WO2011064884A1 - 通信システム及び通信装置 - Google Patents

通信システム及び通信装置 Download PDF

Info

Publication number
WO2011064884A1
WO2011064884A1 PCT/JP2009/070097 JP2009070097W WO2011064884A1 WO 2011064884 A1 WO2011064884 A1 WO 2011064884A1 JP 2009070097 W JP2009070097 W JP 2009070097W WO 2011064884 A1 WO2011064884 A1 WO 2011064884A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
processing unit
communication
communication device
information
Prior art date
Application number
PCT/JP2009/070097
Other languages
English (en)
French (fr)
Inventor
遠藤 英樹
泰輔 植田
芦 賢浩
典雄 宮崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020127014069A priority Critical patent/KR101349979B1/ko
Priority to PCT/JP2009/070097 priority patent/WO2011064884A1/ja
Priority to CN2009801626575A priority patent/CN102630372A/zh
Priority to JP2011543060A priority patent/JP5226131B2/ja
Priority to US13/512,480 priority patent/US9083602B2/en
Publication of WO2011064884A1 publication Critical patent/WO2011064884A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/20Hop count for routing purposes, e.g. TTL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5603Access techniques

Definitions

  • the present invention relates to a packet communication system, and more particularly to a communication system that performs a loopback test for path connectivity confirmation and the like.
  • MPLS-TP has the most important issue of ensuring reliability, which is the biggest drawback of packet switching networks, such as OAM (Operation Administration and ce Maintenance) for fault detection and APS (Automatic Protection Switching) for switching communication paths. Standardization is in progress centering around.
  • OAM which plays a major role in fault detection and fault location identification, is a technology that is the core of reliability.
  • the MPLS protocol encapsulates packets with one or more headers called labels, and an intermediate node (LSR: Label Switching Router) in the network looks at only this label and transfers it. ing.
  • LSR Label Switching Router
  • a normal MPLS LSR is used as a key for transferring an LSP (Label Switched Path) ID included in the outermost (first stage) label.
  • LSP Label Switched Path
  • the device LER: Label Edge Router
  • the user and service are identified from the MPLS label attached to the packet, the label is deleted, the payload is extracted, and the subsequent processing (transfer, termination, etc.) To implement.
  • MPLS is a protocol that connects LERs that are network end points with lines (paths) that pass through a plurality of LSRs, and the path is designated by a first-stage MPLS label for transfer.
  • MPLS-TP is regarded as most important to maintain compatibility with MPLS, and newly added OAMs are also designed to match this architecture.
  • OAM functions are roughly divided into functions such as fault detection, fault location identification, and network performance measurement.
  • OAMs for identifying a failure location include LB (Loop Back), LT (Link Trace), and PT (Path Trace) which are turned back at a midway node in the network and perform a connectivity test.
  • MPLS is a protocol for designating a route (line) in the network, and thus has a feature that it is difficult to designate a return position in the network with a point.
  • Ping used in conventional MPLS is realized by using TTL (Time To Live) present in the MPLS label for transfer.
  • TTL was introduced for discarding when a device passes through a finite number of times (hops) in order to prevent it from staying in the network indefinitely when a loop occurs in the network.
  • hops time To Live
  • the TTL of the first-stage MPLS label for transfer is decremented by ‘1’, and when it becomes ‘0’, the packet is discarded in the device.
  • the conventional MPLS Ping and Trace Route are set by setting the TTL of the first-stage MPLS label so that the node that transmits the OAM packet is exactly “0” at the node that is the turning point.
  • the specification of the turning point is realized.
  • the TTL of the first-stage MPLS label for transfer is “0”, and the packet is discarded.
  • the packet with TTL '0' is not simply discarded, but the payload is checked and if it is determined that it is a Ping or Trace Route packet Perform packet return processing.
  • the loopback processing is realized by using the TTL of the first-stage MPLS label for transfer. The same applies to the MPLS-TP OAM that is currently being standardized. The method is adopted.
  • G. 8114 Non-patent Document 2 (MPLS-TP standardization was invalidated after starting with IETF).
  • the turning point is designated by the TTL of the MPLS label used for OAM identification.
  • the OAM identification label is attached to the inside of the transfer label (second and subsequent stages), and has the same format as the transfer MPLS label, but the LSP ID indicating the normal path ID is a reserved value “14”. It is specified as fixed.
  • G. In 8114 a turning point is designated so that the TTL that is an unused field of this OAM label has the desired number of hops.
  • the G.G. 8114 is supported and the number of points to be processed (number of MIPs ⁇ 1) is set. It is disclosed that this MIP is provided in both Ingress and Egress.
  • the return point is designated by a unique ID (Location ID) in the network.
  • the in-device divisions 3a, 4a, and 5a of the ATM switch 1 (Ingress and Egress can also be separated) are designated and connected (turned back). ) It is disclosed to perform a test.
  • the return means 3b, 4b, 5b of the ATM switch 1 refer to the location ID of the loopback OAM cell 6 and return when the identifier indicates the own device classification. Yes.
  • the unit that can be specified as the turning point is fixed to the device unit due to the property that the TTL is subtracted every time the device hops. Will be.
  • the device input (Ingress) and output (Egress) can be specified as the turnaround point, it can be determined that the failure of the communication path on the device input side is high if the device Ingress fails. In the case of a failure, it is necessary to take measures such as securing a new communication path and changing the connection to the apparatus.
  • the return of the device at Ingress is successful, but the return of the device at the Egress fails, it is possible to identify not a communication path failure but a setting failure or a failure in the device. Prioritize reviewing settings and replacing parts.
  • the turn-around point is specified using a field that is not referred to in the normal MPLS LSR, ie, TTL of the OAM identification label, so that it cannot be applied to MPLS-TP OAM.
  • the conventional MPLS is called PHP (Penultimate Hop ⁇ Popping), and the transfer label is deleted at the LSR immediately before the LER that is the path termination device. It is stipulated that processing is performed only by looking at the label or payload after the second stage inside the. As a result, processing such as transfer label analysis and search can be omitted in LER, which has the advantage that the mounting of the apparatus is very simple, and is a widely used function.
  • the TTL of the OAM identification label is determined by standardization to be “1”. This is expected even if a packet having only an OAM identification label flows into the LER by PHP, because the TTL is ‘1’, so that an effect of preventing abnormal processing such as forwarding is expected. For this reason, G.
  • the technique 8114 has a big problem in terms of compatibility with the conventional MPLS. G. In the technique of 8114, since it is necessary to refer not only to the transfer label but also to the inner OAM label in order to determine whether it is a return test packet in all transfer apparatuses, high-speed transfer processing is hindered.
  • Patent Document 1 (other than the MPLS device described above) requires the analysis of the payload of the ATM cell when determining whether or not to wrap the device itself.
  • MPLS and MPLS-TP in which variable-length packet processing is indispensable, if transfer processing is required after analyzing the payload in the LSR, a major problem occurs in addition to a high speed. Since compatibility with a conventional LSR that performs packet relay using only the eye label cannot be ensured, it cannot be applied.
  • the MPLS-TP OAM can specify the turning point in fine units such as Ingress and Egress of the device as well as the dedicated line and public telephone service, and various existing processes of the conventional MPLS. It is necessary to maintain compatibility.
  • a packet communication system of the present invention is a communication system that includes a plurality of communication devices and transfers packets between the plurality of communication devices via a communication path.
  • the first communication device uses the first information for designating the communication device to which the packet is returned when the communication device returns the packet by any communication device on the communication path to check the connectivity of the communication path.
  • One of the characteristics is that a packet to which the first information and the second information are added is transmitted.
  • FIG. 6 It is a figure which shows the header processing table in the case of the Ethernet process with which the input header process part 103 of FIG. 6 is provided. It is a figure which shows the header processing table in the case of the MPLS process with which the input header process part 103 of FIG. 6 is provided. It is a figure which shows the frame transfer table with which the switch part 11 of FIG. 6 is provided. It is a figure which shows the header processing table in the case of the Ethernet process with which the output header process part 106 of FIG. 6 is provided. It is a figure which shows the header processing table in the case of the MPLS process with which the output header process part 106 of FIG. 6 is provided. 7 is a flowchart of input header processing S100 executed by the input header processing unit 103 of FIG.
  • LSR process S200 which the input header process part 103 of FIG. 6 performs.
  • LERR process S300 which the input header process part 103 of FIG. 6 performs.
  • 7 is a flowchart of output header processing S400 executed by the output header processing unit 106 of FIG. 6.
  • MPLS output processing S500 which the output header process part 106 of FIG. 6 performs.
  • folding process S600 which the folding process part 109 of FIG. 6 performs.
  • FIG. 20 is a flowchart of LSR processing S700 executed by the input header processing unit 103 of FIG. It is a block diagram which shows the structure of the communication apparatus of the other communication system to which this invention is applied. It is a block diagram which shows the structure of the input process part 1030 and the output process part 1060 of FIG. 24 is a flowchart of a LER process S800 executed by the input processing units 1030-1 to 1030-1 to N in FIG.
  • FIG. 23 is a flowchart of an LSR process S900 executed by the input processing units 1030-1 to 1030-1 to N in FIG. 24 is a flowchart of an MPLS output process S1000 executed by the output processing units 1060-1 to 1060-N in FIG. It is a block diagram which shows the structure of the communication apparatus of the other communication system to which this invention is applied.
  • 28 is a flowchart of LSR processing S1100 executed by the input processing units 1030-1 to 1030-1 to N in FIG.
  • FIG. 1 shows an example of a loopback test using an OAM packet in the communication system of the present invention.
  • the communication device of this embodiment has the same device configuration in both the edge device (LER) and the relay device (LSR) of the MPLS network MW1, and operates as an LER according to a preset or input packet. May only work as. In this figure, it is assumed that the communication devices 10A and 10N are in LER operation and the communication device 10B is in LSR operation for convenience from the position on the MPLS network.
  • LER edge device
  • LSR relay device
  • This figure shows a sequence in which a test is performed by returning a return OAM packet from the communication apparatus 10A by specifying a return point in the MPLS network MP1 in order to check the connectivity of the MPLS path MP1.
  • a return request OAM packet 42 is inserted from the communication device 10A (P100).
  • the administrator (operator) of the communication device 10A designates a return point or a user to be tested, and executes an execution command for the return test to the communication device 10A.
  • an insertion process is performed by the following functional blocks shown in FIG.
  • the NIF management unit 110 on the NIF 10B-1 to be inserted by the node management unit 12 the port 101-n to be inserted, the return point and the user to be inserted are designated, and an insertion command is issued.
  • the NIF management unit 110 receiving the request generates an OAM packet, issues an insertion request to the output scheduler 108, and the OAM packet is inserted.
  • the packet format of the OAM packet is shown in FIG. 5 and will be described later.
  • the return request OAM packet 42 is an MPLS label for transfer (shown in FIG. 4) 414-1, LSP ID: 4141 is an ID indicating the MPLS path MP1, and TC: 4142 is a default value (in this embodiment, an arbitrary value). Good), “0” is assigned to the S bit 4143 and “1” is assigned to the TTL: 4144.
  • an MPLS label for user identification 414-2 an LSP ID: ID indicating 4141 indicates a user
  • TC: 4142 is a default value (may be any value in this embodiment)
  • S bit 4143 is “0”
  • TTL A default value (which may be any value in this embodiment) is assigned to 4144.
  • an LSP ID: 4141 is an ID indicating OAM (eg, “14”), TC: 4142 is “0”, S bit 4143 is “1”, TTL: 4144 is a default value (Any value may be used in this embodiment).
  • the payload portion 424 is a field including information indicating that this packet is an OAM packet for a return request.
  • the communication device 10B which is a one-hop LSR, is designated from the communication device 10A as the return device by the TTL: 4144 of the MPLS label for transfer 414-1, and further, the TC: 4142 of the MPLS label for the OAM identification 414-3 is specified by: As a turning point, NIF: 10B-1 on the Ingress side of the communication device 10B is designated.
  • the forwarding MPLS label 414-1 is first analyzed, and the TTL: 4144 is “1”.
  • the apparatus determines that discard or return processing is necessary, analyzes the OAM identification MPLS label 414-2, determines that there is a possibility of return on the Ingress side because TC: 4142 is “0”, and terminates ( P101). Details are shown in FIG.
  • the area to be rewritten is LSP ID 4141, payload portion 424, TTL of transfer MPLS label 414-1: 4144, and changing to specify the reverse method of MPLS path MP1 for turning back LSP ID: 4141, payload
  • the TTL: 4144 of the MPLS label for transfer 414-1 is set to “255” (maximum value) so that it can be reliably returned to the communication device 10A. It is important to make it.
  • the communication device 10A When the communication device 10A receives the return response OAM packet 42, the communication device 10A analyzes each MPLS label and payload portion regardless of the TTL: 4144 of the MPLS label 414-1 for transfer, and sets the MPLS set in the own device. It is determined that the packet is a return response OAM packet to the path MP1, and terminated (P103). Details will be described with reference to FIGS. This completes the loopback test on the NIF: 10B-1 Ingress side of the communication device 10B serving as the LSR.
  • a return request OAM packet 42 is inserted from the communication device 10A (P200).
  • the return request OAM packet 42 includes, as a transfer MPLS label 414-1, an LSP ID: 4141, an ID indicating the MPLS path MP1, a TC: 4142, a default value (may be any value in this embodiment), and an S bit 4143. '0' and TTL: 4144 are assigned '1'.
  • an MPLS label for user identification 414-2 an LSP ID: ID indicating 4141 indicates a user
  • TC: 4142 is a default value (may be any value in this embodiment)
  • S bit 4143 is “0”
  • TTL A default value (which may be any value in this embodiment) is assigned to 4144.
  • an LSP ID: 4141 is an ID indicating OAM (eg, “14”)
  • TC: 4142 is “1”
  • S bit 4143 is “1”
  • TTL: 4144 is a default value (Any value may be used in this embodiment).
  • the payload portion 424 is a field including information indicating that this packet is an OAM packet for a return request.
  • the communication device 10B which is a one-hop LSR, is designated from the communication device 10A as the return device of the return request OAM packet by the TTL: 4144 of the transfer MPLS label 414-1, and the OAM identification MPLS label 414-3.
  • TC: 4142, Ngress: 10B-n on the egress side of the communication device 10B is designated as the return point of the return request OAM packet.
  • the forwarding MPLS label 414-1 is first analyzed, and since the TTL: 4144 is “1”, The apparatus determines that discard or return processing is necessary, analyzes the OAM identification MPLS label 414-3, and TC: 4142 is “1”, so it is not the return on the Ingress side, so the return request OAM packet is transmitted ( P201).
  • the return response OAM packet 42 is inserted as in P102 (P203).
  • the communication device 10A performs reception processing of the return response OAM packet 42 similar to P103 (P205). This completes the loopback test on the Egress side of NIF: 10B-2 of the communication device 10B serving as the LSR.
  • an LSP ID: 4141 is an ID indicating OAM (eg, “14”), TC: 4142 is “0”, S bit 4143 is “1”, TTL: 4144 is a default value (Any value may be used in this embodiment).
  • the payload portion 424 is a field including information indicating that this packet is an OAM packet for a return request.
  • the communication device 10A which is a 2-hop LSR, is designated from the communication device 10A as the return device of the return request OAM packet by the TTL: 4144 of the transfer MPLS label 414-1, and the OAM identification MPLS label 414- 3 of TC: 4142, NIF: 10N-1 on the Ingress side of the communication device 10N is designated as the turnaround point of the return request OAM packet.
  • the forwarding MPLS label 414-1 is first analyzed, and the TTL: 4144 is "2" or more.
  • the return request OAM packet is transmitted (P301).
  • the communication apparatus 10B When the transmitted return request OAM packet 42 arrives at the NIF: 10B-n Egress side of the communication apparatus 10B, the communication apparatus 10B performs the same processing as P204 and transmits the return request OAM packet 42. (P302).
  • the communication device 10N When the transmitted return request OAM packet 42 arrives at the NIF: 10N-1 Ingress side of the communication device 10N, the communication device 10N does not depend on the TTL: 4144 of the transfer MPLS label 414-1. Then, the payload part is analyzed, it is determined that the packet is a return request OAM packet to the MPLS path MP1 set in the own apparatus, and terminated (P303).
  • the communication device 10N performs the insertion process of the return response OAM packet 42 as in P102 (P304).
  • the communication device 10B When the return response OAM packet 42 arrives at the NIF: 10B-n Ingress side of the communication device 10B, the communication device 10B performs the same processing as P301 on the return response OAM packet 42 and transmits it (P305).
  • the communication device 10B performs the same process as P204 on the OAM packet 42 of the return response and transmits it. (P306).
  • the communication device 10A performs reception processing of the return response OAM packet 42 similar to P103 (P307). This completes the loopback test on the NIF: 10N-1 Ingress side of the communication apparatus 10N that becomes the LER.
  • the connectivity confirmation test can be performed by designating the entry side and the exit side of the communication device using the TTL of the transfer MPLS label and other header information.
  • FIG. 2 shows a format of a communication packet 40 received by the communication apparatus 10N from outside the MPLS network MW1 in this embodiment.
  • the communication packet 40 includes a MAC header including a destination MAC address 401, a transmission source MAC address 402, a VLAN tag 403, a type value 404 indicating the type of the subsequent header, a payload portion 405, and a packet check sequence (FCS) 406. .
  • a MAC header including a destination MAC address 401, a transmission source MAC address 402, a VLAN tag 403, a type value 404 indicating the type of the subsequent header, a payload portion 405, and a packet check sequence (FCS) 406.
  • VLAN tag 403 indicates a value of VLAN ID (VID #) that becomes a flow identifier.
  • FIG. 3 shows a format of a communication packet 41 that the communication device 10N transmits / receives within the MPLS network MW1.
  • the Martini format used when accommodating Ethernet using MPLS-TP is assumed.
  • the communication packet 41 includes a destination MAC address 411, a source MAC address 412, a MAC header composed of a type value 413 indicating the type of the subsequent header, a transfer MPLS label 414-1, a user identification MPLS label 414-2, It consists of a payload part 415 and FCS: 416.
  • the Ethernet packet of the communication packet 40 shown in FIG. 2 is encapsulated.
  • This Martini format has two levels of MPLS labels, and the first level MPLS label 414-1 (forwarding MPLS label) indicates the transfer path in the network, and the second level MPLS label 414-2 (user The identification MPLS label) is used to identify a user or service as a label for Psudo Wire.
  • FIG. 4 shows the format of the MPLS label 414 shown in FIG.
  • the MPLS label 414 includes an LSP ID: 4141 indicating an MPLS path and a user ID, a traffic class (TC) 4142 indicating a transfer priority, and an S bit 4143 indicating that the label is the last stage of the MPLS label.
  • FIG. 5 shows a format of the OAM packet 42 that the communication device 10N transmits / receives within the MPLS network MW1.
  • the OAM packet 42 includes a MAC header including a destination MAC address 421, a source MAC address 422, a type value 423 indicating the type of the subsequent header, a transfer MPLS label 414-1, a user identification MPLS label 414-2, It comprises an OAM identification MPLS label 414-3, a payload portion 424, and an FCS 425.
  • the payload section 424 stores information dedicated to OAM.
  • This figure shows an OAM packet for a user, which has an MPLS label for OAM identification after the second level of the MPLS label. In the case of an OAM packet that is used not on the user but on the transfer path, the MPLS label for OAM identification is arranged after the MPLS label for transfer 414-1.
  • FIG. 6 shows the configuration of the communication device 10N.
  • the communication device 10N includes a plurality of network interface boards (NIFs) 10 (10-1 to 10-n), a switch unit 11 connected to these NIFs, and a node management unit 12 that manages the entire device.
  • NIFs network interface boards
  • switch unit 11 connected to these NIFs
  • node management unit 12 that manages the entire device.
  • Each NIF: 10 includes a plurality of input / output line interfaces 101 (101-1 to 101-n) serving as communication ports, and is connected to other devices via these communication ports.
  • the input / output line interface 101 is a line interface for Ethernet (registered trademark).
  • the input / output line interface 101 is not limited to a line interface for Ethernet (registered trademark).
  • Each NIF: 10 includes an input header processing unit 103 connected to the input / output line interface 101, an input packet buffer 104 connected to the input header processing unit 103, and an input scheduler 105 connected to the input packet buffer 104.
  • Each NIF: 10 includes a plurality of SW interfaces 102 (102-1 to 102-n) connected to the switch unit 11, an output packet header processing unit 106 connected to these SW interfaces, and an output packet header.
  • An output packet buffer 107 connected to the processing unit 106 and an output scheduler 108 connected to the output packet buffer 107 are included.
  • the SW interface 102-i corresponds to the input / output line interface 101-i
  • the input packet received by the input / output line interface 101-i is transferred to the switch unit 11 via the SW interface 102-i. Is done.
  • the output packet distributed from the switch unit 11 to the SW interface 102-i is sent to the output line via the input / output line interface 101-i. Therefore, the input header processing unit 103, the input packet buffer 104, the input scheduler 105, the output header processing unit 106, the output packet buffer 107, and the output header processing unit 108 have an independent structure for each line. Packets do not mix.
  • the input / output line interface 101-i When the input / output line interface 101-i receives the communication packet 40 or 41 or the OAM packet 42 from the input line, it adds the in-device header 45 shown in FIG. 7 to the received packet.
  • the in-device header 45 includes a plurality of fields indicating a flow ID: 451, a reception port ID: 452, a reception NIF ID: 453, and a packet length 454.
  • the port and NIF ID acquired from the setting register 111 are stored in the received port ID: 452 and NIF ID: 453, respectively.
  • the flow ID: 451 is blank. An effective value is set in this field by the input header processing unit 103.
  • the input header processing unit 103 performs input header processing S100 described later, refers to the input header processing table 23, adds a flow ID: 451 to the in-device header 45 of each input packet, and performs other header processing. Is implemented.
  • the input packet is stored in the loopback processing unit 109 or the input packet buffer 104 for each line or discarded.
  • the setting contents of the input header processing table 23 differ as follows in the mode for processing the Ethernet of the communication packet 40 and the mode for processing the MPLS of the communication packets 41 and 42. This processing mode is designated by the setting register 111.
  • FIG. 8 shows the input header processing table 23 when the setting register 111 is set to the Ethernet processing mode.
  • the input header processing table 23 is for searching a table entry indicating a flow ID: 234 using a combination of VLAN ID: 231, input NIF ID: 232, and input port ID: 233 as a search key. belongs to.
  • the flow ID: 234 is an ID for specifying each flow in the communication device 10N, and the same ID is used in both directions.
  • FIG. 9 shows the input header processing table 23 when the MPLS processing mode is set in the setting register 111.
  • the input header processing table 23 in the case of the MPLS processing is for searching a table entry indicating the flow ID: 234 using a combination of the LSP ID 1: 235 and the LSP ID 2: 236 as a search key.
  • LSP ID 1: 235 has LSP ID: 4141 stored in the first-stage MPLS label: 414-1 assigned to the received packet, and LSP ID 2: 236 has been assigned to the received packet.
  • LSP ID: 4141 stored in the second-stage MPLS label: 414-2 is set.
  • the input header processing table 23 sets both the transfer MPLS labels 414-1 and Search is performed by a combination of the user identification MPLS label 414-2.
  • the input header processing table 23 is searched only by the transfer MPLS label 414-1. Thereby, the flow ID of the in-device header is determined from the MPLS label.
  • the input scheduler 105 When the packet is stored in the input packet buffer 105, the input scheduler 105 reads it independently for each line and outputs it to the SW interfaces 102-1 to 102-n corresponding to the line. Further, the input scheduler 105 schedules the reading of the inserted packet from the loopback processing unit 109 and the packet from the input packet buffer 104.
  • the insertion packet is a return response OAM packet inserted from the return processing unit 109.
  • the switch unit 11 receives input packets from the SW interfaces 102-1 to 102-n of each NIF, identifies the output NIF and output port ID from the frame transfer table 22, and sends them to the corresponding SW interface 102-i as output packets. Forward.
  • FIG. 10 shows the frame transfer table 22.
  • the frame transfer table 22 searches a table entry indicating an output NIF ID: 224 and an output port ID: 225 using a combination of the flow ID: 221, the input NIF ID: 222, and the input port ID: 223 as a search key. Is to do.
