WO2011063577A1 - 一种洗涤电解铅铋合金阳极泥的方法 - Google Patents

一种洗涤电解铅铋合金阳极泥的方法 Download PDF

Info

Publication number
WO2011063577A1
WO2011063577A1 PCT/CN2009/076294 CN2009076294W WO2011063577A1 WO 2011063577 A1 WO2011063577 A1 WO 2011063577A1 CN 2009076294 W CN2009076294 W CN 2009076294W WO 2011063577 A1 WO2011063577 A1 WO 2011063577A1
Authority
WO
WIPO (PCT)
Prior art keywords
soaking
lead
anode
bismuth alloy
washing
Prior art date
Application number
PCT/CN2009/076294
Other languages
English (en)
French (fr)
Inventor
林国荣
余欢荣
李继红
Original Assignee
江西稀有金属钨业控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西稀有金属钨业控股集团有限公司 filed Critical 江西稀有金属钨业控股集团有限公司
Priority to JP2012540256A priority Critical patent/JP5567680B2/ja
Priority to AU2009355804A priority patent/AU2009355804B2/en
Priority to US13/511,782 priority patent/US9051624B2/en
Priority to EP20090851590 priority patent/EP2505678A1/en
Priority to KR1020127015305A priority patent/KR101407347B1/ko
Publication of WO2011063577A1 publication Critical patent/WO2011063577A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/04Obtaining lead by wet processes
    • C22B13/045Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/06Obtaining bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/18Electrolytic production, recovery or refining of metals by electrolysis of solutions of lead
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/14Removing waste, e.g. labels, from cleaning liquid; Regenerating cleaning liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/04Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for washing electrolytic lead-bismuth alloy anode slime, in particular to a method for treating electrolytic lead-bismuth alloy anode slime and recovering metal ions.
  • lead-bismuth alloy is a method of pyrometallurgical production of a metal-based substance consisting mainly of lead and antimony.
  • precipitating lead refers to a general term for cathode precipitates in electrolytic lead-bismuth alloys.
  • lead is in the electrolytic lead-bismuth alloy cycle system, the lead ion is lower than the minimum value required to maintain normal electrolysis 50 g / L. Background technique
  • the insoluble component of the anode is deposited as an anode sludge to the bottom of the electrolytic cell, and the anode slime is recovered from the electrolytic cell when the anode is replaced.
  • the base metal with a lower potential enters the solution, and the precious metal, the rare metal (such as selenium, hoof, ruthenium, etc.), the anode powder, etc. form an insoluble matter to become an anode slime.
  • the composition and yield of the anode mud are mainly related to the composition of the anode, the quality of the ingot and the technical conditions of the electrolysis.
  • the anode mud yield is generally 0.2-1%, and its main components are Cu: 10-35%, Ag: 1-28%, Au: 0.1-0.5%, Se: 2-23%, Te: 0.5-8%, S: 2-10%, Pb: 1-25%, Ni: 0.1-15%, Sb: 0.1-10%, As: 0.1-5%, Bi: 0.1-1%, trace amounts of platinum group metals, H 2 0 : 25-40% 0 in the metal state, there are platinum group metals, gold, most copper and a small amount of silver; selenium, tellurium, most silver and a small amount of copper and gold exist in the form of metal selenides and hoof compounds, such as Ag 2 Se, Ag 2 Te, CuAgSe, Au 2 Te and Cu 2 Se; a small amount of silver and copper are AgCl, Cu 2 S and Cu 2 0; the remaining metals are mostly oxides, complex oxides or arsenates Or citrate.
  • the fire method is to roast the lead anode mud at a high temperature, and then to prepare it by electrolysis.
  • the wet rule is extracted and separated by solution.
  • the lead-rich inside the anode mud enters the smelting and smelting section with the smelting of the lead anode mud, which will greatly extend the oxidative refining cycle of the smelting section and increase the slag amount of the pre-slag.
  • the object of the present invention is to provide a method for washing electrolytic lead-bismuth alloy anode slime to obtain a large amount of lead ions and silicon fluorate, to optimize the process, and to solve the problem of "lean lead” in electrolytic lead-bismuth alloy.
  • the invention provides a method for washing electrolytic lead-bismuth alloy anode mud, which comprises using a negative electrode of electrolytic lead-bismuth alloy as a raw material to obtain a high concentration lead silicate fluoride solution, which is characterized in that the method comprises the following steps: (1) anode mud pre-pretreatment Treatment process; (2) The first soaking process of the anode mud; (3) The second soaking process of the anode mud.
  • the anode mud pretreatment process is to complete the separation of the anode mud and the anode residual plate to form a powdery anode mud before the anode mud is weathered.
  • the anode mud on the anode plate is firstly cracked with an iron rod, and then the cracked anode mud is scraped off with a long iron shovel, and the sheet anode slurry is crushed and pulverized.
  • the soaking agent may be purified water or the second soaking supernatant.
  • the soaking temperature is 30 ⁇ 50 e C
  • the soaking agent dosage is 0.2 ⁇ 0.4m 3 / wet anode mud.
  • the anode mud 21 after the first soaking is left in the soaking tank.
  • the first soaking liquid is directly added to the circulating electrolyte of the electrolytic lead-bismuth alloy, and the first sinking object is returned to the soaking tank containing the anode mud after the first soaking, and is to be soaked for the second time.
  • the soaking temperature is 45 e C
  • the soaking agent dosage is 0.2 ⁇ 0.25 m 3 / wet anode mud; stirring and soaking for 1.5 h.
  • the infusion agent is a dilute solution of silicon fluoric acid having a pH of 3 to 5.
  • the soaking temperature is 30 ⁇ 50 e C
  • the soaking agent dosage is 0.2 ⁇ 0.4m 3 / wet anode mud, soaking for 0.5 ⁇ 2h.
  • the second soaking liquid can be directly added to the circulating electrolyte of the electrolytic lead-bismuth alloy, and can also be used as the soaking agent for the first soaking.
  • the anode mud and the second sinking material were air-dried for 12 hours and then smelted into the smelting section.
