WO2011062170A1 - 光架橋性電解質組成物および色素増感型太陽電池 - Google Patents

光架橋性電解質組成物および色素増感型太陽電池 Download PDF

Info

Publication number
WO2011062170A1
WO2011062170A1 PCT/JP2010/070424 JP2010070424W WO2011062170A1 WO 2011062170 A1 WO2011062170 A1 WO 2011062170A1 JP 2010070424 W JP2010070424 W JP 2010070424W WO 2011062170 A1 WO2011062170 A1 WO 2011062170A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
group
photocrosslinkable
dye
electrolyte composition
Prior art date
Application number
PCT/JP2010/070424
Other languages
English (en)
French (fr)
Inventor
丈也 酒井
Original Assignee
株式会社林技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社林技術研究所 filed Critical 株式会社林技術研究所
Priority to US13/510,687 priority Critical patent/US20120227806A1/en
Priority to DE112010004484T priority patent/DE112010004484T5/de
Priority to CN201080051894.7A priority patent/CN102612786B/zh
Publication of WO2011062170A1 publication Critical patent/WO2011062170A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention is a photocrosslinkable electrolyte used for a dye-sensitized solar cell, comprising a gelled or solidified electrolyte, a photocrosslinkable electrolyte composition for forming the electrolyte, and further comprising the electrolyte.
  • the present invention relates to a dye-sensitized solar cell.
  • a solar cell is a semiconductor device that directly converts solar energy into electrical energy. If the silicon crystal system is the first generation, the amorphous silicon system is the second generation, and the compound semiconductor (such as GaAs) is the third generation, the dye-sensitized system is said to be the fourth generation solar cell and is currently attracting attention.
  • a dye-sensitized solar cell is called a Gretzell cell or a wet solar cell.
  • a typical dye-sensitized solar cell has a photoelectrode in which titanium dioxide powder is baked on a transparent electrode and a dye such as a ruthenium complex is adsorbed thereon, and platinum disposed opposite to the electrode. And a counter electrode such as carbon, and an electrolyte sandwiched between these two electrodes.
  • a redox couple of iodine redox couple: I ⁇ / I 3 ⁇
  • a carbonate-based or nitrile-based organic solvent is used as the solvent.
  • Examples of the method for gelling the electrolyte include a physical crosslinking type and a chemical crosslinking type.
  • the physical cross-linking type uses polyacrylonitrile or a self-organizing gelling agent and utilizes the property of being liquidized in a high temperature atmosphere and injected into a cell and gelled in a normal temperature atmosphere.
  • a physically cross-linked gel has a possibility of causing liquid leakage because its fluidity increases as the temperature increases.
  • the present invention is a photocrosslinkable electrolyte composition
  • a photocrosslinkable electrolyte composition comprising a redox pair, an ionic liquid, and a photocrosslinkable liquid crystalline polymer having a functional group represented by the following chemical formula 1.
  • R 1 , R 2 represents H or an alkyl group, an alkyloxy group, or a halogen, respectively.
  • the redox pair may be a redox pair such as iodine
  • the ionic liquid is a nitrogen-containing heterocyclic compound, an alicyclic amine, an aliphatic amine, an aromatic amine, or the like. May be.
  • the present invention also includes a photocrosslinkable electrolyte formed by irradiating the electrolyte composition with light (for example, irradiating with ultraviolet rays of 380 nm or less).
  • the present invention relates to the photocrosslinking property sandwiched between a photoelectrode having a light receiving surface on one side, a counter electrode disposed on a side opposite to the light receiving surface of the photoelectrode, and the two electrodes.
  • a dye-sensitized solar cell including an electrolyte.
  • the “electrolyte composition” means a substance before encapsulating in the battery cell
  • the “electrolyte” means a substance after encapsulating in the battery cell. ing.
  • the photocrosslinking reaction proceeds in the electrolyte composition by light irradiation even in the presence of an oxidized electron pair such as iodine. Can do.
  • the gelled or solidified electrolyte can suppress the flow even in a high-temperature atmosphere, improve the durability of the dye-sensitized solar cell, and impart excellent photovoltaic power to the solar cell. can do.
  • the electrolyte composition of the present invention when the electrolyte composition of the present invention is irradiated with ultraviolet rays, cell characteristics can be improved and the photovoltaic current of the dye-sensitized solar cell can be enhanced.
  • FIG. 1 is a cross-sectional view showing an embodiment of a dye-sensitized solar cell having the electrolyte composition of the present invention.
  • the dye-sensitized solar cell 1 is sandwiched between a photoelectrode 10 having a light-receiving surface 11, a counter electrode 20 disposed on the side opposite to the light-receiving surface of the photoelectrode 10, and these two electrodes.
  • An electrolyte 30 is schematically configured.
  • the photoelectrode 10 includes a transparent electrode 12 formed of glass, a transparent resin film, or the like, and a dye adsorption layer 14 formed on the electrolyte 30 side of the transparent electrode 12 (that is, the side opposite to the light receiving surface 11). ing.
  • a sensitizing dye such as a ruthenium complex is physically or chemically adsorbed to a metal oxide (for example, TiO 2 ) porous body capable of supporting the sensitizing dye.
  • the counter electrode 20 includes a transparent electrode 22 and a conductive layer 24 formed on the electrolyte 30 side of the transparent electrode 22.
  • the electrolyte composition according to the present invention includes a redox couple, an ionic liquid, and a photocrosslinkable liquid crystalline polymer having a functional group represented by the following chemical formula 1.
  • the redox couple can be appropriately selected from those generally used in the electrolyte layer. Specifically, a redox couple of iodine or a redox couple of bromine is preferably used.
  • a redox couple of iodine or a redox couple of bromine is preferably used.
  • the redox pair of iodine include combinations of iodine and various iodides (for example, lithium iodide, sodium iodide, potassium iodide, calcium iodide, TPAI (tetrapropylammonium iodide), etc.).
  • Examples of the redox pair of bromine include combinations of bromine and various bromides (for example, lithium bromide, sodium bromide, potassium bromide, calcium bromide, etc.). These redox pairs may be used alone or in combination of two or more.
  • ionic liquid room temperature molten salt
  • nitrogen-containing heterocyclic compounds examples include nitrogen-containing heterocyclic compounds, alicyclic amines, aliphatic amines and aromatic amines. These ionic liquids may be used alone or in combination of two kinds. A combination of the above may also be used.
  • imidazolium-based, pyridium-based, alicyclic amine-based, and aliphatic amine-based can be preferably used, and more preferably imidazolium-based [for example, 1-C 1-20 alkyl-3-methylimidazole 1-C 1-20 alkyl-2,3-dimethylimidazolium, imidazolium iodide compounds (for example, 1,2-dimethyl-3-n-propylimidazolium iodide, 1-methyl-3-n- Propylimidazolium iodide, 1-propyl-3-methylimidazolium iodide, 1-butyl-3-methylimidazolium iodide, 1-butyl-2,3-dimethylimidazolium iodide, 1-hexyl-3- Methyl imidazolium iodide etc.)], especially from the viewpoint of being usable as a redox pair, imidazolium iod
  • the photocrosslinkable liquid crystal polymer used in the present invention has a functional group represented by the following chemical formula 1.
  • R 1 , R 2 is the same or different and represents H or an alkyl group, an alkyloxy group, or halogen (for example, chlorine, fluorine, bromine, etc.).
  • the alkyl group in R 1 and R 2 may be either a straight chain or a branched chain, and usually has about 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, i- Propyl group, butyl group, i-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group and the like. Among these, methyl group, A C 1-4 alkyl group such as an ethyl group is preferred.
