドル電極201が、それぞれ、被験者の左右の手によって接触された場合を例に説明する。
 被験者の心臓から腕までは、電気的には抵抗成分とみなせる。被験者の手は、電気的にはRC(resistor capacitor)並列回路とみなせる。被験者の心臓から臀部までは電気的には抵抗成分とみなせる。また、ズボンやスカートなどの着衣は電気的にはRC並列回路とみなせる。この結果、被験者自身を含む等価回路は図5に示すようになる。図5において、510から512は、オペアンプを示し、電位測定部204に対応する。513は被験者の心臓を示す。514は、被験者の心臓513から右腕までの抵抗成分を示す。515は、右手に対応するRC並列回路を示す。516は、被験者の心臓513から左腕までの抵抗成分を示す。517は、左手に対応するRC並列回路を示す。518は、心臓513から臀部までの抵抗成分を示す。519は、被験者の衣服に対応するRC並列回路を示す。
 図5に示すように、オペアンプ510は、2つの入力を有する。オペアンプ510は、一方の入力に対して、抵抗514とRC並列回路515とを経由して心臓513の心筋活動電位がハンドル電極「1」から入力され、他方の入力に対して、基準電位となる車体の電位がシート下部電極203から入力される。そして、オペアンプ510は、車体フレームの電位を基準電位とした場合における心筋活動電位を増幅した上で出力する。つまり、図5に示す例では、オペアンプ510は、被験者の右手から心筋活動電位を検知し、検出した心筋活動電位を増幅した上で出力する。
 また、オペアンプ511は、オペアンプ510と同様に、抵抗516とRC並列回路517とを経由して心臓513の心筋活動電位がハンドル電極「2」から入力され、心筋活動電位を増幅した上で出力する。つまり、オペアンプ511は、被験者の左手から心筋活動電位を検知し、増幅した上で出力する。
 また、オペアンプ512は、オペアンプ510と同様に、抵抗518とRC並列回路519とを経由して心臓513の心筋活動電位がシート上部電極202から入力され、心筋活動電位を増幅した上で出力する。つまり、オペアンプ512は、被験者の臀部から心筋活動電位を検知し、増幅した上で出力する。
 なお、オペアンプ510~512が心筋活動電位を増幅した上で送るのは、車体フレームの電位を基準電位とした場合における心筋活動電位が微弱だからである。また、オペアンプ510~512は、固定の増幅率を用いて増幅する。また、被験者の臀部から検知される心筋活動電位は、RC並列回路519を介して検知される結果、つまり、被験者の衣服を介して検知される結果、被験者の手から検知される心筋活動電位と比較して小さい。言い換えると、被験者の臀部から検知される心筋活動電位は、被験者の手から検知される心筋活動電位と比較して、ノイズが大きい。
 図6Aと図6Bとを用いて、電位測定部204によって測定された第1の電位差信号と第2の電位差信号の一例について説明する。図6Aは、実施例2における第1の電位差信号の一例について説明する図である。図6Bは、実施例2における第2の電位差信号の一例について説明する図である。601は、第1の電位差信号の一例を示し、602は、第2の電位差信号の一例を示す。601や602において、縦軸は電位差信号の値を示し、横軸は時間軸を示す。なお、以下では、時間軸は、処理を開始した時点を示す「0」からの経過時間を示すものとして説明する。また、611は、第1の電位差信号の振幅を示し、図6Aの611に示す例では、約40mVとなっている。612は、第2の電位差信号の振幅を示し、図6Bの612に示す例では、約25mVとなっている。
 出力部205は、制御部400と接続される。出力部205は、制御部400から情報を受け付け、受け付けた情報を出力する。なお、出力部205によって出力される情報の詳細については、ここでは説明を省略し、関係する各部について説明する際に併せて説明する。
(記憶部)
 記憶部300は、制御部400と接続される。記憶部300は、制御部400による各種処理に用いるデータを記憶する。記憶部300は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、又は、ハードディスクや光ディスクなどの記憶装置である。
(制御部)
 制御部400は、電位測定部204、出力部205及び記憶部300と接続される。制御部400は、各種の処理手順などを規定したプログラムを記憶する内部メモリを有し、種々の処理を制御する。制御部400は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、CPU(Central Processing Unit)、MPU(Micro Processing Unit)などの電子回路である。制御部400は、図2に示す例では、RMS算出部401と、増幅倍率算出部402と、差分算出部403と、RMS再算出部404と、出力処理部405とを有する。なお、RMSは、「Root Mean Square Value」を示す。
 RMS算出部401は、電位測定部204によって測定された第1の電位差信号と第2の電位差信号とについて、それぞれ、電位差信号の強度を所定間隔ごとに算出する。なお、RMS算出部401は、強度算出部とも称する。例えば、RMS算出部401は、3秒ごとに、3秒前から処理時点までの電位差信号を用いて、電位差信号の強度を算出する。
 なお、実施例2では、RMS算出部401が3秒ごとに電位差信号の強度を算出する場合を例に説明するが、本発明はこれに限定されるものではない。例えば、RMS算出部401は、4秒ごとに算出しても良く、2秒ごとに算出しても良く、任意の値であって良い。また、例えば、RMS算出部401は、リアルタイムにて、電位差信号の強度を算出し続けても良い。また、実施例2では、RMS算出部401が、処理時点から2秒前までの電位差信号を用いて算出する場合を例に説明するが、本発明はこれに限定されるものではない。例えば、RMS算出部401は、処理時点から3秒前までの電位差信号を用いて算出しても良く、任意の値であって良い。
 また、例えば、RMS算出部401は、電位差信号のRMSを算出することで、電位差信号の強度を算出する。例えば、RMS算出部401は、「数1」や「数2」を用いてRMSを算出する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 「数1」と「数2」とについて簡単に説明する。「数1」や「数2」は、時間「0」から「T」までにおけるRMSを算出する式である。「数1」や「数2」の「i」は、電位差信号の値を示す。つまり、「数1」は、「i」の2乗について時間「0」から「T」までの平均値を算出し、算出した平均値の平方根を算出することを示す。
 「数2」について、図7を用いて説明する。図7は、RMSを算出する数2について説明する図である。図7の(1)は、電位測定部204によって測定された電位差信号の一例を示す。図7の(2)は、電位測定部204によって測定された電位差信号にかかっているオフセットを示す。図7の(3)は、電位測定部204によって測定された電位差信号の平均強度を示す。図7の(4)は、電位測定部204によって測定された電位差信号からオフセットを除去した電位差信号の一例を示す。
 ここで、図7の(1)や(2)に示すように、電位測定部204によって測定された電位差信号には、オフセットがかかっている。このため、図7の(4)に示すように、RMS算出部401は、電位差信号からオフセットを除去した上でRMSを算出しても良い。つまり、「数2」は、「iから(iの平均値)を減算した値」の2乗について時間「0」から「T」までの平均値を算出し、算出した平均値の平方根を算出することを示す。なお、(iの平均値)は、図7の(4)に示した電位差信号の平均強度が該当する。
 例えば、RMS算出部401は、図6Aに示した第1の電位差信号についてRMSを算出すると、「1.49mV」が得られる。また、RMS算出部401は、図6Bに示した第2の電位差信号についてRMSを算出すると、「1mV」が得られる。
 増幅倍率算出部402は、RMS算出部401によって所定間隔ごとに算出された第1の電位差信号の強度と第2の電位差信号の強度との差を算出する。具体的には、増幅倍率算出部402は、RMS算出部401によって電位差信号の強度が算出されるごとに、算出された電位差信号の強度の差を算出する。なお、増幅倍率算出部402は、差算出部とも称する。例えば、増幅倍率算出部402は、第1の電位差信号についてのRMS「1.49mV」を、第2の電位差信号についてのRMS「1mV」で除算することで、差「1.49」を算出する。
 差分算出部403は、第1の電位差信号の強度と第2の電位差信号の強度とが同じになるように、増幅倍率算出部402によって算出された差を用いて所定間隔ごとに第1の電位差信号や第2の電位差信号を補正する。なお、差分算出部403は、補正部とも称する。例えば、増幅倍率算出部402が、第1の電位差信号の強度を第2の電位差信号の強度で除算することで差を算出した場合を例に説明する。この場合、差分算出部403は、増幅倍率算出部402によって算出された差「1.49」を用いて、第2の電位差信号を補正する。より詳細には、差分算出部403は、第2の電位差信号を「1.49」で乗算し、乗算結果となる電位差信号を補正後の第2の電位差信号とする。
 図8を用いて、実施例2における差分算出部403による補正について説明する。図8は、実施例2における差分算出部による補正について説明する図である。603は、補正後の第2の電位差信号を示す。603において、縦軸は電位差信号の値を示し、横軸は時間軸を示す。613は、補正後の第2の電位差信号の振幅を示し、図8に示す例では、約40mVとなっている。
 ここで、図8の602と603とに示すように、差分算出部403は、補正前の第2の電位差信号を「1.49」で乗算し、乗算結果となる電位差信号を補正後の第2の電位差信号とする。この結果、図8の612に示すように、補正前の第2の電位差信号では、振幅が約25mVであったのに対して、図8の613に示すように、補正後の第2の電位差信号では、振幅が約40mVになる。ここで、図6Aの611に示した例では、第1の電位差信号の振幅は約40mVである。つまり、補正後の第2の電位差信号の強度は、第1の電位差信号の強度と等しくなる。