  • the infusion agent is a dilute solution of silicon fluoric acid having a pH of 4, the soaking temperature is 45 e C, the amount of the soaking agent is 0.2 - 0.25 m 3 / wet anode mud; and the mixture is soaked for 1 hour.
  • the first soaking process and the second soaking process of the anode mud can be carried out in different soaking tanks, preferably in the same soaking tank.
  • the anode of the electrolytic lead-bismuth alloy is used as a raw material, the anode mud is crushed and pulverized into powdery anode mud powder, and a large amount of lead ions and silicon fluoride are obtained by secondary soaking.
  • Adding the first soaking supernatant containing a large amount of ions and part of the second soaking supernatant to the electrolysis lead-bismuth alloy electrolyte circulation system improves the utilization of lead ions and silicon fluoride, and improves the silver smelting environment. Reduce the production cost of lead, antimony and silver smelting.
  • the method of the invention optimizes the smelting process and alleviates the phenomenon of "lean lead" in the electrolysis process.
  • FIG. 1 is a schematic flow chart showing a method of washing an electrolytic lead-bismuth alloy anode slime according to the present invention.
  • Fig. 2 is a flow chart showing the anode mud pretreatment process in the method of washing an electrolytic lead-bismuth alloy anode slime according to the present invention.
  • Fig. 3 is a flow chart showing the first soaking process of the anode slime in the method of washing an electrolytic lead-bismuth alloy anode slime according to the present invention.
  • FIG. 4 is a second dip of anode mud in the method of washing electrolytic lead-bismuth alloy anode mud according to the present invention Schematic diagram of the process of the bubble process.
  • the process for washing the electrolytic lead-bismuth alloy anode slime according to the present invention is based on electrolytic lead-bismuth alloy anode mud, and the main steps include:
  • anodes of lead and anode plates are produced.
  • the anode plate is transferred out of the electrolytic cell to the stacking anode plate to dry, and the residual liquid 10 is recovered.
  • the liquid is returned to the electrolytic cell; the anode plate is cracked with an iron bar, and the anode mud is shoveled with a long iron shovel; It is crushed and pulverized to the powdery anode mud 12; the cleaned anode residue plate 11 is returned to the anode pot for melting.
  • the soaking agent purified water 20, or the second soaking supernatant 34 is injected into the soaking tank containing the powdery anode mud 12, the temperature is 30 ⁇ 50 e C, the amount of the soaking agent is 0.2 ⁇ 0.4 m 3 / wet anode mud; After stirring for 1 ⁇ 2 hours, the anode mud 21 after the first soaking is left in the soaking tank.
  • the first soaking liquid 22 is pumped out to the storage tank for clarification, the first soaking supernatant 24 is separated, the first soaking supernatant 24 is pumped into the circulating electrolyte, or stored; the first sinking
  • the object 23 is returned to the soaking tank containing the anode mud 21 after the first soaking, and is to be soaked for the second time.
  • the dilute solution of silicate 45 with a pH of 3 ⁇ 5 is added to the soaking tank containing the first soaked anode mud 21 and the first sinking substance 23, the temperature is 30 ⁇ 50 "C, the amount of the soaking agent is 0.2. ⁇ 0.4m 3 / ton wet anode mud; After soaking for 0.5 ⁇ 2h, pump the second soaking liquid 32 out to the storage tank for clarification, separate the second soaking supernatant 34, and soak the supernatant for the second time.
  • the anode mud 31 and the second sinking material 33 after the second soaking are air-dried for 12 hours and then smelted into the smelting section.
  • the process for washing the electrolytic lead-bismuth alloy anode slime according to the present invention is based on electrolytic lead-bismuth alloy anode mud, and the main steps include:
  • anodes of lead and anode plates are produced.
  • the anode plate is transferred out of the electrolytic cell to the stacking anode plate to dry, and the residual liquid 10 is recovered.
  • the liquid is returned to the electrolytic cell; the anode plate is cracked with an iron bar, and the anode mud is shoveled with a long iron shovel; It is crushed and pulverized to the powdery anode mud 12; the cleaned anode residue plate 11 is returned to the anode pot for melting.
  • the soaking agent purified water 20, or the second soaking supernatant 34 is injected into the soaking tank containing the powdery anode mud 12, the temperature is 45 e C, the amount of the soaking agent is 0.2 ⁇ 0.25 m 3 / wet anode mud; After 1.5 h, the anode mud 21 after the first soaking was left in the soaking tank.
  • the first soaking liquid 22 is pumped out to the storage tank for clarification, the first soaking supernatant 24 is separated, the first soaking supernatant 24 is pumped into the circulating electrolyte, or stored; the first sinking
  • the object 23 returns to the soaking pool of the anode mud 21 after the first soaking In, wait for the second soak.
  • a dilute solution of hydrofluoric acid 30 having a pH of 4 was added to the soaking tank containing the first soaked anode mud 21 and the first sinking substance 23 at a temperature of 45.
  • the amount of soaking agent is 0.2 ⁇ 0.25 m 3 / wet anode mud; after soaking for lh, the second soaking liquid 32 is pumped out to the storage tank for clarification, and the second soaking supernatant 34 is separated, which will be the second time.
  • the soaking supernatant 34 is added to the circulating electrolyte, or is to be used as the first soaking agent for the next time; the anode mud 31 after the second soaking, the second sinking object 33 is air-dried for 12 hours, and then is smelted into the silver smelting section. .
  • the experimental data in Table 1 is a comparison of the effect of the process of the present invention on the cleaning of the anode mud of the electrolytic lead-bismuth alloy.
  • the experimental data in Table 2 is the effect of adding the soaking solution of the process of the present invention to the circulating electrolyte.