  • the input NIF ID: 222 and the input port ID: 223 are physically fixedly assigned to each SW interface of each NIF, and can be uniquely determined depending on from which SW interface the input packet is received.
  • the switch unit 11 searches the frame transfer table 22 with that.
  • the output packets received by each SW interface 102 are supplied to the output header processing unit 106 one after another.
  • the output header processing unit 106 performs output header processing S400 described later, refers to the output header processing table 24, and performs header processing of each output packet.
  • the output packet is stored for each line in the loopback processing unit 109 or the output packet buffer 107 or discarded.
  • the output header processing table 24 has different settings as described below in the mode for processing the Ethernet of the communication packet 40 and the mode for processing the MPLS of the communication packets 41 and 42. This processing mode is designated by the setting register 111.
  • FIG. 11 shows the output header processing table 24 when the setting register 111 is set to the Ethernet processing mode.
  • the output header processing table 24 in the case of Ethernet processing is for searching for table entries indicating the VLAN tag processing 242 and the VLAN tag 243 using the flow ID: 241 as a search key.
  • the VLAN tag processing 242 specifies VLAN tag processing for the output packet, and tag information necessary for the VLAN tag processing is set in the VLAN tag 243.
  • FIG. 12 shows the output header processing table 24 when the MPLS processing mode is set in the setting register 111.
  • the output header processing table 24 in the case of the MPLS processing is for searching for a table entry indicating the MPLS label processing 244, the MPLS label 1: 245, and the MPLS label 2: 246 using the flow ID: 241 as a search key.
  • the MPLS label processing 244 designates processing for the output MPLS label 414-1 and the user identification MPLS label 414-2 of the output packet, and necessary label information includes MPLS label 1: 245 and MPLS label 2: 246.
  • the output header processing table 24 includes the transfer MPLS label 414-1 and the user identification.
  • the MPLS label processing 244 two steps are given to the MPLS label processing 244. Further, in this case, a destination MAC address 411, a transmission source MAC address 412 and an ether type value 413 are given. At this time, the destination MAC address 411 and the transmission source MAC address 412 may overwrite values set in the setting register 111 for each port, or are registered in the input header processing table 23 for each flow ID. It may be overwritten.
  • the ether type value 413 stores an ether type value indicating MPLS set in the setting register 111.
  • the output header processing table 24 includes a transfer MPLS label 414-1 for one-stage conversion, one-stage deletion, transparency, and the like. Settings to process only 1 are written.
  • the output scheduler 108 When the packet is stored in the output packet buffer 107, the output scheduler 108 reads it independently for each line and outputs it to the input / output line interface 101 corresponding to the line. Further, the output scheduler 108 schedules the reading of the inserted packet from the loopback processing unit 109 and the NIF management unit 110 and the packet from the output packet buffer 107.
  • the insertion packet is a return response OAM packet inserted from the return processing unit 109 and a return request OAM packet inserted from the NIF management unit 110. That is, the loopback test is started from the NIF management unit 110.
  • the NIF management unit 110 receives the return request OAM packet insertion command from the node management unit 12 and inserts it into the output scheduler 108 so that it is output to the port corresponding to the reception port ID: 453 of the in-device header 45. To do.
  • the input / output line interface 101 removes the in-device header 45 from the received output packet, and sends the output packet to the output line in the format shown in FIGS.
  • the loopback processing unit 109 performs a loopback processing S600 (to be described later) for rewriting the MPLS label and rewriting the payload necessary for looping back the OAM packet of the loopback request received from the input header processing unit 103 or the output header processing unit 106. carry out.
  • a return response OAM packet is inserted into each scheduler.
  • FIG. 13 shows a flowchart of the input header processing S100 executed by the input header processing unit 103.
  • the input header processing unit 103 determines the processing mode set in the setting register 111 (S101), and extracts the information from the in-device header 45 and the VLAN tag 403 when the Ethernet processing is set.
  • the input header processing table 23 is searched using the received port ID: 452, the received NIF ID: 453, and the VID (S102).
  • the flow ID 234 that can be acquired as a result of the search is written in the in-device header 45 (S103), and the process is terminated (S106).
  • each information is extracted from the first-stage MPLS label (S104), and LER processing or LSR processing is performed from the extracted LSP ID: 4141 value. Is determined (S105). This determination method may be determined based on a certain range set in the setting register 111, or an attribute of each LSP ID: 4141 may be set in the setting register 111. If it is determined in S105 that the packet is a LER process packet, the LER process S200 is executed, and if it is determined that the packet is an LSR process packet, the LSR process S300 is executed and the process ends (S106).
  • the LER process of the input header processing unit 103 will be described with reference to the flowchart of FIG.
  • the input header processing unit 103 extracts the LSP ID: 4141 from the second user identification MPLS label 414-2 and combines it with the LSP ID: 4141 of the first transfer MPLS label 414-1.
  • the input header processing table 23 is searched (S201). As a result, the flow ID: 234 is acquired and overwritten in the in-device header 45 (S202).
  • the S bit of the user identification MPLS label 414-2 is “0” (the MPLS label is in the third row) and its LSP ID: 4141 is an ID indicating OAM (eg, “14”), It is determined whether the packet is an OAM packet (S203). If it is determined that the packet is an OAM packet, the OAM payload is analyzed (S204), and the type of the OAM packet is determined (S205). As a result of this determination, when it is determined that the packet is a return request OAM packet, the packet is transferred to the return processing unit 109 (S206), and the process is terminated (S210).
  • the NIF management unit 110 is notified that the return test has been successful, the packet is discarded (S207), and the process ends (S210). If it is determined in S205 that the packet is another OAM packet, other OAM packet termination processing is performed (S208), and the processing is terminated (S210).
  • the MPLS label 414-1 for transfer and the MPLS label 414-2 for user identification in the packet are deleted and transferred to the input packet buffer 104 (S209). Is finished (S210).
  • the LSR process of the input header processing unit 103 will be described with reference to the flowchart of FIG.
  • the input header processing table 23 is searched using only the LSP ID: 4141 of the first-stage transfer MPLS label 414-1 (S301).
  • the flow ID: 234 is acquired and overwritten in the in-device header 45 (S302).
  • TTL: 4144 of the transfer MPLS label 414-1 is equal to or smaller than “1” (S303). If it is larger than “1”, the process is terminated as it is (S310).
  • the S bit of the user identification MPLS label 414-2 is “0” (the MPLS label is in the third row).
  • the LSP ID: 4141 is an ID indicating OAM (for example, “14”), whether the packet is an OAM packet, and the TC: 4142 of the OAM identification MPLS label 414-3 of the packet is' It is determined whether it is 0 '(S304). If it is determined that the OAM packet and its TC: 4142 is “0”, the OAM payload is analyzed (S305), and the type of the OAM packet is determined (S306).
  • the packet is transferred to the loopback processing unit 109 (S307), and the process ends (S310).
  • the input header processing unit can detect that the packet is a return request packet to be returned on the Ingres side of the apparatus. If it is determined in S306 that the packet is a return response packet, this packet is an abnormal packet, so the packet is discarded (S308), and the process ends (S310). If it is determined in S306 that the packet is another OAM packet, other OAM packet termination processing is performed (S309), and the processing is terminated (S310).
  • FIG. 16 shows a flowchart of the output header processing S400 executed by the output header processing unit 106.
  • the output header processing unit 106 determines the processing mode set in the setting register 111 (S401), and when the setting is Ethernet processing, extracts the flow ID: 451 of the in-device header 45 and extracts the extracted flow Using the ID: 451, the output header processing table 24 is searched (S402). The processing of the VLAN tag 403 is executed according to the acquired result of the search (S403), and the processing is terminated (S404).
  • the flow ID: 451 of the in-device header 45 is extracted and the output header processing table 24 is searched (S501).
  • the MPLS label 414 (and Ethernet header) is updated according to the table information that can be acquired as a result (S502). Then, it is determined whether or not TTL 4144 of the MPLS label for transfer 414-1 is equal to or smaller than “1” (S503). If it is larger than “1”, the MPLS label processing performed in S502 above includes the MPLS label 2 including the Ethernet header. It is determined whether or not a stage has been assigned (S511).
  • the LSP ID: 4141 is an ID indicating OAM (for example, “14”), whether the packet is an OAM packet, and whether the TC: 4142 of the OAM identification MPLS label 414-3 of the packet is It is determined whether it is “1” (S504). If it is determined that the OAM packet and its TC: 4142 is “1”, the OAM payload is analyzed (S505), and the type of the OAM packet is determined (S506).
  • the packet is transferred to the return processing unit 109 (S507), and the process ends (S513).
  • the output header processing unit can detect that the packet is a return request packet to be returned on the Egrees side of the apparatus. If it is determined in S506 that the packet is a return response packet, the packet is discarded (S508), and the process ends (S513). If it is determined in S506 that the packet is another OAM packet, other OAM packet termination processing is performed (S509), and the processing is terminated (S513).
  • FIG. 18 shows a flowchart of the loopback processing S600 executed by the loopback processing unit 109.
  • the return processing unit 106 determines the transmission source (S601), and when determining that the input header processing unit 103 determines, the return processing unit 106 extracts the flow ID: 451 from the in-device header 45.
  • the output header table 24 is searched (S602).
  • the MPLS label 414 (and the ether header) is updated according to the table information that can be acquired as a result (S603).
  • the source MAC address 412 is copied to the destination MAC address 411 (S604), and the MAC address corresponding to the port ID: 452 stored in the in-device header 45 is acquired from the setting register 111 as the source MAC address 412.
  • the return request information of the payload part 424 is updated to return response information (S606), and the processing unit opposite to the processing unit that received the packet (output when received from the input header processing unit 103)
  • the packet is inserted into the scheduler connected to the input header processing unit 103) (S607), and the processing is terminated (S608).
  • FIG. 19 shows a block configuration of another communication apparatus 100N of the present invention.
  • the communication device 100N has a high-function switch unit 1100 as a switch unit.
  • the configuration of each block is the same as that of the communication device 10N.
  • the high-function switch unit 1100 is characterized by recognizing the first-stage transfer MPLS label 414-1 and performing a TTL 4144 subtraction process. For example, in the case of a device vendor that procures a switch chip as a general-purpose product and develops only NIF: 10-n, there may be a form as in this embodiment.
  • FIG. 20 shows an example of a loopback test using an OAM packet in another communication system of the present invention.
  • This figure shows a sequence for performing a loopback test by designating a loopback point of a loopback request OAM packet in the MPLS network MP1 from the communication apparatus 100A in order to check the connectivity of the MPLS path MP1.
  • the communication device 100A performs the same processing as in the above P100, and inserts a return OAM packet 42 (P400).
  • the communication device 100A when receiving the return response OAM packet 42, the communication device 100A performs the same processing as P103 and terminates (P403). This completes the loopback test on the Ingress side of NIF: 10B-1 of the communication device 100B serving as the LSR.
  • the communication device 10A performs the same processing as in the above P200, and inserts the OAM packet 42 for return (P500).
  • the forwarding MPLS label 414-1 is first analyzed, and the TTL: 4144 is “1”.
  • the apparatus determines that discard or return processing is necessary, analyzes the OAM identification MPLS label 414-3, and TC: 4142 is “1”, so it is not the return on the Ingress side, so the return request OAM packet is transmitted.
  • '1' is added to TTL: 4144 of the transfer label 414-1 (P501).
  • TTL: 4144 of the transfer MPLS label 414-1 of the return request OAM packet 42 is decremented by "1" and transferred (P502).
  • the return response OAM packet 42 is inserted as in P102 (P504).
  • the communication device 100A performs the reception process of the return response OAM packet 42 as in P103 (P507). This completes the loopback test on the Egress side of NIF: 10B-2 of the communication device 100B serving as the LSR.
  • the communication device 100A performs the same processing as P300, and inserts the OAM packet 42 for return (P600).
  • the forwarding MPLS label 414-1 is first analyzed, and the TTL: 4144 is "2" or more.
  • the return request OAM packet is transmitted, but in anticipation of TTL: 4144 being subtracted by the high function switch unit 1100, “1” is added to TTL: 4144 of the MPLS label for transfer 414-1 (P601).
  • the return response OAM packet 42 is inserted as in P102 (P605).
  • the communication device 100A performs reception processing of the return response OAM packet 42 similar to P103 (P609). This completes the loopback test on the NIF: 10N-1 Ingress side of the communication apparatus 100N that is the LER.
  • the communication device loopback test is performed by specifying the Ingrres side and the Egress side of the communication device. It is possible to realize.
  • FIG. 21 shows a flowchart of the LSR process S700 performed by the input header processing unit 103 of the present embodiment.
  • the input header process S100 other than the LSR process S700 is the same as that of the first embodiment. Further, other processes are the same as those in the first embodiment.
  • the input header processing unit 103 searches the input header processing table 23 using only the LSP ID: 4141 of the first-stage transfer MPLS label 414-1 (S701). As a result, the flow ID: 234 is acquired and overwritten in the in-device header 45 (S702). Then, it is determined whether or not the TTL 4144 of the transfer MPLS label 414-1 is “1” or less (S703). If it is greater than “1”, the TTL 4144 of the first-stage transfer MPLS label 414-1 is set to “1”. 1 'is added and the process is terminated (S711).
  • the S bit of the user identification MPLS label 414-2 is “0” (the MPLS label is in the third row).
  • the LSP ID: 4141 is an ID indicating OAM (for example, “14”), whether the packet is an OAM packet, and the TC: 4142 of the OAM identification MPLS label 414-3 of the packet is' It is determined whether it is 0 '(S704). If it is determined that the OAM packet and its TC: 4142 is “0”, the OAM payload is analyzed (S705), and the type of the OAM packet is determined (S706).
  • the packet is transferred to the loopback processing unit 109 (S707), and the process ends (S711). If it is determined in S706 that the packet is a return response packet, the packet is discarded (S708), and the process ends (S711). If it is determined in S706 that the packet is another OAM packet, other OAM packet termination processing is performed (S709), and the processing is terminated (S711).
  • FIG. 22 shows a block configuration of another communication apparatus 1000N according to the present invention.
  • the communication device 1000N has the input header processing unit 103, the input packet buffer 104, and the input scheduler 105 replaced with an input processing unit 1030, and an output header processing unit 106, an output packet buffer 107, and an output.
  • the scheduler 108 is replaced with an output processing unit 1060.
  • the configuration of each block is the same as that of the communication device 10N.
  • the input processing unit 1030 and the output processing unit 1060 have a multi-stage configuration of a plurality of processing units.
  • the input processing unit 1030 includes N input processing units 1030-1 to 1030-1 to N and an output processing unit 1060. Is composed of N output processing units 1060-1 to 1060-N.
  • Each of the input processing units 1030-1 to 1030-1 to N is composed of three blocks equivalent to the input header processing unit 103, the input packet buffer 104, and the input scheduler 105 of the communication device 10 N.
  • the output processing units 1060-1 to 1060 -N are similarly configured from three blocks equivalent to the output header processing unit 106, the output packet buffer 105, and the output scheduler 106 of the communication device 10 N.
  • the TC to be folded back in the block is set as the loopback TC from the setting register 111.
  • This folded TC has N pieces on the input (Ingress) side and M pieces on the output (Egress) side, and TC: 4142 is composed of 3 bits, so N ⁇ 2 is up to “8”. The value of can be set.
  • a plurality of turning points can be specified by using a plurality of values of TC: 4142. Is possible.
  • TTL: 4144 can be subtracted or added only by the final block, and even when going through a plurality of blocks, TTL: 4144 can be processed so as not to be added or subtracted more than necessary.
  • Each of the input processing units 1030-1 to 1030-1 to N performs the same processing as the input header processing unit 103, the input packet buffer 104, and the input scheduler 105 of the communication device 10N, but the LER processing S200 and the LSR processing of the input header processing S100.
  • S300 is changed to LER processing S800 and LSR processing S900, respectively.
  • each of the output processing units 1060-1 to 1060-1 to N performs the same processing as the output header processing unit 106, the output packet buffer 107, and the output scheduler 108 of the communication device 10N, but the MPLS output processing S500 of the output header processing S400. Is changed to MPLS output processing S1000.
  • the return processing unit 109 of the present embodiment is the processing unit that has received the packet.
  • the packet is sent to the scheduler connected to the opposite processing unit (when receiving from the input processing unit 1030-X, to the output processing unit 1060-X, and when receiving from the output processing unit 1060-X, the input processing unit 1030-X). Will be inserted.
  • FIG. 24 shows the LER processing of the input processing unit.
  • the input processing unit 1030 extracts the LSP ID: 4141 from the second user identification MPLS label 414-2 and combines it with the LSP ID: 4141 of the first transfer MPLS label 414-1.
  • the input header processing table 23 is searched (S801). As a result, the flow ID: 234 is acquired and overwritten in the in-device header 45 (S802). Then, it is checked whether the S bit of the user identification MPLS label 414-2 is “0” (the MPLS label is in the third row) and its LSP ID: 4141 is an ID indicating OAM (eg, “14”), It is determined whether the packet is an OAM packet (S803).
  • the OAM payload is analyzed (S804), and the type of the OAM packet is determined (S805). As a result of this determination, if it is determined that the packet is a return request OAM packet, the packet is transferred to the return processing unit 109 (S806), and the process ends (S811). If it is determined in S805 that the packet is a return response packet, the NIF management unit 110 is notified that the return test has been successful, the packet is discarded (S807), and the process ends (S811). If it is determined in S805 that the packet is another OAM packet, other OAM packet termination processing is performed (S808), and the processing ends (S811).
  • the setting register 111 checks whether this block is set as the final block of Ingress (S809). If it is the final block, MPLS for transferring the packet is checked. The label 414-1 and the user identification MPLS label 414-2 are deleted and transferred to the subsequent block (input packet buffers of the input processing units 1030-1 to 1030-1 to N) (S810), and the process ends (S811). On the other hand, if it is determined in S809 that the block is not the last block of Ingress, the packet is transferred as it is, and the process is terminated (S811).
  • FIG. 25 shows the LSR process of the input processing unit.
  • the input header processing table 23 is searched using only the LSP ID: 4141 of the first-stage transfer MPLS label 414-1 (S901).
  • the flow ID: 234 is acquired and overwritten in the in-device header 45 (S902).
  • TTL: 4144 of the transfer MPLS label 414-1 is equal to or smaller than “1” (S903). If it is larger than “1”, the processing is terminated as it is (S910).
  • the S bit of the user identification MPLS label 414-2 is “0” (the MPLS label is in the third row).
  • the LSP ID: 4141 is an ID indicating OAM (for example, “14”), whether the packet is an OAM packet, and further, TC: 4142 of the MPLS label 414-3 for OAM identification of the packet is set. It is determined whether or not it matches the loopback TC set in the register 111 (S904).
  • the OAM payload is analyzed (S905), and the type of the OAM packet is determined (S906). If it is determined that the packet is a loopback request OAM packet, the packet is transferred to the loopback processing unit 109 (S907), and the process ends (S910). If it is determined in S906 that the packet is a return response packet, this packet is an abnormal packet, so the packet is discarded (S908), and the process is terminated (S910). If it is determined in S906 that the packet is another OAM packet, other OAM packet termination processing is performed (S909), and the processing is terminated (S910).
  • the packet is transferred as it is, and the process is terminated (S910).
  • a multi-stage configuration such as the input processing unit 1030, a plurality of values are used for a specific field of header information other than the transfer TTL, thereby specifying a plurality of turning points on the Ingress side of the communication device. It becomes possible.
  • FIG. 26 shows MPLS output processing of the output processing unit.
  • the flow ID: 451 of the in-device header 45 is extracted and the output header processing table 24 is searched (S1001).
  • the MPLS label 414 (and the ether header) is updated according to the table information that can be acquired as a result (S1002).
  • TTL: 4144 of the MPLS label for transfer 414-1 is equal to or smaller than “1” (S1003). If it is larger than “1”, whether or not this block is set as the last block of Egress in the setting register 111. If it is the final block, it is determined whether or not the MPLS label processing performed in S1002 is two-stage MPLS label including an Ethernet header (S1012).
  • the TTL 4144 of the transfer label 414-1 is decremented by “1” (S1013), and the process ends (S1014). On the other hand, if it is determined in S1011 that this block is not the last block of Egress, the packet is transferred as it is, and the process is terminated (S1014).
  • the packet is a packet that has been subjected to MPLS encapsulation in the present apparatus, so that the packet is transferred as it is and the processing is terminated (S1014).
  • the S bit of the user identification label 414-2 is “0” (the MPLS label is in the third row) and It is checked whether the LSP ID: 4141 is an ID indicating OAM (for example, “14”), whether the packet is an OAM packet, and TC: 4142 of the OAM identification label 414-3 of the packet is a register at the time of setting It is determined whether or not it matches the loopback TC set to 111 (S1004).
  • the OAM payload is analyzed (S1005), and the type of the OAM packet is determined (S1006).
  • S1005 the OAM payload is transferred to the return processing unit 109 (S1007), and the process ends (S1014).
  • S1006 the packet is discarded (S1008), and the process ends (S1014).
  • S1009 the OAM packet termination processing is performed (S1009), and the processing ends (S1014).
  • FIG. 27 shows a block configuration of another communication apparatus 10000N according to the present invention.
  • the communication device 10000N is different from the communication device 1000N of the third embodiment in that the switch unit is a high-function switch unit 1100.
  • the configuration of each block is the same as that of the communication device 1000N.
  • the high-function switch unit 1100 is characterized by recognizing the first-stage transfer MPLS label 414-1 and performing a TTL 4144 subtraction process. For example, in the case of a device vendor that procures a switch chip as a general-purpose product and develops only NIF: 10-n, there may be a form as in this embodiment.
  • FIG. 28 shows a flowchart of the LSR processing S1100 performed by the input processing unit 1030 of the present embodiment.
  • the input header process S100 other than the LSR process S1100 is the same as that of the third embodiment. Further, other processes are the same as those in the third embodiment.
  • the input header process table 23 is searched using only the LSP ID: 4141 of the transfer label 414-1 in the first stage (S1101). As a result, the flow ID: 234 is acquired and overwritten in the in-device header 45 (S1102). Then, it is determined whether TTL: 4144 of the transfer label 414-1 is “1” or less (S1103). If it is larger than “1”, it is determined by the setting register 111 whether this block is the last block of Ingress ( If it is the last block (S1110), “1” is subtracted from TTL: 4144 of the first-stage MPLS label 414-1 for transfer, and the process ends (S1112). On the other hand, if it is determined in S1110 that this block is not the last block, the packet is transferred as it is, and the process is terminated (S1112).
  • the S bit of the user identification label 414-2 is “0” (the MPLS label is in the third row) and It is checked whether the LSP ID: 4141 is an ID indicating OAM (for example, “14”), whether the packet is an OAM packet, and TC: 4142 of the OAM identification label 414-3 of the packet is the setting register 111. It is determined whether or not it matches with the return TC set to (S1104).
  • the OAM payload is analyzed (S1105), and the type of the OAM packet is determined (S1106). If it is determined that the packet is a return request OAM packet, the packet is transferred to the return processing unit 109 (S1107), and the process ends (S1112). If it is determined in S1106 that the packet is a return response packet, this packet is an abnormal packet, and the packet is discarded (S1108), and the process is terminated (S1112). If it is determined in S1106 that the packet is another OAM packet, other OAM packet termination processing is performed (S1109), and the processing is terminated (S1112).
  • 10A, 10B, 10N Communication devices 10A-1, 10A-n, 10B-1, 10B-n, 10N-1, 10Nn: Interface (NIF) of communication device 10 100N: Communication device 1000N: Communication device 10000N: Communication device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 複数の通信装置を備え、通信パスを介して前記複数の通信装置間でパケットを転送する通信システムであって、前記複数の通信装置のうち第1の通信装置は、前記通信パス上のいずれかの通信装置でパケットを折り返して前記通信パスの接続性を確認する場合に、前記パケットを折り返す通信装置を指定するため第1の情報を前記パケットのヘッダ情報の第1の領域に格納し、さらに、前記パケットを前記指定された通信装置内の折り返し点に関する第2の情報をパケットのヘッダ情報内の第2の領域に格納し、該第1の情報及び第2の情報が付与されたパケットを送出する。