 なお、上述した説明では、増幅倍率算出部402が、第1の電位差信号の強度を第2の電位差信号の強度で除算することで差を算出する場合について説明した。また、差分算出部403が、増幅倍率算出部402によって算出された差を用いて、第2の電位差信号を補正する場合を例に説明した。しかしながら、本発明はこれに限定されるものではない。すなわち、差分算出部403による補正の結果、第1の電位差信号の強度と第2の電位差信号の強度とが同じになれば良く、任意の手法を用いて良い。例えば、増幅倍率算出部402は、第2の電位差信号の強度を第1の電位差信号の強度で除算することで差を算出し、差分算出部403が、増幅倍率算出部402によって算出された差を用いて、第1の電位差信号を補正しても良い。また、同様に、差分算出部403は、第1の電位差信号と第2の電位差信号との両方を補正することで、第1の電位差信号の強度と第2の電位差信号の強度とが同じになるように補正しても良い。
 また、差分算出部403は、所定間隔ごとに補正された後の電位差信号を用いて、第1の電位差信号と第2の電位差信号との間の差分を示す差分信号を算出する。具体的には、差分算出部403は、第1の電位差信号から第2の電位差信号を減算する減算処理を実行したり、第2の電位差信号から第1の電位差信号を減算する減算処理を実行したりすることで、第1の差分信号を算出する。また、差分算出部403は、第1の電位差信号に第2の電位差信号を加算する加算処理を実行することで第2の差分信号を算出する。
 図9Aと図9Bとを用いて、実施例2における差分算出部403による減算処理と加算処理とについて説明する。図9Aは、実施例2における差分算出部による減算処理について説明する図である。図9Bは、実施例2における差分算出部による加算処理について説明する図である。図9Aを用いて減算処理について説明する際には、第1の電位差信号から第2の電位差信号を減算する場合を例に説明する。
 604は、減算処理の結果得られた第1の差分信号の一例を示し、605は、加算処理の結果得られた第2の差分信号の一例を示す。614は、減算処理の結果得られた第1の差分信号の振幅を示し、604や605において、縦軸は差分信号の値を示し、横軸は時間軸を示す。図9Aに示す例では、約10mVである。615は、加算処理の結果得られた第2の差分信号の振幅を示し、図9Bに示す例では、20mV以上である。また、差分算出部403による補正の結果、加算処理や減算処理の対象となる電位差信号の強度は、共に、約40mVである。
 図9Aについて説明する。図9Aの601や603に示すように、減算処理を実行する場合には、差分算出部403は、例えば、第1の電位差信号から補正後の第2の電位差信号を減算する。この結果、図9Aの604に示すように、差分算出部403は、第1の差分信号を算出する。
 図9Bについて説明する。図9Bの601や603に示すように、加算処理を実行する場合には、差分算出部403は、第1の電位差信号に補正後の第2の電位差信号を加算する。この結果、図9Bの605に示すように、差分算出部403は、第2の差分信号を算出する。なお、差分算出部403が減算処理と加算処理とを実行する意義については、実施例2の効果にて説明するため、ここでは説明を省略する。
 RMS再算出部404は、差分算出部403によって算出された第1の差分信号と第2の差分信号とについて、それぞれ、差分信号の強度を算出する。例えば、RMS再算出部404は、RMS算出部401と同様に、「数1」や「数2」を用いてRMSを算出することで、電位差信号の強度を算出する。例えば、図9Aの604に示した第1の差分信号について、RMSを算出し、図9Bの605に示した第2の差分信号についてRMSを算出する。ここで、図9Aの614や図9Bの615に示す例では、第1の差分信号の振幅は、第2の差分信号の振幅よりも小さい。この結果、第1の差分信号についてのRMSの値は、第2の差分信号についてのRMSの値よりも小さくなる。
 なお、以下では、特に言及しない限り、RMS再算出部404は、RMS算出部401と同様の手法を用いて電位差信号の強度を算出する場合を例に説明するが、本発明はこれに限定されるものではない。すなわち、RMS再算出部404とRMS算出部401とは、それぞれ異なる手法を用いて電位差信号の強度を算出しても良い。
 出力処理部405は、RMS再算出部404によって算出された強度が他方と比較して小さい差分信号を出力部205から出力する。すなわち、出力処理部405は、差分算出部403による減少処理の結果得られた2つの差分信号のうち、算出された強度が他方と比較して小さい差分信号を出力する。
 例えば、出力処理部405は、差分信号から被験者の脈拍や心拍を識別する識別装置に対して、差分信号を出力する。その後、例えば、識別装置が、被験者の脈拍や心拍を差分信号から識別したり、被験者の覚醒度を測定したりする。
 なお、実施例2では、ノイズ処理装置200と識別装置とが別装置である場合を例に説明するが、本発明はこれに限定されるものではない。例えば、ノイズ処理装置200と識別装置とが一つの装置であっても良い。この場合、ノイズ処理装置200は、更に、差分信号から被験者の脈拍や心拍を識別したり、識別した被験者の脈拍や心拍の状態を用いて被験者の生理状態を検出したりする。また、ノイズ処理装置200は、識別装置の1部品であっても良い。この場合、出力処理部405は、識別装置が有する部品のうち、差分信号から被験者の脈拍や心拍を識別する他の部品に対して、差分信号を出力する。
 また、出力処理部405によって出力される差分信号は、ハンドル電極201とシート上部電極202との間の電位差を示す電位差信号であり、心臓を挟む2つの位置と接触した電極間の電位差信号となる。
 図10を用いて、実施例2における出力処理部405による処理について説明する。図10は、実施例2における出力処理部による処理について説明する図である。図10の(1)は、第1の差分信号を示し、図10の(2)は、第2の差分信号を示し、図10の(3)は、出力処理部405によって出力される電位差信号を示す。図10の(1)~(3)において、縦軸は電位の値を示し、横軸は時間軸を示す。
 図10の(1)と(2)とに示すように、出力処理部405は、第1の差分信号の強度と第2の差分信号の強度を比較する。ここで、第1の差分信号についてのRMSの値は、第2の差分信号についてのRMSの値よりも小さい。この結果、図10の(3)に示すように、出力処理部405は、第1の差分信号を選択し、選択した第1の差分信号を出力する。
 なお、上述したように、差分算出部403が補正する際に用いる差は、所定間隔ごとに異なる。この結果、出力処理部405が出力する差分信号は、常に同じとは限らない。例えば、ある時点において出力処理部405が第1の差分信号を出力したとしても、他の時点において出力処理部405が第1の差分信号を出力するとは限らず、出力処理部405が第2の差分信号を出力する場合もある。
 また、2つの差分信号には、共に、同じ強度の心拍信号が含まれていると考えられる。また、被験者と電極との接触部の状態によっても異なるが、電位差信号に含まれるノイズの強度は、心拍信号の強度と比較して大きい。
 図11を用いて、差分信号に含まれる心拍信号の一例について説明する。図11は、差分信号に含まれる心拍信号の一例について説明する図である。図11に示した差分信号は、出力処理部405によって出力された差分信号の一例である。図11において、縦軸は差分信号の値を示し、横軸は時間軸を示す。図11の701は、差分信号に含まれる心拍信号を示す矢印である。図11の701各々によって示されるように、差分信号の強度のうち心拍信号の強度が占める割合は、ノイズの強度と比較して小さい。
 この結果、2つの差分信号の強度差は、2つの差分信号各々に含まれるノイズの強度差に対応すると考えられる。つまり、差分信号の強度が小さい方を単純に選択して出力処理部405が出力したとしても、2つの差分信号のうち、差分信号に含まれるノイズの強度が他方よりも少ない差分信号を出力することが可能である。
[実施例2に係るノイズ処理装置による処理]
 次に、図12を用いて、実施例2に係るノイズ処理装置200による処理の流れの一例について説明する。図12は、実施例2に係るノイズ処理装置による処理の流れの一例について説明するフローチャートである。なお、以下では、増幅倍率算出部402が、第1の電位差信号の強度を第2の電位差信号の強度で除算することで差を算出する場合を例に説明する。また、差分算出部403が、増幅倍率算出部402によって算出された差を用いて、第2の電位差信号を補正する場合を例に説明する。また、第1の差分信号についてのRMSの値は、第2の差分信号についてのRMSの値よりも小さい場合を例に説明する。
 図12に示すように、電位測定部204によって電位差信号が測定されると(ステップS101肯定)、つまり、第1の電位差信号や第2の電位差信号が測定されると、RMS算出部401は、電位差信号の強度を所定間隔ごとに算出する(ステップS102)。例えば、RMS算出部401は、第1の電位差信号と第2の電位差信号とについて、それぞれ、RMSを算出する。
 そして、増幅倍率算出部402は、第1の電位差信号の強度と第2の電位差信号の強度との差を算出する(ステップS103)。例えば、増幅倍率算出部402は、第1の電位差信号について算出したRMSを、第2の電位差信号について算出したRMSで除算することで、差「1.49」を算出する。
 そして、差分算出部403は、第1の電位差信号の強度と第2の電位差信号の強度とが同じになるように、第2の電位差信号を補正する(ステップS104)。例えば、差分算出部403は、第2の電位差信号を「1.49」で乗算し、乗算結果となる電位差信号を補正後の第2の電位差信号とする。
 そして、差分算出部403は、所定間隔ごとに補正された後の電位差信号を用いて、第1の電位差信号と第2の電位差信号との間の差分を示す差分信号を算出する(ステップS105)。例えば、差分算出部403は、第1の電位差信号から補正後の第2の電位差信号を減算することで、第1の差分信号を算出する。また、例えば、差分算出部403は、第1の電位差信号に補正後の第2の電位差信号を加算することで、第2の差分信号を算出する。
 そして、RMS再算出部404は、差分算出部403によって算出された第1の差分信号と第2の差分信号とについて、それぞれ、差分信号の強度を算出する(ステップS106)。例えば、RMS再算出部404は、差分信号の強度としてRMSを算出する。
 そして、出力処理部405は、RMS再算出部404によって算出された強度が他方と比較して小さい差分信号を出力部205から出力する(ステップS107)。ここで、第1の差分信号についてのRMSの値は、第2の差分信号についてのRMSの値よりも小さく、出力処理部405は、第1の差分信号を出力する。
[実施例2の効果]