Description

一种洗涤电解铅铋合金阳极泥的方法 技术领域
本发明涉及一种洗涤电解铅铋合金阳极泥的方法, 特别是涉及针对电解 铅铋合金阳极泥进行处理, 回收金属离子的方法。
在本专利说明书中, 术语"铅铋合金"是火法熔炼产一种由铅、 铋为主 要元素组成的具有金属通性的物质。
术语"上清液", 即为第一、 二次浸泡液经过澄清后的溶液。
术语"析出铅"是指电解铅铋合金中, 在阴极析出物的统称。
术语"贫铅"为在电解铅铋合金循环体系中, 铅离子低于维持正常电解所 需的最低值 50 g / L。 背景技术
在铅铋合金的电解中, 阳极的不溶成分作为阳极泥沉降到电解槽底部, 当 更换阳极时从所述电解槽中回收阳极泥。 电解时, 电位较负的贱金属进入溶液, 贵金属, 稀散金属(如硒、 蹄、 铋等)、 阳极粉末等形成不溶物成为阳极泥。 阳 极泥的成分与产率主要与阳极的成分、 铸锭质量及电解技术条件有关。
阳极泥产率一般为 0.2-1%, 其主要成分是 Cu: 10-35%, Ag: 1-28%, Au: 0.1-0.5%, Se: 2-23%, Te: 0.5-8%, S: 2-10%, Pb: 1-25%, Ni: 0.1-15%, Sb: 0.1-10%, As: 0.1-5%, Bi: 0.1-1% , 铂族金属微量, H20: 25-40% 0 以金属状态存在的有铂族金属、 金、 大部分铜和少量银; 硒、 碲、 大部分银和 少量铜和金则以金属硒化物和蹄化物形式存在, 如 Ag2Se、 Ag2Te、 CuAgSe、 Au2Te和 Cu2Se; 还有少量银和铜为 AgCl、 Cu2S和 Cu20; 其余金属则大多数 为氧化物、 复杂氧化物或砷酸盐或锑酸盐。
阳极泥处理工艺主要有火法和湿法两大类。 火法是将铅阳极泥在高温下焙 烧, 然后釆用电解法制取。 湿法则是用溶液萃取、 分离。
在电解高铅铋银合金过程中, 随着阳极泥厚度的快速增加, 使得阳极的阳 极泥内外出现严重的富铅、 贫铅问题, 接踵而至的问题: 铅离子下降、 槽压上 升、 杂质析出等, 这些问题都影响着电解的正常运转以及产品品质。 这就要求 添加大量的黄丹到电解体系中, 增加电解液中铅离子含量来解决电解"贫铅"问 题。 而阳极泥内部的富铅随着铅阳极泥的冶炼进入铋银冶炼工段, 将大大延长 炼银工段氧化精炼的周期以及增加前期渣的渣量。 发明内容
本发明的目的是提供一种洗涤电解铅铋合金阳极泥的方法, 以获取大量 的铅离子、 硅氟酸根, 优化工艺, 解决电解铅铋合金中"贫铅"问题。
本发明提供了一种洗涤电解铅铋合金阳极泥的方法, 以电解铅铋合金的 阳极泥为原料得到高浓度的硅氟酸铅溶液, 其特征在于, 包括以下步骤:(1 ) 阳极泥预处理工序; (2 ) 阳极泥第一次浸泡工序; (3 ) 阳极泥第二次浸泡 工序。
阳极泥预处理工序是在阳极泥风化前, 完成阳极泥与阳极残板分离制成 粉状阳极泥。 例如: 在阳极泥预处理工序中, 先用铁棒将阳极板上的阳极泥 抽裂, 然后用长柄铁铲铲下被抽裂的阳极泥, 将片状阳极泥捣碎, 粉碎。