Description

通信システム及び通信装置
 本発明は、パケット通信システムに関し、更に詳しくは、パスの接続性確認等のため折返し試験を行う通信システムに関する。
 専用線や公衆電話サービスは、100年以上の長い間、企業の基幹業務や国防などミッションクリティカルな通信を必要とする分野で重要な役割を果たしてきた。
 一方、近年の通信トラヒックの急増に伴い、高速通信が容易なパケット交換網が爆発的に普及し、その部品は大量生産により急激な低価格化が進んでいる。さらに、パケット交換網では、MPLS(Malti-Protocol Label Switching)などのVPN技術を用いることで、複数のユーザを論理的に完全に分離した網にユーザを収容可能となり、装置の共有化による低コスト化とセキュリティを両立できる。このため、老朽化しメンテナンスコストが増大し、高速化が困難な専用線や公衆電話サービスをパケット交換網で置き換え、高速化・大容量化することが望まれている。これを受けIETF(Internet Engineering Task Force),ITU-T(International Telecommunication Union-Telecommunication sector)などの国際標準化団体において、従来の専用線や公衆電話サービスを収容するのに適した方式として、MPLS-TP(MPLS Transport-Profile)の策定を開始した。MPLS-TPは、パケット交換網の最大の欠点である信頼性の確保を最重要課題とし、障害検出のためのOAM(Operation Administration and Maintenance)や通信経路切替のためのAPS(Automatic Protection Switching)などを中心に標準化が進められている。特に、障害の検出や故障個所特定に大きな役割を担うOAMは、信頼性の核となる技術である。
 MPLSというプロトコルは、1つまたは複数のラベルと呼ばれるヘッダによりパケットをカプセル化し、網の途中ノード(LSR:Label Switching Router)ではこのラベルのみを見て転送するため、高速化が容易なアーキテクチャとなっている。ここで複数のラベルが付与されているパケットの場合、通常のMPLSのLSRは最も外側(1段目)のラベルに含まれるLSP(Label Switched Path)IDを転送する際のキーとして使用する。一方、パスの端点となる装置(LER:Label Edge Router)ではパケットに付与されているMPLSラベルからユーザやサービスを識別し、ラベルを削除し、ペイロードを取り出し、その後の処理(転送や終端など)を実施する。このようにMPLSは網の端点となるLER間を複数のLSRを経由した線(パス)で結ぶプロトコルであり、そのパスは転送用の1段目のMPLSラベルにより指定される。MPLS-TPは、このMPLSと互換性を維持することが最重要視されており、新規に追加されるOAMもこのアーキテクチャに合致するように策定されている。
 OAMの機能は、障害検出、障害箇所特定、網の性能測定などの機能に大別される。特に、高い稼働率を求められる専用線サービスなどへの適用を考慮すると、装置部品の修理や交換が必要となる深刻な障害による通信断時間を最小化することが必須であり、障害発生箇所を迅速に特定するOAM機能が重要な役割を果たす。故障個所を特定するOAMとしては、網内の途中ノードで折返し、接続性試験を行うLB(Loop Back)やLT(Link Trace)、PT(Path Trace)がある。だだし、上述のようにMPLSは網内の経路(線)を指定するプロトコルであるため、網内での折返し位置を点で指定することが困難であるという特徴を有する。
 このため、従来のMPLSでも使用されたPing(RFC4379:非特許文献1)などでは、転送用のMPLSラベルに存在するTTL(Time To Live)を用いて実現されている。TTLは、本来網内でループが発生した場合に無限に網内に留まることを防止するため、有限回数装置を経由(ホップ)した場合に廃棄するために導入された。パケットがLSRをホップする毎に転送用の1段目のMPLSラベルのTTLが‘1’減算され、‘0’になると当該装置内で当該パケットは廃棄されるという性質を有している。この性質を利用し、従来のMPLSのPingやTrace Routeは、OAMパケットを送信するノードが折返し点となるノードでちょうど‘0’となるように1段目のMPLSラベルのTTLを設定することで、折返し点の指定を実現している。折返し点となるLSRでは、転送用の1段目のMPLSラベルのTTLが‘0’となるため当該パケットを廃棄することになる。しかし、PingやTrace RouteをサポートしているLSRの場合、TTL‘0’となったパケットは単に廃棄されるのではなく、ペイロードのチェックが行われ、PingやTrace Routeパケットであると判定すると当該パケットの折返し処理を実施する。以上のように、従来のMPLSのOAMでは、折返し処理を転送用の1段目のMPLSラベルのTTLを用いることで実現しており、現在標準化が進められているMPLS-TPのOAMにおいても同様の手法が取り入れられている。
 一方、ITU-Tにおいて標準化が進められていたT-MPLS(Transport MPLS)のOAMとしてG.8114(非特許文献2)があった(MPLS-TPの標準化がIETFで開始以降は無効とされている)。G.8114ではOAM識別用に用いるMPLSラベルのTTLにより折返し点を指定していた。OAM識別用ラベルは転送用ラベルの内側(2段目以降)に付与され、転送用のMPLSラベルと同様のフォーマットであるが、通常経路のIDを示すLSP IDが予約値である“14”が固定で指定される。G.8114では、このOAMラベルの未使用フィールドであるTTLを所望のホップ数となるように折返し点を指定する。OAM識別用ラベルのTTLはOAMを処理可能なポイントで‘1’減算されるので、ホップ数には途中ノードでG.8114をサポートし処理するポイントの数(MIP数―1)を設定する。このMIPをIngressおよびEgressの双方に設けることが開示されている。
 また、通常の専用線や公衆電話サービスに用いられるATM装置等の伝送装置では、折返しポイントを網内の固有のID(Location ID)により指定する。例えば、特許文献1の[0014]には、ATMセルのLocation IDを利用して、ATM交換機1の装置内区分3a、4a、5a(Ingress、Egressも分離可能)を指定して、導通(折返し)試験を行うことが開示されている。特許文献1の[0015]では、ATM交換機1の返信手段3b、4b、5bがループバックOAMセル6の上記Location IDを参照し、自装置区分を示す識別子の場合に折返すことが記載されている。
特開平11-122261号公報
IETF RFC4379(Detecting MULTI-Protocol Label Switched (MPLS) Data Plane Failures) ITU-T勧告草案(2007年4月) G.8114(Operation & Maintenance mechanisms for T-MPLS layer networks)
 MPLS-TP装置において、従来の専用線や公衆電話サービスと同等の信頼性や稼働率を実現するためには、故障箇所特定の単位は詳細であればあるほどよく、それらのメカニズムはこれまでのMPLSとの互換性を確保することが必須である。
 この観点から、従来のPingなどと同様に転送ラベルのTTLにより折返し点を指定する方法では、TTLが装置をホップする毎に減算されるという性質上折返し点として指定可能な単位が装置単位に固定されてしまう。一方、装置の入力(Ingress)と出力(Egress)を折返し点として指定することが出来れば、装置のIngressで折返し失敗すれば、装置入力側の通信路の故障が高いと判断でき、通信路の故障である場合新たな通信路を確保し装置への接続を変更するなどの対処が必要となる。一方、装置のIngressでの折返しは成功するものの、装置のEgressでの折返しに失敗する場合は、通信路の故障ではなく設定不備や装置内の故障だと特定することが可能であるため、装置設定の見直しや部品交換作業を優先させることになる。
 また、故障特定単位が装置単位であるとこのような復旧対処を同時に平行して実施しなければならず、非常に高コストであることに加え、復旧リソースが分散してしまうため復旧時間の長期化を招く。このため、従来の転送ラベルのTTLにより折返し点を指定する方法では、高信頼な網を構築することが困難であった。
 しかしながら、G.8114ではOAM識別ラベルのTTLという通常のMPLSのLSRでは参照しないフィールドを用いて折返し点を指定しているため、MPLS-TP OAMには適用できない。具体的な問題としては、従来のMPLSにはPHP(Penultimate Hop Popping)と呼ばれ、パスの終端装置となるLERの1つ前段のLSRにて転送用ラベルを削除してしまい、LERでは転送用の内側の2段目以降のラベルもしくはペイロードのみを見て処理をすることが規定されている。これにより、LERでは転送用ラベルの解析、検索などの処理が省略できるため、装置の実装が非常に簡便になるという長所があり、広く普及している機能である。このため、このPHPを想定してMPLS-TPではOAM識別ラベルのTTLは‘1’となるように標準化により決定している。これは、仮にPHPによりOAM識別ラベルのみのパケットがLERに流入した場合でも、TTLが‘1’となっているため転送などの異常処理を防止するという効果を期待したものである。このため、G.8114の手法は従来のMPLSとの互換性という意味で大きな課題がある。また、G.8114の手法では、全ての転送装置で折返し試験パケットかを判断するために転送用ラベルのみではなく、内側のOAMラベルを参照する処理が必要となるため高速な転送処理の妨げとなる。
 また、特許文献1(上記のMPLS装置以外)に記載の方法は、自装置で折り返すか否かを判定する際に、ATMセルのペイロードの解析までを必要とする。しかしながら、可変長パケット処理が必須のMPLSおよびMPLS-TPにおいては、LSRにおいてペイロードの解析までを行った上での転送処理が必要となると、高速化に大きな課題が発生することに加え、1段目のラベルのみでパケット中継を行う従来のLSRとの互換性が確保できないため、適用できない。
 以上より、MPLS-TPのOAMとしては、専用線や公衆電話サービスと同様に装置のIngressやEgressなどの細かい単位で折返し点を指定可能にすることと、従来のMPLSの様々な既存処理との互換性を維持することの両立が必要である。
 上記課題を解決するため、本発明のパケット通信システムは、複数の通信装置を備え、通信パスを介して前記複数の通信装置間でパケットを転送する通信システムであって、前記複数の通信装置のうち第1の通信装置は、前記通信パス上のいずれかの通信装置でパケットを折り返して前記通信パスの接続性を確認する場合に、前記パケットを折り返す通信装置を指定するため第1の情報を前記パケットのヘッダ情報の第1の領域に格納し、さらに、前記パケットを前記指定された通信装置内の折返し点に関する第2の情報をパケットのヘッダ情報内の第2の領域に格納し、該第1の情報及び第2の情報が付与されたパケットを送出することを特徴の一つとする。
 これにより、通信装置の入側及び出側を指定して、接続性確認試験を行うことができる。また、本発明を適用していない従来のMPLSおよびMPLS-TPの装置と互換性を維持することが可能であることに加え、故障個所の切り分け精度が向上し、装置の修理や交換にかかるコストと時間を低減できる。これにより、通信キャリアは現状のMPLSからスムーズにMPLS-TPへ移行できるとともに、通信断によるサービス停止を短縮できるため、非常に高信頼なサービスをユーザに提供することが可能となる。
本発明の通信システムにおける折返し試験の一例を示す図である。 本発明の通信システムに流れるイーサネット通信パケットのフォーマットを示す図である。 本発明の通信システムに流れるMPLS通信パケットのフォーマットを示す図である。 本発明の通信システムに流れるMPLSラベルのフォーマットを示す図である。 本発明の通信システムに流れるMPLS OAM通信パケットのフォーマットを示す図である。 通信装置10Nの構成を示すブロック図である。 通信装置10Nの入力パケットに付加される装置内ヘッダのフォーマットを示す図である。 図6の入力ヘッダ処理部103が備えるイーサネット処理の場合のヘッダ処理テーブルを示す図である。 図6の入力ヘッダ処理部103が備えるMPLS処理の場合のヘッダ処理テーブルを示す図である。 図6のスイッチ部11が備えるフレーム転送テーブルを示す図である。 図6の出力ヘッダ処理部106が備えるイーサネット処理の場合のヘッダ処理テーブルを示す図である。 図6の出力ヘッダ処理部106が備えるMPLS処理の場合のヘッダ処理テーブルを示す図である。 図6の入力ヘッダ処理部103が実行する入力ヘッダ処理S100のフローチャートである。 図6の入力ヘッダ処理部103が実行するLSR処理S200のフローチャートである。 図6の入力ヘッダ処理部103が実行するLER処理S300のフローチャートである。 図6の出力ヘッダ処理部106が実行する出力ヘッダ処理S400のフローチャートである。 図6の出力ヘッダ処理部106が実行するMPLS出力処理S500のフローチャートである。 図6の折返し処理部109が実行する折返し処理S600のフローチャートである。 本発明が適用される他の通信システムの通信装置の構成を示すブロック図である。 本発明が適用される他の通信システムにおける折返し試験の一例を示す図である。 図19の入力ヘッダ処理部103が実行するLSR処理S700のフローチャートである。 本発明が適用される他の通信システムの通信装置の構成を示すブロック図である。 図22の入力処理部1030と出力処理部1060の構成を示すブロック図である。 図22の入力処理部1030―1~Nが実行するLER処理S800のフローチャートである。 図22の入力処理部1030―1~Nが実行するLSR処理S900のフローチャートである。 図22の出力処理部1060―1~Nが実行するMPLS出力処理S1000のフローチャートである。 本発明が適用される他の通信システムの通信装置の構成を示すブロック図である。 図27の入力処理部1030―1~Nが実行するLSR処理S1100のフローチャートである。
 以下、本発明の実施例について、図面を参照して説明する。
 図1は、本発明の通信システムにおいてOAMパケットを用いた折返し試験の一例を示す。
 本実施例の通信装置は、MPLS網MW1のエッジ装置(LER)と中継装置(LSR)どちらでも装置構成などは同一であり、事前設定や入力されるパケットに応じてLERとして動作する場合とLSRとして動作する場合があるだけである。本図では、MPLS網上の位置から便宜上通信装置10Aおよび10NがLER動作、通信装置10BがLSR動作しているものとする。
 本図では、MPLSパスMP1の接続性をチェックするため、折返し用のOAMパケットを通信装置10AからMPLS網MP1内の折返し点を指定して折返して試験を実行するシーケンスを示している。
 第一に、通信装置10Aから1ホップの通信装置10Bのインタフェース(NIF)10B-1のIngress側を折返し用のOAMパケットの折返し点とする場合の処理の流れを説明する。
 まず通信装置10Aから折返し要求用のOAMパケット42を挿入する(P100)。この際、通信装置10Aの管理者(オペレータ)が折返しポイントや試験対象となるユーザを指定し、折返し試験の実行命令を通信装置10Aに対して実行する。この命令を通信装置10Aが受信すると、図6に示す以下の機能ブロックにより挿入処理が実施される。ノード管理部12が挿入するNIF 10B-1上のNIF管理部110に対して、挿入するポート101-n、および折返しポイントや挿入対象となるユーザを指定し、挿入命令を発行する。それを受けたNIF管理部110がOAMパケットを生成し、出力スケジューラ108に挿入要求を発行し、当該OAMパケットが挿入される。尚、OAMパケットのパケットフォーマットは図5に示しており、後述する。折返し要求用OAMパケット42は、転送用MPLSラベル(図4に示す)414―1として、LSP ID:4141にMPLSパスMP1を示すID、TC:4142にデフォルト値(本実施例では任意の値でよい)、Sビット4143に‘0’、TTL:4144に‘1’が付与される。さらに、ユーザ識別用MPLSラベル414―2として、LSP ID:4141にユーザを示すID、TC:4142にデフォルト値(本実施例では任意の値でよい)、Sビット4143に‘0’、TTL:4144にデフォルト値(本実施例では任意の値でよい)が付与される。さらに、OAM識別用MPLSラベル414―3として、LSP ID:4141にOAMを示すID(例えば“14”)、TC:4142に‘0’、Sビット4143に‘1’、TTL:4144にデフォルト値(本実施例では任意の値でよい)が付与される。ペイロード部424は、本パケットが折返し要求用のOAMパケットであることを示す情報を含むフィールドである。これにより、転送用MPLSラベル414―1のTTL:4144により折返し装置として通信装置10Aから1ホップのLSRである通信装置10Bが指定され、さらにOAM識別用MPLSラベル414―3のTC:4142により、折返し点として通信装置10BのIngress側のNIF:10B-1が指定されたことになる。
 この折返し要求用OAMパケット42が通信装置10BのNIF:10B-1のIngress側に到着すると、まず転送用MPLSラベル414―1の解析が行われ、TTL:4144が‘1’であるため、自装置で廃棄または折返し処理が必要と判断し、OAM識別用MPLSラベル414―3を解析し、TC:4142が‘0’であるためIngress側折返しの可能性があると判断し、終端される(P101)。詳細は図15に示す。