 上述したように、実施例2によれば、ノイズ処理装置200は、第1の電位差信号と第2の電位差信号とを測定する。そして、ノイズ処理装置200は、第1の電位差信号の強度と第2の電位差信号の強度とを、所定間隔ごとに算出する。そして、ノイズ処理装置200は、所定間隔ごとに算出した第1の電位差信号の強度と第2の電位差信号の強度との差を算出する。そして、ノイズ処理装置200は、第1の電位差信号の強度と第2の電位差信号の強度とが同じになるように、算出した差を用いて所定間隔ごとに第1の電位差信号や第2の電位差信号を補正する。そして、ノイズ処理装置200は、所定間隔ごとに補正した後の電位差信号を用いて差分信号を算出し、算出した差分信号を出力する。この結果、実施例2によれば、心臓を挟む2つの位置と接触した電極間の電位差信号から、ノイズを適切に減少可能である。
 例えば、図13Aと図13Bと図13Cとを用いて、実施例2の効果の一例について説明する。図13Aと図13Bと図13Cとは、実施例2の効果の一例について説明する図である。図13Aは、第1の電位差信号や第2の電位差信号の一例を示す。図13Bは、第1の電位差信号の強度と第2の電位差信号の強度とが同じになるように補正せず、第1の電位差信号から第2の電位差信号を単純に減算した場合に得られる信号の一例である。図13Cは、実施例2における出力処理部405によって出力された差分信号の一例である。図13A~図13Cにおいて、縦軸は電位差信号や差分信号の値を示し、横軸は時間軸を示す。ここで、図13AのRMSは186mVであり、図13BのRMSは105mVであり、図13CのRMSは10.4mVであった。
 図13AのRMSと図13BのRMSとを比較すると、RMSは、186mVから105mVへと減少した。これに対して、図13AのRMSと図13CのRMSとを比較すると、186mVから10.4mVに減少した。すなわち、実施例2では、ハンドル電極201のインピーダンスと、シート上部電極202のインピーダンスとは、異なる変化の仕方をすることに着目し、2つの電位差信号の強度を同じに補正した上で差分を算出する。この結果、実施例2によれば、2つの電位差信号の強度を同じに補正しない場合を比較して、ノイズの減少量が増大したという有利な効果を得られる。
 また、実施例2によれば、ノイズ処理装置200は、第1の電位差信号から第2の電位差信号を減算する減算処理又は第2の電位差信号から第1の電位差信号を減算する減算処理を実行することで、第1の差分信号を算出する。また、ノイズ処理装置200は、第1の電位差信号に第2の電位差信号を加算する加算処理を実行することで、第2の差分信号を算出する。そして、ノイズ処理装置200は、算出した第1の差分信号と第2の差分信号とについてそれぞれ強度を算出し、算出した強度が他方と比較して小さい差分信号を出力する。この結果、実施例2によれば、第1の電位差信号の位相と第2の電位差信号の位相とが異なっていたとしても、ノイズを減少可能である。
 ここで、差分算出部403が減算処理と加算処理とを実行する意義について説明する。電極は、被験者の衣服を介して被験者と接触することがある。例えば、シート上部電極202は、スカートやジーンズなどを介して被験者と電気的に接触する。また、ハンドル電極201は、衣服の一種として、手袋や絆創膏や包帯などを介して被験者と電気的に接触する場合もある。被験者と衣服との間の摩擦や、衣服と電極との間の摩擦によって、衣服には静電気が発生する。また、被験者の衣服の素材によって、衣服に発生する静電気の極性は異なる。ここで、静電気の極性が異なると、電極から得られる電位差信号の位相が異なる。
 図14を用いて、極性と電位差信号の位相との関係について説明する。図14は、極性と電位差信号の位相との関係について説明する図である。図14において、702は、極性がプラスである場合における電位差信号の一例を示す。703は、極性がマイナスである場合における電位差信号の一例を示す。704は、電位差信号に含まれる心拍信号を示す。また、図14の702や703において電位差信号の強度のうち、心拍信号に対応する強度以外の部分は、ノイズの強度になる。
 図14に示すように、極性がプラスである場合とマイナスである場合では、電位差信号の位相は逆になる。この結果、2つの電位差信号の位相が異なる場合には、2つの電位差信号の差をそのまま算出すると、差分信号に含まれるノイズが減少しないどころか、ノイズが増加してしまった。例えば、極性がプラスである場合に算出された電位差信号から、極性がマイナスである場合に算出された電位差信号を減算することで差分信号を算出すると、算出結果となる差分信号では、電位差信号に含まれるノイズの強度よりもノイズの強度が大きくなっていた。
 ここで、2つの電位差信号の位相が異なる場合には、2つの電位差信号の和を算出することで、ノイズを減少させることが可能であると考えられる。つまり、2つの電位差信号の和を算出することで得られる差分信号では、電位差信号のノイズの強度よりノイズの強度が小さくなると考えられる。
 このことを踏まえ、実施例2によれば、加算処理と減算処理とをそれぞれ実行して第1の差分信号と第2の差分信号とを算出し、算出した差分信号のうち他方と比較して強度が小さい方を出力する。この結果、電位差信号の位相に関係なく、ノイズを減少可能である。
 実施例3では、RMS算出部401が、第1の電位差信号や第2の電位差信号の状態に応じて、異なる所定間隔にて、電位差信号の強度を算出する場合について説明する。例えば、RMS算出部401が、第1の電位差信号や第2の電位差信号の状態に応じて、所定間隔として3秒間を用いて算出したり、5秒間を用いて算出したりする場合について説明する。
 実施例3では、第1の電位差信号や第2の電位差信号の状態の一例として、電位差信号の強度や電位差信号の波形を用いる場合を例に説明する。以下では、実施例2に係るノイズ処理装置と同様の点については、説明を省略する。
[実施例3に係るノイズ処理装置の構成]
 図15を用いて、実施例3に係るノイズ処理装置200aの構成の一例について説明する。図15は、実施例3に係るノイズ処理装置の構成の一例について説明するブロック図である。図15に示すように、ノイズ処理装置200aは、図2を用いて説明したノイズ処理装置200の構成に加えて、波形記憶部301を有する。
 波形記憶部301は、電位差信号の波形に対応付けて、間隔を記憶する。波形記憶部301によって記憶される情報は、RMS算出部401によって用いられる。図16を用いて、実施例3における波形記憶部301によって記憶された電位差信号の波形の一例について説明する。図16は、実施例3における波形記憶部によって記憶された電位差信号の波形の一例について説明する図である。図16は、被験者が座り直した場合に測定される電位差信号の一例を示す。図16において、縦軸は電位差信号の値を示し、横軸は時間軸を示す。図16に示す例では、被験者が座り直した結果、電位差信号の値が局所的に大きく変動している。
 波形記憶部301は、図16に示すような電位差信号の波形に対応付けて、電位差信号の波形が局所的に大きく変動しない場合と比較して短い間隔を記憶する。例えば、波形記憶部301は、図16に示すような電位差信号の波形に対応付けて、「2秒間」を記憶する。
 図17を用いて、図16に示すような電位差信号の波形に対応付けられた間隔について説明する。図17は、図16に示すような電位差信号の波形に対応付けられた間隔について説明する図である。図17は、図16に示す電位差信号から算出されたRMSの一例を示す。図17において、縦軸はRMSの値を示し、横軸は時間軸を示す。図17の横軸は、図16の横軸と対応する。
 被験者がシートに座り直すと、電位差信号の値は局所的に大きく変動する。この結果、図17に示すように、被験者が座り直すと、RMSの値もまた、局所的に大きく変動する。局所的に大きく変動した部分と大きく変動していない部分とをまとめてRMSを算出すると、算出されたRMSの値は、局所的に大きく変動した部分から見ると小さな値になり、局所的に大きく変動していない部分から見ると大きな値になる。このため、電位差信号のうち局所的に大きく変動した部分については、局所的に変動していない部分については用いずに、大きく変動した部分を用いてRMSを算出することが望ましい。また、電位差信号のうち局所的に大きく変動していない部分については、局所的に大きく変動した部分を用いずに、局所的に大きく変動していない部分を用いてRMSを算出することが望ましい。波形記憶部301は、図16に示すような電位差信号の波形に対応付けて短い間隔を記憶するので、後述するように、RMS算出部401は、局所的に大きく変動した部分と局所的に大きく変動していない部分とを区別してRMSを算出することが可能である。
 なお、以下では、波形記憶部301が、図16に示すような電位差信号の波形に対応付けて「2秒間」を記憶する場合を例に説明するが、本発明はこれに限定されるものではない。例えば、波形記憶部301は、2秒間より短い間隔を示す値を記憶しても良く、2秒間より長い間隔を示す値を記憶しても良く、任意の値を記憶して良い。ここで、電位差信号の波形に対応付けて記憶する値として、電位差信号の波形の時間間隔を利用することが考えられる。図16の例では、特徴的な波形すなわち波形のパターンが、横軸の29から30の1秒間と、31から32の1秒間にかけて検出されている。そこで、電位差信号の波形に対応付けて記憶する値として、29と30との間隔、31と32との間隔である1秒を波形に対応付けて記憶しても良い。もしくは、図16に示す全波形が被験者の一連の動作により検出されるものなのであれば、29から32までの3秒を波形に対応付けて記憶しても良い。電位差信号の局所的な大きな変動は、被験者の動作時間と見なすことができる。このように、被験者の一連の動作に対応するパターン波形に基づいて、パターン波形が発生する時間間隔を利用すれば、被験者の動作にかかる時間に合わせてRMSを算出する間隔を設定できる。
 また、以下では、波形記憶部301は、電位差信号の波形に対応付けて間隔を示す値を記憶する場合を例に説明するが、本発明はこれに限定されるものではない。例えば、波形記憶部301は、電位差信号の波形に対応付けて、間隔を短くする旨の情報や、間隔を長くする旨の情報などを記憶しても良い。
 実施例3におけるRMS算出部401は、第1の電位差信号や第2の電位差信号の状態に応じて、異なる所定間隔にて電位差信号の強度を算出する。具体的には、RMS算出部401は、第1の電位差信号や第2の電位差信号の波形や強度に応じて、異なる所定間隔にて電位差信号の強度を算出する。
 第1の電位差信号や第2の電位差信号の波形に応じて実行する場合について説明する。RMS算出部401は、第1の電位差信号や第2の電位差信号の波形のパターンに応じて、異なる所定間隔にて電位差信号の強度を算出する。例えば、RMS算出部401は、第1の電位差信号や第2の電位差信号の波形と、波形記憶部301に記憶された電位差信号の波形とが一致するかを判定する。そして、RMS算出部401は、一致すると判定した場合に、一致した電位差信号の波形に対応付けられた情報を波形記憶部301から読み出す。そして、RMS算出部401は、読み出した情報に応じて、間隔を変更する。