在阳极泥第一次浸泡工序中, 浸泡剂可以为净化水, 或第二次浸泡上清 液。 阳极泥浸泡过程中, 浸泡温度为 30~50eC, 浸泡剂用量 0.2 ~ 0.4m3/ 湿 阳极泥。 搅拌浸泡 l ~ 2h后,第一次浸泡后的阳极泥 21留于浸泡池中。 第一次 浸泡液直接加入到电解铅铋合金的循环电解液中, 第一次下沉物返回到装有 第一次浸泡后的阳极泥的浸泡池中, 待第二次浸泡。 优选地, 阳极泥浸泡过程 中, 浸泡温度为 45 eC, 浸泡剂用量 0.2 ~ 0.25 m3/ 湿阳极泥; 搅拌浸泡 1.5h。
在阳极泥第二次浸泡工序中, 浸泡剂为 pH值 3~5的硅氟酸稀溶液。 阳极 泥浸泡过程中, 浸泡温度为 30~50eC, 浸泡剂用量 0.2 ~ 0.4m3/ 湿阳极泥, 浸 泡 0.5 ~ 2h后。 第二次浸泡液可直接加入到电解铅铋合金的循环电解液中, 也 可作第一次浸泡的浸泡剂。 第二次浸泡后的阳极泥和第二次下沉物风干 12h后 入 ίΗ艮冶炼工段冶炼。
优选地, 阳极泥浸泡过程中, 浸泡剂为 pH值 4的硅氟酸稀溶液, 浸泡温 度为 45eC, 浸泡剂用量 0.2 - 0.25 m3/ 湿阳极泥; 搅拌浸泡 lh。
阳极泥第一浸泡工序和第二次浸泡工序可以在不同的浸泡池中进行, 优 选地, 在同一个浸泡池中进行浸泡。
本发明以电解铅铋合金的阳极泥为原料, 阳极泥捣碎、 粉碎为粉状阳极 泥粉末, 二次浸泡获取大量的铅离子、 硅氟酸根。 将含有大量离子的第一次 浸泡上清液以及部分第二次浸泡上清液加入电解铅铋合金电解液循环体系 中提高了铅离子、硅氟酸根的利用率, 改善了铋银冶炼环境, 降低了铅、铋、 银冶炼生产成本。 本发明方法优化了冶炼工艺, 緩解了电解过程中"贫铅"现 象。 附图说明
图 1是根据本发明的洗涤电解铅铋合金阳极泥方法的流程示意图。
图 2是在根据本发明的洗涤电解铅铋合金阳极泥方法中阳极泥预处理过 程的流程示意图。
图 3是在根据本发明的洗涤电解铅铋合金阳极泥方法中阳极泥第一次浸 泡过程的流程示意图。
图 4是在根据本发明的洗涤电解铅铋合金阳极泥方法中阳极泥第二次浸 泡过程的流程示意图。 具体实施例
实施例 1
如图 1所示, 根据本发明的洗涤电解铅铋合金阳极泥的工艺, 是以电解 铅铋合金阳极泥为原料, 主要步骤包括:
一、 阳极泥预处理工序
经过 72~96h的电解周期后, 产出析出铅和阳极板的阳极泥。 用行车将阳 极板转出电解槽到堆放阳极板处晾干, 回收出槽残液 10, 待澄清后, 返回电 解槽; 用铁棒抽裂阳极板, 长柄铁铲铲下阳极泥; 捣碎、 粉碎至粉状阳极泥 12; 处理干净后的阳极残板 11返回阳极锅熔炼。
二、 阳极泥第一次浸泡工序
将浸泡剂净化水 20, 或第二次浸泡上清液 34注入到装有粉状阳极泥 12 的浸泡池中, 温度 30 ~ 50eC , 浸泡剂用量 0.2 ~ 0.4m3/ 湿阳极泥; 搅拌浸泡 l ~ 2h后,第一次浸泡后的阳极泥 21留于浸泡池中。 第一次浸泡液 22泵出到储 存罐中澄清,分离出第一次浸泡上清液 24,将第一次浸泡上清液 24泵入到循环 电解液中, 或存储; 第一次下沉物 23返回到装有第一次浸泡后的阳极泥 21的 浸泡池中, 待第二次浸泡。
三、 阳极泥第二次浸泡工序