 続いて、折返し要求用OAMパケットの必要部分のみを書き換え、折返し応答OAMパケット42として10B-1から通信装置10Aに送信される(P102)。特に、書き換える領域としては、LSP ID4141、ペイロード部424、転送用MPLSラベル414―1のTTL:4144であり、LSP ID:4141を折り返すMPLSパスMP1の逆方法を指定するように変更すること、ペイロード部424を折返し応答OAMパケットを示す情報に変更することに加え、転送用MPLSラベル414―1のTTL:4144を“255”(最大値)とすることで確実に通信装置10Aに返送されるようにすることが重要である。
 そして、通信装置10Aは、上記折返し応答OAMパケット42を受信すると、転送用MPLSラベル414―1のTTL:4144に関係なく、各MPLSラベル、ペイロード部の解析を行い、自装置に設定されたMPLSパスMP1への折返し応答OAMパケットであることを判定し、終端される(P103)。詳細は図13、図14で述べる。これで、LSRとなる通信装置10BのNIF:10B-1のIngress側での折返し試験が完了する。
 第二に、通信装置10Aから1ホップの通信装置10BのNIF:10B-nのEgress側を折返し用OAMパケットの折返し点とする場合の処理の流れを説明する。
 まず通信装置10Aから折返し要求用のOAMパケット42を挿入する(P200)。折返し要求用OAMパケット42は、転送用MPLSラベル414―1として、LSP ID:4141にMPLSパスMP1を示すID、TC:4142にデフォルト値(本実施例では任意の値でよい)、Sビット4143に‘0’、TTL:4144に‘1’が付与される。さらに、ユーザ識別用MPLSラベル414―2として、LSP ID:4141にユーザを示すID、TC:4142にデフォルト値(本実施例では任意の値でよい)、Sビット4143に‘0’、TTL:4144にデフォルト値(本実施例では任意の値でよい)が付与される。さらに、OAM識別用MPLSラベル414―3として、LSP ID:4141にOAMを示すID(例えば“14”)、TC:4142に‘1’、Sビット4143に‘1’、TTL:4144にデフォルト値(本実施例では任意の値でよい)が付与される。ペイロード部424は、本パケットが折返し要求用のOAMパケットであることを示す情報を含むフィールドである。これにより、転送用MPLSラベル414―1のTTL:4144により折返し要求用OAMパケットの折返し装置として通信装置10Aから1ホップのLSRである通信装置10Bが指定され、さらにOAM識別用MPLSラベル414―3のTC:4142により、折返し要求用OAMパケットの折返し点として通信装置10BのEgress側のNIF:10B-nが指定されたことになる。
 この折返し要求のOAMパケット42が通信装置10BのNIF:10B-1のIngress側に到着すると、まず転送用MPLSラベル414―1の解析が行われ、TTL:4144が‘1’であるため、自装置で廃棄または折返し処理が必要と判断し、OAM識別用MPLSラベル414―3を解析し、TC:4142が‘1’であるためIngress側折返しではないため、折返し要求用OAMパケットを透過する(P201)。
 この透過された折返し要求OAMパケット42が通信装置10BのNIF:10B-2のEgress側に到着すると、転送用MPLSラベル414―1の解析が行われ、TTL:4144が‘1’であるため、自装置で廃棄または折返し処理が必要と判断し、OAM識別用MPLSラベル414―3を解析し、TC:4142が‘1’であるためEgress側折返しの可能性があると判断し、終端される(P202)。
 続いて、P102と同様の折返し応答OAMパケット42の挿入処理を実施する(P203)。
 続いて、上記折返し応答のOAMパケット42がNIF:10B-1のEgress側に到着すると、転送用MPLSラベル414―1のTTL:4144が“2”以上であるため、TTLを‘1’減算し、転送される(P204)。
 そして、通信装置10Aは、P103と同様の折返し応答OAMパケット42の受信処理を行う(P205)。これで、LSRとなる通信装置10BのNIF:10B-2のEgress側での折返し試験が完了する。
 最後に、通信装置10Aから2ホップの通信装置10NのNIF:10N-1のIngress側を折返し用OAMパケットの折返し点とする場合の処理の流れを説明する。
 まず通信装置10Aから折返し用のOAMパケット42を挿入する(P300)。折返し用OAMパケット42は、転送用MPLSラベル414―1として、LSP ID:4141にMPLSパスMP1を示すID、TC:4142にデフォルト値(本実施例では任意の値でよい)、Sビット4143に‘0’、TTL:4144に‘2’が付与される。さらに、ユーザ識別用MPLSラベル414―2として、LSP ID:4141にユーザを示すID、TC:4142にデフォルト値(本実施例では任意の値でよい)、Sビット4143に‘0’、TTL:4144にデフォルト値(本実施例では任意の値でよい)が付与される。さらに、OAM識別用MPLSラベル414―3として、LSP ID:4141にOAMを示すID(例えば“14”)、TC:4142に‘0’、Sビット4143に‘1’、TTL:4144にデフォルト値(本実施例では任意の値でよい)が付与される。ペイロード部424は、本パケットが折返し要求用のOAMパケットであることを示す情報を含むフィールドである。これにより、転送用MPLSラベル414―1のTTL:4144により折返し要求用のOAMパケットの折返し装置として通信装置10Aから2ホップのLSRである通信装置10Nが指定され、さらにOAM識別用MPLSラベル414―3のTC:4142により、折返し要求用のOAMパケットの折返し点として通信装置10NのIngress側のNIF:10N-1が指定されたことになる。
 この折返し要求用OAMパケット42が通信装置10BのNIF:10B-1のIngress側に到着すると、まず転送用MPLSラベル414―1の解析が行われ、TTL:4144が“2”以上であるため、折返し要求用OAMパケットを透過する(P301)。
 この透過された折返し要求用OAMパケット42が通信装置10BのNIF:10B-nのEgress側に到着すると、通信装置10Bは、P204と同様の処理を実施し、折返し要求用OAMパケット42を透過する(P302)。
 この透過された折返し要求用OAMパケット42が通信装置10NのNIF:10N-1のIngress側に到着すると、転送用MPLSラベル414―1のTTL:4144に関係なく、通信装置10Nは、各MPLSラベル、ペイロード部の解析を行い、自装置に設定されたMPLSパスMP1への折返し要求用OAMパケットであることを判定し、終端する(P303)。
 続いて、通信装置10Nは、P102と同様の折返し応答OAMパケット42の挿入処理を実施する(P304)。
 この折返し応答OAMパケット42が通信装置10BのNIF:10B-nのIngress側に到着すると、通信装置10Bは、折返し応答OAMパケット42にP301と同様の処理を実施し、透過する(P305)。
 続いて、上記折返し応答のOAMパケット42が通信装置10BのNIF:10B-1のEgress側に到着すると、通信装置10Bは、折返し応答のOAMパケット42にP204と同様の処理を実施し、透過する(P306)。
 そして、通信装置10Aは、P103と同様の折返し応答OAMパケット42の受信処理を行う(P307)。これで、LERとなる通信装置10NのNIF:10N-1のIngress側での折返し試験が完了する。
 これにより、転送用MPLSラベルのTTL及びそれ以外のヘッダ情報を用いて通信装置の入り側及び出側を指定して、接続性確認試験を行うことができる。
 図2は、本実施例において、通信装置10NがMPLS網MW1の外から受信する通信パケット40のフォーマットを示す。
 通信パケット40は、宛先MACアドレス401、送信元MACアドレス402、VLANタグ403、後続ヘッダの種類を示すタイプ値404からなるMACヘッダと、ペイロード部405と、パケットチェックシーケンス(FCS)406とからなる。
 宛先MACアドレス401と送信元MACアドレス402には、LER10NのMACアドレスが格納される。VLANタグ403は、フロー識別子となるVLAN IDの値(VID♯)を示している。
 図3は、通信装置10Nが、MPLS網MW1内で送受信する通信パケット41のフォーマットを示す。本実施例では、MPLS-TPを用いてイーサネットを収容する際に使用されるMartiniフォーマットを想定している。
 通信パケット41は、宛先MACアドレス411、送信元MACアドレス412、後続ヘッダの種類を示すタイプ値413からなるMACヘッダと、転送用MPLSラベル414-1と、ユーザ識別用MPLSラベル414-2と、ペイロード部415と、FCS:416とからなる。ペイロード部415は、図2に示した通信パケット40のイーサパケットがカプセル化されている。本Martiniフォーマットは、MPLSラベル2段を有しており、1段目のMPLSラベル414-1(転送用MPLSラベル)は網内の転送経路を示し、2段目のMPLSラベル414-2(ユーザ識別用MPLSラベル)はPsudo Wire用のラベルとしてユーザやサービスを識別するために用いられる。
 図4は、図3に示すMPLSラベル414のフォーマットを示す。
 MPLSラベル414は、MPLSパスやユーザのIDを表すLSP ID:4141、転送優先度を表すTraffic Class(TC)4142、当該ラベルがMPLSラベルの最終段のものであることを示すSビット4143と、ループ防止用に用いられるTTL:4144とからなる。本フォーマットは転送用MPLSラベル414-1およびユーザ識別用MPLSラベル414-2で同様である。
 図5は、通信装置10Nが、MPLS網MW1内で送受信するOAMパケット42のフォーマットを示す。
 OAMパケット42は、宛先MACアドレス421、送信元MACアドレス422、後続ヘッダの種類を示すタイプ値423からなるMACヘッダと、転送用MPLSラベル414-1と、ユーザ識別用MPLSラベル414-2と、OAM識別用MPLSラベル414-3と、ペイロード部424と、FCS425とからなる。ペイロード部424は、OAM専用の情報が格納されている。本図では、ユーザ用OAMパケットを示しており、MPLSラベル2段の後にOAM識別用のMPLSラベルを有している。仮にユーザ用ではなく転送用パス上で用いられるOAMパケットの場合、MPLSラベルは転送用MPLSラベル414-1の後にOAM識別用MPLSラベルが配置される。
 図6は、通信装置10Nの構成を示す。
 通信装置10Nは、複数のネットワークインタフェースボード(NIF)10(10-1~10-n)と、これらのNIFに接続されたスイッチ部11、装置全体を管理するノード管理部12からなる。
 各NIF:10は、通信ポートとなる複数の入出力回線インタフェース101(101-1~101-n)を備え、これらの通信ポートを介して、その他の装置と接続されている。本実施例では、入出力回線インタフェース101は、イーサネット(登録商標)用の回線インタフェースとなっている。尚、入出力回線インタフェース101は、イーサネット(登録商標)用の回線インタフェースに限られない。
 各NIF:10は、これらの入出力回線インタフェース101に接続された入力ヘッダ処理部103と、入力ヘッダ処理部103に接続された入力パケットバッファ104と、入力パケットバッファ104と接続された入力スケジューラ105を有する。また、各NIF:10は、スイッチ部11に接続された複数のSWインタフェース102(102-1~102-n)と、これらのSWインタフェースに接続された出力パケットヘッダ処理部106と、出力パケットヘッダ処理部106に接続された出力パケットバッファ107と、出力パケットバッファ107と接続された出力スケジューラ108を有する。
 ここで、SWインタフェース102-iは、入出力回線インタフェース101-iと対応しており、入出力回線インタフェース101-iで受信した入力パケットは、SWインタフェース102-iを介してスイッチ部11に転送される。また、スイッチ部11からSWインタフェース102-iに振り分けられた出力パケットは、入出力回線インタフェース101-iを介して、出力回線に送出される。このため、入力ヘッダ処理部103、入力パケットバッファ104、入力スケジューラ105、出力ヘッダ処理部106、出力パケットバッファ107、出力ヘッダ処理部108は、回線毎に独立な構造となっており、各回線のパケットが混ざり合うことはない。
 入出力回線インタフェース101-iは、入力回線から通信パケット40または41、またはOAMパケット42を受信すると、受信パケットに、図7に示す装置内ヘッダ45を付加する。装置内ヘッダ45は、フローID:451と、受信ポートID:452と、受信NIF ID:453と、パケット長454とを示す複数のフィールドとからなっている。
 入出力回線インタフェース101-iが、受信パケットに装置内ヘッダ45を付加した時点では、設定レジスタ111から取得したポートとNIFのIDをそれぞれ受信ポートID:452とNIF ID:453に格納する。一方、フローID:451は空欄となっている。このフィールドには、入力ヘッダ処理部103によって有効値が設定される。
 入力ヘッダ処理部103は、後述する入力ヘッダ処理S100を実施して、入力ヘッダ処理テ-ブル23を参照し、各入力パケットの装置内ヘッダ45にフローID:451を追加するとともに、その他ヘッダ処理が実施される。入力ヘッダ処理S100の結果、入力パケットは、折返し処理部109または入力パケットバッファ104に回線毎に格納されるか、もしくは廃棄される。ここで、入力ヘッダ処理テーブル23は、通信パケット40のイーサネットを処理するモードと、通信パケット41および42のMPLSを処理するモードで設定内容が下記のように異なる。本処理モードは、設定レジスタ111によって指定される。
 図8に、設定レジスタ111にイーサネット処理モードと設定されている場合の入力ヘッダ処理テ-ブル23を示す。イーサネット処理の場合の入力ヘッダ処理テーブル23は、VLAN ID:231と、入力NIF ID:232と、入力ポートID:233の組合わせを検索キーとして、フローID:234を示すテーブルエントリを検索するためのものである。ここで、フローID:234は、本通信装置10Nにおいて各フローを特定するIDであり、双方向で同じIDを使用する。
 一方、図9に、設定レジスタ111にMPLS処理モードと設定されている場合の入力ヘッダ処理テ-ブル23を示す。MPLS処理の場合の入力ヘッダ処理テーブル23は、LSP ID1:235と、LSP ID2:236の組合わせを検索キーとして、フローID:234を示すテーブルエントリを検索するためのものである。ここで、LSP ID1:235には、受信パケットに付与されている1段目のMPLSラベル:414―1に格納されているLSP ID:4141が、LSP ID2:236には、受信パケットに付与されている2段目のMPLSラベル:414―2に格納されているLSP ID:4141が設定される。LERのように当該装置で転送用MPLSラベル414―1とユーザ識別用MPLSラベル414―2の双方を識別する場合には、入力ヘッダ処理テ-ブル23は両方の転送用MPLSラベル414―1とユーザ識別用MPLSラベル414―2の組合わせで検索される。一方、LSRのように当該通信装置で転送用MPLSラベル414―1のみを識別する場合には、入力ヘッダ処理テ-ブル23は転送用MPLSラベル414―1のみで検索される。これにより、装置内ヘッダのフローIDをMPLSラベルから決定する。
 入力スケジューラ105は、入力パケットバッファ105にパケットが格納されると、それを回線毎に独立に読出し、その回線に対応するSWインタフェース102-1~102-nに出力する。さらに、入力スケジューラ105は、折返し処理部109からの挿入パケットと、入力パケットバッファ104からのパケットの読出しのスケジューリングを行う。上記挿入パケットは、折返し処理部109から挿入される折返し応答OAMパケットである。
 スイッチ部11は、各NIFのSWインタフェース102-1~102-nから入力パケットを受け取り、フレーム転送テーブル22から出力NIFと出力ポートIDを特定し、対応するSWインタフェース102-iに、出力パケットとして転送する。
 図10にフレーム転送テーブル22を示す。フレーム転送テーブル22は、フロー ID:221と、入力NIF ID:222と、入力ポートID:223の組合せを検索キーとして、出力NIF ID:224と、出力ポートID:225とを示すテーブルエントリを検索するためのものである。ここで、入力NIF ID:222および入力ポートID:223は、各NIFの各SWインタフェースに物理的に固定で割当てられるものであり、入力パケットをどのSWインタフェースから受信したかによって一意に決定できる。スイッチ部11は、それをもってフレーム転送テーブル22を検索する。
 各SWインタフェース102が受信した出力パケットは、次々と出力ヘッダ処理部106に供給される。
 出力ヘッダ処理部106は、後述する出力ヘッダ処理S400を実施して、出力ヘッダ処理テ-ブル24を参照し、各出力パケットのヘッダ処理が実施される。出力ヘッダ処理S400の結果、出力パケットは、折返し処理部109または出力パケットバッファ107に回線毎に格納されるか、もしくは廃棄される。ここで、出力ヘッダ処理テーブル24は、通信パケット40のイーサネットを処理するモードと、通信パケット41および42のMPLSを処理するモードで設定内容が下記のように異なる。本処理モードは、設定レジスタ111によって指定される。