 間隔として「5秒間」を用いている場合を例に用いて、より詳細に説明する。RMS算出部401は、第1の電位差信号や第2の電位差信号の波形のパターンが図16に示す電位差信号の波形と一致すると判定すると、波形記憶部301から「2秒間」を読み出す。そして、RMS算出部401は、「5秒間」から「2秒間」へと間隔を変更する。この結果、その後、RMS算出部401は、2秒ごとに、2秒前から処理時点までの電位差信号を用いて、電位差信号の強度を算出する。
 第1の電位差信号や第2の電位差信号の強度に応じて実行する場合について説明する。RMS算出部401は、第1の電位差信号や第2の電位差信号の強度が閾値よりも所定期間小さい場合には、第1の電位差信号や第2の電位差信号の強度が閾値よりも所定期間小さくない場合と比較して長い間隔を用いて強度を算出する。なお、RMS算出部401によって用いられる閾値は、強度算出用閾値とも称する。
 強度算出用閾値が「200mV」であり、所定期間として「1分間」を用い、間隔として「5秒間」を用いている場合を例に用いて、より詳細に説明する。RMS算出部401は、算出結果として「200mV」より小さな値が得られた場合に、RMSの値が1分間以上「200mV」より小さいか否かを判定する。そして、RMS算出部401は、1分間以上「200mV」より小さかったと判定すると、「5秒間」から「10秒間」へと間隔を変更する。この結果、その後、RMS算出部401は、10秒ごとに、10秒前から処理時点までの電位差信号を用いて、電位差信号の強度を算出する。
 なお、上述の説明では、所定期間として1分間を用いる場合を例に説明したが、本発明はこれに限定されるものではない。例えば、1分間よりも短い期間を用いても良く、1分間よりも大きな期間を用いても良く、任意の期間を用いて良い。また、上述の説明では、「5秒間」から「10秒間」へと間隔を変更する場合を例に説明したが、本発明はこれに限定されるものではなく、任意の値に変更して良い。
 また、例えば、RMS算出部401は、第1の電位差信号や第2の電位差信号の強度が閾値よりも大きい場合に、第1の電位差信号や第2の電位差信号の強度が閾値よりも大きくない場合と比較して短い間隔を用いて強度を算出する。
 強度算出用閾値が「200mV」であり、間隔として「5秒間」を用いている場合を例に用いて、より詳細に説明する。RMS算出部401は、算出結果として「200mV」より大きな値が得られたか否かを判定する。そして、RMS算出部401は、大きな値が得られたと判定すると、「5秒間」から「3秒間」へと間隔を変更する。この結果、その後、RMS算出部401は、3秒ごとに、3秒前から処理時点までの電位差信号を用いて、電位差信号の強度を算出する。
[実施例3におけるRMS算出部401により間隔変更の処理]
 図18を用いて、実施例3におけるRMS算出部401により間隔変更処理の流れの一例について説明する。図18は、実施例3におけるRMS算出部により間隔変更処理の流れの一例について説明するフローチャートである。以下では、第1の電位差信号や第2の電位差信号の強度に応じて異なる所定間隔を用いる場合を例に説明する。以下では、強度算出用閾値が「200mV」であり、所定期間が「1分間」であり、間隔として「5秒間」を用いている場合を例に用いて説明する。
 RMS算出部401は、電位差信号の強度を算出すると(ステップS201肯定)、算出結果が強度算出用閾値より小さいかを判定する(ステップS202)。例えば、RMS算出部401は、「200mV」より小さいかを判定する。ここで、RMS算出部401は、小さいと判定すると(ステップS202肯定)、所定期間以上小さいかを判定する(ステップS203)。そして、RMS算出部401は、所定期間以上小さいと判定すると(ステップS203肯定)、間隔を短い値に変更する(ステップS204)。例えば、RMS算出部401は、「5秒間」を「3秒間」に変更する。なお、RMS算出部401は、所定期間以上小さいと判定しないと(ステップS203否定)、間隔を変更しない。
 また、RMS算出部401は、算出結果が強度算出用閾値より小さいと判定しないと(ステップS202否定)、つまり、算出結果が強度算出用閾値より大きいと、間隔を長い値に変更する(ステップS205)。例えば、RMS算出部401は、「5秒間」を「10秒間」に変更する。
[実施例3の効果]
 上述したように、実施例3によれば、ノイズ処理装置200aは、第1の電位差信号や第2の電位差信号の状態に応じて、異なる所定間隔にて強度を算出するので、電位差信号に含まれるノイズを適切に減少可能である。例えば、RMSの値が大きくなった場合には、すなわち、電位差信号に含まれるノイズの強度が大きくなった場合には、間隔を短くした上でRMSを算出することで、ノイズによる影響を早く抑止することが可能である。また、RMS値が閾値内で安定していれば、間隔を長くした上でRMSを算出することで、算出回数をへらすことが可能である。
 実施例4では、ノイズ処理装置200bが車両に設けられ、強度算出用閾値を車両の速度に応じて変更する場合について説明する。例えば、以下に説明するように、RMS算出部401は、車両の速度が高い場合には、強度算出用閾値として「300mV」を用い、車両の速度が低い場合には、強度算出用閾値として「100mV」を用いる場合について説明する。
 速度に応じて変更する意義について簡単に説明する。被験者が体を動かしたり、装置が振動したりすることで、被験者と電極との接触状態は変化すると考えられる。また、電位差信号の強さは、電極自体のインピーダンスや、電極と被験者との接触部のインピーダンスによって変化する。インピーダンスが上がると、電位差信号に含まれるノイズが強くなり、電位差信号の強さも強くなると考えられる。接触部のインピーダンスは、電極と被験者との接触状態によって変化すると考えられる。この結果、車両の振動や被験者の体の動きによって、電位差信号に含まれるノイズの強さが変化する。また、車両の振動は、車両の速度が上がるに従って増加すると考えられる。
 図19A~図19Cと図20A~図20Cとを用いて、車両の速度と電位差信号の強度との関係について説明する。図19Aは、アイドリング時に測定される電位差信号の一例について説明する図である。図19Bは、一般道走行時に測定される電位差信号の一例について説明する図である。図19Cは、高速道路走行時に測定される電位差信号の一例について説明する図である。図20Aは、アイドリング時に算出されるRMSの一例について説明する図である。図20Bは、一般道走行時に算出されるRMSの一例について説明する図である。図20Cは、高速道路走行時に算出されるRMSの一例について説明する図である。図19A~図19Cにおいて、縦軸は電位差信号の値を示し、横軸は時間軸を示す。図20A~図20Cにおいて、縦軸はRMSの値を示し、横軸は時間軸を示す。図19A~図19Cの横軸は、それぞれ、図20A~図20Cの横軸に対応する。
 図19A~図19Cに示すように、電位差信号の振幅の大きさは、「アイドリング時<一般道走行時<高速道路走行時」になる。つまり、高速道路走行時における電位差信号の振幅は、一般道走行時における電位差信号の振幅より大きく、一般道走行時における電位差信号の振幅は、アイドリング時における電位差信号の振幅より大きい。この結果、図20A~図20Cに示すように、RMSの大きさについても、「アイドリング時<一般道走行時<高速道路走行時」になる。つまり、高速道路走行時におけるRMSは、一般道走行時におけるRMSより大きく、一般道走行時におけるRMSは、アイドリング時におけるRMSより大きい。
 すなわち、実施例4におけるノイズ処理装置200bは、以下に説明するように、強度算出用閾値を車両の速度に応じて変更することで、車両の速度に応じて適切な強度算出用閾値を用いて間隔を決定することが可能になる。
[実施例4に係るノイズ処理装置の構成]
 図21を用いて、実施例4に係るノイズ処理装置200bの構成の一例について説明する。図21は、実施例4に係るノイズ処理装置の構成の一例について説明するブロック図である。図21に示すように、ノイズ処理装置200bは、図2を用いて説明したノイズ処理装置200の構成に加えて、閾値変更部406を有する。
 実施例4におけるRMS算出部401は、第1の電位差信号や第2の電位差信号の強度が閾値よりも所定期間小さい場合には、第1の電位差信号や第2の電位差信号の強度が閾値よりも所定期間小さくない場合と比較して長い間隔を用いて強度を算出する。また、RMS算出部401は、第1の電位差信号や第2の電位差信号の強度が閾値よりも大きい場合には、第1の電位差信号や第2の電位差信号の強度が閾値よりも大きくない場合と比較して短い間隔を用いて強度を算出する。強度算出用閾値を用いての処理の詳細については、実施例3と同様であるため、説明を省略する。RMS算出部401は、閾値変更部406によって制御される強度算出用閾値を用いて、処理を実行する。
 閾値変更部406は、車両の速度が所定の閾値よりも速い場合に、所定の閾値よりも遅い場合と比較して強度算出用閾値を大きな値に変更する。また、閾値変更部406は、車両の速度が所定の閾値よりも遅い場合に、所定の閾値よりも速い場合と比較して強度算出用閾値を小さい値に変更する。以下では、車両の速度を示す情報として、「アイドリング時」「一般道走行時」「高速道路走行時」の3つの走行状態を用いる場合について説明する。なお、車両の速度は、「アイドリング時」「一般道走行時」「高速道路走行時」の順に速くなる。つまり、車両の速度は、「高速道路走行時」が3つの中で一番速く、「アイドリング時」が3つの中で一番遅い。
 具体的には、閾値変更部406は、車両の走行状態を判定する。例えば、閾値変更部406は、車両のMCU(Memory Control Unit)から車両の速度を取得したり、GPS(Global Positioning System)から現在の走行位置を取得したりする。
 より詳細には、閾値変更部406は、例えば、車両速度が100km以上である場合に、高速走行時であると判定する。また、例えば、閾値変更部406は、車両速度が40km以下である場合に、低速走行時であると判定する。また、例えば、閾値変更部406は、車両速度が0kmであり、エンジンの回転数が所定回数以上である場合に、アイドリング時であると判定する。なお、上述の説明では、車両速度が100km以上である場合に高速走行時であると判定したりする場合を例に説明したが、本発明はこれに限定されるものではなく、任意の閾値を用いて良い。また、アイドリング時や一般道走行時であるかを判定する場合についても、同様に、任意の閾値を用いて良い。