将 pH值 3~5的硅氟酸稀溶液 30加入到装有第一次浸泡后的阳极泥 21 以及第一次下沉物 23 的浸泡池中, 温度 30 ~ 50 "C, 浸泡剂用量 0.2 ~ 0.4m3/ 吨湿阳极泥; 浸泡 0.5 ~ 2h后,将第二次浸泡液 32泵出到储存罐中澄清, 分离出 第二次浸泡上清液 34,将第二次浸泡上清液 34补充到循环电解液中,或待作下 次的第一次浸泡剂; 第二次浸泡后的阳极泥 31、 第二次下沉物 33风干 12h后 入 ίΗ艮冶炼工段冶炼。
实施例 2
如图 1所示, 根据本发明的洗涤电解铅铋合金阳极泥的工艺, 是以电解 铅铋合金阳极泥为原料, 主要步骤包括:
一、 阳极泥预处理工序
经过 72~96h的电解周期后, 产出析出铅和阳极板的阳极泥。 用行车将阳 极板转出电解槽到堆放阳极板处晾干, 回收出槽残液 10, 待澄清后, 返回电 解槽; 用铁棒抽裂阳极板, 长柄铁铲铲下阳极泥; 捣碎、 粉碎至粉状阳极泥 12; 处理干净后的阳极残板 11返回阳极锅熔炼。
二、 阳极泥第一次浸泡工序
将浸泡剂净化水 20, 或第二次浸泡上清液 34注入到装有粉状阳极泥 12 的浸泡池中,温度 45eC, 浸泡剂用量 0.2 ~ 0.25 m3/ 湿阳极泥;搅拌浸泡 1.5h 后,第一次浸泡后的阳极泥 21留于浸泡池中。 第一次浸泡液 22泵出到储存罐中 澄清,分离出第一次浸泡上清液 24,将第一次浸泡上清液 24泵入到循环电解液 中, 或存储; 第一次下沉物 23返回到装有第一次浸泡后的阳极泥 21的浸泡池 中, 待第二次浸泡。
三、 阳极泥第二次浸泡工序
将 pH值 4的硅氟酸稀溶液 30加入到装有第一次浸泡后的阳极泥 21以及 第一次下沉物 23的浸泡池中, 温度 45。C, 浸泡剂用量 0.2 ~ 0.25 m3/ 湿阳极 泥; 浸泡优选 lh后,将第二次浸泡液 32泵出到储存罐中澄清, 分离出第二次浸 泡上清液 34,将第二次浸泡上清液 34补充到循环电解液中,或待作下次的第一 次浸泡剂; 第二次浸泡后的阳极泥 31、 第二次下沉物 33风干 12h后入铋银冶 炼工段冶炼。
浸过浸经经未泡泡
表 1中实验数据为本发明的工艺方法对电解铅铋合金的阳极泥洗涤与否 效果对比。
表 2中实验数据为本发明的工艺方法浸泡液补充到循环电解液中的作用 效果。
表 1 浸泡与否对阳极泥的影响 (%)
组 别 阳极泥 Bi Ag Pb
70.62 2.120 17.48
2 69.81 2.021 18.24
3 69.20 2.032 19.12
4 67.25 1.905 19.88
5 70.55 2.066 17.43
6 75.71 2.311 12.40
77.67 2.393 10.90
8 75.55 2.348 12.51
9 75.51 2.361 11.65
74.21 2.247 12.51 浸泡液的成分含量对照
第二次浸泡液
第一次浸泡液( Kg/m3 )
次 数 ( Kg/m3 )
C(Pb2+) C (总酸) C (游离酸) C(Pb2+)
1 346.53 167.34 15.03 100.09
2 270.86 153.73 12.30 123.54
3 252.29 140.06 10.89 108.33
4 306.89 134.65 9.06 104.85