 図11に、設定レジスタ111にイーサネット処理モードと設定されている場合の出力ヘッダ処理テ-ブル24を示す。イーサネット処理の場合の出力ヘッダ処理テーブル24は、フローID:241を検索キーとして、VLANタグ処理242と、VLANタグ243とを示すテーブルエントリを検索するためのものである。ここで、VLANタグ処理242は、出力パケットに対するVLANタグ処理を指定し、それに必要なタグ情報がVLANタグ243に設定される。
 一方、図12に、設定レジスタ111にMPLS処理モードと設定されている場合の出力ヘッダ処理テーブル24を示す。MPLS処理の場合の出力ヘッダ処理テーブル24は、フローID:241を検索キーとして、MPLSラベル処理244と、MPLSラベル1:245と、MPLSラベル2:246とを示すテーブルエントリを検索するためのものである。ここで、MPLSラベル処理244は、出力パケットの転送用MPLSラベル414―1およびユーザ識別用MPLSラベル414-2に対する処理を指定し、それに必要なラベル情報がMPLSラベル1:245およびMPLSラベル2:246に設定される。LERのように当該装置で転送用ラベルMPLS414―1とユーザ識別用MPLSラベル414―2の双方を付与する場合には、出力ヘッダ処理テ-ブル24には転送用MPLSラベル414―1とユーザ識別用MPLSラベル414―2を付与するため、MPLSラベル処理244に2段付与とされる。さらに、この場合には宛先MACアドレス411と送信元MACアドレス412とイーサタイプ値413を付与する。この際、宛先MACアドレス411及び送信元MACアドレス412は、ポート毎に設定レジスタ111に設定されている値を上書きしてもよいし、入力ヘッダ処理テーブル23に、フローID毎に登録しておきそれを上書きしてもよい。ただし、ポート毎に装置固定に設定される値を上書きする場合、宛先MACアドレスはマルチキャストアドレスとする必要がある。また、イーサタイプ値413には設定レジスタ111に設定されているMPLSを示すイーサタイプ値が格納される。一方、LSRのように当該装置で転送用MPLSラベル414―1のみを処理する場合には、出力ヘッダ処理テ-ブル24には1段変換、1段削除、透過などの転送用MPLSラベル414―1のみでを処理する設定が書き込まれる。
 出力スケジューラ108は、出力パケットバッファ107にパケットが格納されると、それを回線毎に独立に読出し、その回線に対応する入出力回線インタフェース101に出力する。さらに、出力スケジューラ108は、折返し処理部109やNIF管理部110からの挿入パケットと、出力パケットバッファ107からのパケットの読出しのスケジューリングを行う。上記挿入パケットは、折返し処理部109から挿入される折返し応答OAMパケット、及びNIF管理部110から挿入する折返し要求OAMパケットである。つまり、このNIF管理部110から折返し試験が開始されることになる。この際、NIF管理部110はノード管理部12から折返し要求OAMパケットの挿入命令を受信し、装置内ヘッダ45の受信ポートID:453に対応するポートに出力されるように、出力スケジューラ108に挿入する。入出力回線インタフェース101は、受信した出力パケットから装置内ヘッダ45を除去し、図2、図3、図5に示したフォーマットで出力パケットを出力回線に送出する。
 折返し処理部109は、入力ヘッダ処理部103または出力ヘッダ処理部106から受信した折返し要求のOAMパケットに対して折り返すために必要なMPLSラベルの書き換えやペイロードの書き換えのため、後述する折返し処理S600を実施する。折返し処理S600の結果、折返し応答OAMパケットを各スケジューラに対して挿入する。
 図13は、入力ヘッダ処理部103が実行する入力ヘッダ処理S100のフローチャートを示している。
 入力ヘッダ処理部103は、設定レジスタ111に設定されている処理モードを判定し(S101)、イーサネット処理と設定されている場合には装置内ヘッダ45とVLANタグ403から各情報を抽出し、抽出した受信ポートID:452と受信NIF ID:453とVIDを用いて、入力ヘッダ処理テーブル23を検索する(S102)。検索した結果取得できるフローID:234を装置内ヘッダ:45に書き込み(S103)、処理を終了する(S106)。
 一方、上記S101において設定レジスタ111にMPLS処理と設定されていた場合には、1段目のMPLSラベルから各情報を抽出し(S104)、抽出したLSP ID:4141の値からLER処理かLSR処理かを判定する(S105)。この判定方法は、設定レジスタ111に設定されたある範囲により判定されてもよいし、ひとつひとつのLSP ID:4141の属性が設定レジスタ111に設定されていてもよい。上記S105において、LER処理パケットと判定された場合LER処理S200が実行され、LSR処理パケットと判定された場合、LSR処理S300が実行され、終了となる(S106)。
 図14のフローチャートを用いて入力ヘッダ処理部103のLER処理を説明する。LER処理S200では、入力ヘッダ処理部103は、2番目のユーザ識別用MPLSラベル414-2からLSP ID:4141を抽出し、1番目の転送用MPLSラベル414-1のLSP ID:4141と組合わせて入力ヘッダ処理テーブル23を検索する(S201)。その結果フローID:234を取得し、装置内ヘッダ45に上書きする(S202)。そして、ユーザ識別用MPLSラベル414-2のSビットが‘0’(3段目にMPLSラベルあり)かつそのLSP ID:4141がOAMを示すID(例えば“14”)であるかをチェックし、当該パケットがOAMパケットかどうかを判定する(S203)。この判定の結果、OAMパケットと判定されれば、OAMペイロードを解析し(S204)、OAMパケットの種類を判定する(S205)。この判定の結果、当該パケットが折返し要求OAMパケットと判定された場合、当該パケットを折返し処理部109に転送し(S206)、処理を終了する(S210)。上記S205において当該パケットが折返し応答パケットと判定された場合、折返し試験が成功した旨をNIF管理部110へ通知し、当該パケットを廃棄し(S207)、処理を終了する(S210)。上記S205において当該パケットがその他のOAMパケットと判定された場合、その他のOAMパケット終端処理を実施し(S208)、処理を終了する(S210)。
 上記S203において当該パケットがOAMパケットでないと判定された場合、当該パケットの転送用MPLSラベル414-1およびユーザ識別用MPLSラベル414-2を削除し、入力パケットバッファ104に転送し(S209)、処理を終了する(S210)。
 図15のフローチャートを用いて入力ヘッダ処理部103のLSR処理を説明する。LSR処理S300では、1段目の転送用MPLSラベル414-1のLSP ID:4141のみを用いて入力ヘッダ処理テーブル23を検索する(S301)。その結果フローID:234を取得し、装置内ヘッダ45に上書きする(S302)。そして、転送用MPLSラベル414-1のTTL:4144が‘1’以下かどうかを判定し(S303)、‘1’より大きければそのまま処理を終了する(S310)。一方、S303において転送用MPLSラベル414-1のTTL:4144が‘1’以下である場合には、ユーザ識別用MPLSラベル414-2のSビットが‘0’(3段目にMPLSラベルあり)かつそのLSP ID:4141がOAMを示すID(例えば“14”)であるかをチェックし、当該パケットがOAMパケットかどうか、さらに当該パケットのOAM識別用MPLSラベル414-3のTC:4142が‘0’かを判定する(S304)。この判定の結果、OAMパケットかつそのTC:4142が‘0’と判定されれば、OAMペイロードを解析し(S305)、OAMパケットの種類を判定する(S306)。この判定の結果、当該パケットが折返し要求OAMパケットと判定された場合、当該パケットを折返し処理部109に転送し(S307)、処理を終了する(S310)。これにより入力ヘッダ処理部において、当該装置のIngrees側で折り返すべき折返し要求パケットであることを検出することができる。上記S306において当該パケットが折返し応答パケットと判定された場合、本パケットは異常なパケットであるため当該パケットを廃棄し(S308)、処理を終了する(S310)。上記S306において当該パケットがその他のOAMパケットと判定された場合、その他のOAMパケット終端処理を実施し(S309)、処理を終了する(S310)。
 上記S304において当該パケットがOAMパケットでないまたはOAM識別ラベル414-3のTC:4142が‘0’でないと判定された場合、当該パケットをそのままスイッチ部に転送し、処理を終了する(S310)。
 図16は、出力ヘッダ処理部106が実行する出力ヘッダ処理S400のフローチャートを示している。
 出力ヘッダ処理部106は、設定レジスタ111に設定されている処理モードを判定し(S401)、イーサネット処理と設定されている場合には装置内ヘッダ45のフローID:451を抽出し、抽出したフローID:451を用いて、出力ヘッダ処理テーブル24を検索する(S402)。検索した結果取得に応じてVLANタグ403の処理を実施し(S403)、処理を終了する(S404)。
 一方、上記S401において設定レジスタ111にMPLS処理と設定されていた場合には、MPLS処理S500が実行され、終了となる(S404)。
 図17に示すMPLS出力処理S500では、装置内ヘッダ45のフローID:451を抽出し出力ヘッダ処理テーブル24を検索する(S501)。その結果取得できるテーブル情報に応じてMPLSラベル414(およびイーサヘッダ)を更新する(S502)。そして、転送用MPLSラベル414-1のTTL:4144が‘1’以下かどうかを判定し(S503)、‘1’より大きければ、上記S502で実施したMPLSラベル処理がイーサヘッダを含むMPLSラベル2段付与だったかどうかを判定し(S511)、MPLSラベル2段付与でなければ転送用MPLSラベル414-1のTTL:4144を‘1’減算し(S512)、処理を終了する(S513)。一方、上記S511において、MPLSラベル2段付与であったと判定された場合、当該パケットは本装置にてMPLSカプセル化を実施したパケットであるため、そのまま転送し、処理を終了する(S513)。
 一方、上記S503において転送用MPLSラベル414-1のTTL:4144が‘1’以下である場合には、ユーザ識別用MPLSラベル414-2のSビットが‘0’(3段目にMPLSラベルあり)かつそのLSP ID:4141がOAMを示すID(例えば“14”)であるかをチェックし、当該パケットがOAMパケットかどうか、さらに当該パケットのOAM識別用MPLSラベル414-3のTC:4142が‘1’かを判定する(S504)。この判定の結果、OAMパケットかつそのTC:4142が‘1’と判定されれば、OAMペイロードを解析し(S505)、OAMパケットの種類を判定する(S506)。この判定の結果、当該パケットが折返し要求OAMパケットと判定された場合、当該パケットを折返し処理部109に転送し(S507)、処理を終了する(S513)。これにより出力ヘッダ処理部において、当該装置のEgrees側で折り返すべき折返し要求パケットであることを検出することができる。上記S506において当該パケットが折返し応答パケットと判定された場合、当該パケットを廃棄し(S508)、処理を終了する(S513)。上記S506において当該パケットがその他のOAMパケットと判定された場合、その他のOAMパケット終端処理を実施し(S509)、処理を終了する(S513)。
 上記S504において当該パケットがOAMパケットでないまたはOAM識別MPLSラベル414-3のTC:4142が‘1’でないと判定された場合、当該パケットを廃棄し(S510)、処理を終了する(S513)。
 図18は、折返し処理部109が実行する折返し処理S600のフローチャートを示している。
 折返し処理部106は、折返しを必要がある折返し要求OAMパケット42を受信すると送信元を判別し(S601)、入力ヘッダ処理部103と判定した場合、装置内ヘッダ45からフローID:451を抽出し、出力ヘッダテーブル24を検索する(S602)。その結果取得できるテーブル情報に応じてMPLSラベル414(およびイーサヘッダ)を更新する(S603)。そして、宛先MACアドレス411に送信元MACアドレス412をコピーし(S604)、送信元MACアドレス412に装置内ヘッダ45に格納されているポートID:452に対応したMACアドレスを設定レジスタ111から取得し、上書きし(S605)、ペイロード部424の折返し要求情報を折返し応答情報に更新し(S606)、当該パケットを受信した処理部とは反対の処理部(入力ヘッダ処理部103から受信した場合は出力ヘッダ処理部106へ、出力ヘッダ処理部106から受信した場合は入力ヘッダ処理部103)に接続されたスケジューラに当該パケットを挿入し(S607)、処理を終了する(S608)。
 一方、上記S601において、折返し要求OAMパケット42の送信元が出力ヘッダ処理部106と判定すると、S604以降の処理を実施し、終了する(S608)。
 図19は、本発明の別の通信装置100Nのブロック構成を示す。
 通信装置100Nは、実施例1の通信装置10Nと異なり、スイッチ部が高機能スイッチ部1100となっている。その他、それぞれのブロックの構成は、通信装置10Nと同様である。高機能スイッチ部1100は、通信装置10Nのスイッチ部11と異なり、1段目の転送用MPLSラベル414-1を認識し、そのTTL4144の減算処理を行うことを特徴とする。例えば、スイッチチップを汎用品で調達し、NIF:10-nのみを開発するような装置ベンダの場合、本実施例のような形態となる場合がある。
 図20は、本発明の別の通信システムにおいてOAMパケットを用いた折返し試験の一例を示す。
 本図では、MPLSパスMP1の接続性をチェックするため、通信装置100AからMPLS網MP1内の折り返し要求用のOAMパケットの折返し点を指定して折返し試験を実行するシーケンスを示している。
 第一に、通信装置100Aから1ホップの通信装置100BのNIF:10B-1のIngress側を折返し点とする場合の処理の流れを説明する。
 まず通信装置100Aは、上記P100と同様の処理を実施し、折返し用のOAMパケット42を挿入する(P400)。
 この折返し要求のOAMパケット42が通信装置100BのNIF:10B-1のIngress側に到着すると、上記P101と同様の処理を実施し、終端される(P401)。
 続いて、上記P102と同様の処理を実施し、折返し応答OAMパケット42として10B-1から通信装置100Aに送信される(P402)。
 そして、通信装置100Aは、折返し応答OAMパケット42を受信すると、上記P103と同様の処理を実施し、終端する(P403)。これで、LSRとなる通信装置100BのNIF:10B-1のIngress側での折返し試験が完了する。
 第二に、通信装置100Aから1ホップの通信装置100BのNIF:10B-nのEgress側を折返し点とする場合の処理の流れを説明する。
 まず通信装置10Aは、上記P200と同様の処理を実施し、折返し用のOAMパケット42を挿入する(P500)。
 この折返し要求のOAMパケット42が通信装置100BのNIF:10B-1のIngress側に到着すると、まず転送用MPLSラベル414―1の解析が行われ、TTL:4144が‘1’であるため、自装置で廃棄または折返し処理が必要と判断し、OAM識別用MPLSラベル414―3を解析し、TC:4142が‘1’であるためIngress側折返しではないため、折返し要求用OAMパケットを透過させるが、高機能スイッチ部1100にてTTL:4144が減算されることを見越し、転送用ラベル414―1のTTL:4144に‘1’を加算する(P501)。これにより、高機能スイッチ部おいてTTLの減算が行われても、折返し要求用OAMパケットが廃棄されるのを防ぐことができる。
 この折返し要求OAMパケット42が高機能スイッチ部1100に到着すると、折返し要求OAMパケット42の転送用MPLSラベル414―1のTTL:4144が‘1’減算され、転送される(P502)。
 この折返し要求OAMパケット42が通信装置100BのNIF:10B-2のEgress側に到着すると、上記P202と同様の処理を実施し、終端される(P503)。
 続いて、P102と同様の折返し応答OAMパケット42の挿入処理が実施される(P504)。
 そして、この折返し応答OAMパケット42が高機能スイッチ部1100に到着すると、上記P502と同様の処理を実施し、転送される(P505)。
 続いて、上記折返し応答OAMパケット42がNIF:10B-1のEgress側に到着すると、上記P204と同様の処理を実施し、転送される(P506)。
 そして、通信装置100Aは、P103と同様の折返し応答OAMパケット42の受信処理を行う(P507)。これで、LSRとなる通信装置100BのNIF:10B-2のEgress側での折返し試験が完了する。
 最後に、通信装置100Aから2ホップの通信装置100NのNIF:10N-1のIngress側を折返し点とする場合の処理の流れを説明する。
 まず通信装置100Aは、上記P300と同様の処理を実施し、折返し用のOAMパケット42を挿入する(P600)。
 この折返し要求のOAMパケット42が通信装置100BのNIF:10B-1のIngress側に到着すると、まず転送用MPLSラベル414―1の解析が行われ、TTL:4144が“2”以上であるため、折返し要求用OAMパケットを透過させるが、高機能スイッチ部1100にてTTL:4144が減算されることを見越し、転送用MPLSラベル414―1のTTL:4144に‘1’を加算する(P601)。