 また、例えば、閾値変更部406は、電位差信号の波形を用いて、車両の走行状態を判定する。例えば、閾値変更部406は、図19A~図19Cに示す電位差信号の波形を車両の走行状態と対応付けて予め記憶する。より詳細には、図19A~図19Cに示す電位差信号の波形について、それぞれ、「アイドリング時」「一般道走行時」「高速道路走行時」と対応付けてメモリに記憶する。そして、閾値変更部406は、電位測定部204によって測定された電位差信号と一致する電位差信号の波形をメモリから検索し、検索結果して得られた電位差信号の波形に対応する走行状態を取得する。
 また、閾値変更部406は、車両の速度が所定の閾値よりも速い場合に、所定の閾値よりも遅い場合と比較して強度算出用閾値を大きな値に変更する。また、閾値変更部406は、車両の速度が所定の閾値よりも遅い場合に、所定の閾値よりも速い場合と比較して強度算出用閾値を小さい値に変更する。以下では、一般道走行時における強度算出用閾値が「200mV」である場合を用いて説明する。
 閾値変更部406は、アイドリング時である場合には、一般道走行時と比較して小さい強度算出用閾値に変更する。例えば、「200mV」より小さい「100mV」に強度算出用閾値を変更する。また、閾値変更部406は、一般道走行時である場合には、強度算出用閾値を「200mV」に変更する。また、閾値変更部406は、高速道路走行時である場合には、一般道走行時と比較して大きい強度算出用閾値に変更する。例えば、閾値変更部406は、「200mV」より大きい「300mV」に変更する。
 なお、上述の説明では、閾値変更部406が、「アイドリング時」「一般道走行時」「高速道路走行時」に、それぞれ、強度算出用閾値として「100mV」「200mV」「300mV」を用いる場合を例に説明した。しかしながら、本発明はこれに限定されるものではなく、任意の値を用いて良い。
 また、上述の説明では、閾値変更部406が、「アイドリング時」「一般道走行時」「高速道路走行時」の3つの走行状態を用いる場合について説明したが、本発明はこれに限定されるものではない。例えば、閾値変更部406は、例えば、車両の走行速度そのものを用いても良く、任意の情報を用いて良い。また、例えば、閾値変更部406は、「アイドリング時」「一般道走行時」「高速道路走行時」に加えて、他の走行状態を更に用いても良く、「アイドリング時」「一般道走行時」「高速道路走行時」のうち一部について用いなくても良い。
[実施例4における閾値変更部による処理]
 図22を用いて、実施例4における閾値変更部406による処理の流れの一例について説明する。図22は、実施例4における閾値変更部による処理の流れの一例について説明するフローチャートである。図22では、以下では、車両の速度を示す情報として、「アイドリング時」「一般道走行時」「高速道路走行時」の3つの走行状態を用いる場合について説明する。
 図22に示すように、閾値変更部406は、処理を開始すると(ステップS301肯定)、車両の状態を判定する(ステップS302)。つまり、閾値変更部406は、車両の速度や電位差信号の波形を用いて、「アイドリング時」か「一般道走行時」か「高速道路走行時」かを判定する。
 ここで、閾値変更部406は、アイドリング時であると判定した場合には(ステップS303肯定)、一般道走行時と比較して小さい強度算出用閾値に変更する(ステップS304)。例えば、閾値変更部406は、「200mV」より小さい「100mV」に強度算出用閾値を変更する。また、閾値変更部406は、一般道走行時であると判定した場合には(ステップS303否定及びステップS305肯定)、高速道路走行時と比較して小さい強度算出用閾値に変更する(ステップS306)。例えば、閾値変更部406は、「300mV」より小さい「200mV」に変更する。また、閾値変更部406は、高速道路走行時であると判定した場合には(ステップS303否定及びステップS305否定及びステップS307肯定)、一般道走行時と比較して大きい強度算出用閾値に変更する(ステップS308)。例えば、閾値変更部406は、「200mV」より大きい「300mV」に変更する。なお、「アイドリング時」「一般道走行時」「高速道路走行時」のいずれでもないと判定した場合には(ステップS303否定及びステップS305否定及びステップS307否定)、閾値変更部406は、強度算出用閾値を変更しない。
[実施例4の効果]
 このように、実施例4では、ノイズ処理装置200bは車両に設けられる。また、ノイズ処理装置200bは、第1の電位差信号や第2の電位差信号の強度が閾値よりも所定期間小さい場合には、所定期間小さくない場合と比較して長い間隔を用いて強度を算出する。また、ノイズ処理装置200bは、第1の電位差信号や第2の電位差信号の強度が閾値よりも大きい場合には、閾値よりも大きくない場合と比較して短い間隔を用いて強度を算出する。また、ノイズ処理装置200bは、車両の速度が所定の閾値よりも速い場合に、所定の閾値よりも遅い場合と比較して強度算出部によって用いられる閾値である強度算出用閾値を大きな値に変更する。また、ノイズ処理装置200bは、車両の速度が所定の閾値よりも遅い場合に、所定の閾値よりも速い場合と比較して強度算出用閾値を小さい値に変更する。この結果、車両の走行速度に適した強度算出用閾値を用いて、間隔を決定することが可能である。
 また、例えば、差分算出部403は、補正対象となる電位差信号の取得時点より後の時点において取得された電位差信号を用いて算出された差を用いて、取得時点における第1の電位差信号や第2の電位差信号を補正しても良い。言い換えると、差分算出部403は、取得時点が起点と終点との間に位置する間隔についての差を用いて、処理対象となる時点における第1の電位差信号や第2の電位差信号を補正しても良い。実施例5では、取得時点より後の時点において取得された電位差信号を用いて算出された差を用いて、第1の電位差信号や第2の電位差信号を補正する場合について説明する。
 図23Aと図23Bとを用いて、実施例5における差分算出部403について説明する。図23Aと図23Bとは、実施例5における差分算出部について説明する図である。図23Aや図23Bは、電位差信号の一例を示す。図23Aや図23Bにおいて、縦軸は電位差信号の値を示し、横軸は時間軸を示す。以下では、間隔が「2秒間」であり、4秒の時点における電位差信号を補正対象とする場合を例に説明する。
 図23Aと図23Bの705や706は、電位差信号のうちRMS算出部401によって用いられる範囲を示す。ここで、補正対象となる4秒の時点が起点と終点との間に位置する間隔とは、例えば、図23Bの706に示すように、起点と終点との間に4秒の時点が位置する間隔が該当する。なお、図23Bに示す例では、間隔の起点は5秒の時点が該当し、間隔の終点は3秒の時点が該当する。
 ここで、取得時点より後の時点において取得された電位差信号を用いて算出された差を用いる意義について簡単に説明する。補正対象となる時点を起点として2秒前までの信号についての差を用いるのと、補正対象となる時点を間に含む2秒間の信号についての差を用いるのでは、ノイズの変化状態によって信号強度の算出結果が異なると考えられる。図23Aに示す例では、4秒の時点にピークがある。4秒の時点にあるピークを補正する上では、4秒の時点にあるピーク全体を含んだ範囲についての差は、4秒の時点にあるピーク全体を含まない範囲についての差と比較して、4秒の時点にあるピークにおける強度の差を正確に表していると考えられる。このため、差分算出部403は、補正対象となる時点が起点と終点との間に位置する間隔について算出された差を用いて、電位差信号を補正する。
 実施例5に係るノイズ処理装置200cについて説明する。以下では、RMS算出部401は、処理時点から2秒前までの電位差信号を用いて、リアルタイムにて、電位差信号の強度を算出する場合を例に説明する。なお、以下では、RMS算出部401がリアルタイムにて算出する場合を例に説明するが、本発明はこれに限定されるものではない。例えば、RMS算出部401は、間隔として「2秒」を用いて、1秒ごとに算出しても良い。つまり、RMS算出部401は、1秒ごとに、処理時点から2秒前までの電位差信号を用いて算出しても良い。なお、実施例2にて説明した場合では、差分算出部403は、4秒の時点において、2秒から4秒までの電位差信号についての差を用いて、4秒の時点における電位差信号を補正することになる。
 ここで、図23Aの705に示すように、増幅倍率算出部402は、4秒の時点において、2秒から4秒までの電位差信号についての差を算出する。また、図23Bの706に示すように、増幅倍率算出部402は、5秒の時点において、3秒から5秒までの電位差信号についての差を算出する。
 差分算出部403は、取得時点より後の時点において取得された電位差信号を用いて算出された差を用いて、取得時点における第1の電位差信号や第2の電位差信号を補正する。例えば、差分算出部403は、5秒の時点において、3秒から5秒までの電位差信号についての差を用いて、4秒の時点における電位差信号を補正する。つまり、起点と終点との間に4秒の時点が位置する間隔についての差を用いて、電位差信号を補正する。この場合、4秒の時点における電位差信号は、5秒の時点において算出される差を用いて補正される結果、出力処理部405は、1秒遅れの電位差信号を出力することになる。
 このように、実施例5によれば、差分算出部403は、取得時点が起点と終点との間に位置する間隔について算出された差を用いて補正するので、ノイズを適切に減少することが可能である。
 また、例えば、ノイズ処理装置200dは、補正対象となる電位差信号の取得時点が含まれる複数の間隔ごとに差分信号を算出し、最もノイズが少ない差分信号を出力しても良い。そこで、実施例6では、図24を用いて、ノイズ処理装置200dが、複数の間隔ごとに差分信号を算出し、最もノイズが少ない差分信号を出力する場合について説明する。図24は、実施例5に係るノイズ処理装置200dによる処理の流れの一例を示すフローチャートである。以下では、4秒の時点における電位差信号を補正対象とする場合を例に説明する。
 図24に示すように、実施例6では、電位差信号が測定されると(ステップS401肯定)、RMS算出部401は、補正対象となる電位差信号の取得時点が含まれる複数の間隔ごとに、間隔に含まれる電位差信号を用いて電位差信号の強度を算出する(ステップS402)。例えば、RMS算出部401は、2秒から4秒、3秒から5秒、4秒から6秒、2秒から5秒、3秒から6秒など、複数の異なる間隔ごとに、電位差信号の強度を算出する。なお、RMS算出部401は、異なる間隔の幅を用いても良く、用いなくても良い。
 そして、増幅倍率算出部402は、補正対象となる電位差信号の取得時点が含まれる複数の間隔ごとに、RMS算出部401によって算出された電位差信号の強度を用いて差を算出する(ステップS403)。例えば、増幅倍率算出部402は、2秒から4秒、3秒から5秒、4秒から6秒、2秒から5秒、3秒から6秒などの間隔について、それぞれ、差「1.49」「1.3」「1.9」「1.4」「1.8」を算出する。