Claims

权利要求书
1、 一种洗涤电解铅铋合金阳极泥的方法, 以电解铅铋合金的阳极 泥为原料得到高浓度的硅氟酸铅溶液,其特征在于, 包括以下步骤:(1 ) 阳极泥预处理工序; (2 ) 阳极泥第一次浸泡工序; (3 ) 阳极泥第二次 浸泡工序。
2、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特 征在于: 在阳极泥预处理工序中, 在阳极泥风化前, 完成阳极泥与阳极 残板分离制成粉状阳极泥。
3、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特 征在于:阳极泥第一次浸泡工序浸泡剂为净化水,或第二次浸泡上清液。
4、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特 征在于: 阳极泥第二次浸泡工序浸泡剂为硅氟酸稀溶液、 pH值 3~5的 硅氟酸稀溶液、 或 pH值 4的硅氟酸稀溶液。
5、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特 征在于: 第一次浸泡工序和第二次浸泡工序的浸泡温度为 30~50。C。
6、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特 征在于: 第一次浸泡工序和第二次浸泡工序的浸泡温度为 45。C。
7、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特征 在于: 第一次浸泡工序和第二次浸泡工序的浸泡剂用量 0.2 ~ 0.4m3/ 湿 阳极泥。
8、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特 征在于: 第一次浸泡液直接加入到电解铅铋合金的循环电解液中。
9、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特征 在于: 第二次浸泡液可直接加入到电解铅铋合金的循环电解液中, 也可 作第一次浸泡的浸泡剂。
10、 根据权利要求 1所述的洗涤电解铅铋合金阳极泥的方法, 其特 征在于: 第一次浸泡工序和第二次浸泡工序都是在同一个浸泡池中进 行。
PCT/CN2009/076294 2009-11-24 2009-12-30 一种洗涤电解铅铋合金阳极泥的方法 WO2011063577A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012540256A JP5567680B2 (ja) 2009-11-24 2009-12-30 電解鉛−ビスマス合金からアノードスライムを洗浄する方法
AU2009355804A AU2009355804B2 (en) 2009-11-24 2009-12-30 Method of washing anode slime from lead-bismuth alloy electrolysis
US13/511,782 US9051624B2 (en) 2009-11-24 2009-12-30 Method of washing anode slime from lead-bismuth alloy electrolysis
EP20090851590 EP2505678A1 (en) 2009-11-24 2009-12-30 Method of washing anode slime from lead-bismuth alloy electrolysis
KR1020127015305A KR101407347B1 (ko) 2009-11-24 2009-12-30 납-비스무트 합금 전기분해의 양극 잔사 세정방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910238049.X 2009-11-24
CN200910238049XA CN101713028B (zh) 2009-11-24 2009-11-24 一种洗涤电解铅铋合金阳极泥的方法