  • the alkyloxy group in R 1 and R 2 may be either a straight chain or a branched chain, and usually has about 1 to 10 carbon atoms. Specifically, a methoxy group, an ethoxy group, a propyloxy group, i-propyloxy group, butoxy group, i-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group Of these, C 1-4 alkyloxy groups such as a methoxy group and an ethoxy group are preferred.
  • the photocrosslinkable liquid crystal polymer used in the present invention is a compound which has a carboxyl group at a side chain end and generates a salt when added to the ionic liquid.
  • two carboxyl groups at the end of the side chain are dimerized by hydrogen bonding to form a rigid structure and have liquid crystallinity, and two polymers are irradiated with light of an appropriate wavelength (for example, ultraviolet rays of 380 nm or less). It has a photocrosslinking property in which a photoreaction between side chain ends proceeds to form a cyclobutane bond.
  • This photocrosslinkable liquid crystal type polymer may exhibit a liquid crystal phase at, for example, 80 to 250 ° C., and preferably may exhibit a liquid crystal phase at about 100 to 200 ° C.
  • the liquid crystal phase can be confirmed by observation with a polarizing microscope, differential scanning calorimetry, X-ray diffraction measurement, and the like.
  • the photocrosslinkable liquid crystal polymer may have a polystyrene-equivalent number average molecular weight of about 15,000 to 45,000, preferably about 20,000 to 40,000.
  • Such a photocrosslinkable liquid crystal polymer may be a single polymer composed of a monomer containing a side chain represented by Chemical Formula 1 (that is, a photosensitive group) or a side chain represented by Chemical Formula 1. And a copolymer composed of different types of monomers. Furthermore, it is possible to copolymerize a monomer having a side chain represented by Chemical Formula 1 with a unit having a side chain that does not contain a photosensitive group, and the photocrosslinkable liquid crystal type polymer is a liquid crystal. As long as the properties are not impaired, a monomer that does not exhibit liquid crystallinity may be copolymerized.
  • Such a monomer has a polymerizable group for polymerization, and the polymerizable group may be an addition polymerizable group or a condensation polymerizable group.
  • the addition polymerizable group include an unsaturated aliphatic hydrocarbon group (such as a vinyl group and an allyl group) and an unsaturated aliphatic carboxylic acid group (such as an acryloyl group and a methacryloyl group). These addition polymerizable groups can be used alone or in combination.
  • the addition polymerizable group can be polymerized with a known or commonly used polymerization initiator.
  • Examples of the polymerization initiator include azo compounds (for example, azobisisobutyronitrile) and peroxides (for example, benzoyl peroxide). ) And the like.
  • Examples of the condensation polymerizable group include a hydroxyl group (including a silanol group) and an amino group. Silanol groups are usually formed by hydrolyzing an organochlorosilane compound.
  • the addition amount Q (wt%) of the photocrosslinkable liquid crystal polymer is, for example, based on the total amount (100 wt%) of the redox couple, the ionic liquid, and the photocrosslinkable liquid crystal polymer. It is desirable that 5 wt% ⁇ Q ⁇ 95 wt%. Furthermore, it is desirable that 10 wt% ⁇ Q ⁇ 75 wt%. If the amount added is small, the electrolyte may not be sufficiently gelled or solidified to prevent liquid leakage. Moreover, when the addition amount is excessive, diffusion of the redox couple is hindered, and the battery characteristics may be deteriorated.
  • electrolyte composition of the present invention may contain various additives (dispersant, leveling agent, plasticizer, antifoaming agent, etc.) as necessary.
  • Electrolyte When producing a dye-sensitized solar cell with the electrolyte composition of the present invention, various methods can be used as long as the electrolyte formed from the electrolyte composition is sandwiched between two electrodes, a photoelectrode and a counter electrode. it can.
  • the above-mentioned electrolyte composition may be dissolved in an organic solvent, or may be melted by heat, applied to the photoelectrode and / or the counter electrode, and a cell may be produced by combining the two electrodes. Good.
  • a cell may be fabricated by injecting the electrolyte composition into a gap between two opposed electrodes.
  • the electrolyte composition gels or solidifies between the two electrodes. Evaporation can be effectively prevented.
  • the polymer containing the functional group represented by Chemical Formula 1 since the polymer containing the functional group represented by Chemical Formula 1 has liquid crystallinity and photocrosslinking reactivity, photocrosslinking can proceed by light irradiation on the solar cell. Not only can durability be improved, but also excellent cell characteristics can be exhibited.
  • the electrolyte sandwiched between the two electrodes of the photoelectrode and the counter electrode may be irradiated with ultraviolet rays to further cure the electrolyte.
  • ultraviolet rays As shown in Examples described later, it was confirmed that the electrolyte irradiated with ultraviolet rays generated light leakage when observed with a crossed Nicol with a polarizing microscope and improved cell characteristics.
  • phase separation structure is generated in the electrolyte.
  • Examples of solar cell characteristics improved by the phase separation structure are described in Reference 1 [Functional Materials, Vol 24, No. 11, 60, CMC Publishing (2004)]. Therefore, as in this case, the cell characteristics can be improved by the phase separation structure in the electrolyte of the present invention.
  • Polymer 1 Monomer 1 was dissolved in 1,4-dioxane at a concentration of 20 wt%, 2 mol% of AIBN (azobisisobutyronitrile) was added as a reaction initiator, and the mixture was allowed to stand in a 70 ° C. atmosphere for 12 hours for polymerization. did. The polymer solution was poured into 5 times the amount of methanol, and the precipitated solid was filtered and dried to obtain a polymer 1 (number average molecular weight in terms of styrene: about 30,000). The polymer 1 exhibited a liquid crystal phase in the temperature range of 135 ° C. to 187 ° C.
  • AIBN azobisisobutyronitrile
  • Example 1 The photoelectrode was produced as follows. A glass substrate (manufactured by Nishinoda Denko Co., Ltd.) on which an ITO (indium tin oxide) transparent electrode film was formed was coated with titanium oxide paste (manufactured by Nishinoda Denko Co., Ltd.) and dried (coating area was 6 cm). 2 ). Next, heat treatment was performed on a 400 ° C. hot plate to form a titanium oxide film on the ITO electrode.
  • the glass substrate on which the titanium oxide film was formed was immersed in an aqueous solution from which a hibiscus dye (manufactured by Nishinoda Electric Co., Ltd.) was extracted for 12 hours, thereby supporting the dye on the titanium oxide surface.
  • a hibiscus dye manufactured by Nishinoda Electric Co., Ltd.
  • a glass substrate on which an ITO transparent electrode (manufactured by Nishinoda Electric Co., Ltd.) was formed was painted with a pencil to form a carbon film.
  • dimethyl sulfoxide manufactured by Nacalai Tesque Co., Ltd.
  • 3 wt% of polymer 1, 1-butyl-3-methylimidazolium iodide manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as BM-IMD.
  • BM-IMD 3 wt% of polymer 1, 1-butyl-3-methylimidazolium iodide
  • iodine Tokyo Chemical Industry Co., Ltd.
  • lithium iodide Koreana Chemical Co., Ltd.
  • the weight ratio of the polymer 1 to BM-IMD is 15:85.
  • This solution was applied to the entire surface of the titanium oxide film carrying the dye formed on the surface of the ITO transparent electrode and the entire surface of the carbon film of the counter electrode, and the respective substrates were left on a hot plate at 85 ° C. for 15 minutes.
  • the solvent dimethyl sulfoxide was volatilized.
  • the hot plate was set to 120 ° C. and both the substrates were sufficiently heated, the two surfaces of the titanium oxide film coated with the electrolyte composition solution and the carbon film were combined and bonded together. Thereafter, the bonded substrate was left to cool to room temperature, and a cell was produced.