 そして、差分算出部403は、増幅倍率算出部402によって算出された差ごとに、補正対象となる電位差信号の取得時点における電位差信号を補正する(ステップS404)。例えば、差分算出部403は、差「1.49」「1.3」「1.9」「1.4」「1.8」について、それぞれ、電位差信号を補正する。つまり、差分算出部403は、4秒の時点における電位差信号について、差「1.49」を用いて電位差信号を補正し、差「1.3」を用いて電位差信号を補正する。また、差分算出部403は、差「1.9」「1.4」「1.8」についても、同様に、電位差信号を補正する。
 そして、差分算出部403は、補正対象となる電位差信号の取得時点における補正後の電位差信号について、差ごとに、第1の差分信号と第2の差分信号とを算出する(ステップS405)。例えば、差分算出部403は、4秒の時点における電位差信号について、差「1.49」を用いて補正した電位差信号を用いて第1の差分信号と第2の差分信号とを算出する。また、差分算出部403は、差「1.3」「1.9」「1.4」「1.8」についても、同様に、第1の差分信号と第2の差分信号とを算出する。
 そして、RMS再算出部404は、差分算出部403によって差ごとに算出された第1の差分信号と第2の差分信号とについて、それぞれ、差分信号の強度を算出する(ステップS406)。例えば、RMS再算出部404は、差「1.49」に対応する第1の差分信号と第2の差分信号とについて、それぞれ、差分信号の強度を算出する。また、RMS再算出部404は、差「1.3」「1.9」「1.4」「1.8」についても、同様に、第1の差分信号と第2の差分信号とについて、それぞれ、差分信号の強度を算出する。
 そして、出力処理部405は、差ごとに算出された第1の差分信号と第2の差分信号とのうち、差分信号の強度が最も小さい差分信号を出力する(ステップS407)。つまり、出力処理部405は、RMS再算出部404によって算出された強度のうち、最も小さい強度を識別し、識別した強度に対応する差分信号を出力する。
 このように、実施例6によれば、補正対象となる時点が含まれる複数の間隔についてそれぞれ差を算出し、複数算出された差のうち、最もノイズを減少させる差を用いるので、ノイズを精度良く減少させることが可能である。
 さて、これまで本発明の実施例について説明したが、本発明は上記した実施例以外にも、その他の実施例にて実施されても良い。そこで、以下では、その他の実施例について説明する。
[出力処理部]
 例えば、上記した実施例では、出力処理部405が、電位差信号の強度が小さい方を単純に選択して出力する場合について説明したが、本発明はこれに限定されるものではない。例えば、出力処理部405は、2つの電位差信号に占める心拍信号の割合を算出し、算出した心拍信号の割合が他方よりも大きい方を選択して出力しても良い。
[システム構成]
 また、本実施例において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。例えば、図22に示す例では、車両の状態を被験者が入力しても良い。この場合、ノイズ処理装置は、被験者によって入力された車両の状態を用いて処理を実行する。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報(図1~図24)については、特記する場合を除いて任意に変更することができる。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。例えば、図2に示す例を用いて説明すると、ハンドル電極201やシート上部電極202をノイズ処理装置の外部装置としてネットワーク(無線LAN(Local Area Network)など)経由で接続されて協働するようにしても良い。
[コンピュータ]
 また、上記の実施例で説明した各種の処理は、予め用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現することができる。そこで、以下では、図25を用いて、上記の実施例と同様の機能を有するノイズ処理プログラムを実行するコンピュータの一例について説明する。なお、図25は、実施例2に係るノイズ処理プログラムを実行するコンピュータの一例について説明する図である。
 図20に示すように、実施例2におけるコンピュータ3000は、入出力インターフェイス3001、通信部3006、CPU3010、ROM3011を有する。また、コンピュータ3000は、HDD(Hard Disk Drive)3012、RAM(Random Access Memory)3013を有する。また、コンピュータ3000は、各部がバス3009で接続される。また、コンピュータ3000は、入出力インターフェイス3001を介して、電位測定装置4001と接続される。なお、電位測定装置4001は、電位測定部204に対応する。
 ROM3011は、上記の実施例2で示したRMS算出部401と、増幅倍率算出部402と、差分算出部403と、RMS再算出部404と、出力処理部405と同様の機能を発揮する制御プログラムを予め記憶する。つまり、図25に示すように、ROM3011は、RMS算出プログラム3011aと、増幅倍率算出プログラム3011bと、差分算出プログラム3011cと、RMS再算出プログラム3011dと、出力処理プログラム3011eとを予め記憶する。なお、これらのプログラム3011a~3011eについては、図2に示したノイズ処理装置200の各構成要素と同様、適宜統合又は分離しても良い。
 そして、CPU3010が、これらのプログラム3011a~3011eをROM3011から読み出して実行する。この結果、図25に示すように、各プログラム3011a~3011cについては、RMS算出プロセス3010aと、増幅倍率算出プロセス3010bと、差分算出プロセス3010cとして機能する。また、各プログラム3011d~3011eについては、RMS再算出プロセス3010dと、出力処理プロセス3010eとして機能するようになる。なお、各プロセス3010a~3010eは、図2に示した、RMS算出部401と、増幅倍率算出部402と、差分算出部403と、RMS再算出部404と、出力処理部405とにそれぞれ対応する。
 そして、CPU3010は、RAM3013に格納されたデータを用いて、ノイズ処理プログラムを実行する。例えば、CPU3010は、第1の電位差信号データ3013aと、第2の電位差信号データ3013bと、電位差信号の強度データ3013cと、差データ3013dと、第1の差分信号データ3013eとを用いる。また、CPU3010は、第2の差分信号データ3013fを用いる。
[その他]
 なお、本実施例で説明したノイズ処理プログラムは、インターネットなどのネットワークを介して配布することができる。また、ノイズ処理プログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
100   ノイズ処理装置
101   第1の測定部
102   第2の測定部
103   強度算出部
104   差算出部
105   補正部
106   差分算出部
107   出力処理部
200   ノイズ処理装置
201   ハンドル電極
202   シート上部電極
203   シート下部電極
204   電位測定部
205   出力部
300   記憶部
301   波形記憶部
400   制御部
401   RMS算出部
402   増幅倍率算出部
403   差分算出部
404   RMS再算出部
405   出力処理部
406   閾値変更部

Claims (12)

  1.  装置の操舵部とは別の箇所に設けられた第1の電極と、基準電極として用いられる第2の電極との間の第1の電位差信号を測定する第1の測定部と、
     前記装置の操舵部に設けられた第3の電極と前記第2の電極との間の第2の電位差信号を測定する第2の測定部と、
     前記第1の測定部によって測定された第1の電位差信号の強度と、前記第2の測定部によって測定された第2の電位差信号の強度とを、所定間隔ごとに算出する強度算出部と、
     前記強度算出部によって所定間隔ごとに算出された前記第1の電位差信号の強度と前記第2の電位差信号の強度との差を算出する差算出部と、
     前記第1の電位差信号の強度と前記第2の電位差信号の強度との差が無くなる方向に、前記差算出部によって算出された差を用いて所定間隔ごとに該第1の電位差信号及び/又は該第2の電位差信号を補正する補正部と、
     前記補正部によって所定間隔ごとに補正された後の電位差信号を用いて、前記第1の電位差信号と前記第2の電位差信号との間の差分を示す差分信号を算出する差分算出部と、
     前記差分算出部によって算出された差分信号を出力する出力処理部と
     を備えたことを特徴とするノイズ処理装置。
  2.  前記差分算出部は、前記第1の電位差信号から前記第2の電位差信号を減算する減算処理又は前記第2の電位差信号から前記第1の電位差信号を減算する減算処理を実行することで第1の差分信号を算出し、前記第1の電位差信号と前記第2の電位差信号とを加算する加算処理を実行することで第2の差分信号を算出し、
     前記出力処理部は、前記差分算出部によって算出された前記第1の差分信号と前記第2の差分信号とについてそれぞれ強度を算出し、算出した強度が他方と比較して小さい差分信号を出力することを特徴とする請求項1に記載のノイズ処理装置。
  3.  前記強度算出部は、前記第1の電位差信号及び/又は前記第2の電位差信号の状態に応じて、異なる前記所定間隔にて強度を算出することを特徴とする請求項2に記載のノイズ処理装置。
  4.  前記ノイズ処理装置は車両に設けられ、
     前記強度算出部は、前記第1の電位差信号及び/又は前記第2の電位差信号の強度が閾値よりも所定期間継続して小さい場合には、該第1の電位差信号及び/又は該第2の電位差信号の強度が閾値よりも所定期間継続して小さくない場合と比較して長い間隔を用いて強度を算出し、該第1の電位差信号及び/又は該第2の電位差信号の強度が閾値よりも大きい場合には、該第1の電位差信号及び/又は該第2の電位差信号の強度が閾値よりも大きくない場合と比較して短い間隔を用いて強度を算出し、
     前記車両の速度が所定の閾値よりも速い場合に、所定の閾値よりも遅い場合と比較して前記強度算出部によって用いられる閾値である強度算出用閾値を大きな値に変更し、該車両の速度が所定の閾値よりも遅い場合に、所定の閾値よりも速い場合と比較して該強度算出用閾値を小さい値に変更する閾値変更部を更に備えたことを特徴とする請求項3に記載のノイズ処理装置。