 この折返し要求OAMパケット42が高機能スイッチ部1100に到着すると、上記P502と同様の処理を実施し、転送される(P602)。
 この折返し要求OAMパケット42が通信装置100BのNIF:10B-nのEgress側に到着すると、P204と同様の処理を実施し、透過される(P603)。
 この透過された折返し要求OAMパケット42が通信装置100NのNIF:10N-1のIngress側に到着すると、上記P303と同様の処理を実施し、終端される(P604)。
 続いて、P102と同様の折返し応答OAMパケット42の挿入処理が実施される(P605)。
 この折返し応答OAMパケット42が通信装置100BのNIF:10B-nのIngress側に到着すると、P601と同様の処理を実施し、透過される(P606)。
 そして、この折返し応答OAMパケット42が高機能スイッチ部1100に到着すると、上記P502と同様の処理を実施し、転送される(P607)。
 続いて、上記折返し応答のOAMパケット42が通信装置100BのNIF:10B-1のEgress側に到着すると、P204と同様の処理を実施し、透過される(P608)。
 そして、通信装置100Aは、P103と同様の折返し応答OAMパケット42の受信処理を行う(P609)。これで、LERとなる通信装置100NのNIF:10N-1のIngress側での折返し試験が完了する。
 以上により、高機能スイッチ部を用いた場合、すなわち、スイッチ部で転送用ラベルのTTLが“1”減算される場合についても通信装置のIngrres側、Egress側を指定して通信装置の折返し試験を実現することが可能である。
 図21は、本実施例の入力ヘッダ処理部103が実施するLSR処理S700のフローチャートを示している。LSR処理S700以外の入力ヘッダ処理S100は、実施例1と同様である。さらに、これ以外の処理は、実施例1と同様である。
 入力ヘッダ処理部103は、LSR処理S700において、1段目の転送用MPLSラベル414-1のLSP ID:4141のみを用いて入力ヘッダ処理テーブル23を検索する(S701)。その結果フローID:234を取得し、装置内ヘッダ45に上書きする(S702)。そして、転送用MPLSラベル414-1のTTL:4144が‘1’以下かどうかを判定し(S703)、‘1’より大きければ1段目の転送用MPLSラベル414-1のTTL:4144を‘1’加算し、処理を終了する(S711)。一方、S703において転送用MPLSラベル414-1のTTL:4144が‘1’以下である場合には、ユーザ識別用MPLSラベル414-2のSビットが‘0’(3段目にMPLSラベルあり)かつそのLSP ID:4141がOAMを示すID(例えば“14”)であるかをチェックし、当該パケットがOAMパケットかどうか、さらに当該パケットのOAM識別用MPLSラベル414-3のTC:4142が‘0’かを判定する(S704)。この判定の結果、OAMパケットかつそのTC:4142が‘0’と判定されれば、OAMペイロードを解析し(S705)、OAMパケットの種類を判定する(S706)。この判定の結果、当該パケットが折返し要求OAMパケットと判定された場合、当該パケットを折返し処理部109に転送し(S707)、処理を終了する(S711)。上記S706において当該パケットが折返し応答パケットと判定された場合、当該パケットを廃棄し(S708)、処理を終了する(S711)。上記S706において当該パケットがその他のOAMパケットと判定された場合、その他のOAMパケット終端処理を実施し(S709)、処理を終了する(S711)。
 上記S704において当該パケットがOAMパケットでないまたはOAM識別MPLSラベル414-3のTC:4142が‘0’でないと判定された場合、1段目の転送用MPLSラベル414-1のTTL:4144を‘1’加算し(S710)、処理を終了する(S711)。
 図22は、本発明の別の通信装置1000Nのブロック構成を示す。
 通信装置1000Nは、実施例1の通信装置10Nと異なり、入力ヘッダ処理部103と入力パケットバッファ104と入力スケジューラ105が入力処理部1030に置き換えられ、出力ヘッダ処理部106と出力パケットバッファ107と出力スケジューラ108が出力処理部1060に置き換えられた構成となっている。その他、それぞれのブロックの構成は、通信装置10Nと同様である。
 入力処理部1030と出力処理部1060は、図23に示すように複数の処理部の多段構成となっており、入力処理部1030はN個の入力処理部1030―1~N、出力処理部1060はN個の出力処理部1060―1~Nから構成されている。それぞれの入力処理部1030―1~Nは、通信装置10Nの入力ヘッダ処理部103と入力パケットバッファ104と入力スケジューラ105と同等の3つのブロックから構成されている。さらに、出力処理部1060―1~Nも同様に、通信装置10Nの出力ヘッダ処理部106と出力パケットバッファ105と出力スケジューラ106と同等の3つのブロックから構成されている。
 さらに、それぞれの入力処理部1030―1~N、出力処理部1060―1~Nには、設定レジスタ111から当該ブロックで折り返すべきTCが折返しTCとして設定されている。この折返しTCは、入力(Ingress)側でN個、出力(Egress)側でM個有しており、TC:4142が3ビットで構成されているため、N×2は最大でも“8”までの値の設定が可能である。このように設定することにより、本図のように入力処理部1030や出力処理部1060のように多段構成の場合に、TC:4142の値を複数使用することにより、折返し点を複数指定することが可能となる。
 また、それぞれの入力処理部1030―1~N、出力処理部1060―1~Nに対しては、設定レジスタ111からIngressまたはEgressの最終ブロックであるかを同時に設定する。これにより、最終ブロックのみでTTL:4144の減算や加算処理を行うことができ、複数ブロックを経由する場合でも、TTL:4144を必要以上に加算、減算しないように処理することが可能となる。
 それぞれの入力処理部1030―1~Nは、通信装置10Nの入力ヘッダ処理部103と入力パケットバッファ104と入力スケジューラ105と同等の処理を実施するが、入力ヘッダ処理S100のLER処理S200とLSR処理S300は、それぞれLER処理S800とLSR処理S900に変更になる。
 ここまで以外の処理は、実施例1と同様である。
 さらに、それぞれの出力処理部1060―1~Nは、通信装置10Nの出力ヘッダ処理部106と出力パケットバッファ107と出力スケジューラ108と同等の処理を実施するが、出力ヘッダ処理S400のMPLS出力処理S500は、MPLS出力処理S1000に変更になる。
 また、図示しないが、通信装置10Nの折返し処理部109が実施する折返し処理S600の折返し応答パケットを挿入するS607の処理において、本実施例の折返し処理部109は、パケットを受信した処理部とは反対の処理部(入力処理部1030―Xから受信した場合は出力処理部1060―Xへ、出力処理部1060―Xから受信した場合は入力処理部1030―X)に接続されたスケジューラに当該パケットを挿入することになる。
 図24に入力処理部のLER処理を示す。LER処理S800では、入力処理部1030は、2番目のユーザ識別用MPLSラベル414-2からLSP ID:4141を抽出し、1番目の転送用MPLSラベル414-1のLSP ID:4141と組合わせて入力ヘッダ処理テーブル23を検索する(S801)。その結果フローID:234を取得し、装置内ヘッダ45に上書きする(S802)。そして、ユーザ識別用MPLSラベル414-2のSビットが‘0’(3段目にMPLSラベルあり)かつそのLSP ID:4141がOAMを示すID(例えば“14”)であるかをチェックし、当該パケットがOAMパケットかどうかを判定する(S803)。この判定の結果、OAMパケットと判定されれば、OAMペイロードを解析し(S804)、OAMパケットの種類を判定する(S805)。この判定の結果、当該パケットが折返し要求OAMパケットと判定された場合、当該パケットを折返し処理部109に転送し(S806)、処理を終了する(S811)。上記S805において当該パケットが折返し応答パケットと判定された場合、折返し試験が成功した旨をNIF管理部110へ通知し、当該パケットを廃棄し(S807)、処理を終了する(S811)。上記S805において当該パケットがその他のOAMパケットと判定された場合、その他のOAMパケット終端処理を実施し(S808)、処理を終了する(S811)。
 上記S803において当該パケットがOAMパケットでないと判定された場合、設定レジスタ111において本ブロックがIngressの最終ブロックに設定されているかどうかをチェックし(S809)、最終ブロックであれば当該パケットの転送用MPLSラベル414-1およびユーザ識別用MPLSラベル414-2を削除し、後段ブロック(入力処理部1030―1~Nの入力パケットバッファ)に転送し(S810)、処理を終了する(S811)。一方、上記S809において、Ingressの最終ブロックでないと判定した場合には、当該パケットをそのまま転送し、処理を終了する(S811)。
 図25において、入力処理部のLSR処理を示す。LSR処理S900では、1段目の転送用MPLSラベル414-1のLSP ID:4141のみを用いて入力ヘッダ処理テーブル23を検索する(S901)。その結果フローID:234を取得し、装置内ヘッダ45に上書きする(S902)。そして、転送用MPLSラベル414-1のTTL:4144が‘1’以下かどうかを判定し(S903)、‘1’より大きければそのまま処理を終了する(S910)。一方、S903において転送用MPLSラベル414-1のTTL:4144が‘1’以下である場合には、ユーザ識別用MPLSラベル414-2のSビットが‘0’(3段目にMPLSラベルあり)かつそのLSP ID:4141がOAMを示すID(例えば“14”)であるかをチェックし、当該パケットがOAMパケットかどうか、さらに当該パケットのOAM識別用MPLSラベル414-3のTC:4142が設定レジスタ111に設定された折返しTCと一致するかを判定する(S904)。この判定の結果、OAMパケットかつそのTC:4142が折返しTCと一致すると判定されれば、OAMペイロードを解析し(S905)、OAMパケットの種類を判定する(S906)。この判定の結果、当該パケットが折返し要求OAMパケットと判定された場合、当該パケットを折返し処理部109に転送し(S907)、処理を終了する(S910)。上記S906において当該パケットが折返し応答パケットと判定された場合、本パケットは異常なパケットであるため当該パケットを廃棄し(S908)、処理を終了する(S910)。上記S906において当該パケットがその他のOAMパケットと判定された場合、その他のOAMパケット終端処理を実施し(S909)、処理を終了する(S910)。
 上記S904において当該パケットがOAMパケットでないまたはOAM識別MPLSラベル414-3のTC:4142が折返しTCと一致しないと判定された場合、当該パケットをそのまま転送し、処理を終了する(S910)。これにより、入力処理部1030のように多段構成の場合に、転送用のTTL以外のヘッダ情報の特定のフィールドに複数の値を使用することにより、通信装置のIngrees側で折返し点を複数指定することが可能となる。
 図26において出力処理部のMPLS出力処理を示す。MPLS出力処理S1000では、装置内ヘッダ45のフローID:451を抽出し出力ヘッダ処理テーブル24を検索する(S1001)。その結果取得できるテーブル情報に応じてMPLSラベル414(およびイーサヘッダ)を更新する(S1002)。そして、転送用MPLSラベル414-1のTTL:4144が‘1’以下かどうかを判定し(S1003)、‘1’より大きければ、設定レジスタ111において本ブロックがEgressの最終ブロックに設定されているかどうかをチェックし(S1011)、最終ブロックであれば、上記S1002で実施したMPLSラベル処理がイーサヘッダを含むMPLSラベル2段付与だったかどうかを判定し(S1012)、MPLSラベル2段付与でなければ転送用ラベル414-1のTTL:4144を‘1’減算し(S1013)、処理を終了する(S1014)。一方、上記S1011において、本ブロックがEgressの最終ブロックでないと判定されれば、当該パケットをそのまま転送し、処理を終了する(S1014)。
 一方、上記S1012において、MPLSラベル2段付与であったと判定された場合、当該パケットは本装置にてMPLSカプセル化を実施したパケットであるため、そのまま転送し、処理を終了する(S1014)。
 一方、上記S1003において転送用ラベル414-1のTTL:4144が‘1’以下である場合には、ユーザ識別用ラベル414-2のSビットが‘0’(3段目にMPLSラベルあり)かつそのLSP ID:4141がOAMを示すID(例えば“14”)であるかをチェックし、当該パケットがOAMパケットかどうか、さらに当該パケットのOAM識別用ラベル414-3のTC:4142が設定時レジスタ111に設定された折返しTCと一致するかを判定する(S1004)。この判定の結果、OAMパケットかつそのTC:4142が折返しTCと一致と判定されれば、OAMペイロードを解析し(S1005)、OAMパケットの種類を判定する(S1006)。この判定の結果、当該パケットが折返し要求OAMパケットと判定された場合、当該パケットを折返し処理部109に転送し(S1007)、処理を終了する(S1014)。上記S1006において当該パケットが折返し応答パケットと判定された場合、当該パケットを廃棄し(S1008)、処理を終了する(S1014)。上記S1006において当該パケットがその他のOAMパケットと判定された場合、その他のOAMパケット終端処理を実施し(S1009)、処理を終了する(S1014)。
 上記S1004において当該パケットがOAMパケットでないまたはOAM識別ラベル414-3のTC:4142が折返しTCと一致しないと判定された場合、当該パケットを廃棄し(S1010)、処理を終了する(S1014)。
 これにより、出力処理部1060のように多段構成の場合に、転送用のTTL以外のヘッダ情報の特定のフィールドに複数の値を使用することにより、通信装置のIngrees側で折返し点を複数指定することが可能となる。
 図27は、本発明の別の通信装置10000Nのブロック構成を示す。
 通信装置10000Nは、実施例3の通信装置1000Nと異なり、スイッチ部が高機能スイッチ部1100となっている。その他、それぞれのブロックの構成は、通信装置1000Nと同様である。高機能スイッチ部1100は、通信装置1000Nのスイッチ部11と異なり、1段目の転送用MPLSラベル414-1を認識し、そのTTL4144の減算処理を行うことを特徴とする。例えば、スイッチチップを汎用品で調達し、NIF:10-nのみを開発するような装置ベンダの場合、本実施例のような形態となる場合がある。
 図28は、本実施例の入力処理部1030が実施するLSR処理S1100のフローチャートを示している。LSR処理S1100以外の入力ヘッダ処理S100は、実施例3と同様である。さらに、これ以外の処理は、実施例3と同様である。
 図28に示すLSR処理S1100では、1段目の転送用ラベル414-1のLSP ID:4141のみを用いて入力ヘッダ処理テーブル23を検索する(S1101)。その結果フローID:234を取得し、装置内ヘッダ45に上書きする(S1102)。そして、転送用ラベル414-1のTTL:4144が‘1’以下かどうかを判定し(S1103)、‘1’より大きければ、設定レジスタ111により本ブロックがIngressの最終ブロックかどうかを判定し(S1110)、最終ブロックあれば、1段目の転送用MPLSラベル414-1のTTL:4144を‘1’減算し、処理を終了する(S1112)。一方、上記S1110において、本ブロックが最終ブロックでないと判定された場合、当該パケットをそのまま転送し、処理を終了する(S1112)。
 一方、上記S1103において転送用ラベル414-1のTTL:4144が‘1’以下である場合には、ユーザ識別用ラベル414-2のSビットが‘0’(3段目にMPLSラベルあり)かつそのLSP ID:4141がOAMを示すID(例えば“14”)であるかをチェックし、当該パケットがOAMパケットかどうか、さらに当該パケットのOAM識別用ラベル414-3のTC:4142が設定レジスタ111に設定された折返しTCと一致するかを判定する(S1104)。この判定の結果、OAMパケットかつそのTC:4142が折返しTCと一致と判定されれば、OAMペイロードを解析し(S1105)、OAMパケットの種類を判定する(S1106)。この判定の結果、当該パケットが折返し要求OAMパケットと判定された場合、当該パケットを折返し処理部109に転送し(S1107)、処理を終了する(S1112)。上記S1106において当該パケットが折返し応答パケットと判定された場合、本パケットは異常なパケットであるため当該パケットを廃棄し(S1108)、処理を終了する(S1112)。上記S1106において当該パケットがその他のOAMパケットと判定された場合、その他のOAMパケット終端処理を実施し(S1109)、処理を終了する(S1112)。
 上記S1104において当該パケットがOAMパケットでないまたはOAM識別ラベル414-3のTC:4142が折返しTCと一致しないと判定された場合、上記S1110以降の処理を実施し、終了する(S1112)。
10A、10B、10N・・・通信装置
10A-1、10A-n、10B-1、10B-n、10N-1、10N―n・・・通信装置10のインタフェース(NIF)
100N・・・通信装置
1000N・・・通信装置
10000N・・・通信装置

Claims (19)

  1.  複数の通信装置を備え、通信パスを介して前記複数の通信装置間でパケットを転送する通信システムであって、
     前記複数の通信装置のうち第1の通信装置は、
     前記通信パス上のいずれかの通信装置でパケットを折り返して前記通信パスの接続性を確認する場合に、
     前記パケットを折り返す通信装置を指定するため第1の情報を前記パケットのヘッダ情報の第1の領域に格納し、
     さらに、前記パケットを前記指定された通信装置内の折返し点に関する第2の情報をパケットのヘッダ情報内の第2の領域に格納し、
     該第1の情報及び第2の情報が付与されたパケットを送出することを特徴とする通信システム。
  2.  請求項1に記載の通信システムであって、
     前記第1の情報及び第2の情報が付与されたパケットを受信する第2の通信装置は、
     前記パケットの第1の情報を参照して該パケットを自装置で折り返すか否かを判断し、自装置で該パケットを折り返すと判断した場合には、前記第2の情報を参照して該通信装置内の折返し点を判断して前記第1の通信装置宛に該パケットに対する応答パケットを送信することを特徴とする通信システム。
  3.  請求項1に記載の通信システムであって、
     前記折返し点は、前記通信装置内の入力側及び出力側にあることを特徴とする通信システム。
  4.  請求項2に記載の通信システムであって、
     前記第1の情報及び第2の情報が付与されたパケットを受信する通信装置は、
     前記パケットの第1の情報を参照して該パケットを自装置で折り返すか否かを判断し、自装置で該パケットを折り返さないと判断した場合には、前記第2の情報を参照せず、次の転送先通信装置に該パケットを送信することを特徴とする通信システム。
  5.  請求項3に記載の通信システムであって、
     前記第1の情報及び第2の情報が付与されたパケットを受信する通信装置は、入力ヘッダ処理部、出力ヘッダ処理部、及び折返し処理部を備え、
     前記入力ヘッダ処理部は、
     前記パケットの第1の情報を参照して該パケットを自装置で折り返すか否かを判断し、折り返すと判断した場合には、さらに第2の情報を参照して該入力ヘッダ処理部で折り返すか否かを判定し、該入力ヘッダ処理部で折り返すと判断した場合には前記折返し処理部に該パケットを転送し、自装置または該入力ヘッダ処理部で折り返さないと判断した場合には、前記パケットを出力側に転送し、
     前記折返し処理部は、前記入力ヘッダ処理部から該パケットを受信すると前記第1の通信装置宛に該パケットに対する応答パケットを生成し、送信することを特徴とする通信システム。
  6.  請求項5に記載の通信システムであって、
     前記出力ヘッダ処理部は、前記入力ヘッダ処理部を介して前記パケットを受信した場合に、前記第1の情報を参照して該パケットを自装置で折り返すか否かを判断し、折り返すと判断した場合には、さらに第2の情報を参照して該出力ヘッダ処理部で折り返すか否かを判定し、該出力ヘッダ処理部で折り返すと判断した場合には前記折返し処理部に該パケットを転送し、自装置または該出力ヘッダ処理部で折り返さないと判断した場合には、前記パケットを次の転送先通信装置に転送し、
     前記折返し処理部は、前記出力ヘッダ処理部から該パケットを受信すると前記第1の通信装置宛に該パケットに対する応答パケットを生成し、送信することを特徴とする通信システム。
  7.  請求項1に記載の通信システムであって、
     前記第1の領域は転送用MPLSラベルのパケット生存期間を示す部分であり、前記第2の領域は障害関連情報を示すMPLSラベルの一部であることを特徴とする通信システム。
  8.  請求項7に記載の通信システムであって、
     前記第1の通信装置は、転送用MPLSラベル、及び障害関連情報を示すMPLSラベルを付与するネットワークインタフェース管理部を備え、
     前記第1の情報及び第2の情報が付与されたパケットを受信する第2の通信装置は、前記転送用MPLSラベルを参照してパケットを前記通信パス上の転送先通信装置に転送する入力ヘッダ処理部、及び出力ヘッダ処理部、及びパケットに対する応答パケットを生成する折返し処理部を備え、
     前記第2の通信装置の前記入力ヘッダ処理部または出力ヘッダ処理部は、前記パケットの転送用MPLSラベルのパケット生存期間を示す部分に格納された第1の情報を参照して該パケットを自装置で折り返すか否かを判断し、折り返すと判断した場合には、さらに前記障害関連情報を示すMPLSラベルの一部に格納された第2の情報を参照して該入力ヘッダ処理部または出力ヘッダ処理部で折り返すか否かを判定し、該入力ヘッダ処理部または出力ヘッダ処理部で折り返すと判断した場合には該パケットを折返し処理部に転送し、
     前記第2の通信装置の折返し処理部は、前記入力ヘッダ処理部または出力ヘッダ処理部から該パケットを受信すると前記第1の通信装置宛に該パケットに対する応答パケットを生成し、送信することを特徴とする通信システム。
  9.  請求項2に記載の通信システムであって、
     前記第2の通信装置は、
     1以上のネットワークインタフェースと、
     前記ネットワークインタフェースに接続されたスイッチ部と、を備え、
     前記ネットワークインタフェースは、
     入力ヘッダ処理部と、出力ヘッダ処理部と、を備え、
     ネットワークインタフェースでパケットを受信すると、前記入力ヘッダ処理部は、前記第1の領域を参照して自装置で折り返すパケットではないと判断した場合、及び前記第2の領域を参照して入力側で折り返すパケットでない場合は、前記第1の領域のフレーム生存期間の値を加算することを特徴とする通信システム。
  10.  請求項2に記載の通信システムであって、
     前記第2の通信装置は、
     1以上のネットワークインタフェースと、
     前記ネットワークインタフェースに接続されたスイッチ部と、を備え、
     前記ネットワークインタフェースは、
     1以上の入力処理部と、1以上の出力処理部と、を備え、
     前記入力処理部は、前記第1の領域を参照して自装置で前記パケットを折り返すか否かを判断し、さらに第2の領域を参照して該入力処理部で該パケットを折り返すか否かを判断することを特徴とする通信システム。
  11.  通信パスを用いて複数の通信装置を介してパケットを転送する通信システムにおいて 前記通信パスの開始点に位置する第1の通信装置であって、
     前記通信パス上のいずれかの通信装置でパケットを折り返して前記通信パスの接続性を確認する場合に、
     前記パケットを折り返す通信装置を指定するため第1の情報を前記パケットのヘッダ情報の第1の領域に格納し、
     さらに、前記パケットを前記指定された通信装置内の折返し点に関する第2の情報をパケットのヘッダ情報内の第2の領域に格納し、
     該第1の情報及び第2の情報が付与されたパケットを送出することを特徴とする通信装置。
  12.  請求項11に記載の通信装置であって、
     前記第1の通信装置は、
     前記第1の情報及び第2の情報が付与されたパケットを生成するネットワークインタフェース管理部及び前記パケットを送出するインタフェースを備えることを特徴とする通信装置。
  13.  請求項12に記載の通信装置であって、
     前記第1の情報及び第2の情報が付与されたパケットに対する応答パケットを前記通信パス上の第2の通信装置から受信した場合に、応答パケットを受信した旨を前記ネットワークインタフェース管理部に通知することを特徴とする通信装置。
  14.  通信パスを用いて複数の通信装置を介してパケットを転送するパケット通信システムにおいて前記通信パスの開始点以外に位置する通信装置であって、
     前記通信パスの接続性を確認する場合に、前記通信パスの開始点に位置する第1の通信装置が送出したパケットの第1の領域を参照して該パケットを自装置で折り返すか否かを判断し、自装置で該パケットを折り返すと判断した場合には、前記第2の領域を参照して該通信装置内の折返し点を判断して前記第1の通信装置宛に該パケットに対する応答パケットを送信することを特徴とする通信装置。
  15.  請求項14に記載の通信装置であって、
     前記折返し点は、前記通信装置内の入力側及び出力側にあることを特徴とする通信装置。
  16.  請求項14に記載の通信装置であって、
     1以上のネットワークインタフェースと、
     前記ネットワークインタフェースに接続されたスイッチ部と、を備え、
     前記ネットワークインタフェースは、
     入力ヘッダ処理部と、出力ヘッダ処理部と、を備え、
     ネットワークインタフェースでパケットを受信すると、前記入力ヘッダ処理部は、前記第1の領域を参照して自装置で折り返すパケットではないと判断した場合、及び前記第2の領域を参照して入力側で折り返すパケットでない場合は、前記第1の領域のフレーム生存期間の値を加算することを特徴とする通信装置。
  17.  請求項14に記載の通信装置であって、
     1以上のネットワークインタフェースと、
     前記ネットワークインタフェースに接続されたスイッチ部と、を備え、
     前記ネットワークインタフェースは、
     1以上の入力処理部と、1以上の出力処理部と、を備え、
     前記入力処理部は、前記第1の領域を参照して自装置で前記パケットを折り返すか否かを判断し、さらに第2の領域を参照して該入力処理部で該パケットを折り返すか否かを判断することを特徴とする通信装置。
  18.  請求項16に記載の通信装置であって、
     さらに、折り返し処理部を備え、
     前記折返し処理部は、前記入力処理部または前記出力処理部において前記パケットは前記入力処理部または前記出力処理部で折り返すパケットであると判断された場合に前記パケットを廃棄し、応答パケットを生成し、前記通信パスの開始点に位置する通信装置宛に該応答パケットを送信することを特徴とする通信装置。
  19.  請求項17に記載の通信装置であって、
     さらに、折り返し処理部を備え、
     前記折返し処理部は、前記入力処理部または前記出力処理部において前記パケットは前記入力処理部または前記出力処理部で折り返すパケットであると判断された場合に前記パケットを廃棄し、応答パケットを生成し、前記通信パスの開始点に位置する通信装置宛に該応答パケットを送信することを特徴とする通信装置。
PCT/JP2009/070097 2009-11-30 2009-11-30 通信システム及び通信装置 WO2011064884A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127014069A KR101349979B1 (ko) 2009-11-30 2009-11-30 통신 시스템 및 통신 장치
PCT/JP2009/070097 WO2011064884A1 (ja) 2009-11-30 2009-11-30 通信システム及び通信装置
CN2009801626575A CN102630372A (zh) 2009-11-30 2009-11-30 通信系统及通信装置
JP2011543060A JP5226131B2 (ja) 2009-11-30 2009-11-30 通信システム及び通信装置
US13/512,480 US9083602B2 (en) 2009-11-30 2009-11-30 Communication system and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070097 WO2011064884A1 (ja) 2009-11-30 2009-11-30 通信システム及び通信装置

Publications (1)

Publication Number Publication Date
WO2011064884A1 true WO2011064884A1 (ja) 2011-06-03

Family

ID=44066003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070097 WO2011064884A1 (ja) 2009-11-30 2009-11-30 通信システム及び通信装置

Country Status (5)

Country Link
US (1) US9083602B2 (ja)
JP (1) JP5226131B2 (ja)
KR (1) KR101349979B1 (ja)
CN (1) CN102630372A (ja)
WO (1) WO2011064884A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065210A1 (ja) * 2011-10-31 2013-05-10 日本電気株式会社 通信システム、通信方法、エッジ装置、エッジ装置制御方法、エッジ装置制御プログラム、非エッジ装置、非エッジ装置制御方法、及び、非エッジ装置制御プログラム
JP2015073166A (ja) * 2013-10-02 2015-04-16 株式会社日立製作所 通信システム、通信方式及び通信装置
US10965568B2 (en) 2014-12-30 2021-03-30 Huawei Technologies Co., Ltd. Bit-forwarding ingress router, bit-forwarding router, and operation, administration and maintenance test method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064884A1 (ja) * 2009-11-30 2011-06-03 株式会社日立製作所 通信システム及び通信装置
JP5692244B2 (ja) * 2011-01-31 2015-04-01 富士通株式会社 通信方法、ノード、およびネットワークシステム
US8938529B2 (en) * 2013-06-25 2015-01-20 Microsoft Corporation Hardware management communication protocol
US9525622B2 (en) * 2014-03-17 2016-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Label stack encoding and processing to enable OAM procedures for service segments in segment routed (SR) networks
US9379959B1 (en) * 2014-07-10 2016-06-28 Juniper Networks, Inc. System and method for verifying the functionality of network paths
CN107248941B (zh) * 2017-06-30 2020-01-10 华为技术有限公司 一种检测路径的方法和装置
US10505679B2 (en) * 2018-02-12 2019-12-10 Extreme Networks, Inc. Systems and methods for hardware-implemented anomaly detection in VLAN network using loopback port

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122261A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd Atm交換機の装置内導通試験装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035202B2 (ja) 1995-10-11 2000-04-24 株式会社日立製作所 Atm通信コネクション検証システム
JP3482996B2 (ja) * 1999-12-03 2004-01-06 日本電気株式会社 Atmスイッチ
US6965572B1 (en) * 2000-06-07 2005-11-15 At&T Corp. Loopback capability for bi-directional multi-protocol label switching traffic engineered trucks
US7088679B2 (en) * 2001-12-12 2006-08-08 Lucent Technologies Inc. Method and system for providing failure protection in a ring network that utilizes label switching
US7206288B2 (en) * 2002-06-12 2007-04-17 Cisco Technology, Inc. Methods and apparatus for characterizing a route in fibre channel fabric
US6940863B2 (en) * 2003-01-13 2005-09-06 The Regents Of The University Of California Edge router for optical label switched network
JP2005260321A (ja) * 2004-03-09 2005-09-22 Nec Corp ラベルパスネットワークの迂回制御方式
KR100631758B1 (ko) * 2004-05-04 2006-10-09 삼성전자주식회사 멀티 스트리밍 포맷을 지원하는 네트워크 i/f 카드 및그 방법
US20070183415A1 (en) * 2006-02-03 2007-08-09 Utstarcom Incorporated Method and system for internal data loop back in a high data rate switch
JP5115033B2 (ja) * 2007-05-30 2013-01-09 富士通株式会社 パケット中継方法及び装置
US8391163B2 (en) * 2009-03-23 2013-03-05 Cisco Technology, Inc. Operating MPLS label switched paths and MPLS pseudowire in loopback mode
WO2011064884A1 (ja) * 2009-11-30 2011-06-03 株式会社日立製作所 通信システム及び通信装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122261A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd Atm交換機の装置内導通試験装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOIKE, YOSHINORI, MPLS-TP OAM MAINTENANCE POINTS, DRAFT-KOIKE-IETF-MPLS-TP-OAM- MAINTENANCE-POINTS-00.TXT, 26 October 2009 (2009-10-26) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065210A1 (ja) * 2011-10-31 2013-05-10 日本電気株式会社 通信システム、通信方法、エッジ装置、エッジ装置制御方法、エッジ装置制御プログラム、非エッジ装置、非エッジ装置制御方法、及び、非エッジ装置制御プログラム
JPWO2013065210A1 (ja) * 2011-10-31 2015-04-02 日本電気株式会社 通信システム、通信方法、エッジ装置、エッジ装置制御方法、エッジ装置制御プログラム、非エッジ装置、非エッジ装置制御方法、及び、非エッジ装置制御プログラム
JP2015073166A (ja) * 2013-10-02 2015-04-16 株式会社日立製作所 通信システム、通信方式及び通信装置
US10965568B2 (en) 2014-12-30 2021-03-30 Huawei Technologies Co., Ltd. Bit-forwarding ingress router, bit-forwarding router, and operation, administration and maintenance test method
JP2021166390A (ja) * 2014-12-30 2021-10-14 華為技術有限公司Huawei Technologies Co., Ltd. ビットフォワーディングイングレスルータ、ビットフォワーディングルータ及び運用管理保守テスト方法
US11558274B2 (en) 2014-12-30 2023-01-17 Huawei Technologies Co., Ltd. Bit-forwarding ingress router, bit-forwarding router, and operation, administration and maintenance test method
JP7245288B2 (ja) 2014-12-30 2023-03-23 華為技術有限公司 ビットフォワーディングイングレスルータ、ビットフォワーディングルータ及び運用管理保守テスト方法
US11894998B2 (en) 2014-12-30 2024-02-06 Huawei Technologies Co., Ltd. Bit-forwarding ingress router, bit-forwarding router, and operation, administration and maintenance test method

Also Published As

Publication number Publication date
KR101349979B1 (ko) 2014-01-28
JP5226131B2 (ja) 2013-07-03
CN102630372A (zh) 2012-08-08
JPWO2011064884A1 (ja) 2013-04-11
US9083602B2 (en) 2015-07-14
KR20120091268A (ko) 2012-08-17
US20120236866A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5226131B2 (ja) 通信システム及び通信装置
US8787150B2 (en) Resiliency schemes in communications networks
EP2521309B1 (en) Communications system and topology information generation method
JP4687176B2 (ja) パケット中継装置
CN111901235A (zh) 处理路由的方法和装置、以及数据传输的方法和装置
US7986619B2 (en) Packet network system
WO2012023538A1 (ja) 通信装置、通信システム、通信方法、および記録媒体
JPWO2009051179A1 (ja) キャリアネットワーク接続装置およびキャリアネットワーク
US9819536B2 (en) Relay system and switching device
US6490244B1 (en) Layer 3 routing in self-healing networks
CN103636172A (zh) 具有环拓扑的网络中的拓扑改变
JP5535355B2 (ja) 接続性確認方法、通信システム及び通信装置
US7061859B2 (en) Fast protection in ring topologies
JP2006074286A (ja) 伝送装置
KR101851031B1 (ko) 오프셋을 사용하는 대역 내 제어 채널을 제공하는 의사회선
CN102916845B (zh) 一种多路径的环回检测方法及交换机设备
CN114520762B (zh) BIERv6报文的发送方法以及第一网络设备
US9444728B2 (en) Packet switching device including cascaded aggregation nodes
JP4455105B2 (ja) 冗長経路を有するリングネットワークシステムとそのシステムに使用される転送装置
JP2003324463A (ja) 通信経路切替装置
JP2003338831A (ja) Mplsネットワークの切替え方法
JP5071982B2 (ja) 運用保守管理用のトレース要求を中継する方法、管理中継点装置及びプログラム
JP2016187156A (ja) 通信システム、通信路確認方法、及び通信装置
JP2006352714A (ja) 非対称ネットワーク回線多重化装置
JP2005354463A (ja) リングネットワークシステムのノード装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162657.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543060

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13512480

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127014069

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851675

Country of ref document: EP

Kind code of ref document: A1