  • the cell was not provided with a sealing mechanism for preventing liquid leakage and solvent evaporation, but electrolyte leakage and solvent evaporation did not occur in the obtained cell.
  • the presence or absence of evaporation of the solvent was judged as “with evaporation” when it was confirmed by visual observation that the solvent filling the space between the substrates was clearly reduced.
  • Example 2 In the same manner as in Example 1, a photoelectrode and a counter electrode were produced.
  • dimethyl sulfoxide manufactured by Nacalai Tesque
  • polymer 1 was 2 wt%
  • BM-IMD manufactured by Tokyo Chemical Industry Co., Ltd.
  • iodine manufactured by Tokyo Chemical Industry Co., Ltd.
  • lithium iodide was adjusted to 0.1 wt%.
  • the weight ratio of the polymer 1 to BM-IMD is 10:90.
  • a cell was produced using this solution in the same manner as in Example 1. The cell was not provided with a sealing mechanism for preventing liquid leakage and solvent evaporation, but electrolyte leakage and solvent evaporation did not occur in the obtained cell.
  • Example 3 In the same manner as in Example 1, a photoelectrode and a counter electrode were produced.
  • dimethyl sulfoxide manufactured by Nacalai Tesque
  • polymer 1 is 15 wt%
  • BM-IMD manufactured by Tokyo Chemical Industry Co., Ltd.
  • iodine manufactured by Tokyo Chemical Industry Co., Ltd.
  • lithium iodide was adjusted to 0.1 wt%.
  • the weight ratio of the polymer 1 to BM-IMD is 7.5: 2.5.
  • a cell was produced using this solution in the same manner as in Example 1. The cell was not provided with a sealing mechanism for preventing liquid leakage and solvent evaporation, but electrolyte leakage and solvent evaporation did not occur in the obtained cell.
  • Example 4 A cell was prepared in the same manner as in Example 1, and irradiated with ultraviolet rays of 3.8 J / cm 2 from the back surface of the counter electrode using a 250 W high-pressure mercury lamp. Separately, it was confirmed that when a film obtained by applying the dimethyl sulfoxide solution having the electrolyte composition of Example 1 to the counter electrode and drying was irradiated with ultraviolet rays, the fluidity was suppressed in a high temperature atmosphere (120 ° C.). . In the cell thus manufactured, the cell was not provided with a sealing mechanism for preventing liquid leakage and solvent evaporation, but electrolyte leakage and solvent evaporation occurred in the obtained cell. It never happened.
  • Comparative Example 1 Similarly to Example 1, a photoelectrode and a counter electrode were prepared, these two electrodes were opposed to each other, and fixed with a clip. Next, an electrolyte solution (manufactured by Nishinoda Electric Co., Ltd.) was injected into the gap between the two electrodes to produce a cell of Comparative Example 1. Similar to the first embodiment, no sealing mechanism is provided to prevent liquid leakage and solvent evaporation. It was confirmed that electrolyte leakage and solvent evaporation occurred. Especially in this case, the substrate surface was dry because the solvent filling the space between the substrates was extremely reduced.
  • Comparative Example 2 Similarly to Example 1, a photoelectrode and a counter electrode were prepared, these two electrodes were opposed to each other, and fixed with a clip. Next, in the gap between the two electrodes, BM-IMD (manufactured by Tokyo Chemical Industry Co., Ltd.), iodine (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.5 wt%, lithium iodide (manufactured by Kishida Chemical Co., Ltd.) A cell of Comparative Example 2 was fabricated by injecting an electrolyte prepared by dissolving 0.5 wt%. Similar to the first embodiment, no sealing mechanism is provided to prevent liquid leakage and solvent evaporation. It was confirmed that electrolyte leakage occurred.
  • BM-IMD manufactured by Tokyo Chemical Industry Co., Ltd.
  • iodine manufactured by Tokyo Chemical Industry Co., Ltd.
  • lithium iodide manufactured by Kishida Chemical Co., Ltd.
  • Example 3 In the same manner as in Example 1, a photoelectrode and a counter electrode were produced.
  • dimethyl sulfoxide manufactured by Nacalai Tesque
  • polymer 1 is 20 wt%
  • iodine Tokyo Chemical Industry Co., Ltd.
  • lithium iodide Kishida Chemical Co., Ltd.
  • Manufactured was adjusted to 0.1 wt%.
  • the weight ratio of the polymer 1 to BM-IMD is 10: 0.
  • a cell was produced using this solution in the same manner as in Example 1. In this cell, there was no leakage of electrolyte and no evaporation of solvent even if no sealing mechanism for preventing leakage or evaporation of solvent was given, but the photovoltaic power was very small.
  • Example 4 In the same manner as in Example 1, a photoelectrode and a counter electrode were produced.
  • dimethyl sulfoxide manufactured by Nacalai Tesque Co., Ltd.
  • polymethacrylic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • 3 wt% 3 wt%
  • BM-IMD Tokyo, Japan
  • the photovoltaic current and voltage were measured for the cells produced in the examples and comparative examples. Photovoltaic current and voltage were measured directly under a 12 W fluorescent lamp, and were carried out twice, 24 hours and 1 week after cell preparation. In addition, the presence or absence of liquid leakage from the cell and the evaporation of the solvent was also observed one week after the production of the cell. Table 1 summarizes the measurement observation results.
  • Example 1 As shown in Table 1, in Examples 1 to 4, crosslinking was promoted even if iodine was contained, and liquid leakage from the cell and evaporation of the solvent did not occur. Further, not only immediately after the production of the cell but also after one week, the photovoltaic current hardly decreased, and in Examples 2 and 3, the photovoltaic current increased. On the other hand, in Comparative Example 1 and Comparative Example 2 that did not contain a photocrosslinkable liquid crystal type polymer, liquid leakage from the cell and evaporation of the solvent occurred, resulting in poor durability. Moreover, in the comparative example 3 which does not contain an ionic liquid, the electromotive force was hardly seen. Furthermore, in Example 4 in which the cell of Example 1 was irradiated with ultraviolet rays, it was confirmed that the photovoltaic current increased as compared with Example 1.
  • FIG. 2 shows a cell using the electrolyte composition of the present invention (Example 4) and a cell using an electrolyte added with a polymer having a carboxyl group but not having photoreactivity and liquid crystallinity (Comparison) Example 4) shows the relationship between the amount of ultraviolet irradiation from the back surface of the counter electrode and the photocurrent value. From FIG. 2, it was confirmed that the photovoltaic current of the cell using the electrolyte composition of Example 4 was greatly enhanced as compared with Comparative Example 4. Moreover, the photocurrent increased as the amount of ultraviolet irradiation increased.
  • FIG. 3 shows an observation diagram when the electrolyte composition used in Example 4 is irradiated with ultraviolet rays and observed under a crossed Nicol using a polarizing microscope.
  • a region a is an ultraviolet irradiation part
  • a region b is an ultraviolet non-irradiation part.
  • Example 4 irradiated with ultraviolet rays generated a higher photocurrent than Example 1, but this was caused by light irradiation as in the case where the solar cell characteristics were improved by the phase separation structure of Reference 1. It is thought that the formed phase separation structure may be caused by improving the cell characteristics.
  • an electrolyte that can be easily gelled and solidified can be obtained, and a dye-sensitized solar cell using this electrolyte can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 色素増感型太陽電池の電解質をゲル化、固体化するのに有効な電解質組成物、およびこの電解質組成物から形成された電解質、ならびに色素増感型太陽電池を提供する。前記電解質組成物は、酸化還元対と、イオン液体と、下記の化学式1で示される官能基を有する光架橋型液晶性重合体とを含み、電解質を形成する。また、色素増感型太陽電池1は、光電極10と対向電極20とこれらの2枚の電極により挟み込まれた前記光架橋性電解質30とを備える。式中、m=0または1、n=1~3、c=0または1、X=なし,O,CH,N=N,C=C,C≡C,COO,またはOCO、R,Rは、それぞれHないしはアルキル基,アルキルオキシ基,またはハロゲンを示す。