  5.  前記補正部は、補正対象となる電位差信号の取得時点より後の時点において取得された電位差信号を用いて算出された差を用いて、該補正対象となる時点における前記第1の電位差信号及び/又は前記第2の電位差信号を補正することを特徴とする請求項4に記載のノイズ処理装置。
  6.  前記強度算出部は、前記取得時点が含まれる複数の間隔ごとに、該間隔に含まれる電位差信号を用いて電位差信号の強度を算出し、
     前記差算出部は、前記取得時点が含まれる複数の間隔ごとに、前記強度算出部によって算出された電位差信号の強度を用いて前記差を算出し、
     前記補正部は、前記差算出部によって算出された差ごとに、前記取得時点における電位差信号を補正し、
     前記差分算出部は、前記差算出部によって算出された差ごとに補正された前記取得時点における電位差信号を用いて、該差ごとに、前記第1の差分信号と前記第2の差分信号とを算出し、
     前記出力処理部は、前記差分算出部によって算出された前記第1の差分信号と前記第2の差分信号とのうち、差分信号の強度が最も小さい差分信号を出力することを特徴とする請求項5に記載のノイズ処理装置。
  7.  装置の操舵部とは別の箇所に設けられた第1の電極と、基準電極として用いられる第2の電極との間の第1の電位差信号を測定する第1の測定手順と、
     前記装置の操舵部に設けられた第3の電極と前記第2の電極との間の第2の電位差信号を測定する第2の測定手順と、
     前記第1の測定手順によって測定された第1の電位差信号の強度と、前記第2の測定手順によって測定された第2の電位差信号の強度とを、所定間隔ごとに算出する強度算出手順と、
     前記強度算出手順によって所定間隔ごとに算出された前記第1の電位差信号の強度と前記第2の電位差信号の強度との差を算出する差算出手順と、
     前記第1の電位差信号の強度と前記第2の電位差信号の強度との差が無くなる方向に、前記差算出手順によって算出された差を用いて所定間隔ごとに該第1の電位差信号及び/又は該第2の電位差信号を補正する補正手順と、
     前記補正手順によって所定間隔ごとに補正された後の電位差信号を用いて、前記第1の電位差信号と前記第2の電位差信号との間の差分を示す差分信号を算出する差分算出手順と、
     前記差分算出手順によって算出された差分信号を出力する出力処理手順と
     をコンピュータに実行させることを特徴とするノイズ処理プログラム。
  8.  前記差分算出手順は、前記第1の電位差信号から前記第2の電位差信号を減算する減算処理又は前記第2の電位差信号から前記第1の電位差信号を減算する減算処理を実行することで第1の差分信号を算出し、前記第1の電位差信号と前記第2の電位差信号とを加算する加算処理を実行することで第2の差分信号を算出し、
     前記出力処理手順は、前記差分算出手順によって算出された前記第1の差分信号と前記第2の差分信号とについてそれぞれ強度を算出し、算出した強度が他方と比較して小さい差分信号を出力することを特徴とする請求項7に記載のノイズ処理プログラム。
  9.  前記強度算出手順は、前記第1の電位差信号及び/又は前記第2の電位差信号の状態に応じて、異なる前記所定間隔にて強度を算出することを特徴とする請求項8に記載のノイズ処理プログラム。
  10.  前記強度算出手順は、前記第1の電位差信号及び/又は前記第2の電位差信号の強度が閾値よりも所定期間継続して小さい場合には、該第1の電位差信号及び/又は該第2の電位差信号の強度が閾値よりも所定期間継続して小さくない場合と比較して長い間隔を用いて強度を算出し、該第1の電位差信号及び/又は該第2の電位差信号の強度が閾値よりも大きい場合には、該第1の電位差信号及び/又は該第2の電位差信号の強度が閾値よりも大きくない場合と比較して短い間隔を用いて強度を算出し、
     前記車両の速度が所定の閾値よりも速い場合に、所定の閾値よりも遅い場合と比較して前記強度算出手順によって用いられる閾値である強度算出用閾値を大きな値に変更し、該車両の速度が所定の閾値よりも遅い場合に、所定の閾値よりも速い場合と比較して該強度算出用閾値を小さい値に変更する閾値変更手順を更に備えたことを特徴とする請求項9に記載のノイズ処理プログラム。
  11.  前記補正手順は、補正対象となる電位差信号の取得時点より後の時点において取得された電位差信号を用いて算出された差を用いて、該補正対象となる時点における前記第1の電位差信号及び/又は前記第2の電位差信号を補正することを特徴とする請求項10に記載のノイズ処理プログラム。
  12.  前記強度算出手順は、前記取得時点が含まれる複数の間隔ごとに、該間隔に含まれる電位差信号を用いて電位差信号の強度を算出し、
     前記差算出手順は、前記取得時点が含まれる複数の間隔ごとに、前記強度算出手順によって算出された電位差信号の強度を用いて前記差を算出し、
     前記補正手順は、前記差算出手順によって算出された差ごとに、前記取得時点における電位差信号を補正し、
     前記差分算出手順は、前記差算出手順によって算出された差ごとに補正された前記取得時点における電位差信号を用いて、該差ごとに、前記第1の差分信号と前記第2の差分信号とを算出し、
     前記出力処理手順は、前記差分算出手順によって算出された前記第1の差分信号と前記第2の差分信号とのうち、差分信号の強度が最も小さい差分信号を出力することを特徴とする請求項11に記載のノイズ処理プログラム。
PCT/JP2009/070137 2009-11-30 2009-11-30 ノイズ処理装置及びノイズ処理プログラム WO2011064894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011543067A JP5138101B2 (ja) 2009-11-30 2009-11-30 ノイズ処理装置及びノイズ処理プログラム
PCT/JP2009/070137 WO2011064894A1 (ja) 2009-11-30 2009-11-30 ノイズ処理装置及びノイズ処理プログラム
EP09851683.4A EP2508125B1 (en) 2009-11-30 2009-11-30 Noise processing device and noise processing program
US13/483,350 US9000931B2 (en) 2009-11-30 2012-05-30 Noise processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070137 WO2011064894A1 (ja) 2009-11-30 2009-11-30 ノイズ処理装置及びノイズ処理プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/483,350 Continuation US9000931B2 (en) 2009-11-30 2012-05-30 Noise processing apparatus

Publications (1)

Publication Number Publication Date
WO2011064894A1 true WO2011064894A1 (ja) 2011-06-03

Family

ID=44066013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070137 WO2011064894A1 (ja) 2009-11-30 2009-11-30 ノイズ処理装置及びノイズ処理プログラム

Country Status (4)

Country Link
US (1) US9000931B2 (ja)
EP (1) EP2508125B1 (ja)
JP (1) JP5138101B2 (ja)
WO (1) WO2011064894A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183139A (ja) * 2011-03-04 2012-09-27 Seiko Epson Corp 計測装置
JP2012232001A (ja) * 2011-05-02 2012-11-29 Fujitsu Ltd 信号処理装置、信号処理方法及び信号処理プログラム
JP2013123451A (ja) * 2011-12-13 2013-06-24 Fujitsu Ltd 心拍信号処理装置、および心拍信号処理方法
JP2018117740A (ja) * 2017-01-24 2018-08-02 パイオニア株式会社 生体情報検出装置
JP2020048712A (ja) * 2018-09-25 2020-04-02 日本光電工業株式会社 パルス判別装置および心電図解析装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605228B1 (en) * 2011-12-17 2017-02-15 Tata Consultancy Services Limited Fatigue time determination for an activity
US20140285216A1 (en) * 2013-03-19 2014-09-25 Ford Global Technologies, Llc System for enhancing signal quality from capacitive biometric sensor in a vehicle for continuous biometric monitoring
JP6205792B2 (ja) * 2013-04-01 2017-10-04 Tdk株式会社 心電計測装置、心電計測方法、及び心電計測プログラム
US9694156B2 (en) 2014-06-05 2017-07-04 Eight Sleep Inc. Bed device system and methods
US9186479B1 (en) 2014-06-05 2015-11-17 Morphy Inc. Methods and systems for gathering human biological signals and controlling a bed device
JP6483364B2 (ja) 2014-07-09 2019-03-13 ユニバーシティ・オブ・タンペレUniversity of Tampere 触覚型デバイス
EP3015055A1 (en) * 2014-10-30 2016-05-04 Comftech S.r.L. System for monitoring a driver