Publications (1)

Publication Number Publication Date
WO2011063577A1 true WO2011063577A1 (zh) 2011-06-03

Family

ID=42417024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076294 WO2011063577A1 (zh) 2009-11-24 2009-12-30 一种洗涤电解铅铋合金阳极泥的方法

Country Status (7)

Country Link
US (1) US9051624B2 (zh)
EP (1) EP2505678A1 (zh)
JP (1) JP5567680B2 (zh)
KR (1) KR101407347B1 (zh)
CN (1) CN101713028B (zh)
AU (1) AU2009355804B2 (zh)
WO (1) WO2011063577A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713028B (zh) * 2009-11-24 2012-06-20 江西稀有金属钨业控股集团有限公司 一种洗涤电解铅铋合金阳极泥的方法
CN101906643B (zh) * 2010-09-08 2012-02-01 江西稀有金属钨业控股集团有限公司 高铅铋银合金电解法脱铅工艺
CN102703719B (zh) * 2012-07-03 2014-03-05 阳谷祥光铜业有限公司 一种从贵金属熔炼渣中回收有价金属的工艺
CN103938223B (zh) * 2014-03-26 2016-08-17 湖南水口山有色金属集团有限公司 一种高铋粗铅的提纯方法
CN103938228B (zh) * 2014-03-26 2016-08-10 湖南水口山有色金属集团有限公司 铅电解液及阳极泥洗水杂质金属离子的净化方法
CN104162536A (zh) * 2014-08-01 2014-11-26 西安建筑科技大学 一种废旧阴极无害化处理与资源利用方法
CN105132706A (zh) * 2015-08-31 2015-12-09 白银有色集团股份有限公司 一种电解银粉除杂方法
WO2017141710A1 (ja) * 2016-02-15 2017-08-24 東レ株式会社 イオン伝導膜の製造方法および製造装置
CN106916954B (zh) * 2017-01-20 2019-03-29 株洲冶炼集团股份有限公司 一种洗涤铅阳极泥并回收铅阳极泥中铅的方法
CN112981111B (zh) * 2021-02-09 2022-11-29 深圳市中金岭南有色金属股份有限公司韶关冶炼厂 一种铅阳极泥中选择性回收铜的方法和铅阳极泥回收金属的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352786A (en) * 1981-02-24 1982-10-05 Institute Of Nuclear Energy Research Treatment of copper refinery anode slime
US4500398A (en) * 1984-06-20 1985-02-19 The United States Of America As Represented By The Secretary Of The Interior Production of lead from sulfides
JPH05247552A (ja) * 1992-03-06 1993-09-24 Nikko Kyodo Co Ltd 鉛電解アノードスライムの湿式処理による脱銅方法
JPH05311259A (ja) * 1992-04-13 1993-11-22 Nikko Kinzoku Kk 鉛電解アノードスライムの湿式処理方法
CN1772957A (zh) * 2005-11-01 2006-05-17 株洲冶炼集团有限责任公司 一种高铋粗铅的电解方法
CN101713028A (zh) * 2009-11-24 2010-05-26 江西稀有金属钨业控股集团有限公司 一种洗涤电解铅铋合金阳极泥的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026776A (en) * 1970-12-02 1977-05-31 Mitsui Mining & Smelting Co., Ltd. Method for producing high purity lead
JPS57149437A (en) * 1981-03-04 1982-09-16 Inst Obu Niyuukuria Enaajii Re Treatment of copper refinement anode slime
CA2017032C (en) * 1990-05-17 1995-10-10 Khay Gie J. Tan Hydrometallurgical silver refining
JP2003089827A (ja) * 2001-09-14 2003-03-28 Nippon Mining & Metals Co Ltd 銀の製錬方法
CN102703719B (zh) * 2012-07-03 2014-03-05 阳谷祥光铜业有限公司 一种从贵金属熔炼渣中回收有价金属的工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352786A (en) * 1981-02-24 1982-10-05 Institute Of Nuclear Energy Research Treatment of copper refinery anode slime
US4500398A (en) * 1984-06-20 1985-02-19 The United States Of America As Represented By The Secretary Of The Interior Production of lead from sulfides
JPH05247552A (ja) * 1992-03-06 1993-09-24 Nikko Kyodo Co Ltd 鉛電解アノードスライムの湿式処理による脱銅方法
JPH05311259A (ja) * 1992-04-13 1993-11-22 Nikko Kinzoku Kk 鉛電解アノードスライムの湿式処理方法
CN1772957A (zh) * 2005-11-01 2006-05-17 株洲冶炼集团有限责任公司 一种高铋粗铅的电解方法
CN101713028A (zh) * 2009-11-24 2010-05-26 江西稀有金属钨业控股集团有限公司 一种洗涤电解铅铋合金阳极泥的方法

Also Published As

Publication number Publication date
KR20120083526A (ko) 2012-07-25
AU2009355804A1 (en) 2012-06-21
CN101713028A (zh) 2010-05-26
JP5567680B2 (ja) 2014-08-06
KR101407347B1 (ko) 2014-06-13
JP2013511623A (ja) 2013-04-04
US9051624B2 (en) 2015-06-09
US20120247509A1 (en) 2012-10-04
AU2009355804B2 (en) 2013-03-28
CN101713028B (zh) 2012-06-20
EP2505678A1 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2011063577A1 (zh) 一种洗涤电解铅铋合金阳极泥的方法
CN101575715B (zh) 一种从电子废弃物中提取有价金属的方法
CN104630826B (zh) 一种从锡阳极泥中回收锡的工艺
CN101289712B (zh) 从含铟物料中回收铟的方法
CN101570827B (zh) 一种真空蒸馏提纯粗锡合金的方法
CN102534225B (zh) 一种阳极泥的处理方法
AU2016318302B2 (en) Optimized ore processing using molten salts for leaching and thermal energy source
CN107177865B (zh) 一种高铋铅合金分离铅、铋的工艺
CN103290429A (zh) 一种高富含低品位粗铅电解方法
CN101906643B (zh) 高铅铋银合金电解法脱铅工艺
CN104947146B (zh) 高铋粗铅电解回收有价金属的方法
Nan et al. Hydrometallurgical process for extracting bismuth from by-product of lead smelting based on methanesulfonic acid system
CN105967153A (zh) 一种从高碲渣料中回收碲的工艺
JP4470689B2 (ja) スズ製錬等を利用したインジウムの回収方法
CN101245471A (zh) 从高银铋合金中制备铋和富集银的方法
CN102690951A (zh) 一种从铅阳极泥碱浸脱砷液中去除铅、锑的方法
CN104498724B (zh) 一种脱除稀贵合金吹炼炉渣中铅、砷、锑、铋的方法
CN109312423A (zh) 铋的提纯方法
CN115341107A (zh) 一种铅冶炼铋金属高效回收工艺方法
CN105861842A (zh) 一种从含铅物料中回收铅的方法
JPH0762463A (ja) 連続電気化学的鉛精錬方法
JP4787951B2 (ja) 銀の電解精製方法
CN109778230B (zh) 一种高铅冰铜电解分离铅和铜的方法
CN201801613U (zh) 高铅铋银合金电解法脱铅装置
CN115465842B (zh) 一种4n碲浇铸方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851590

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012540256

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009355804

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009851590

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127015305

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13511782

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009355804

Country of ref document: AU

Date of ref document: 20091230

Kind code of ref document: A