Description

光架橋性電解質組成物および色素増感型太陽電池 関連出願
 本願は、日本国で2009年11月18日に出願した特願2009-263105の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、色素増感型太陽電池に用いられる光架橋性電解質であって、ゲル化ないしは固体化した電解質、および電解質を形成するための光架橋性電解質組成物、さらには、前記電解質を備える色素増感型太陽電池に関する。
 太陽電池は、太陽光エネルギーを直接電気エネルギーに変換する半導体デバイスである。シリコン結晶系を第一世代、アモルファスシリコン系を第二世代、化合物半導体(GaAsなど)を第三世代とすると、色素増感系が第四世代の太陽電池と言われ、現在注目されている。
 一般的に、色素増感型太陽電池は、グレッツエル型電池または湿式太陽電池と呼ばれる。例えば、典型的な色素増感型太陽電池のセルは、透明電極に二酸化チタン粉末を焼き付け、ここにルテニウム錯体などの色素を吸着させた光電極と、この電極と対向して配設される白金や炭素などの対向電極と、これらの2枚の電極により挟み込まれた電解質とで構成される。そして、電解質には、ヨウ素の酸化還元対(レドックスカップル:I/I )が用いられ、その溶媒としてカーボネート系、ニトリル系の有機溶媒が使用されている。
 このような色素増感型太陽電池では、まず、電池に入射した光が二酸化チタンに吸着された色素を励起し、次いで励起された色素から二酸化チタンに電子が注入される。その結果、色素は酸化体となり、電解質中の還元体(I)から電子を受け取り、色素の酸化体は基底状態に戻る。そして、電解質中の還元体は酸化体(I )となり、この電解質中の酸化体は、対向電極で再び電子を受け取り還元体(I)に戻ることができる。このようにして、色素増感型太陽電池では電子が両電極間をサイクルすることにより光起電力を生じている。
 しかしながら、このような液状の電解質では、液漏れが生じたり、溶媒が蒸発することによって電池性能が低下してしまう。したがって、色素増感型太陽電池の耐久性を向上するためには、電解液の液漏れや、その溶媒の蒸発を防ぐ必要がある。そして、このような問題を防ぐため、太陽電池には煩雑な封止構造が求められる。しかしながら、電解液の液漏れや溶媒の蒸発を防ぐための封止構造は生産上不利であり、この観点から、電解質を固体化する技術開発が進められている。
 電解質をゲル化する方法としては、物理架橋型、化学架橋型が挙げられる。物理架橋型は、ポリアクリロニトリルや自己組織化ゲル化剤を用いるもので、高温雰囲気下で液状としセルに注入し、常温雰囲気下でゲル化する性質を利用している。しかし、このような物理架橋型ゲルは、温度が高くなると流動性が高くなるため液漏れを生じる恐れがある。
 一方、化学架橋型では、電解質溶液にアクリル基やメタクリル基を有するモノマーやオリゴマーとラジカル重合剤とを加えて溶解し、セルに注入後、ラジカル重合する方法がとられる。しかしながら、色素増感型太陽電池に適用される電解質の場合には、ヨウ素が重合禁止剤となるため十分に架橋が進まないという問題がある。
 このため、W.Kubo, Y.Makimoto, T.Kitamura, Y.Wada, S.Yanagida, Chem.Lett., 948(2002)には、電解質をゲル化した後にヨウ素を導入する方法が提案されているが、この方法では製造法が煩雑となるだけでなく、電解質中のヨウ素の拡散速度が遅くなってしまうため、起電力に劣る。
W.Kubo, Y.Makimoto, T.Kitamura, Y.Wada, S.Yanagida, Chem.Lett., 948(2002)
 このような従来技術の課題に鑑み、本発明の目的は、色素増感型太陽電池の電解質をゲル化、固体化するのに有効な電解質組成物を提供するものである。
 本発明の他の目的は、このような電解質組成物を用いた色素増感型太陽電池を提供するものである。
 本発明者は、前記課題を達成するため鋭意研究を行った結果、(i)後述する化学式1で示される官能基を含有する高分子は、ヨウ素などの酸化還元対の存在下でも、光架橋反応を進行することができ、(ii)そしてこのような光架橋反応でゲル化または固体化した電解質は高温雰囲気下でも流動が抑えられ、優れた耐久性を色素増感型太陽電池に対して付与できること、(iii)さらにそのような色素増感型太陽電池は光起電力にも優れることを見出し、本発明を完成した。
 すなわち、本発明は、酸化還元対と、イオン液体と、下記の化学式1で示される官能基を有する光架橋型液晶性重合体とを含む光架橋性電解質組成物である。
Figure JPOXMLDOC01-appb-C000002
 式中、m=0または1、n=1~3、c=0または1、X=なし,O,CH,N=N,C=C,C≡C,COO,またはOCO、R,Rは、それぞれHないしはアルキル基,アルキルオキシ基,またはハロゲンを示す。
 例えば、前記酸化還元対は、ヨウ素などの酸化還元対であってもよく、前記イオン液体は、含窒素複素環化合物類、脂環式アミン類、脂肪族アミン類、芳香族アミン類などであってもよい。
 また、本発明は、前記電解質組成物に光照射(例えば、380nm以下の紫外線照射)して形成された光架橋性電解質をも包含する。
 さらに、本発明は、一方に受光面を有する光電極と、この光電極の受光面と相反する側に配設された対向電極と、これらの2枚の電極により挟み込まれた、前記光架橋性電解質と、を備える色素増感型太陽電池についても包含する。
 なお、本発明において、「電解質組成物」とは、電池セルに対して封入する前の物質を意味しており、「電解質」とは、電池セルに対して封入された後の物質を意味している。
 本発明では、特定の官能基を有する重合体を電解質組成物に対して用いるため、ヨウ素などの酸化電子対の存在下であっても光照射により電解質組成物中で光架橋反応を進行することができる。
 そして、これによりゲル化または固体化した電解質は、高温雰囲気下でもその流動を抑制することができ、色素増感型太陽電池の耐久性を向上できるとともに、優れた光起電力を太陽電池に付与することができる。
 更に、本発明の電解質組成物に紫外線を照射すると、セル特性を向上して、色素増感型太陽電池の光起電流を増強することができる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付のクレームによって定まる。
本発明の一実施形態である電解質組成物を含む色素増感型太陽電池を示す断面図である。 本発明の実施例、比較例における対向電極裏面からの紫外線照射量と光起電流値の関係を示す図である。 本発明の一実施形態である電解質組成物に紫外線を照射し、偏光顕微鏡を用いて直交ニコル下で観察したときの観察図である。
(色素増感型太陽電池)
 図1は、本発明の電解質組成物を有する色素増感型太陽電池の一実施形態を示す断面図である。色素増感型太陽電池1は、受光面11を有する光電極10と、この光電極10の受光面と相反する側に配設された対向電極20と、これらの2枚の電極により挟み込まれた電解質30とで概略的に構成される。光電極10は、ガラスや透明樹脂フィルムなどで形成された透明電極12と、この透明電極12の電解質30側(すなわち、受光面11と相反する側)に形成された色素吸着層14とを備えている。色素吸着層では、増感色素を担持可能な金属酸化物(例えば、TiO)多孔質体に対して、ルテニウム錯体などの増感色素を物理的または化学的に吸着させている。一方、対向電極20は、透明電極22と、透明電極22の電解質30側に形成された導電層24とを備えている。
(光架橋性電解質組成物)
 本発明による電解質組成物は、酸化還元対と、イオン液体と、下記の化学式1で示される官能基を有する光架橋型液晶性重合体とを含んでいる。
(酸化還元対)
 酸化還元対としては、一般的に電解質層において用いられているものから適宜選択することができる。具体的には、ヨウ素の酸化還元対や臭素の酸化還元対が好ましく用いられる。ヨウ素の酸化還元対としては、ヨウ素と各種ヨウ化物(例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化カルシウム、TPAI(テトラプロピルアンモニウムヨージド)等)との組み合わせを挙げることができる。また、臭素の酸化還元対としては、臭素と各種臭化物(例えば、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化カルシウム等)との組み合わせを挙げることができる。これらの酸化還元対は、単独で、または二種以上を組み合わせて用いてもよい。
(イオン液体)
 イオン液体(常温溶融塩)としては、含窒素複素環化合物類、脂環式アミン類、脂肪族アミン類および芳香族アミン類を挙げる事ができ、これらのイオン液体は、単独で、または二種以上を組み合わせて用いてもよい。
 これらのうち、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系を好適に用いることができ、より好ましくはイミダゾリウム系[例えば、1-C1-20アルキル-3-メチルイミダゾリウム、1-C1-20アルキル-2,3-ジメチルイミダゾリウム、イミダゾリウムヨージド化合物(例えば、1,2-ジメチル-3-n-プロピルイミダゾリウムヨージド、1-メチル-3-n-プロピルイミダゾリウムヨージド、1-プロピル-3-メチルイミダゾリウムヨージド、1-ブチル-3-メチルイミダゾリウムヨージド、1-ブチル-2,3-ジメチルイミダゾリウムヨージド、1-ヘキシル-3-メチルイミダゾリウムヨージド等)]、特に、酸化還元対としても利用可能である観点から、イミダゾリウムヨージド化合物が好ましい。
(光架橋性液晶型重合体)
 本発明で用いられる光架橋性液晶型重合体は、下記の化学式1で示される官能基を有している。
Figure JPOXMLDOC01-appb-C000003
 式中、m=0または1、n=1~3、c=0または1、X=なし,O,CH,N=N,C=C,C≡C,COO,またはOCO、R,Rは、それぞれ同一または異なって、Hないしはアルキル基,アルキルオキシ基,またはハロゲン(例えば、塩素、フッ素、臭素など)を示す。
 R,Rにおけるアルキル基は、直鎖、分岐鎖のいずれであってもよく、炭素数は通常1~10程度であり、具体的には、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、 i-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基などがあげられ、これらのうち、メチル基、エチル基などのC1-4アルキル基が好ましい。
 R,Rにおけるアルキルオキシ基は、直鎖、分岐鎖のいずれであってもよく、炭素数は通常1~10程度であり、具体的には、メトキシ基、エトキシ基、プロピルオキシ基、i-プロピルオキシ基、ブトキシ基、i-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基などがあげられ、これらのうち、メトキシ基、エトキシ基などのC1-4アルキルオキシ基が好ましい。
 化学式1で示される官能基のうち、置換基の組み合わせは、m=1、n=1~3、c=0または1、X=なし,O,CH,COO,またはOCO、R,Rは、それぞれ同一または異なって、H,C1-4アルキル基,またはC1-4アルキルオキシ基である組み合わせが好ましく、m=1、n=1~2、c=0、RがH,C1-4アルキル基,またはC1-4アルキルオキシ基である組み合わせがより好ましい。
 本発明で用いられる光架橋性液晶型重合体は、側鎖末端にカルボキシル基を有し、上記イオン液体に添加することにより塩を生成する化合物である。この重合体では、2つの側鎖末端のカルボキシル基が水素結合により2量化して剛直な構造を形成し液晶性を有するとともに、適当な波長(例えば、380nm以下の紫外線)の光照射により2つの側鎖末端同士の光反応が進行してシクロブタン結合を形成する光架橋性を有する。
 この光架橋性液晶型重合体は、例えば、80~250℃で液晶相を示してもよく、好ましくは100~200℃程度で液晶相を示してもよい。なお、液晶相を示すことは、偏光顕微鏡観察および示差走査熱量測定、X線回折測定などにより確認できる。
 また、光架橋性液晶型重合体は、例えば、ポリスチレン換算の数平均分子量が15,000~45,000程度、好ましくは20,000~40,000程度であってもよい。
 このような光架橋性液晶型重合体は、化学式1で表わされる側鎖(すなわち、感光性基)を含む単量体からなる単一重合体であってもよいし、化学式1で表わされる側鎖を含む単量体であって、異なる種類の単量体からなる共重合体であってもよい。さらには、化学式1で表わされる側鎖を含む単量体に対して、感光性基を含まない側鎖を有する単位を共重合させることも可能であるし、光架橋性液晶型重合体が液晶性を損なわない範囲であれば、液晶性を示さない単量体を共重合してもよい。
 このような単量体は、重合するための重合性基を有しており、重合性基は、付加重合性基であってもよく、縮合重合性基であってもよい。付加重合性基としては、例えば、不飽和脂肪族炭化水素基(ビニル基、アリル基など)、不飽和脂肪族カルボン酸基(アクリロイル基、メタクリロイル基など)などが挙げられる。これらの付加重合性基は、単独でまたは組み合わせて使用できる。付加重合性基は、公知または慣用の重合開始剤で重合させることができ、重合開始剤としては、たとえば、アゾ化合物(例えば、アゾビスイソブチロニトリル)や過酸化物(例えば、過酸化ベンゾイル)などが挙げられる。また、縮合重合性基としては、ヒドロキシル基(シラノール基を含む)、アミノ基などが挙げられる。なお、シラノール基は、通常、オルガノクロロシラン化合物を加水分解することにより、形成することが多い。
 電解質組成物中において、光架橋性液晶型重合体の添加量Q(wt%)は、酸化還元対とイオン液体と光架橋性液晶型重合体重合体の総量(100wt%)に対して、例えば、5wt%<Q<95wt%であることが望ましい。更には、10wt%≦Q≦75wt%であることが望ましい。添加量が少ないと、電解質が十分にゲル化ないしは固体化せず液漏れを防ぐことができない場合がある。また、添加量が過剰であるとレドックスカップルの拡散を妨げ、電池特性を低下させてしまう恐れがある。
 また、光架橋性液晶型重合体とイオン液体との割合は、例えば、前者/後者(重量比)=7/93~90/10程度であってもよく、好ましくは10/90~85/15程度であってもよい。
 また、本発明の電解質組成物には、必要に応じて種々の添加剤(分散剤、レベリング剤、可塑剤、消泡剤など)を含有させてもよい。
(光架橋性電解質)
 本発明の電解質組成物で色素増感型太陽電池を作製する場合、電解質組成物から形成された電解質が光電極と対向電極の2枚の電極により挟み込まれる限り、様々な方法を利用することができる。例えば、(i)上記電解質組成物を有機溶媒に溶解する、熱により溶融状態とするなどして、光電極および/または対向電極に塗布し、2つの電極を併せることによりセルを作製してもよい。または、(ii)対向させた2つの電極の間隙に、上記電解質組成物を注入することによってセルを作製してもよい。
 上述の(i)および(ii)のいずれの場合においても、電解質組成物は、2つの電極の間でゲル化または固体化するため、特に封止手段を設けなくとも電解質の液漏れや溶媒の蒸発を有効に防止することができる。
 すなわち、本発明の電解質は、化学式1で示される官能基を含有する高分子が液晶性と光架橋反応性を有するため、太陽電池に対する光照射により光架橋を進行することができ、太陽電池の耐久性を向上することができるだけでなく、優れたセル特性を示すこともできる。
 また、必要に応じて、光電極と対向電極の2枚の電極により挟み込まれた電解質に対して、紫外線を照射し、電解質をさらに硬化させてもよい。後述する実施例で示すように、紫外線照射された電解質は、偏光顕微鏡にて直交ニコルで観察すると光抜けが発生することが確認されるとともに、セル特性を向上することが確認できた。
 このような光抜けは、電解質中に微細なドメインが形成され生じたもので、電解質中に相分離構造が生じているためと考えられている。相分離構造によって太陽電池特性が向上した事例は、参考文献1〔機能材料,Vol24,No.11,60,シーエムシー出版(2004)〕にも記載されている。したがって、このような事例と同様に、本発明の電解質でも相分離構造によるセル特性の向上が考えられる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 本発明の実施例において用いた電解質のゲル化剤に関する合成方法を以下に示す。
(単量体1)
 エタノール(ナカライテスク(株)製)150mlと水150mlに、trans-p-クマル酸(東京化成工業(株)製)100g、6-クロロ-1-ヘキサノール(東京化成工業(株)製)130g、水酸化カリウム100gを添加し、還流条件下で7時間攪拌した。反応生成物をエタノールで再結晶して4-(6-ヒドロキシヘキシルオキシ)桂皮酸を得た。この生成物10g、メタクリル酸40g、硫酸0.8g、ヒドロキノン0.2g、クロロホルム40mlを混合し、混合物を8時間攪拌還流させ、このとき脱水反応よって生成される水を、ディーン・スターク管を用いて除去した。反応液をロータリーエバポレーターで濃縮し水2lに注ぎ込み、析出した固形分をろ過し、固形分をアセトンで再結晶することにより、下記の化学式2に示される単量体1を合成した。
Figure JPOXMLDOC01-appb-C000004
(重合体1)
 単量体1を1,4-ジオキサン中に20wt%の濃度で溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を2mol%添加して、70℃雰囲気中に12時間放置し重合した。重合溶液を5倍量のメタノールに注ぎ込み、析出した固形分をろ過して乾燥することにより重合体1(スチレン換算による数平均分子量:30,000程度)を得た。この重合体1は135℃から187℃の温度範囲で液晶相を呈した。
 以下は、本発明の電解質組成物を用いて色素増感型太陽電池を作製した実施例である。
(実施例1)
 光電極は、次のように作製した。ITO(酸化インジウム錫)透明電極膜が形成されたガラス基板(西野田電工(株)製)に、酸化チタンペースト(西野田電工(株)製)を塗布して乾燥した(塗布面積は、6cmとした)。次いで、400℃のホットプレートで熱処理を行いITO電極上に酸化チタン膜を形成した。この酸化チタン膜を形成したガラス基板を、ハイビスカス色素(西野田電工(株)製)を抽出した水溶液に12時間浸漬して、酸化チタン表面に色素を担持させた。
 一方、対向電極には、ITO透明電極(西野田電工(株)製)が形成されたガラス基板のITO透明電極面を鉛筆で塗り潰し、炭素膜を形成したものを用いた。
 電解質は、溶媒としてジメチルスルホキシド(ナカライテスク(株)製)を用い、重合体1を3wt%、1-ブチル-3-メチルイミダゾリウムヨージド(東京化成工業(株)製、以下、BM-IMDと記す)を17wt%、ヨウ素(東京化成工業(株)製)を0.1wt%、ヨウ化リチウム(キシダ化学(株)製)を0.1wt%となるよう調整した。ここで、重合体1とBM-IMDの重量比は、15:85である。
 この溶液を、ITO透明電極表面に形成した色素を担持させた酸化チタン膜の全面および対向電極の炭素膜の全面に塗布し、それぞれの基板を85℃のホットプレート上に15分間静置して溶媒のジメチルスルホキシドを揮発させた。次いで、ホットプレートを120℃に設定して、両基板を十分に加温したところで、電解質組成物溶液を塗布した酸化チタン膜面と炭素膜面とをそれぞれ合わせて2枚の基板を圧着した。その後、圧着した基板を放置して室温まで冷却し、セルを作製した。このセルに対して、液漏れや溶媒の蒸発を防ぐための封止機構は特に施さなかったが、得られたセルに電解質の液漏れ、溶媒の蒸発が生じることはなかった。なお、溶媒の蒸発の有無は、目視により、基板間を満たしていた溶媒が明らかに減少していると確認できる場合を「蒸発有り」と判断した。
(実施例2)
 実施例1と同様に、光電極、対向電極を作製した。電解質は、溶媒としてジメチルスルホキシド(ナカライテスク(株)製)を用い、重合体1を2wt%、BM-IMD(東京化成工業(株)製)を18wt%、ヨウ素(東京化成工業(株)製)を0.1wt%、ヨウ化リチウム(キシダ化学(株)製)を0.1wt%となるよう調整した。ここで、重合体1とBM-IMDの重量比は、10:90である。この溶液を用いて、実施例1と同様にセルを作製した。このセルに対して、液漏れや溶媒の蒸発を防ぐための封止機構は特に施さなかったが、得られたセルに電解質の液漏れ、溶媒の蒸発が生じることはなかった。
(実施例3)
 実施例1と同様に、光電極、対向電極を作製した。電解質は、溶媒としてジメチルスルホキシド(ナカライテスク(株)製)を用い、重合体1を15wt%、BM-IMD(東京化成工業(株)製)を5wt%、ヨウ素(東京化成工業(株)製)を0.1wt%、ヨウ化リチウム(キシダ化学(株)製)を0.1wt%となるよう調整した。ここで、重合体1とBM-IMDの重量比は、7.5:2.5である。この溶液を用いて、実施例1と同様にセルを作製した。このセルに対して、液漏れや溶媒の蒸発を防ぐための封止機構は特に施さなかったが、得られたセルに電解質の液漏れ、溶媒の蒸発が生じることはなかった。
(実施例4)
 実施例1と同様に、セルを作製し、対向電極裏面から250W高圧水銀灯を用いて紫外線を3.8J/cm照射した。別途、実施例1の電解質組成のジメチルスルホキド溶液を対向電極に塗布して乾燥した膜に、紫外線を照射すると、高温雰囲気下(120℃)において流動性が抑制されていることが確認された。
 このように作製されたセルでは、このセルに対して、液漏れや溶媒の蒸発を防ぐための封止機構は特に施さなかったが、得られたセルに電解質の液漏れ、溶媒の蒸発が生じることはなかった。
(比較例1)
 実施例1と同様に、光電極、対向電極を作製し、これら2つの電極を対向させ、クリップで固定した。次いで、2つの電極の間隙に、電解質溶液(西野田電工(株)製)を注入して比較例1のセルを作製した。実施例1と同様に、液漏れや溶媒の蒸発を防ぐための封止機構は施していない。電解質の液漏れ、溶媒の蒸発が生じていることが確認された。特にこの場合、基板間を満たしていた溶媒が極度に減少したため、基板表面が乾燥していた。
(比較例2)
 実施例1と同様に、光電極、対向電極を作製し、これら2つの電極を対向させ、クリップで固定した。次いで、2つの電極の間隙に、BM-IMD(東京化成工業(株)製)に、ヨウ素(東京化成工業(株)製)を0.5wt%、ヨウ化リチウム(キシダ化学(株)製)を0.5wt%を溶解して調整した電解質を注入して比較例2のセルを作製した。実施例1と同様に、液漏れや溶媒の蒸発を防ぐための封止機構は施していない。電解質の液漏れが生じていることが確認された。
(比較例3)
 実施例1と同様に、光電極、対向電極を作製した。電解質は、溶媒としてジメチルスルホキシド(ナカライテスク(株)製)を用い、重合体1を20wt%、ヨウ素(東京化成工業(株)製)を0.1wt%、ヨウ化リチウム(キシダ化学(株)製)を0.1wt%となるよう調整した。ここで、重合体1とBM-IMDの重量比は、10:0である。この溶液を用いて、実施例1と同様にセルを作製した。このセルでは、液漏れや溶媒の蒸発を防ぐための封止機構は特に施さなくとも、電解質の液漏れ、溶媒の蒸発が生じることはなかったが、光起電力は極僅かであった。
(比較例4)
 実施例1と同様に、光電極、対向電極を作製した。電解質は、溶媒としてジメチルスルホキシド(ナカライテスク(株)製)を用い、ポリメタクリル酸〔メタクリル酸(東京化成工業(株)製)を予め重合して用いた〕を3wt%、BM-IMD(東京化成工業(株)製)を17wt%、ヨウ素(東京化成工業(株)製)を0.1wt%、ヨウ化リチウム(キシダ化学(株)製)を0.1wt%となるよう調整した。ここで、ポリメタクリル酸とBM-IMDの重量比は、1.5:8.5である。この溶液を用いて、実施例1と同様にセルを作製した。
 更に、実施例4と同様に、セルを作製後、対向電極裏面から250W高圧水銀灯を用いて紫外線を3.8J/cm照射した。このセルでは、液漏れや溶媒の蒸発を防ぐための封止機構は特に施さなくとも、電解質の液漏れ、溶媒の蒸発が生じることはなかったが、光起電力は極僅かであった。
 実施例、比較例で作製したセルに関して、光起電流、電圧を測定した。光起電流、電圧の測定は、12W蛍光灯直下で行い、セル作製後24時間と1週間との2回にわたって実施した。また、セル作製後1週間に、セルからの液漏れ、溶媒の蒸発の有無についても観察した。表1に、測定観察結果をまとめる。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、実施例1~4では、ヨウ素を含んでいても架橋をすすめることができ、セルからの液漏れや溶媒の蒸発は発生しなかった。また、セルを製作した直後だけでなく、1週間後も光起電流の低下はほとんどなく、実施例2および3では光起電流は増加した。
 一方、光架橋性液晶型重合体を含まない比較例1および比較例2では、セルからの液漏れや溶媒の蒸発が発生し、耐久性に劣っていた。また、イオン液体を含まない比較例3では、起電力がほとんど見られなかった。
 更に、実施例1のセルに対して紫外線照射を行った実施例4では、実施例1と比較して光起電流が増加することが確認できた。
 図2に、本発明の電解質組成物を用いたセル(実施例4)とカルボキシル基を有しているが光反応性と液晶性を有さない高分子を添加した電解質を用いたセル(比較例4)に対向電極裏面からの紫外線照射量と光起電流値の関係を示す。図2より、比較例4と比べ、実施例4の電解質組成物を用いたセルは光起電流が大きく増強されることが確認された。また、紫外線照射量が増えるほど、その光起電流は増加した。
 また、図3に、実施例4で用いた電解質組成物に紫外線照射し、偏光顕微鏡を用いて直交ニコル下で観察したときの観察図を示す。図3において、領域aは、紫外線照射部、領域bは紫外線未照射部である。
 図3から、紫外線を照射した領域aでのみ、光り抜けが増強していることが分かる。このような光抜けは、添加した化学式2で示される官能基を含有する高分子の液晶性と光反応性によるものと考えられる。そして、光り抜けが発生していることから、電解質中には、微細なドメインが形成され、相分離構造が生じていることが推測される。
 紫外線を照射した実施例4は、実施例1よりも高い光起電流を発生していたが、これは、参考文献1の相分離構造によって太陽電池特性が向上した事例と同様に、光照射により形成される相分離構造が、セル特性を向上するのに起因したのではないかと考えられる。
 一方、図示しないが、比較例4の、カルボキシル基を有しているが光反応性と液晶性を有さない高分子を添加した電解質では、紫外線照射によってこのような相分離構造が生じることはなく、セル特性が大幅に向上することもなかった。
 本発明によれば、容易にゲル化、固体化することが可能な電解質を得ることができるとともに、この電解質を用いた色素増感型太陽電池を得ることができる。
 以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。

Claims (7)

  1.  酸化還元対と、イオン液体と、下記の化学式1で示される官能基を有する光架橋型液晶性重合体とを含む光架橋性電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、m=0または1、n=1~3、c=0または1、X=なし,O,CH,N=N,C=C,C≡C,COO,またはOCO、R,Rは、それぞれHないしはアルキル基,アルキルオキシ基,またはハロゲンを示す。
  2.  請求項1において、酸化還元対が、ヨウ素の酸化還元対である電解質組成物。
  3.  請求項1において、イオン液体が、含窒素複素環化合物類、脂環式アミン類、脂肪族アミン類および芳香族アミン類からなる群から選択された少なくとも一種である電解質組成物。
  4.  請求項1において、光架橋性液晶型重合体とイオン液体との割合が、前者/後者(重量比)=7/93~90/10である電解質組成物。
  5.  請求項1に記載の電解質組成物に光照射して形成された光架橋性電解質。
  6.  請求項5において、照射される光が、波長380nm以下の紫外線を含む電解質。
  7.  一方に受光面を有する光電極と、
     この光電極の受光面と相反する側に配設された対向電極と、
     これらの2枚の電極により挟み込まれた、請求項5に記載の光架橋性電解質と、
    を備える色素増感型太陽電池。
PCT/JP2010/070424 2009-11-18 2010-11-17 光架橋性電解質組成物および色素増感型太陽電池 WO2011062170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/510,687 US20120227806A1 (en) 2009-11-18 2010-11-17 Photocrosslinkable electrolyte composition and dye-sensitized solar cell
DE112010004484T DE112010004484T5 (de) 2009-11-18 2010-11-17 Fotovernetzbare Elektrolytzusammensetzung und farbstoffsensibilisierte Solarzelle
CN201080051894.7A CN102612786B (zh) 2009-11-18 2010-11-17 光交联性电解质组合物和色素增感型太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009263105A JP5481171B2 (ja) 2009-11-18 2009-11-18 光架橋性電解質組成物および色素増感型太陽電池
JP2009-263105 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011062170A1 true WO2011062170A1 (ja) 2011-05-26

Family

ID=44059648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070424 WO2011062170A1 (ja) 2009-11-18 2010-11-17 光架橋性電解質組成物および色素増感型太陽電池

Country Status (5)

Country Link
US (1) US20120227806A1 (ja)
JP (1) JP5481171B2 (ja)
CN (1) CN102612786B (ja)
DE (1) DE112010004484T5 (ja)
WO (1) WO2011062170A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077248A1 (ja) * 2012-11-14 2014-05-22 日産化学工業株式会社 光反応性組成物、それを用いた光配向膜、及び光学異方性膜
JP2018055133A (ja) * 2012-10-05 2018-04-05 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163676A (ja) * 2014-01-31 2015-09-10 日本化薬株式会社 イオン液体を含む光波長変換要素およびその光波長変換要素を含む物品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530791A (ja) * 2006-03-23 2009-08-27 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 液体電荷輸送材料
JP2009193711A (ja) * 2008-02-12 2009-08-27 Dainippon Printing Co Ltd 色素増感型太陽電池および色素増感型太陽電池モジュール
JP2009252658A (ja) * 2008-04-10 2009-10-29 Konica Minolta Holdings Inc タンタル酸塩結晶粒子、タンタル酸塩結晶粒子の製造方法及び色素増感型太陽電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2427082A1 (en) * 2000-10-20 2003-04-15 Dainippon Ink And Chemicals, Inc. Solid polymer electrolyte and cell containing the electrolyte
KR100702859B1 (ko) * 2005-05-27 2007-04-03 부산대학교 산학협력단 액정 물질을 포함하는 고체 전해질 및 이를 이용한염료감응형 태양전지 소자
CN100412129C (zh) * 2006-02-21 2008-08-20 中国科学院化学研究所 化学交联凝胶网络聚合物电解液的制备方法
JP5075483B2 (ja) * 2007-04-27 2012-11-21 林テレンプ株式会社 高分子フィルム、分子配向素子の作製方法、および液晶配向膜
JP5083554B2 (ja) * 2008-03-25 2012-11-28 Jsr株式会社 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
JP2009263105A (ja) 2008-04-25 2009-11-12 Sinfonia Technology Co Ltd 紙葉類処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530791A (ja) * 2006-03-23 2009-08-27 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 液体電荷輸送材料
JP2009193711A (ja) * 2008-02-12 2009-08-27 Dainippon Printing Co Ltd 色素増感型太陽電池および色素増感型太陽電池モジュール
JP2009252658A (ja) * 2008-04-10 2009-10-29 Konica Minolta Holdings Inc タンタル酸塩結晶粒子、タンタル酸塩結晶粒子の製造方法及び色素増感型太陽電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055133A (ja) * 2012-10-05 2018-04-05 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
WO2014077248A1 (ja) * 2012-11-14 2014-05-22 日産化学工業株式会社 光反応性組成物、それを用いた光配向膜、及び光学異方性膜
JPWO2014077248A1 (ja) * 2012-11-14 2017-01-05 日産化学工業株式会社 光反応性組成物、それを用いた光配向膜、及び光学異方性膜

Also Published As

Publication number Publication date
DE112010004484T5 (de) 2012-10-11
JP2011108524A (ja) 2011-06-02
CN102612786A (zh) 2012-07-25
US20120227806A1 (en) 2012-09-13
CN102612786B (zh) 2014-11-05
JP5481171B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
CN102311605B (zh) 一种聚合物凝胶电解质及其制备方法
AU739381B2 (en) Electrolyte composition, photosensitized solar cell using said electrolyte composition, and method of manufacturing photosensitized solar cell
US7126054B2 (en) Raw material kit for electrolytic composition, electrolytic composition, and dye-sensitized solar cell
TW201038656A (en) A gelator of an electrolyte and application on a gel-state electrolyte
US20120104308A1 (en) Composition for Solid Electrolyte and Solar Cell Using the Same
US8034260B2 (en) Gel electrolyte of dye sensitized solar cell and method for manufacturing the same
CN114478886A (zh) 一种咪唑类聚离子液体及其制备方法
JP5481171B2 (ja) 光架橋性電解質組成物および色素増感型太陽電池
Ling et al. A short review of iodide salt usage and properties in dye sensitized solar cell application: single vs binary salt system
CN100372873C (zh) 凝胶型聚合物固体电解质及其专用聚合物与制备方法
WO2003095582A1 (fr) Composition de photosensibilisation
JP2009176526A (ja) 色素増感太陽電池
JP5856915B2 (ja) 色素増感型太陽電池用色素、半導体電極及び色素増感型太陽電池
JP2002110262A (ja) 含水電解液を用いた光電変換素子
JP6159654B2 (ja) 色素増感型太陽電池用色素、半導体電極及び色素増感型太陽電池
JP4963751B2 (ja) 電解液
JP6100638B2 (ja) 色素増感型太陽電池用色素、半導体電極及び色素増感型太陽電池
KR101095847B1 (ko) 양쪽성 블록 공중합체, 이를 포함한 고체 고분자 전해질 및 염료감응 태양전지
JP6583960B2 (ja) 色素増感型太陽電池用色素、半導体層及び色素増感型太陽電池
WO2012029659A1 (ja) 新規なフルオレン化合物、該化合物を用いた色素増感型太陽電池用色素、色素増感型太陽電池用色素含有電極および色素増感型太陽電池
TW202405065A (zh) 染料敏化太陽能電池、用於染料敏化太陽能電池的固態聚合物電解質薄膜及其製造方法
WO2011125436A1 (ja) 電解質組成物及び色素増感型太陽電池
JPH1077320A (ja) 新規なアクリル酸エステル(共)重合体および高分子固体電解質
JP2015088416A (ja) 色素増感型太陽電池用色素、半導体電極及び色素増感型太陽電池
JP2015005489A (ja) 色素増感型太陽電池用色素、半導体電極及び色素増感型太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051894.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13510687

Country of ref document: US

Ref document number: 112010004484

Country of ref document: DE

Ref document number: 1120100044848

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831564

Country of ref document: EP

Kind code of ref document: A1