US10154932B2 (en) 2015-11-16 2018-12-18 Eight Sleep Inc. Adjustable bedframe and operating methods for health monitoring
US10105092B2 (en) 2015-11-16 2018-10-23 Eight Sleep Inc. Detecting sleeping disorders
RU2653995C1 (ru) * 2017-01-20 2018-05-15 Общество с ограниченной ответственностью "Компоненты и технологии 3Д" (ООО "Кит 3Д") Способ регистрации электрокардиограммы и реограммы с водителя автомобиля и устройство для осуществления способа
WO2019139939A1 (en) 2018-01-09 2019-07-18 Eight Sleep, Inc. Systems and methods for detecting a biological signal of a user of an article of furniture
GB2584241B (en) 2018-01-19 2023-03-08 Eight Sleep Inc Sleep pod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235823A (ja) * 2002-02-15 2003-08-26 Naohiro Toda 「生体電気信号における外来交流雑音除去方式」
JP2006198403A (ja) 2005-01-18 2006-08-03 Dailycare Biomedical Inc 心拍変動分析装置
JP2009142576A (ja) 2007-12-17 2009-07-02 Fujitsu Ltd 基準容量結合心拍計測装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170227A (en) * 1976-12-27 1979-10-09 Electronics For Medicine, Inc. Apparatus and method for ECG baseline shift detecting
US5002063A (en) * 1990-03-29 1991-03-26 The Scott Fetzer Company Electronic physiological data monitoring
US5615687A (en) * 1995-12-06 1997-04-01 Hewlett-Packard Company Heart monitoring system and method with reduced signal acquisition range
KR100382154B1 (ko) * 2000-02-22 2003-05-01 박원희 운전자 상태 감시장치
CN101516260A (zh) * 2006-09-15 2009-08-26 依德西亚有限公司 差分电生理信号内的接触伪像的消除
JP4289413B2 (ja) * 2007-03-26 2009-07-01 株式会社デンソー 生体情報測定装置
US8694083B2 (en) * 2008-05-20 2014-04-08 Brunswick Corporation Noise cancellation mechanism
JP5292018B2 (ja) * 2008-08-22 2013-09-18 トヨタ自動車株式会社 車両用心電計測装置
DE102009050755A1 (de) * 2009-10-27 2011-05-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signalerfassungsvorrichtung zur Erfassung eines Differenzsignals für eine elektrische Messung eines Vitalparameters eines Lebewesens, Elektrodenanordnung und Verfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235823A (ja) * 2002-02-15 2003-08-26 Naohiro Toda 「生体電気信号における外来交流雑音除去方式」
JP2006198403A (ja) 2005-01-18 2006-08-03 Dailycare Biomedical Inc 心拍変動分析装置
JP2009142576A (ja) 2007-12-17 2009-07-02 Fujitsu Ltd 基準容量結合心拍計測装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEKI TOMIMORI: "Sesshokugata Denkyoku to Yoryo Ketsugogata Denkyoku o Heiyo shita Shindenzu Keisoku ni Okeru Taido Seibun no Yokusei", THE JAPAN SOCIETY FOR PRECISION ENGINEERING TAIKAI GAKUJUTSU KOENKAI KOEN RONBUNSHU, vol. 2008, 3 March 2008 (2008-03-03), pages 108, XP008155793 *
See also references of EP2508125A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183139A (ja) * 2011-03-04 2012-09-27 Seiko Epson Corp 計測装置
JP2012232001A (ja) * 2011-05-02 2012-11-29 Fujitsu Ltd 信号処理装置、信号処理方法及び信号処理プログラム
JP2013123451A (ja) * 2011-12-13 2013-06-24 Fujitsu Ltd 心拍信号処理装置、および心拍信号処理方法
US9247892B2 (en) 2011-12-13 2016-02-02 Fujitsu Limited Heartbeat signal processing method
JP2018117740A (ja) * 2017-01-24 2018-08-02 パイオニア株式会社 生体情報検出装置
JP6991717B2 (ja) 2017-01-24 2022-01-12 パイオニア株式会社 生体情報検出装置
JP2020048712A (ja) * 2018-09-25 2020-04-02 日本光電工業株式会社 パルス判別装置および心電図解析装置
US11433242B2 (en) 2018-09-25 2022-09-06 Nihon Kohden Corporation Pulse discrimination device and electrocardiogram analyzer
JP7164375B2 (ja) 2018-09-25 2022-11-01 日本光電工業株式会社 パルス判別装置および心電図解析装置

Also Published As

Publication number Publication date
US9000931B2 (en) 2015-04-07
EP2508125B1 (en) 2015-10-28
EP2508125A1 (en) 2012-10-10
JPWO2011064894A1 (ja) 2013-04-11
EP2508125A4 (en) 2013-10-02
US20130022209A1 (en) 2013-01-24
JP5138101B2 (ja) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5138101B2 (ja) ノイズ処理装置及びノイズ処理プログラム
JP5141777B2 (ja) 微粒子検知装置
JP5182425B2 (ja) 識別装置
JP5585551B2 (ja) 車両用心電計測システム
JP6025187B2 (ja) 生体電気信号計測用回路
JP6080078B2 (ja) 姿勢および歩行状態推定装置
JP4274382B2 (ja) 車両用二次電池の内部抵抗算出方法
JP4962735B2 (ja) 生体情報取得装置
JP5919722B2 (ja) 生体信号推定装置及びプログラム
JP6236952B2 (ja) 運転支援装置および運転支援方法
JP2015224919A (ja) 車両用二次電池の等価回路のパラメータ推定装置
EP2604465B1 (en) Heartbeat signal processor, heartbeat signal processing method and program
JPWO2018180331A1 (ja) 運転者状態検知装置
US20150088038A1 (en) Standup assistance apparatus and method
JPWO2013140525A1 (ja) 覚醒度判定装置、覚醒度判定プログラムおよび覚醒度判定方法
JP5673341B2 (ja) 心拍計測装置、心拍計測方法及び心拍計測プログラム
JP2018117740A (ja) 生体情報検出装置
JP2007309939A (ja) センサーにおけるターゲットのローカライゼーション向上方法
JP7156621B2 (ja) 車両用心電検出装置
JP2006006665A (ja) 脳機能解析システム
JP5640882B2 (ja) 信号処理装置、信号処理方法及び信号処理プログラム
JP4101822B2 (ja) 乗員検知方法
JP5472147B2 (ja) 心電波形計測システム
JP5321429B2 (ja) 水分量制御装置及び水分量制御プログラム
JP2020195728A (ja) 車両用心電検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543067

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009851683

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE