WO2011062106A1 - 超音波診断装置、及び3次元弾性比算出方法 - Google Patents

超音波診断装置、及び3次元弾性比算出方法 Download PDF

Info

Publication number
WO2011062106A1
WO2011062106A1 PCT/JP2010/070078 JP2010070078W WO2011062106A1 WO 2011062106 A1 WO2011062106 A1 WO 2011062106A1 JP 2010070078 W JP2010070078 W JP 2010070078W WO 2011062106 A1 WO2011062106 A1 WO 2011062106A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
elastic
interest
ratio
elasticity
Prior art date
Application number
PCT/JP2010/070078
Other languages
English (en)
French (fr)
Inventor
康治 脇
隆志 飯村
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2011541897A priority Critical patent/JP5689073B2/ja
Priority to US13/503,987 priority patent/US9044175B2/en
Priority to CN201080052221.3A priority patent/CN102647946B/zh
Priority to EP10831501.1A priority patent/EP2502566A4/en
Publication of WO2011062106A1 publication Critical patent/WO2011062106A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52087Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and a three-dimensional elastic ratio calculation method, and more particularly to a three-dimensional quantification technique for elastic information indicating the hardness or softness of a tissue of a subject.
  • the ultrasonic diagnostic device transmits ultrasonic waves to the inside of the subject using an ultrasonic probe having a plurality of ultrasonic transducers, receives a reflected echo signal corresponding to the structure of the living tissue from the inside of the subject, and reflects it. For example, a tomographic image such as a B-mode image is generated based on the echo signal and displayed for diagnosis.
  • an ultrasonic reception signal (RF signal) is measured while pressing a subject with an ultrasonic probe by a manual or mechanical method, and the tissue on the tomographic plane is hardened.
  • An elastic image representing the softness or softness is generated. That is, based on the frame data of a pair of RF signals with different compression states on the tissue, the displacement generated in each part of the tissue due to the compression is obtained, and the frame data of elastic information such as strain or elastic modulus based on the obtained frame data of the displacement Is calculated, and an elastic image is generated and displayed based on the elastic frame data.
  • the elasticity image generated based on the strain merely represents the relative display of the strain of each part on the elasticity image, and the hardness cannot be quantitatively evaluated.
  • an elastic image of a tomographic plane of a subject is displayed, two regions of interest (ROI) are set on the displayed elastic image, and the two set It is known to calculate and display a two-dimensional elasticity ratio of elasticity information of a region of interest.
  • the examiner quantitatively evaluates the hardness of the tissue at the diagnosis site regardless of the compression force. It is supposed to be possible.
  • Patent Document 2 is limited to quantifying the two-dimensional elasticity information in a certain fault plane, and does not consider the quantification of the elasticity information in three dimensions.
  • Patent Document 2 when the technique of Patent Document 2 is used to evaluate the hardness of the tissue at the diagnostic site in three dimensions, it is necessary to set two two-dimensional regions of interest for each of the tomographic planes. However, this is not preferable in terms of operability.
  • an object of the present invention is to quantify the elasticity information indicating the hardness or softness of the tissue of the subject in three dimensions with a simple operation.
  • the ultrasonic diagnostic apparatus of the present invention expresses hardness or softness based on an ultrasonic probe that transmits / receives ultrasonic waves to / from a subject and a reflected echo signal measured by the ultrasonic probe.
  • An elasticity information calculation unit that calculates elasticity information to generate elasticity frame data
  • an elasticity volume data creation unit that creates elasticity volume data based on the plurality of elasticity frame data, and an elasticity created based on the elasticity volume data
  • a display unit that displays at least one of a rendering image and a plurality of cross-sectional elastic slice images; and an input unit that sets a plurality of three-dimensional regions of interest via at least one of the displayed elastic rendering image and multi-section elastic slice images; 3D to calculate the 3D elastic ratio between the elasticity information in the set first 3D region of interest and the elasticity information in the second 3D region of interest
  • An elastic ratio measurement unit displays the calculated three-dimensional elastic ratio on the display unit.
  • the examiner sets a plurality of (for example, two) three-dimensional regions of interest on the image via the input means, the elasticity information in the first three-dimensional region of interest and the second three-dimensional region of interest The three-dimensional elasticity ratio with the elasticity information at is calculated and displayed. Therefore, the examiner can quantitatively grasp the elasticity information indicating the hardness or softness of the tissue of the subject in a three-dimensional manner with a simple operation. For example, based on a 3D region of interest set as a normal tissue region or a tissue region with little individual difference in hardness, the hardness of the 3D region of interest set at a site that seems to be a lesion such as a tumor is quantitatively determined. Can be expressed as
  • the elasticity information indicating the hardness or softness of the tissue of the subject can be quantified in three dimensions by a simple operation.
  • Block diagram showing the overall configuration of the ultrasonic diagnostic apparatus of the present embodiment The figure which shows the concept of the process for calculating
  • FIG. 1 is a block diagram showing the overall configuration of the ultrasonic diagnostic apparatus of the present embodiment.
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 2 that is used in contact with the subject 1, and a time interval between the subject 1 and the ultrasonic probe 2.
  • Transmitter 3 that repeatedly transmits ultrasonic waves
  • receiver 4 that receives time-series reflected echo signals generated from the subject 1
  • ultrasonic transmission / reception that controls switching between transmission and reception of the transmitter 3 and the receiver 4
  • a control unit 5 and a phasing addition unit 6 that performs phasing addition of the reflected echo signals received by the reception unit 4 are provided.
  • the ultrasonic probe 2 is formed by arranging a plurality of rectangular or fan-shaped transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 1 via the transducers.
  • This ultrasonic probe 2 is a motor that can transmit and receive ultrasonic waves while mechanically swinging the vibrator in a direction (short axis direction) orthogonal to the arrangement direction (major axis direction) of a plurality of vibrators. It is configured to be controllable.
  • the ultrasonic probe 2 has a position sensor that measures the tilt of the vibrator simultaneously with transmission / reception of the ultrasonic wave, and outputs the tilt of the vibrator as a frame number.
  • the ultrasonic probe 2 may be one in which a plurality of transducers are two-dimensionally arranged and the ultrasonic transmission / reception direction can be electronically controlled.
  • the transmission unit 3 generates a transmission pulse for driving the transducer of the ultrasonic probe 2 to generate ultrasonic waves.
  • the transmission unit 3 has a function of setting a convergence point of transmitted ultrasonic waves to a certain depth.
  • the receiving unit 4 amplifies the reflected echo signal received by the ultrasonic probe 2 with a predetermined gain to generate an RF signal, that is, a received signal.
  • the ultrasonic transmission / reception control unit 5 controls the transmission unit 3 and the reception unit 4.
  • the ultrasonic diagnostic apparatus 100 receives the RF signal amplified by the receiving unit 4 and performs phase control, and forms an ultrasonic beam at one or more convergence points to generate RF signal frame data.
  • a tomographic image configuration that generates tomographic image data by inputting RF signal frame data from the phase addition unit 6 and the phasing addition unit 6 and performing signal processing such as gain correction, log compression, detection, contour enhancement, and filter processing
  • a two-dimensional tomographic image storage unit 35 that stores the tomographic image data output from the tomographic image construction unit 7 together with the frame number.
  • the ultrasonic diagnostic apparatus 100 transmits and receives ultrasonic waves while mechanically swinging the vibrator in the short axis direction via the short axis scanning position control unit 46, and transmits one ultrasonic wave in the short axis direction.
  • the two-dimensional tomographic image storage unit 35 stores tomographic image data of n frames.
  • the frame number associates the position (tilt) of a plurality of transducers with tomographic image data.
  • the first frame number in the scan in one direction of the minor axis direction is “1”, and the last frame number is “n” (n is a natural number of 2 or more).
  • the tomographic image data with the frame number “1” is first stored in the two-dimensional tomographic image storage unit 35, and then the tomographic image data with the frame number “2” is stored in the two-dimensional tomographic image storage unit 35. Finally, the tomographic image data of the frame number “n” is stored in the two-dimensional tomographic image storage unit 35.
  • the first frame number in the scan in the direction opposite to the short axis direction is “n”
  • the last frame number is “1”
  • the tomographic image data is sequentially stored in the two-dimensional tomographic image storage unit 35.
  • the ultrasonic diagnostic apparatus 100 includes a tomographic volume data creation unit 36 that reads out tomographic image data for n frames stored in the two-dimensional tomographic image storage unit 35 and sequentially arranges them for each scan plane to create monochrome volume data.
  • the tomographic volume data for rendering which is a set of tomographic image data in the subject, is constructed.
  • the ultrasonic diagnostic apparatus 100 includes a tomographic 3D scan conversion unit 37 that converts R ⁇ coordinate system tomographic image data output from the tomographic volume data creation unit 36 into an XYZ coordinate system, and a tomographic 3D scan conversion unit 37. And a tomographic volume rendering unit 38 for projecting the tomographic image data in the XYZ coordinate system output from the plane to generate a tomographic rendering image.
  • the tomographic volume rendering unit 38 obtains image information of each point from the luminance value and opacity corresponding to each point (coordinate) of the tomographic volume data. Then, for example, the tomographic rendering image is constructed by using a volume rendering method that calculates the brightness value and opacity of the tomographic volume data in the line-of-sight direction in the depth direction and gives light and shade according to the following formula.
  • ⁇ outi ⁇ ini + (1 ⁇ ini ) * ⁇ i
  • C outi C ini + (1 ⁇ ini ) * ⁇ i * C i
  • ⁇ outi i-th opacity output, ⁇ ini : i-th opacity input, ⁇ i : i-th opacity, C outi : i-th luminance value output, C ini : i-th
  • the luminance value of C i is the i-th luminance value.
  • the tomographic rendering image is configured using the volume rendering method.
  • the surface rendering method that gives the light and shade according to the inclination angle that the image of each point forms with respect to the surface corresponding to the viewpoint position, and the viewpoint position.
  • You may use the voxel method which gives light and shade according to the depth of the seen object.
  • the ultrasonic diagnostic apparatus 100 includes a tomographic slice image generation unit 47 that generates a tomographic MPR image of three orthogonal sections of the tomographic volume data converted into the XYZ coordinate system by the tomographic three-dimensional scan conversion unit 37. .
  • the tomographic slice image generating unit 47 also has a function of generating a plurality of tomographic multislice images cut out in parallel from the tomographic volume data converted into the XYZ coordinate system.
  • a tomographic rendering image and an elastic rendering image to be described later are combined, an elastic MPR image or a multi-slice image and an elastic MPR image or an elastic multi-slice image to be described later are combined, or these images are combined.
  • a switching composition unit 12 that performs switching
  • an image display (display unit) 13 that displays a composite image or the like.
  • the ultrasonic diagnostic apparatus 100 includes an RF signal frame data storage unit 27 that stores the RF signal frame data output from the phasing addition unit 6, and at least two RF signals stored in the RF signal frame data storage unit 27.
  • An RF signal frame data selection unit 28 that selects signal frame data, a displacement calculation unit 30 that generates displacement frame data by measuring the displacement of the living tissue of the subject 1 from the two RF signal frame data, and a displacement measurement unit 30
  • Elasticity information calculation unit 32 that generates elastic frame data by obtaining elastic information such as strain, elastic modulus, and viscosity from the displacement information measured in step 3, and elastic information such as strain or elastic modulus calculated by elastic information calculation unit 32
  • an elastic image constructing unit 34 for constructing two-dimensional elastic image data.
  • the elastic volume data is obtained from the two-dimensional elastic image storage unit 39 for storing the two-dimensional elastic image data output from the elastic image constructing unit 34, and the plurality of two-dimensional elastic image data generated by the plurality of cross sections of the subject.
  • the elastic volume rendering unit 42 generates an elastic rendering image by projecting the elastic image data of the XYZ coordinate system output from the plane onto a plane.
  • the ultrasonic diagnostic apparatus 100 includes an elastic slice image generation unit 48 that generates an MPR image of three orthogonal cross sections of elastic volume data converted into the XYZ coordinate system by the elastic three-dimensional scan conversion unit 41.
  • the elastic slice image generating unit 48 also has a function of generating a plurality of elastic multi-slice images cut out in parallel from the elastic volume data converted into the XYZ coordinate system.
  • the ultrasonic diagnostic apparatus 100 also includes an image system control unit 44 that controls each component and an input interface unit (input unit) 43 that performs various inputs to the image system control unit 44.
  • the input interface unit 43 includes a keyboard, a trackball, and the like.
  • the RF signal frame data storage unit 27 sequentially stores the RF signal frame data generated from the phasing addition unit 6 in time series. Then, the displacement measuring unit 30 performs one-dimensional or two-dimensional correlation processing from the RF signal frame data of the selected frame number “n”, and the displacement or movement vector in the biological tissue corresponding to each point of the RF signal frame data That is, a one-dimensional or two-dimensional displacement distribution regarding the direction and magnitude of the displacement is obtained.
  • a block matching method is used to detect the movement vector.
  • the block matching method divides an image into blocks consisting of, for example, M ⁇ M pixels, focuses on the block in the region of interest, searches the previous frame for the block that most closely matches the block of interest, and refers to this Thus, predictive encoding, that is, processing for determining the sample value by the difference is performed.
  • the elasticity information calculation unit 32 is a distortion of the living tissue corresponding to each point (coordinate) on the image from the measurement value output from the displacement measurement unit 30, for example, the movement vector and the pressure value output from the pressure measurement unit 45. To generate elasticity information. At this time, the distortion is calculated by spatially differentiating the movement amount of the living tissue, for example, the displacement. Further, the elastic information calculation unit 32 may be configured to calculate the elastic modulus. In this case, the pressure information acquired by the pressure measurement unit 45 connected to the pressure sensor (not shown) of the ultrasonic probe 2 is output to the elasticity information calculation unit 32. The elastic modulus is calculated by dividing the change in pressure by the change in strain.
  • the elasticity image constructing unit 34 performs various image processing such as smoothing processing in the coordinate plane, contrast optimization processing, and smoothing processing in the time axis direction between frames for the calculated elasticity value (strain, elasticity modulus, etc.). To construct two-dimensional elasticity image data.
  • the 2D elastic image storage unit 39 stores 2D elastic image data of a series of frame numbers “1” to “n”.
  • the two-dimensional elastic image storage unit 39 stores RF signal frame data of frame numbers “1” to “n” in one direction and the opposite direction of the short axis direction of the ultrasonic probe.
  • the elastic volume data creation unit 40 creates elastic volume data from a plurality of two-dimensional elastic image data.
  • the two-dimensional elastic image data for n frames stored in the two-dimensional elastic image storage unit 39 is read out and arranged in order for each scan plane to generate elastic volume data.
  • elastic volume data for rendering which is a set of two-dimensional elastic image data in the subject, is configured.
  • the elastic volume rendering unit 42 obtains image information of each point from the elasticity value (any one of strain, elastic modulus, etc.) corresponding to each point of the elastic volume data and opacity, and constitutes a three-dimensional elastic image.
  • a three-dimensional elasticity image is constructed using a volume rendering method that calculates the elasticity value of the elasticity volume data in the line-of-sight direction in the depth direction according to the following formula.
  • the line-of-sight direction is the same as the line-of-sight direction in the volume rendering process of the tomographic volume rendering unit 38.
  • E outi ⁇ ini + (1 ⁇ ini ) ⁇ ⁇ i
  • E outi E ini + ⁇ i ⁇ (1 ⁇ ini ) ⁇ E i
  • ⁇ outi i-th opacity output, ⁇ ini : i-th opacity input, ⁇ i : i-th opacity, E outi : i-th elasticity output, E ini : i-th
  • the elasticity value of E i is the i-th elasticity value.
  • the elastic volume rendering unit 42 assigns three primary colors of light, that is, a red (R) value, a green (G) value, and a blue (B) value, to the image information constituting the three-dimensional elastic image. For example, the elastic volume rendering unit 42 gives a red code to a place where the strain is large compared to the surroundings or a place where the elastic modulus is small, and gives a blue code to a place where the strain is small or a place where the elastic modulus is large. Process such as.
  • the image selection unit selects an image to be displayed on the image display unit 13 from the tomographic rendering image data and elastic rendering image data in the volume memory and the composite image data of the image processing unit.
  • the switching composition unit 12 synthesizes the tomographic rendering image and the elastic rendering image secured in the image memory, for example, by changing the composition ratio.
  • the switching composition unit 12 reads the tomographic rendering image and the elastic rendering image at the same viewpoint position from the image memory. Then, the tomographic rendering image and the elastic rendering image are synthesized. Since the tomographic rendering image and the elastic rendering image are image data after volume rendering processing or the like, they are substantially added two-dimensionally.
  • is a coefficient not less than 0 and not more than 1, and can be arbitrarily set via the input interface unit 43.
  • the elasticity information of the diagnostic region Is used as an index value to quantitatively evaluate the hardness.
  • the elastic image generated based on the strain amount represents a relative display of the strain of each part on the elastic image.
  • the hardness cannot be quantitatively evaluated.
  • the elastic modulus (E) is obtained by dividing the stress ( ⁇ ) applied to the tissue by the strain ( ⁇ ), and is an absolute value indicating the hardness or softness of the tissue. Can be evaluated.
  • the above-described method uses this point to estimate the elastic modulus ratio E 1 / E 2 in the two regions of interest by obtaining the strain ratio ⁇ 1 / ⁇ 2 .
  • the ultrasonic diagnostic apparatus 100 includes a coordinate conversion unit 50, a three-dimensional distortion ratio measurement unit 52, and the like as characteristic configurations.
  • the three-dimensional distortion ratio measuring unit 52 It is a three-dimensional elasticity ratio measuring unit that calculates a three-dimensional elasticity ratio between the elasticity information in the set first three-dimensional region of interest and the elasticity information in the second three-dimensional region of interest. That is, the three-dimensional strain ratio measuring unit 52 can be replaced with a three-dimensional elastic ratio measuring unit.
  • the three-dimensional strain ratio measurement unit 52 (three-dimensional elasticity ratio measurement unit), in a plurality of elasticity frame data constituting the elasticity rendering image, the elasticity information of the region corresponding to the first three-dimensional region of interest and the second three-dimensional A two-dimensional elasticity ratio with the elasticity information of the region corresponding to the region of interest is calculated. Then, the three-dimensional strain ratio measuring unit 52 (three-dimensional elastic ratio measuring unit) calculates a three-dimensional elastic ratio based on the two-dimensional elastic ratio in each elastic frame data. Specifically, the three-dimensional strain ratio measuring unit 52 (three-dimensional elastic ratio measuring unit) calculates the three-dimensional elastic ratio by averaging the two-dimensional elastic ratios calculated in the respective elastic frame data.
  • the coordinate conversion unit 50 sets the first 3D region of interest and the second 3D region of interest via the input interface unit 43 on, for example, an elastic rendering image in the XYZ coordinate system displayed on the image display unit 13. Then, it is a coordinate conversion means for converting each three-dimensional region of interest from the XYZ coordinate system to the R ⁇ coordinate system.
  • the characteristic configuration of the present embodiment will be described in detail for each example.
  • FIG. 2 is a diagram illustrating a concept of processing for obtaining a three-dimensional strain ratio of elasticity information according to the first embodiment.
  • FIG. 3 is a flowchart of the process of the first embodiment.
  • an elastic rendering image generated based on the elastic volume data converted into the XYZ coordinate system by the elastic three-dimensional scan conversion unit 41 is displayed, and two regions of interest are set on the elastic rendering image. Example of the case.
  • an elastic rendering image 201 is displayed on the image display 13.
  • the examiner transmits or overwrites the two three-dimensional regions of interest 202 and 203 on the elastic rendering image 201 via the input interface unit 43.
  • Set (301 in Fig. 3) the two three-dimensional regions of interest 202 and 203 are referred to as ROI1 and ROI2, as appropriate.
  • the three-dimensional regions of interest 202 and 203 are converted into data as mask information 204 and 205 of XYZ data.
  • the mask information 204, 205 is obtained by converting the orthogonal coordinate system of XYZ into the polar coordinate system of R ⁇ by the coordinate conversion unit 50, and the ROI mask data 206, 207 of the R ⁇ coordinate system is obtained. It is created (302 in FIG. 3).
  • the three-dimensional strain ratio measuring unit 52 is set in the XYZ coordinate system from the elastic information volume data in the R ⁇ coordinate system by the on / off control of the ROI mask data 206, 207. It becomes possible to refer to elasticity information (strain) of the region of interest. Thus, the three-dimensional elasticity ratio is calculated based on the elasticity information of the ROI mask data 206 and the elasticity information of the ROI mask data 207 converted to the R ⁇ coordinate system.
  • the three-dimensional strain ratio measuring unit 52 calculates strain (average value) in each of the ROI1 and ROI2 of each elastic frame data, as shown in Equations 1 and 2. Then, the distortion ratio between ROI 1 and 2 is calculated as shown in Equation 3 (303 in FIG. 3). Thereby, the strain ratio can be calculated for each elastic frame data. Finally, as shown in Equation 4, the three-dimensional strain ratio is calculated by averaging the two-dimensional strain ratios calculated for each elastic frame data (304 in FIG. 3). The calculated three-dimensional distortion ratio is displayed on the image display 13 (305 in FIG. 3).
  • ⁇ ij ( ⁇ ) pixel distortion at R ⁇ coordinates (i, j, ⁇ )
  • ⁇ roi1 ( ⁇ ) strain average in ROI1 in the frame
  • ⁇ roi2 ( ⁇ ) strain average in ROI2 in the frame
  • SR ( ⁇ ) Strain ratio of each frame
  • SR 3d Strain ratio average in three dimensions
  • N ⁇ Number of frames of elastic frame data of addition average.
  • ROI1 and 2 are set on the three-dimensional image (306 in FIG. 3), and the measurement ROI mask is converted from XYZ coordinates to R ⁇ coordinates (307 in FIG. 3).
  • the average strain value of each elastic frame data is calculated from the elastic information volume data of the R ⁇ coordinate system (308 in FIG. 3), and the average strain value of each elastic frame data is calculated from the ROI1 and ROI2 of each elastic frame data. (309 in FIG. 3).
  • the distortion ratio is calculated and displayed from the ratio of the average distortion values of ROI1 and ROI2 (310 in FIG. 3).
  • a three-dimensional distortion average value in ROIs 1 and 2 is calculated by Expressions 5 and 6, and a distortion ratio average value of ROIs 1 and 2 in three dimensions is calculated by Expression 7.
  • ⁇ roi1 3d is the three-dimensional strain average in ROI1
  • ⁇ roi2 3d is the three-dimensional strain average in ROI2
  • ⁇ ijk is the pixel strain at R ⁇ coordinates (i, j, k).
  • the elasticity information in the XYZ coordinate system such as the XY section, YZ section, XZ section, etc.
  • the ratio of elastic information is obtained in the XY cross section, YZ cross section, XZ cross section, etc., proper quantification cannot be achieved.
  • the first and second three-dimensional regions of interest set on the elastic rendering image of the XYZ coordinate system are converted from the XYZ coordinate system to the R ⁇ coordinate system, and the R ⁇ coordinate system
  • the three-dimensional elasticity ratio By calculating the three-dimensional elasticity ratio based on the elasticity information of the first and second three-dimensional regions of interest converted into, the three-dimensional elasticity information can be appropriately quantified.
  • the measurement ROI 1 and 2 are set using the elastic rendering image as position information.
  • the tomographic rendering image or the composite rendering image obtained by superimposing the tomographic image and the elastic image You may make it set ROI1 and 2 for measurement.
  • X i y i z i is calculated from the coordinates X, Y on the screen and the matrix for MPR according to the equation (8), and each pixel is converted from the screen 2D coordinates to the XYZ coordinates.
  • the short axis surface of the XYZ coordinate system is converted from the formula 9 using the affine matrix at the time of the conversion intermediate coordinate, and the formula 10 and the formula 11 are converted to polar coordinates, and the coordinate offsets of the formula 12 to the formula 15 Calculate intermediate coordinates of ⁇ and r from the scale.
  • Equations 19 to 22 intermediate coordinates of r and ⁇ are calculated from the coordinate offset and scale. Thereby, it is possible to refer to polar coordinate voxels corresponding to the MPR plane.
  • the ultrasonic probe 2 that transmits and receives ultrasonic waves to and from the subject, and the elasticity that represents hardness or softness based on the reflected echo signal measured by the ultrasonic probe 1
  • Elastic information calculation unit 32 that calculates information to generate elastic frame data
  • elastic volume data generation unit 40 that generates elastic volume data based on a plurality of elastic frame data
  • a display unit 13 that displays at least one of a rendered image and an elastic slice image having a plurality of cross sections, and an input unit that sets a plurality of three-dimensional regions of interest via at least one of the displayed elastic rendering image and an elastic slice image having a plurality of cross sections 43 and the 3D strain ratio that calculates the 3D elasticity ratio between the elasticity information in the set first 3D region of interest and the elasticity information in the 2nd 3D region of interest
  • a measuring section 52 three-dimensional elastic ratio measuring unit
  • an ultrasonic probe capable of controlling the ultrasonic scanning plane in the short axis direction of the probe is used. Therefore, it is necessary to perform ultrasonic transmission / reception while sliding the ultrasonic scanning surface in the short axis direction.
  • the elastic image is generated while pressing the subject with the ultrasonic probe by a manual or mechanical method. Therefore, elastic frame data generated on a plurality of tomographic planes of the subject is generated in different compressed states.
  • the influence of the compression force can be eliminated by calculating the ratio of the elasticity information of the two two-dimensional regions of interest.
  • the elasticity information can be quantified.
  • proper quantification cannot be achieved even if the ratio of elastic information between two elastic frame data generated in different compressed states on different tomographic planes is obtained.
  • the three-dimensional strain ratio measurement unit 52 (three-dimensional elasticity ratio measurement unit) includes the elasticity information of the region corresponding to the first three-dimensional region of interest and the second information in the plurality of elasticity frame data constituting the elasticity rendering image.
  • the two-dimensional elastic ratio with the elastic information of the region corresponding to the three-dimensional region of interest is calculated, and the three-dimensional elastic ratio is calculated based on the two-dimensional elastic ratio in each elastic frame data.
  • the three-dimensional strain ratio measuring unit 52 calculates the three-dimensional elastic ratio by averaging the two-dimensional elastic ratios calculated in the respective elastic frame data.
  • the ratio of the elasticity information is obtained in each of the plurality of tomographic planes on which the elastic frame data is generated, even if the plurality of elastic frame data are generated in different compression states, the 3 Dimensional elasticity information can be quantified.
  • the ultrasonic diagnostic apparatus when the elastic volume data is generated in the R ⁇ coordinate system, the elastic three-dimensional scan conversion unit 41 that converts the elastic volume data from the R ⁇ coordinate system to the XYZ coordinate system, The elastic volume rendering unit 42 that generates an elastic rendering image based on the elastic volume data converted into the XYZ coordinate system, and the elastic rendering image of the XYZ coordinate system displayed on the image display 13 (display unit)
  • the ultrasonic diagnostic apparatus is configured with a coordinate conversion unit 50 that converts the first three-dimensional region of interest and the second three-dimensional region of interest from the XYZ coordinate system to the R ⁇ coordinate system, and a three-dimensional strain ratio measurement unit 52
  • the (3D elasticity ratio measurement unit) calculates the 3D elasticity ratio based on the elasticity information of the first 3D region of interest and the elasticity information of the second 3D region of interest converted to the R ⁇ coordinate system. Can be configured.
  • the elastic volume data in the R ⁇ coordinate system is displayed in the XYZ coordinate system.
  • an elastic rendering image or the like is generated and displayed based on the elastic volume data in the XYZ coordinate system after conversion.
  • the elasticity information in the XYZ coordinate system such as the XY cross section, YZ cross section, XZ cross section, etc., is not necessarily in the same compression state. It is not generated.
  • the ratio of elastic information is obtained in the XY cross section, YZ cross section, XZ cross section, etc.
  • proper quantification cannot be achieved.
  • the first and second three-dimensional regions of interest set on the elastic rendering image of the XYZ coordinate system are converted from the XYZ coordinate system to the R ⁇ coordinate system and converted to the R ⁇ coordinate system. Since the three-dimensional elasticity ratio is calculated based on the elasticity information of the first and second three-dimensional regions of interest, the three-dimensional elasticity information can be appropriately quantified.
  • the three-dimensional strain ratio measuring unit 52 (three-dimensional elastic ratio measuring unit) converts the R ⁇ coordinate system to the R ⁇ coordinate system in each of the plurality of tomographic planes in which the compression state on the tissue of the subject is equivalent.
  • the ratio of the elasticity information of the region corresponding to the first three-dimensional region of interest and the elasticity information of the region corresponding to the second three-dimensional region of interest is calculated, and the calculated two-dimensional elasticity in the plurality of tomographic planes
  • a three-dimensional elastic ratio can be calculated based on the ratio.
  • the elastic slice image generation unit 48 generates an MPR image of three orthogonal cross sections of elastic volume data converted into the XYZ coordinate system, and the first three-dimensional MPR image on the displayed XYZ coordinate system MPR image.
  • the point of setting the region of interest and the second three-dimensional region of interest is different from the first embodiment. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • FIG. 4 is a diagram showing a concept of processing for obtaining the three-dimensional elastic ratio (three-dimensional strain ratio) of the elastic information according to the second embodiment.
  • the MPR image 401 and the elastic rendering image 201 are displayed on the image display unit 13.
  • elastic images of the XY, YZ, and XZ planes of the XYZ coordinate system are displayed as the MPR image 401 in the upper left, lower left, and upper right areas of the screen divided into four areas.
  • the elastic rendering image 201 is displayed.
  • the elastic rendering image 201 may not be displayed.
  • the examiner sets two three-dimensional regions of interest 402 and 403 on the MPR image 401 via the input interface unit 43 as shown in FIG.
  • the two three-dimensional regions of interest 402 and 403 are appropriately referred to as ROI1 and ROI2.
  • ROI 1 and 2 By setting ROI 1 and 2 on the MPR image in this way, you can check the setting status of the ROI in each cross section. For example, when the tumor is elongated in the Z direction, the ROI is easily adjusted be able to.
  • the three-dimensional regions of interest 402 and 403 are converted into data as mask information 404 and 405 of XYZ data. That is, as shown in FIG. 4 (b), the ROI information set on the MPR image is visually two-dimensional information, but is information to be managed as XYZ coordinates, and is shown in FIG. 4 (c). It can be easily converted into data as mask information of such XYZ data.
  • the mask information 404 and 405 is obtained by performing coordinate transformation of the XYZ orthogonal coordinate system to the polar coordinate system of R ⁇ by the coordinate transformation unit 50, and ROI mask data 406, R ⁇ coordinate system. 407 is created.
  • the three-dimensional strain ratio measuring unit 52 is controlled by the on / off control of the ROI mask data 406 and 407, and the three-dimensional set in the XYZ coordinate system from the elastic information volume data in the R ⁇ coordinate system It becomes possible to refer to elasticity information (strain) of the region of interest.
  • strain elasticity information
  • the three-dimensional elasticity ratio is calculated based on the elasticity information of the ROI mask data 406 and the elasticity information of the ROI mask data 407 converted to the R ⁇ coordinate system.
  • the method for calculating the three-dimensional elastic ratio is the same as in the first embodiment.
  • the measurement ROI 1 and 2 are set by using the elastic MPR image as positional information.
  • the present invention is not limited to this, and the composite image obtained by superimposing the tomographic image and the elastic image on the tomographic MPR image. ROI 1 and 2 for measurement may be set on the MPR image.
  • the elastic slice image generating unit 48 generates a plurality of parallel slice images (elastic multi-slice images) from the elastic volume data converted into the XYZ coordinate system, and displays the displayed XYZ coordinate system.
  • the difference from the first embodiment is that the first three-dimensional region of interest and the second three-dimensional region of interest are set on the multi-slice image. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • FIG. 5 is a diagram showing a concept of processing for obtaining the three-dimensional elasticity ratio (three-dimensional strain ratio) of the elasticity information in the third embodiment.
  • an elastic multi-slice image 501 is displayed on the image display 13.
  • the elastic multi-slice image is one of the three-dimensional observation methods, and has an advantage that different sections at an arbitrary cutting angle can be simultaneously displayed on a plurality of divided screens in the XYZ coordinate system.
  • the examiner sets two three-dimensional regions of interest 502 and 503 on the elastic multi-slice image 501 via the input interface unit 43.
  • the two three-dimensional regions of interest 502 and 503 are appropriately referred to as ROI1 and ROI2.
  • ROI1 and ROI2 are appropriately referred to as ROI1 and ROI2.
  • the three-dimensional regions of interest 502 and 503 are converted into data as mask information 504 and 505 of XYZ data.
  • the ROI information set on the elastic multi-slice image 501 is visually two-dimensional information, but is information to be managed as XYZ coordinates. Data can be easily converted into XYZ data mask information as shown in c). Subsequently, as shown in FIG. 5 (d), the mask information 504 and 505 is obtained by performing coordinate conversion of the XYZ orthogonal coordinate system to the polar coordinate system of R ⁇ by the coordinate conversion unit 50, and ROI mask data 506, 507 is created.
  • the three-dimensional strain ratio measuring unit 52 is set in the XYZ coordinate system from the elastic information volume data in the R ⁇ coordinate system by the on / off control of the ROI mask data 506 and 507. It becomes possible to refer to elasticity information (strain) of the region of interest.
  • strain elasticity information
  • the three-dimensional elasticity ratio is calculated based on the elasticity information of the ROI mask data 506 and the elasticity information of the ROI mask data 507 converted to the R ⁇ coordinate system.
  • the method for calculating the three-dimensional elastic ratio is the same as in the first embodiment.
  • Measurement ROIs 1 and 2 may be set on the synthesized multi-slice image.
  • the first three-dimensional region of interest and the second three-dimensional region of interest converted into the R ⁇ coordinate system by the coordinate conversion unit 50 are displayed on the image display 13 in the R ⁇ coordinate system, and displayed in the R ⁇ coordinate system.
  • the third embodiment is different from the first embodiment in that the three-dimensional region of interest of at least one of the first three-dimensional region of interest and the second three-dimensional region of interest can be adjusted on the image. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • FIG. 6 is a diagram illustrating a concept of processing for obtaining the three-dimensional strain ratio of the elasticity information according to the fourth embodiment.
  • FIG. 7 is a flowchart of the process of the fourth embodiment.
  • an elastic rendering image 601 is displayed on the image display 13.
  • the examiner sets by transmitting or overwriting the two three-dimensional regions of interest 602 and 603 on the elastic rendering image 601 via the input interface unit 43 ( 701 in FIG.
  • the two three-dimensional regions of interest 602 and 603 are appropriately referred to as ROI1 and ROI2.
  • the three-dimensional regions of interest 602 and 603 are converted into data as mask information 604 and 605 of XYZ data.
  • the mask information 604 and 605 are coordinate-transformed from the XYZ orthogonal coordinate system to the polar coordinate system of R ⁇ by the coordinate transformation unit 50, and ROI mask data 606 and 607 of the R ⁇ coordinate system are obtained. It is created (702 in FIG. 7).
  • the examiner adjusts the ROI mask data 606 and 607 converted to the R ⁇ coordinate system on the image of the polar coordinate system of R ⁇ while referring to the image display 13 (FIG. 7). 703).
  • the three-dimensional strain ratio measurement unit 52 is set in the XYZ coordinate system from the elastic information volume data in the R ⁇ coordinate system by the on / off control of the adjusted ROI mask data 606, 607, as shown in FIG. 6 (e). It is possible to refer to the elasticity information (strain) of the 3D region of interest. As a result, the three-dimensional elasticity ratio is calculated based on the elasticity information of the ROI mask data 606 and the elasticity information of the ROI mask data 607 that have been converted and adjusted to the R ⁇ coordinate system.
  • the average distortion in each frame is calculated for each of ROI1 and ROI2, and the distortion ratio between ROI1 and 2 is calculated (704 in FIG. 7). As a result, the distortion ratio for each frame can be calculated. Finally, the value calculated for each frame is averaged to calculate a three-dimensional distortion ratio (705 in FIG. 7), and the calculated three-dimensional distortion ratio is displayed on the image display 13. (706 in FIG. 7).
  • the three-dimensional strain ratio measuring unit 52 is based on the temporal change of the compression state on the tissue of the subject in the R ⁇ coordinate system, in the first three-dimensional region of interest and the second three-dimensional region of interest.
  • the difference from the first embodiment is that a section in which the compression state is equivalent is detected and the three-dimensional elastic ratio is calculated based on the elasticity information of the section in which the detected compression state is equivalent. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • the three-dimensional strain ratio measurement unit 52 (three-dimensional elasticity ratio measurement unit) is a plurality of elastic frame data in which the compression state on the tissue of the subject is equivalent, and the elasticity information of the region corresponding to the first three-dimensional region of interest The three-dimensional elastic ratio with the elastic information of the region corresponding to the two three-dimensional region of interest is calculated.
  • the three-dimensional elastic ratio is calculated when two ROIs are not set at the same ⁇ position in the R ⁇ coordinate system.
  • FIG. 8 is a diagram showing a concept of processing for obtaining a three-dimensional strain ratio of elasticity information in the fifth embodiment.
  • FIG. 8 (a) shows a cross-sectional image 801 of the YZ plane (short axis direction) in the XYZ coordinate system. 1 receives the output data from the displacement measuring unit 30, the elasticity information calculating unit 32, or the pressure measuring unit 45, and creates the compression graph 802 shown in FIG. 8 (b). .
  • the three-dimensional strain ratio measurement unit 52 can grasp the change over time of the displacement, strain, or stress along the ⁇ direction.
  • the three-dimensional distortion ratio measurement unit 52 detects a section (similar section 803) in which the compression state in ROI1 and ROI2 is equivalent by performing a correlation calculation between the compression graphs of ROI1 and ROI2. Then, the two detected similar sections 803 are selected, the respective distortion averages are calculated, and the ratio between them is calculated.
  • the method for calculating the three-dimensional elastic ratio is the same as in the first embodiment.
  • the three-dimensional strain ratio measurement unit 52 is configured to determine the interval and compression in which the compression is applied to the tissue of the subject based on the change over time of the compression state of the subject in the R ⁇ coordinate system. Is detected in the first 3D region of interest and the second 3D region of interest, the elasticity information of only one of the section where the compression is applied and the section where the compression is released. The difference from the first embodiment is that the three-dimensional elastic ratio is calculated based on the above. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • the 3D strain ratio measurement unit 52 (3D elastic ratio measurement unit) cancels the section where compression is applied to the subject's tissue and the compression based on changes over time in the compression state of the subject's tissue Based on the elasticity information of only one of the sections where compression is applied and the sections where compression is released in the first 3D region of interest and the second 3D region of interest To calculate the three-dimensional elastic ratio.
  • FIG. 9 is a diagram showing a concept of processing for obtaining the three-dimensional strain ratio of the elasticity information in the sixth embodiment.
  • FIG. 9 (a) shows a cross-sectional image 901 of the YZ plane (short axis direction) in the XYZ coordinate system.
  • the compression graph creation unit 54 shown in FIG. 1 receives the output data from the displacement measurement unit 30, the elasticity information calculation unit 32, or the pressure measurement unit 45, and creates the compression graph 902 shown in FIG. 9 (b). .
  • the three-dimensional strain ratio measurement unit 52 can grasp the change over time of the displacement, strain, or stress along the ⁇ direction.
  • the three-dimensional strain ratio measurement unit 52 determines whether the compression is applied to the tissue of the subject based on the temporal change (change in ⁇ direction) of the compression state in ROI1 and ROI2 indicated by the compression graph 902. Detecting the canceled section.
  • a section in which compression is applied to the tissue of the subject is detected as the compression section 903.
  • the three-dimensional strain ratio measurement unit 52 calculates the strain average in the compression section 903 of ROI1 and ROI2, and calculates the ratio.
  • the method for calculating the three-dimensional elastic ratio is the same as in the first embodiment.
  • the present embodiment it is possible to reduce the deterioration of the measurement value due to the displacement of the image due to the tissue displacement by making the compression direction the same. Therefore, the three-dimensional distortion ratio can be calculated with high accuracy.
  • the present Example showed the example which calculates the distortion average in the area where the compression is applied, it can also comprise so that the distortion average in the area where the compression is cancelled
  • the three-dimensional strain ratio measuring unit 52 is based on the temporal change of the compression state on the tissue of the subject in the R ⁇ coordinate system, in the first three-dimensional region of interest and the second three-dimensional region of interest. Obtain an integrated value of elasticity information, estimate the distance from the compression start position to the tissue of the subject based on the obtained integrated value, and elasticity information of a section where the estimated distance is larger or smaller than a preset distance threshold.
  • the difference from the first embodiment is that the three-dimensional elastic ratio is calculated based on the above. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • FIG. 10 is a diagram showing the concept of processing for obtaining the three-dimensional strain ratio of the elasticity information in the seventh embodiment.
  • the compression graph creation unit 54 shown in FIG. 1 receives the output data from the displacement measurement unit 30, the elasticity information calculation unit 32, or the pressure measurement unit 45, and in the ROI 1 as shown in the upper part of FIG. A compression graph 1001 is created. Also, as shown in the lower part of FIG. 10 (a), the integrated graph 1002 is generated by integrating the compression information of the compression graph 1001 in ROI1.
  • the compression graph creation unit 54 integrates the compression information of the compression graph 1003 in ROI2 and the compression graph 1003 in ROI2 to generate an integrated graph 1004 as shown in FIG. .
  • the three-dimensional strain ratio measuring unit 52 can estimate the moving distance from the initial compression position of the ultrasonic probe by referring to the integration graphs 1002 and 1004. As shown in FIG. 10 (c), the three-dimensional distortion ratio measuring unit 52 is a section where the integrated value of the integrated graph 1002 is smaller than the distance threshold 1005, that is, a section where the amount of movement of the probe from the initial compression position is small. Calculate the strain average of ROI1 and ROI2 and calculate the ratio. The method for calculating the three-dimensional elastic ratio is the same as in the first embodiment.
  • the ratio can be calculated between the ROIs 1 and 2 having the same compression position, it is possible to reduce the deterioration of the measured value. As a result, the distortion ratio can be detected with high accuracy.
  • the present Example showed the example which calculates the distortion average in the area where the integrated value of an integrated graph is smaller than a distance threshold value, it is not restricted to this, That is, the area where the integrated value of an integrated graph is smaller than a distance threshold value, ie, initial compression. A distortion average in a section in which the amount of movement of the probe from the position is large can be calculated.
  • the three-dimensional strain ratio measurement unit 52 is configured to determine the interval and compression in which the compression is applied to the tissue of the subject based on the change over time of the compression state of the subject in the R ⁇ coordinate system. 3 is detected based on the elasticity information of the peak of the section where the compression is applied in the first 3D region of interest and the second 3D region of interest, or the section where the compression is released.
  • the point of calculating the dimensional elasticity ratio is different from the first embodiment. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • FIG. 11 is a diagram showing a concept of processing for obtaining a three-dimensional strain ratio of elasticity information in the eighth embodiment.
  • FIG. 11 (a) shows a cross-sectional image 1101 of the YZ plane (short axis direction) in the XYZ coordinate system.
  • the compression graph creating unit 54 shown in FIG. 1 receives the output data from the displacement measuring unit 30, the elasticity information calculating unit 32, or the pressure measuring unit 45, and creates the compression graph 1102 shown in FIG. 9 (b). .
  • the three-dimensional strain ratio measurement unit 52 can grasp the change over time of the displacement, strain, or stress along the ⁇ direction.
  • the three-dimensional strain ratio measurement unit 52 determines whether the compression is applied to the tissue of the subject based on the temporal change (change in ⁇ direction) of the compression state in ROI1 and ROI2 shown by the compression graph 1102.
  • the peak 1103 in the canceled section is detected.
  • the three-dimensional distortion ratio measurement unit 52 calculates the distortion average at the peaks 1103 of ROI1 and ROI2, and calculates the ratio.
  • the method for calculating the three-dimensional elastic ratio is the same as in the first embodiment.
  • the present embodiment there is a demerit that the number of measurement points referring to elasticity information (strain) is reduced, but for example, it is possible to measure a three-dimensional strain ratio with higher accuracy than the above-described sixth embodiment. Can do.
  • strain elasticity information
  • the present Example showed the example which calculates the distortion average at the peak of the compression state in the area where the compression is applied, not only this but the peak of the compression state in the area where the compression is released It can also be configured to calculate the strain average.
  • the position where the distortion average is calculated may be arbitrarily selected via the input interface unit 43, such as a position where the compression state is 0, without being limited to the peak of the compression state.
  • the three-dimensional strain ratio measurement unit 52 is set in advance among the two-dimensional elastic ratios calculated on each of a plurality of tomographic planes (elastic frame data) having the same compression state on the tissue of the subject.
  • the difference from the first embodiment is that the two-dimensional elastic ratio that is out of the elastic ratio threshold range is excluded, and the three-dimensional elastic ratio is calculated based on the two-dimensional elastic ratios in the remaining plurality of fault planes. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • FIG. 12 is a diagram showing a concept of processing for obtaining a three-dimensional strain ratio of elasticity information in the ninth embodiment.
  • FIG. 12 (a) is an example of a two-dimensional strain ratio graph in which the horizontal axis represents the transition in the ⁇ direction and the vertical axis represents the strain ratio (SR).
  • SR strain ratio
  • the three-dimensional strain ratio measuring unit 52 excludes a two-dimensional elastic ratio that is out of a preset elastic ratio threshold range from the two-dimensional elastic ratio calculated along the ⁇ direction.
  • the strain average (SRave) and the deviation ( ⁇ ) with respect to the strain average are calculated by the following formulas 23 and 24.
  • an elastic ratio threshold range 1202 indicated by a range of SRave ⁇ ⁇ is determined.
  • the three-dimensional distortion ratio measuring unit 52 selects only the two-dimensional distortion ratio within the range of SRave ⁇ ⁇ in the ⁇ direction, and adds these selected two-dimensional distortion ratios as shown in the following equation (25). By averaging, a three-dimensional distortion ratio is calculated. In other words, as shown in FIG. 12C, the two-dimensional distortion ratio 1203 having a value larger than SRave + ⁇ is excluded from the calculation for calculating the three-dimensional distortion ratio as noise. According to the present embodiment, since the three-dimensional strain ratio is calculated by adopting only a value within the elastic ratio threshold range, it is possible to calculate an appropriate three-dimensional strain ratio from which the influence of noise has been removed.
  • the elastic slice image generation unit 48 generates one slice image cut out from the elastic volume data converted into the XYZ coordinate system, displays the slice image on the image display 13, and displays 1 of the displayed XYZ coordinates.
  • a plurality of regions of interest are set on the slice image via the input interface unit 43, for each of the plurality of set regions of interest, corresponding regions on the plurality of slice images in the direction orthogonal to one slice image are displayed.
  • the first three-dimensional region of interest and the second three-dimensional region of interest are automatically generated based on the detected region of interest and the plurality of detected regions. Therefore, the description of the same parts as those in the first embodiment is omitted.
  • FIG. 13 is a diagram showing a concept of ROI 1 and 2 automatic setting processing in the tenth embodiment.
  • an MPR image 1301 and an elastic rendering image 1302 are displayed on the image display unit 13.
  • elastic images of the XY, YZ, and XZ planes of the XYZ coordinate system are displayed as MPR images 1301 in the upper left, lower left, and upper right areas of the screen divided into four areas.
  • the elastic rendering image 1302 is displayed.
  • the elastic rendering image 1302 may not be displayed.
  • the examiner selects an arbitrary slice plane of the XY cross section in the MPR image 1301, and selects several boundary portions of the region of interest such as a tumor by the selection points 1303 as shown in FIG. 13 (b). (4 points in this example). Then, an inscribed circle according to the selection diameter connecting the selection points 1303 to each other is set as the region of interest 1304. Subsequently, the boundary set in the region of interest 1304 is detected as a detection region 1305 in each cross section slid in the Z direction by a signal tracking method represented by the tissue tracking method. By connecting the region of interest 1304 and the plurality of detection regions 1305 in the Z-axis direction, a three-dimensional ROI is automatically generated.
  • the three-dimensional region of interest is automatically set only by the examiner setting the region of interest in one cross section, so that the apparatus is easy to use and the efficiency of diagnosis can be improved.
  • the apparatus is easy to use and the efficiency of diagnosis can be improved.
  • a plurality of (for example, two) ROIs are set in order to calculate a three-dimensional distortion ratio. Processing after the three-dimensional ROI is set is the same as in the first embodiment.
  • FIG. 14 is a diagram showing an example of guide display when setting the ROI of the eleventh embodiment.
  • an MPR image 1401 and an elastic rendering image 1402 are displayed on the image display 13.
  • elastic images of the XY, YZ, and XZ planes of the XYZ coordinate system are displayed as MPR images 1401 in the upper left, lower left, and upper right areas of the screen divided into four areas.
  • the elastic rendering image 1402 is displayed.
  • the elastic rendering image 1402 may not be displayed.
  • the examiner can grasp that it is sufficient to set the next ROI (second ROI 1405) so as to be sandwiched between these guidelines 1404 and touch the guidelines 1404. it can. Therefore, according to the present embodiment, the examiner can easily set the two regions of interest as a pair in the Z coordinate (time direction), so that the ratio of the three-dimensional elasticity information can be calculated appropriately, The device is easy to use.
  • the second ROI 1405 can be automatically set based on the angle of this guideline 1404. Also, the set ROI correction can automatically change the size of the other ROI in conjunction with the correction of either the first or second ROI. Further, as shown in FIG. 14 (b), it is possible to reduce the labor of the examiner by setting the guideline 1404 along the contour of the tumor on the YZ plane (time direction).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 簡便な操作で被検体の組織の硬さ又は軟らかさを示す弾性情報を3次元で定量化するために、本発明の超音波診断装置100は、超音波探触子2で計測された反射エコー信号に基づいて被検体の複数の断層面のRF信号フレームデータを生成し、被検体の組織に対する圧迫状態が異なる一対のRF信号フレームデータに基づいて断層面の複数計測点の組織の変位を計測し、この計測した変位に基づいて複数計測点の組織の硬さ又は軟らかさを表す弾性情報を演算する。上記課題を解決するため、表示された弾性レンダリング像上に2つの3次元関心領域を設定する。3次元歪み比計測部52は、設定された第1の3次元関心領域における弾性情報と第2の3次元関心領域における弾性情報との比を算出して、画像表示器13に表示する。

Description

超音波診断装置、及び3次元弾性比算出方法
 本発明は、超音波診断装置、及び3次元弾性比算出方法に係り、特に、被検体の組織の硬さ又は軟らかさを示す弾性情報の3次元定量化技術に関する。
 超音波診断装置は、複数の超音波振動子を備えた超音波探触子により被検体内部に超音波を送信し、被検体内部から生体組織の構造に応じた反射エコー信号を受信し、反射エコー信号に基づいて例えばBモード画像等の断層画像を生成して診断用に表示するものである。
 近年、特許文献1に記載されているように、手動又は機械的な方法により超音波探触子で被検体を圧迫しながら超音波受信信号(RF信号)を計測し、断層面の組織の硬さ又は軟らかさを表す弾性画像を生成することが行なわれている。つまり、組織に対する圧迫状態が異なる1対のRF信号のフレームデータに基づいて圧迫により組織各部に生じた変位を求め、求めた変位のフレームデータに基づいて歪み又は弾性率などの弾性情報のフレームデータを演算し、弾性フレームデータに基づいて弾性画像を生成して表示することが行なわれている。
 ところで、組織の変位は圧迫力の大きさによって変わるから、同一部位の組織であっても、強く圧迫すると歪みが大きくなる。そのため、歪みに基づいて生成された弾性画像は、その弾性画像上の各部位の歪みの相対表示を表すに過ぎず、硬さを定量的に評価することができない。
 この点、特許文献2に記載されているように、被検体のある断層面の弾性画像を表示し、表示された弾性画像上で2つの関心領域(ROI)を設定し、設定された2つの関心領域の弾性情報の2次元弾性比を算出して表示することが知られている。これによれば、2つの関心領域の弾性情報の2次元弾性比を算出して指標値化しているから、圧迫力に関係なく、検者は診断部位の組織の硬さを定量的に評価することができるとされている。
特開平5-317313号公報 特許第3991282号公報
 しかしながら、特許文献2の技術は、ある断層面における2次元の弾性情報を定量化することに留まっており、弾性情報を3次元で定量化することについては考慮されていない。
 したがって、特許文献2の技術を用いて、診断部位の組織の硬さを3次元で評価したい場合には、複数の断層面について2つの2次元関心領域をそれぞれ設定する必要がある。しかし、これは操作性の面であまり好ましくはない。
 そこで本発明は、簡便な操作で被検体の組織の硬さ又は軟らかさを示す弾性情報を3次元で定量化することを課題とする。
 本発明の超音波診断装置は、被検体との間で超音波を送受信する超音波探触子と、該超音波探触子で計測された反射エコー信号に基づいて硬さ又は軟らかさを表す弾性情報を演算して弾性フレームデータを生成する弾性情報演算部と、複数の前記弾性フレームデータに基づいて弾性ボリュームデータを作成する弾性ボリュームデータ作成部と、弾性ボリュームデータに基づいて作成された弾性レンダリング画像及び複数断面の弾性スライス画像の少なくとも一方を表示する表示部と、表示された弾性レンダリング画像及び複数断面の弾性スライス画像の少なくとも一方を介して複数の3次元関心領域を設定する入力部と、設定された第1の3次元関心領域における弾性情報と第2の3次元関心領域における弾性情報との3次元弾性比を算出する3次元弾性比計測部とを備え、算出された3次元弾性比を表示部に表示する。
 これによれば、検者が入力手段を介して画像上に複数(例えば2つ)の3次元関心領域を設定すれば、第1の3次元関心領域における弾性情報と第2の3次元関心領域における弾性情報との3次元弾性比が算出されて表示される。したがって、検者は簡便な操作で被検体の組織の硬さ又は軟らかさを示す弾性情報を3次元で定量的に把握することができる。例えば、正常組織の部位又は硬さに個体差が少ない組織の部位に設定した3次元関心領域を基準として、腫瘍などの病変部と思われる部位に設定した3次元関心領域の硬さを定量的に表すことができる。
 本発明によれば、簡便な操作で被検体の組織の硬さ又は軟らかさを示す弾性情報を3次元で定量化することができる。
本実施形態の超音波診断装置の全体構成を示すブロック図 第1実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第1実施例の処理のフローチャート 第2実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第3実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第4実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第4実施例の処理のフローチャート 第5実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第6実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第7実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第8実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第9実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図 第10実施例のROI1,2の自動設定の処理の概念を示す図 第11実施例のROIを設定する際のガイド表示の例を示す図
 以下、本発明を適用してなる超音波診断装置、及び弾性情報の3次元定量化方法の実施形態を説明する。なお、以下の説明では、同一機能部品については同一符号を付して重複説明を省略する。
 図1は、本実施形態の超音波診断装置の全体構成を示すブロック図である。図1に示すように、超音波診断装置100には、被検体1に当接させて用いる超音波探触子2と、超音波探触子2を介して被検体1に時間間隔をおいて繰り返し超音波を送信する送信部3と、被検体1から発生する時系列の反射エコー信号を受信する受信部4と、送信部3と受信部4の送信と受信を切り換える制御を行なう超音波送受信制御部5と、受信部4で受信された反射エコー信号を整相加算する整相加算部6が備えられている。
 超音波探触子2は、矩形又は扇形の複数の振動子を配設して形成されており、被検体1に振動子を介して超音波を送受信する機能を有している。この超音波探触子2は、複数の振動子の配列方向(長軸方向)と直交する方向(短軸方向)に振動子を機械的に振りながら超音波を送受信することができるよう、モータ制御可能に構成されている。また、超音波探触子2は、超音波の送受信と同時に振動子の傾きを計測する位置センサを有しており、振動子の傾きをフレームナンバーとして出力する。なお、超音波探触子2は、複数の振動子が2次元配列され、超音波送受信方向を電子的に制御することができるものでもよい。
 送信部3は、超音波探触子2の振動子を駆動して超音波を発生させるための送波パルスを生成する。送信部3は、送信される超音波の収束点をある深さに設定する機能を有している。また、受信部4は、超音波探触子2で受信した反射エコー信号について所定のゲインで増幅してRF信号すなわち受信信号を生成するものである。超音波送受信制御部5は、送信部3や受信部4を制御する。
 また、超音波診断装置100には、受信部4で増幅されたRF信号を入力して位相制御し、一点又は複数の収束点に対し超音波ビームを形成してRF信号フレームデータを生成する整相加算部6と、整相加算部6からのRF信号フレームデータを入力してゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行ない、断層画像データを生成する断層画像構成部7と、断層画像構成部7から出力される断層画像データをフレームナンバーとともに記憶する2次元断層画像記憶部35とが備えられている。
 ここで、本実施形態の超音波診断装置100は、短軸走査位置制御部46を介して短軸方向に機械的に振動子を振りながら超音波を送受信しており、短軸方向の一方の方向又は反対方向のスキャンを行いながら、2次元断層画像記憶部35には、nフレームの断層画像データが格納される。
 フレームナンバーは、複数の振動子の位置(傾き)と断層画像データとを対応付けるものである。短軸方向の一方の方向のスキャンにおける最初のフレームナンバーを“1”とし、最後のフレームナンバーを“n”とする(nは2以上の自然数)。フレームナンバー“1”の断層画像データが最初に2次元断層画像記憶部35に記憶され、次にフレームナンバー“2”の断層画像データが2次元断層画像記憶部35に記憶される。そして、最後にフレームナンバー“n”の断層画像データが2次元断層画像記憶部35に記憶される。
また、短軸方向の反対方向のスキャンにおける最初のフレームナンバーを“n”とし、最後のフレームナンバーを“1”とし、断層画像データが順次2次元断層画像記憶部35に記憶される。
 超音波診断装置100は、2次元断層画像記憶部35に記憶されたnフレーム分の断層画像データを読み出し、スキャン面毎に順次並べて白黒ボリュームデータを作成する断層ボリュームデータ作成部36を備えており、被検体内の断層画像データの集合であるレンダリング用の断層ボリュームデータが構成される。
 また、超音波診断装置100には、断層ボリュームデータ作成部36から出力されたRΘΦ座標系の断層画像データをXYZ座標系に変換する断層3次元スキャンコンバージョン部37と、断層3次元スキャンコンバージョン部37から出力されたXYZ座標系の断層画像データを、平面に投影して断層レンダリング画像を生成する断層ボリュームレンダリング部38とが備えられている。
 具体的には、断層ボリュームレンダリング部38は、断層ボリュームデータの各点(座標)に対応する輝度値と不透明度から各点の画像情報を求める。そして、例えば下記数式による、視線方向の断層ボリュームデータの輝度値と不透明度を深さ方向に演算して濃淡を与えるボリュームレンダリング法を用いて断層レンダリング画像を構成する。
αouti=αini+(1-αini)*αi
Couti=Cini+ (1-αini)*αi*Ci
 ここで、αouti :i番目の不透明度の出力、αini:i番目の不透明度の入力、αi:i番目の不透明度、Couti:i番目の輝度値の出力、Cini:i番目の輝度値の入力、Ci:i番目の輝度値である。
 なお、上記では、ボリュームレンダリング法を用いて断層レンダリング画像を構成したが、各点の画像が視点位置に該当する面に対してなす傾斜角に応じて濃淡を与えるサーフェスレンダリング法や、視点位置からみた対象物の奥行きに応じて濃淡を与えるボクセル法を用いてもよい。
 また、超音波診断装置100には、断層3次元スキャンコンバージョン部37でXYZ座標系に変換された断層ボリュームデータの直交3断面の断層MPR画像を生成する断層スライス画像生成部47が備えられている。断層スライス画像生成部47は、断層MPR画像の他、XYZ座標系に変換された断層ボリュームデータから複数平行に切り出された断層マルチスライス画像を生成する機能も有している。
 一方、超音波診断装置100には、断層レンダリング画像と後述する弾性レンダリング画像を合成したり、弾性MPR画像又はマルチスライス画像と後述する弾性MPR画像又は弾性マルチスライス画像を合成したり、これらの画像を並列に表示させたり、切替えを行なう切替合成部12と、合成画像等を表示する画像表示器(表示部)13とが備えられている。
 さらに、超音波診断装置100には、整相加算部6から出力されるRF信号フレームデータを記憶するRF信号フレームデータ記憶部27と、RF信号フレームデータ記憶部27に記憶された少なくとも2つのRF信号フレームデータを選択するRF信号フレームデータ選択部28と、2つのRF信号フレームデータから被検体1の生体組織の変位を計測して変位フレームデータを生成する変位演算部30と、変位計測部30で計測された変位情報から歪み又は弾性率、粘性率などの弾性情報を求めて弾性フレームデータを生成する弾性情報演算部32と、弾性情報演算部32で演算した歪み又は弾性率などの弾性情報から2次元の弾性画像データを構成する弾性画像構成部34とを備えている。
 また、弾性画像構成部34から出力された2次元弾性画像データを記憶する2次元弾性画像記憶部39と、被検体の複数の断面で生成された複数の2次元弾性画像データから弾性ボリュームデータを生成する弾性ボリュームデータ作成部40と、弾性ボリュームデータ作成部40から出力されたRΘΦ座標系の弾性画像データをXYZ座標系に変換する弾性3次元スキャンコンバージョン部41と、弾性3次元スキャンコンバージョン部41から出力されたXYZ座標系の弾性画像データを、平面に投影して弾性レンダリング画像を生成する弾性ボリュームレンダリング部42を備えている。
 また、超音波診断装置100には、弾性3次元スキャンコンバージョン部41でXYZ座標系に変換された弾性ボリュームデータの直交3断面のMPR画像を生成する弾性スライス画像生成部48が備えられている。弾性スライス画像生成部48は、弾性MPR画像の他、XYZ座標系に変換された弾性ボリュームデータから複数平行に切り出された弾性マルチスライス画像を生成する機能も有している。
 また、超音波診断装置100には、各構成要素を制御する画像系制御部44と、画像系制御部44に各種入力を行なう入力インターフェース部(入力部)43を備えている。入力インターフェース部43は、キーボードやトラックボール等により構成される。
 RF信号フレームデータ記憶部27は、整相加算部6から時系列に生成されるRF信号フレームデータを順次記憶する。そして、変位計測部30は、選択されたフレームナンバー“n”のRF信号フレームデータから1次元或いは2次元相関処理を行って、RF信号フレームデータの各点に対応する生体組織における変位や移動ベクトルすなわち変位の方向と大きさに関する1次元又は2次元変位分布を求める。ここで、移動ベクトルの検出にはブロックマッチング法を用いる。ブロックマッチング法とは、画像を例えばM×M画素からなるブロックに分け、関心領域内のブロックに着目し、着目しているブロックに最も近似しているブロックを前のフレームから探し、これを参照して予測符号化すなわち差分により標本値を決定する処理を行なうものである。
 弾性情報演算部32は、変位計測部30から出力される計測値、例えば移動ベクトルと、圧力計測部45から出力される圧力値とから画像上の各点(座標)に対応する生体組織の歪みを演算し、弾性情報を生成するものである。このとき、歪みは、生体組織の移動量、例えば、変位を空間微分することによって算出される。また、弾性情報演算部32において弾性率を演算するよう構成されていてもよい。この場合、超音波探触子2の圧力センサ(図示しない。)に接続された圧力計測部45によって取得された圧力情報を弾性情報演算部32に出力する。弾性率は、圧力の変化を歪みの変化で除することによって計算される。
 例えば、圧力計測部45により圧力を計測する場合には、変位計測部30により計測された変位をL(X)、圧力計測部45により計測された圧力をP(X)とすると、歪みΔS(X)は、L(X)を空間微分することによって算出することができる。すなわち、ΔS(X)=ΔL(X)/ΔXという式を用いて求められる。また、弾性率のヤング率Ym(X)は、Ym=(ΔP(X))/ΔS(X)という式によって算出される。このヤング率Ymから画像の各点に相当する生体組織の弾性率が求められるので、2次元弾性画像を連続的に得ることができる。なお、ヤング率とは、物体に加えられた単純引張り応力と、引張りに平行に生じる歪みに対する比である。
 弾性画像構成部34は、算出された弾性値(歪み、弾性率等)に対し、座標平面内におけるスムージング処理、コントラスト最適化処理や、フレーム間における時間軸方向のスムージング処理等の様々な画像処理を行ない、2次元弾性画像データを構成する。
 2次元弾性画像記憶部39は、一連のフレームナンバー“1”~“n”の2次元弾性画像データを記憶する。2次元弾性画像記憶部39には、超音波探触子の短軸方向の一方の方向及び反対方向におけるフレームナンバー“1”~“n”のRF信号フレームデータが格納される。
 弾性ボリュームデータ作成部40は、複数の2次元弾性画像データから弾性ボリュームデータを作成する。2次元弾性画像記憶部39に記憶されたnフレーム分の2次元弾性画像データを読み出し、スキャン面毎に順次並べて弾性ボリュームデータを作成する。このように、被検体内の2次元弾性画像データの集合であるレンダリング用の弾性ボリュームデータが構成される。
 弾性ボリュームレンダリング部42は、弾性ボリュームデータの各点に対応する弾性値(歪み、弾性率等のいずれか1つ)と不透明度から各点の画像情報を求め、3次元弾性画像を構成する。例えば下記数式による、視線方向の弾性ボリュームデータの弾性値を深さ方向に演算するボリュームレンダリング法を用いて3次元弾性画像を構成する。なお、この視線方向は、断層ボリュームレンダリング部38のボリュームレンダリング処理等における視線方向と同一方向である。
αouti=αini+(1-αini)×αi
Eouti=Einii×(1-αini)×Ei
 ここで、αouti :i番目の不透明度の出力、αini:i番目の不透明度の入力、αi:i番目の不透明度、Eouti:i番目の弾性値の出力、Eini:i番目の弾性値の入力、Ei:i番目の弾性値である。
 また、弾性ボリュームレンダリング部42は、3次元弾性画像を構成する画像情報に光の3原色すなわち赤(R)値、緑(G)値、青(B)値を付与する。弾性ボリュームレンダリング部42は、例えば、歪みが周囲に比べて大きい箇所又は弾性率が小さい箇所に赤色コードを付与し、歪みが周囲に比べて小さい箇所又は弾性率が大きい箇所に青色コードを付与するなどの処理を行なう。
 例えば、上記αを0又は1とすることにより、断層レンダリング画像データ又は弾性レンダリング画像データのみを抽出することもできる。画像選択部は、ボリュームメモリ内の断層レンダリング画像データと弾性レンダリング画像データ及び画像処理部の合成画像データのうちから画像表示器13に表示する画像を選択するものである。
 切替合成部12は、例えば画像メモリに確保された断層レンダリング画像と弾性レンダリング画像とを合成割合を変更して合成するものである。切替合成部12は、同じ視点位置における断層レンダリング画像と弾性レンダリング画像を画像メモリから読み出す。そして、断層レンダリング画像と弾性レンダリング画像を合成するが、断層レンダリング画像と弾性レンダリング画像はボリュームレンダリング処理等後の画像データであるため、実質的にはそれぞれ2次元的に加算されることとなる。
 具体的には、例えば下記数式に示すように、各点において、弾性レンダリング画像の赤(R)値、緑(G)値、青(B)値と、断層レンダリング画像の赤(R)値、緑(G)値、青(B)値とをそれぞれ加算する。なお、αは0以上1以下の係数であり、入力インターフェース部43を介して任意に設定することができる。
 (合成画像データR)=α×(弾性レンダリング画像データR)+(1-α)×(断層レンダリング画像データR)、
 (合成画像データG)=α×(弾性レンダリング画像データG)+(1-α)×(断層レンダリング画像データG)、
 (合成画像データB)=α×(弾性レンダリング画像データB)+(1-α)×(断層レンダリング画像データB)
 ところで、本実施形態のように被検体の組織の変位を求めて弾性画像を生成する超音波診断装置100においては、組織の変位は例えば超音波探触子による圧迫力の大きさによって変わる。したがって、同一部位の組織であっても、強く圧迫すると歪みが大きくなる。
 そして、被検体のある断層面の弾性画像上で設定された2つの関心領域(ROI)を設定し、設定された2つの関心領域の弾性情報の比を算出することにより、診断部位の弾性情報を指標値化して硬さを定量的に評価する。
 この手法について簡単に説明を行なう。上述のように組織の変位は例えば超音波探触子による圧迫力の大きさによって変わるから、歪み量に基づいて生成された弾性画像は、その弾性画像上の各部位の歪みの相対表示を表すに過ぎず、硬さを定量的に評価することができない。これに対して例えば弾性率(E)は、組織に加わる応力(σ)を歪み(ε)で除したものであり、組織の硬さ又は軟らかさを示す絶対的な値であるから、定量的に評価することができる。
 上述の手法は、例えば癌組織と思われる箇所と脂肪組織と思われる箇所にそれぞれ関心領域を設定し、2つの関心領域における歪み比を求めるものである。つまり、2つの関心領域が設定された組織のそれぞれの弾性率をE1,E2とした場合、E1=σ1/ε1、E2=σ2/ε2で表される。ここで、同一フレームの組織にはほぼ同等な圧力が印加されていると推定できる、つまりσ1≒σ2と推定できる。上述の手法はこの点を利用して、2つの関心領域における弾性率の比E1/E2を歪み比ε1/ε2を求めることにより推定するものである。
 本実施形態の超音波診断装置100は、図1に示すように、座標変換部50と、3次元歪み比計測部52などを特徴構成として備えている。3次元歪み比計測部52は、画像表示器13に表示された弾性レンダリング画像等上に入力インターフェース部43を介して第1の3次元関心領域と第2の3次元関心領域が設定されたら、設定された第1の3次元関心領域における弾性情報と第2の3次元関心領域における弾性情報との3次元弾性比を算出する3次元弾性比計測部である。つまり、3次元歪み比計測部52を3次元弾性比計測部と置き換えることができる。
 3次元歪み比計測部52(3次元弾性比計測部)は、弾性レンダリング画像を構成する複数の弾性フレームデータにおいて、第1の3次元関心領域に対応する領域の弾性情報と第2の3次元関心領域に対応する領域の弾性情報との2次元弾性比をそれぞれ算出する。そして、3次元歪み比計測部52(3次元弾性比計測部)は、それぞれの弾性フレームデータにおける2次元弾性比に基づいて3次元弾性比を算出する。具体的には、3次元歪み比計測部52(3次元弾性比計測部)は、それぞれの弾性フレームデータにおいて算出された2次元弾性比を加算平均して3次元弾性比を算出する。
 また、座標変換部50は、画像表示器13に表示されたXYZ座標系の例えば弾性レンダリング画像上に入力インターフェース部43を介して第1の3次元関心領域と第2の3次元関心領域が設定されたら、各3次元関心領域をXYZ座標系からRΘΦ座標系に変換する座標変換手段である。以下、本実施形態の特徴構成について実施例ごとに詳細に説明する。
(第1の実施例)
 本実施形態の超音波診断装置の弾性情報の3次元弾性比(3次元歪み比)を求める第1の実施例について図2,3を用いて説明する。図2は、第1実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図である。図3は、第1実施例の処理のフローチャートである。本実施例は、弾性3次元スキャンコンバージョン部41によってXYZ座標系に変換された弾性ボリュームデータに基づいて生成された弾性レンダリング画像を表示して、この弾性レンダリング画像上に2つの関心領域を設定する場合の実施例である。
 まず、図2(a)に示すように、画像表示器13には、弾性レンダリング画像201が表示される。検者は、図3(a),図2(b)に示すように、入力インターフェース部43を介して弾性レンダリング画像201上に2つの3次元関心領域202,203を透過もしくは上書きするかして設定する(図3の301)。以下、適宜2つの3次元関心領域202,203のことを、ROI1,ROI2と言う。
 続いて、図2(c)に示すように、3次元関心領域202,203は、XYZデータのマスク情報204,205としてデータ化される。そしてマスク情報204,205は、図2(d)に示すように、座標変換部50によってXYZの直交座標系をRΘΦの極座標系に座標変換されて、RΘΦ座標系のROIマスクデータ206,207が作成される(図3の302)。
 3次元歪み比計測部52は、図2(e)に示すように、ROIマスクデータ206,207のオンオフ制御により、RΘΦ座標系における弾性情報ボリュームデータからのXYZ座標系にて設定された3次元関心領域の弾性情報(歪み)を参照可能となる。これにより、RΘΦ座標系に変換されたROIマスクデータ206の弾性情報とROIマスクデータ207の弾性情報とに基づいて3次元弾性比を算出する。
 より具体的には、3次元歪み比計測部52は、数1,2式のように、各弾性フレームデータのROI1,ROI2のそれぞれにおいて歪み(平均値)を算出する。そして、数3式のように、ROI1,2間の歪みの比を算出する(図3の303)。これにより、弾性フレームデータ毎に歪み比を算出することができる。最終的には、数4式のように、弾性フレームデータ毎に算出された2次元の歪み比を加算平均することで3次元の歪み比が算出される(図3の304)。算出された3次元の歪み比は、画像表示器13に表示される(図3の305)。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、εij(Φ):RΘΦ座標(i,j,Φ)におけるpixel歪み、εroi1(Φ):フレームにおけるROI1内の歪み平均、εroi2(Φ):フレームにおけるROI2内の歪み平均、SR(Φ):各フレームの歪み比、SR3d:3次元における歪み比平均、NΦ:加算平均の弾性フレームデータのフレーム数である。
 一方、上記説明は図3(a)の際の説明であるが、図3(b)に示すような処理手順を行なってもよい。まず、3次元画像上にROI1,2を設定し(図3の306)、計測ROIマスクをXYZ座標からRΘΦ座標に変換する(図3の307)。
 続いて、RΘΦ座標系の弾性情報ボリュームデータから各弾性フレームデータの歪み平均値を算出し(図3の308)、各弾性フレームデータのROI1、ROI2から各弾性フレームデータの歪み平均値を加算平均する(図3の309)。最終的に、ROI1、ROI2の歪み平均値の比から歪み比を算出して表示する(図3の310)。この処理手順の場合は、数5,6式により、ROI1,2内の3次元歪み平均値を算出し、数7式により、3次元におけるROI1,2の歪み比平均値を算出する。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、εroi1 3d: ROI1内の3次元歪み平均、εroi2 3d:ROI2内の3次元歪み平均、εijk:RΘΦ座標(i,j,k)におけるpixel歪みである。
 ところで、XYZ座標系で表示された弾性レンダリング等上で3次元関心領域が設定された場合、XYZ座標系での例えばXY断面、YZ断面、XZ断面等における弾性情報は必ずしも同様の圧迫状態において生成されたものとはならない。したがって、例えばXY断面、YZ断面、XZ断面等において弾性情報の比を求めると、適正な定量化が図れなくなる。この点、本実施例のように、XYZ座標系の弾性レンダリング画像等上で設定された第1及び第2の3次元関心領域を、XYZ座標系からRΘΦ座標系に変換して、RΘΦ座標系に変換された第1及び第2の3次元関心領域の弾性情報に基づいて3次元弾性比を算出することにより、適正に3次元の弾性情報の定量化を図ることができる。
 また本実施例は、弾性レンダリング像を位置情報として計測用のROI1,2を設定する場合の例を説明したが、断層レンダリング像上、もしくは断層像と弾性像を重ね合わせた合成レンダリング像上に計測用のROI1,2を設定するようにしてもよい。
 ここで、座標変換部50によるXYZの直交座標系からRΘΦの極座標系への座標変換について説明しておく。数8式により画面上の座標X、YとMPR用のマトリクスからxiyiziを算出し、それぞれの画素から画面2D座標からXYZ座標に変換する。
Figure JPOXMLDOC01-appb-M000008
 また、数9式からXYZ座標系の短軸面をアフィンマトリクスにより、変換中間座標時変換し、数10式、数11式から極座標に変換し、数12式~数15式の座標のオフセットとスケールからΦとrの中間座標を算出する。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 次に、数16式をからXYZ座標のxiと上記算出したrtmpとアフィンマトリクス係数から長軸方向の直交座標に変換し、数17式と数18式により極座標変換を行う。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 また、数19式~数22式の様に、座標のオフセットとスケールからrとθの中間座標を算出する。これにより、MPR平面に対応した極座標ボクセルを参照可能である。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022

 以上、本実施例では、被検体との間で超音波を送受信する超音波探触子2と、超音波探触子1で計測された反射エコー信号に基づいて硬さ又は軟らかさを表す弾性情報を演算して弾性フレームデータを生成する弾性情報演算部32と、複数の弾性フレームデータに基づいて弾性ボリュームデータを作成する弾性ボリュームデータ作成部40と、弾性ボリュームデータに基づいて作成された弾性レンダリング画像及び複数断面の弾性スライス画像の少なくとも一方を表示する表示部13と、表示された弾性レンダリング画像及び複数断面の弾性スライス画像の少なくとも一方を介して複数の3次元関心領域を設定する入力部43と、設定された第1の3次元関心領域における弾性情報と第2の3次元関心領域における弾性情報との3次元弾性比を算出する3次元歪み比計測部52(3次元弾性比計測部)とを備え、算出された3次元弾性比を表示部13に表示する。したがって、検者は簡便な操作で被検体の組織の硬さ又は軟らかさを示す弾性情報を3次元で定量的に把握することができる。
 特に、被検体のスライス位置が異なる複数の断層面の弾性フレームデータを生成するためには、例えば探触子の短軸方向に超音波走査面をモータ制御可能な超音波探触子等を用いて、超音波走査面を短軸方向にスライドしながら超音波送受信を行なう必要がある。一方、上述のように、弾性画像は手動又は機械的な方法により超音波探触子で被検体を圧迫しながら生成される。したがって、被検体の複数の断層面で生成される弾性フレームデータは、それぞれ異なる圧迫状態において生成されることになる。ここで、同一の弾性フレームデータには同様の圧迫力が加わっているから2つの2次元関心領域の弾性情報の比を求めることにより圧迫力の影響を排除でき、その結果弾性情報の定量化が実現できるが、異なる断層面の異なる圧迫状態で生成された2つの弾性フレームデータ相互間で弾性情報の比を求めても適正な定量化は図れない。
 この点、3次元歪み比計測部52(3次元弾性比計測部)は、弾性レンダリング画像を構成する複数の前記弾性フレームデータにおける第1の3次元関心領域に対応する領域の弾性情報と第2の3次元関心領域に対応する領域の弾性情報との2次元弾性比をそれぞれ算出し、それぞれの弾性フレームデータにおける2次元弾性比に基づいて3次元弾性比を算出する。3次元歪み比計測部52(3次元弾性比計測部)は、それぞれの弾性フレームデータにおいて算出された2次元弾性比を加算平均して3次元弾性比を算出する。
 これによれば、弾性フレームデータが生成された複数の断層面のそれぞれにおいて弾性情報の比を求めているから、複数の弾性フレームデータがそれぞれ異なる圧迫状態で生成されていたとしても、適正に3次元の弾性情報の定量化を実現することができる。
 本発明の超音波診断装置は、より具体的には、弾性ボリュームデータをRΘΦ座標系で生成した場合、弾性ボリュームデータをRΘΦ座標系からXYZ座標系に変換する弾性3次元スキャンコンバージョン部41と、XYZ座標系に変換された弾性ボリュームデータに基づいて弾性レンダリング画像を生成する弾性ボリュームレンダリング部42と、画像表示器13(表示部)に表示されたXYZ座標系の弾性レンダリング画像上に設定された第1の3次元関心領域と第2の3次元関心領域を、XYZ座標系からRΘΦ座標系に変換する座標変換部50とを備えて超音波診断装置を構成し、3次元歪み比計測部52(3次元弾性比計測部)は、RΘΦ座標系に変換された第1の3次元関心領域の弾性情報と第2の3次元関心領域の弾性情報とに基づいて3次元弾性比を算出するよう構成することができる。
 また、RΘΦ座標系で生成された弾性ボリュームデータに基づいて画像表示器13(表示部)に弾性レンダリング画像等の各種画像を表示するためには、RΘΦ座標系の弾性ボリュームデータをXYZ座標系に変換して、XYZ座標系の弾性ボリュームデータに基づいて弾性レンダリング画像等を生成して表示するのが一般的である。ここで、XYZ座標系で表示された弾性レンダリング等上で3次元関心領域が設定された場合、XYZ座標系での例えばXY断面、YZ断面、XZ断面等における弾性情報は必ずしも同様の圧迫状態において生成されたものとはならない。したがって、例えばXY断面、YZ断面、XZ断面等において弾性情報の比を求めると、適正な定量化が図れなくなる。この点、本発明では、XYZ座標系の弾性レンダリング画像等上で設定された第1及び第2の3次元関心領域を、XYZ座標系からRΘΦ座標系に変換して、RΘΦ座標系に変換された第1及び第2の3次元関心領域の弾性情報に基づいて3次元弾性比を算出しているから、適正に3次元の弾性情報の定量化を図ることができる。
 より具体的には、3次元歪み比計測部52(3次元弾性比計測部)は、RΘΦ座標系の被検体の組織に対する圧迫状態が同等な複数の断層面のそれぞれにおいて、RΘΦ座標系に変換された第1の3次元関心領域に対応する領域の弾性情報と第2の3次元関心領域に対応する領域の弾性情報との比を算出し、この算出された複数の断層面における2次元弾性比に基づいて3次元弾性比を算出するよう構成することができる。
 (第2の実施例)
 本実施形態の超音波診断装置の第2の実施例について説明する。本実施例は、弾性スライス画像生成部48が、XYZ座標系に変換された弾性ボリュームデータの直交3断面のMPR画像を生成し、表示されたXYZ座標系のMPR画像上に第1の3次元関心領域と第2の3次元関心領域を設定する点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。
 図4は、第2実施例の弾性情報の3次元弾性比(3次元歪み比)を求めるための処理の概念を示す図である。まず、図4(a)に示すように、画像表示器13には、MPR画像401と、弾性レンダリング画像201が表示される。具体的には、画面の4分割された左上、左下、右上の領域に、MPR画像401として、XYZ座標系のXY面、YZ面、XZ面の弾性画像が表示され、画面の右下の領域に、弾性レンダリング画像201が表示される。ただし、弾性レンダリング画像201は表示しなくてもよい。
 検者は、図4(b)に示すように、入力インターフェース部43を介してMPR画像401上に2つの3次元関心領域402,403を設定する。以下、適宜2つの3次元関心領域402,403のことを、ROI1,ROI2と言う。このようにMPR画像上でROI1,2を設定することで、それぞれの断面でのROIの設定状態を確認することができ、例えば、Z方向に細長くなる腫瘍の場合に、ROIを容易に調整することができる。
 続いて、図4(c)に示すように、3次元関心領域402,403は、XYZデータのマスク情報404,405としてデータ化される。すなわち、図4(b)に示すように、MPR画像上で設定されたROI情報は視覚上において2次元の情報であるが、XYZ座標として管理されるべく情報であり、図4(c)の様なXYZデータのマスク情報として容易にデータ化することができる。続いて、マスク情報404,405は、図4(d)に示すように、座標変換部50によってXYZの直交座標系をRΘΦの極座標系に座標変換されて、RΘΦ座標系のROIマスクデータ406,407が作成される。
 3次元歪み比計測部52は、図4(e)に示すように、ROIマスクデータ406,407のオンオフ制御により、RΘΦ座標系における弾性情報ボリュームデータからのXYZ座標系にて設定された3次元関心領域の弾性情報(歪み)を参照可能となる。これにより、RΘΦ座標系に変換されたROIマスクデータ406の弾性情報とROIマスクデータ407の弾性情報とに基づいて3次元弾性比を算出する。3次元弾性比の算出の方法は第1実施例と同様である。
 本実施例は、弾性MPR像を位置情報として計測用のROI1,2を設定することを例として説明したが、これに限らず、断層MPR像上、もしくは断層像と弾性像を重ね合わせた合成MPR像上で計測用のROI1,2を設定するようにしてもよい。
 (第3の実施例)
 本実施形態の超音波診断装置の第3の実施例について説明する。本実施例は、弾性スライス画像生成部48が、XYZ座標系に変換された弾性ボリュームデータから複数平行に切り出されたマルチスライス画像(弾性マルチスライス画像)を生成し、表示されたXYZ座標系のマルチスライス画像上に第1の3次元関心領域と第2の3次元関心領域を設定する点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。
 図5は、第3実施例の弾性情報の3次元弾性比(3次元歪み比)を求めるための処理の概念を示す図である。まず、図5(a)に示すように、画像表示器13には、弾性マルチスライス画像501が表示される。弾性マルチスライス画像は、3次元に観察する手法の一つであり、XYZ座標系において任意の切断角度における異断面を同時に複数分割画面にて表示できることがメリットである。
 検者は、図5(b)に示すように、入力インターフェース部43を介して弾性マルチスライス画像501上に2つの3次元関心領域502,503を設定する。以下、適宜2つの3次元関心領域502,503のことを、ROI1,ROI2と言う。このように弾性マルチスライス画像501のそれぞれに対してROI1,2を設定することで、例えば、Y方向に直径の変化が大きい腫瘍の場合には、ROIを調整することで、そのスライス面に応じた大きさが容易に設定可能となる。  
 続いて、図5(c)に示すように、3次元関心領域502,503は、XYZデータのマスク情報504,505としてデータ化される。すなわち、図5(b)に示すように、弾性マルチスライス画像501上で設定されたROI情報は視覚上において2次元の情報であるが、XYZ座標として管理されるべく情報であり、図5(c)の様なXYZデータのマスク情報として容易にデータ化することができる。続いて、マスク情報504,505は、図5(d)に示すように、座標変換部50によってXYZの直交座標系をRΘΦの極座標系に座標変換されて、RΘΦ座標系のROIマスクデータ506,507が作成される。
 3次元歪み比計測部52は、図5(e)に示すように、ROIマスクデータ506,507のオンオフ制御により、RΘΦ座標系における弾性情報ボリュームデータからのXYZ座標系にて設定された3次元関心領域の弾性情報(歪み)を参照可能となる。これにより、RΘΦ座標系に変換されたROIマスクデータ506の弾性情報とROIマスクデータ507の弾性情報とに基づいて3次元弾性比を算出する。3次元弾性比の算出の方法は第1実施例と同様である。
 本実施例は、弾性マルチスライス像を位置情報として計測用のROI1,2を設定する例を説明したが、これに限らず、例えば断層マルチスライス像上、もしくは断層像と弾性像を重ね合わせた合成マルチスライス像上で計測用のROI1,2を設定するようにしてもよい。
 (第4の実施例)
 本実施形態の超音波診断装置の第4の実施例について説明する。本実施例は、座標変換部50によってRΘΦ座標系に変換された第1の3次元関心領域と第2の3次元関心領域をRΘΦ座標系で画像表示器13に表示し、RΘΦ座標系で表示された第1の3次元関心領域及び第2の3次元関心領域の少なくとも一方の3次元関心領域を画像上で調整可能に構成されている点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。
 図6は、第4実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図である。図7は、第4実施例の処理のフローチャートである。まず、図6(a)に示すように、画像表示器13には、弾性レンダリング画像601が表示される。検者は、図7,図6(b)に示すように、入力インターフェース部43を介して弾性レンダリング画像601上に2つの3次元関心領域602,603を透過もしくは上書きするかして設定する(図7の701)。以下、適宜2つの3次元関心領域602,603のことを、ROI1,ROI2と言う。
 続いて、図6(c)に示すように、3次元関心領域602,603は、XYZデータのマスク情報604,605としてデータ化される。そしてマスク情報604,605は、図6(d)に示すように、座標変換部50によってXYZの直交座標系をRΘΦの極座標系に座標変換されて、RΘΦ座標系のROIマスクデータ606,607が作成される(図7の702)。
 検者は、図6(e)に示すように、画像表示器13を参照しながら、RΘΦ座標系に変換されたROIマスクデータ606,607をRΘΦの極座標系の画像上で調整する(図7の703)。3次元歪み比計測部52は、図6(e)に示すように、調整されたROIマスクデータ606,607のオンオフ制御により、RΘΦ座標系における弾性情報ボリュームデータからのXYZ座標系にて設定された3次元関心領域の弾性情報(歪み)を参照可能となる。これにより、RΘΦ座標系に変換されて調整されたROIマスクデータ606の弾性情報とROIマスクデータ607の弾性情報とに基づいて3次元弾性比を算出する。
 具体的には、ROI1,ROI2のそれぞれにおいて各フレーム内の歪み平均を算出して、ROI1,2間の歪みの比を算出する(図7の704)。これにより、フレームごとの歪み比を算出することができる。最終的には、フレームごとに算出された値を加算平均して3次元の歪み比を算出し(図7の705)、算出された3次元の歪み比は、画像表示器13に表示される(図7の706)。
 (第5の実施例)
 本実施形態の超音波診断装置の第5の実施例について説明する。本実施例は、3次元歪み比計測部52が、RΘΦ座標系での被検体の組織に対する圧迫状態の経時的変化に基づいて、第1の3次元関心領域及び第2の3次元関心領域における圧迫状態が同等な区間を検出し、検出された圧迫状態が同等な区間の弾性情報に基づいて3次元弾性比を算出する点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。3次元歪み比計測部52(3次元弾性比計測部)は、被検体の組織に対する圧迫状態が同等な複数の弾性フレームデータにおいて、第1の3次元関心領域に対応する領域の弾性情報と第2の3次元関心領域に対応する領域の弾性情報との3次元弾性比を算出する。
 上述の第1~第4の実施例で示した方法においては、応力面に沿って歪み比を算出するために、RΘΦ座標系における同じΦ位置に2つのROIが設定される必要があった。これは、圧迫により応力が異なることから、発生する組織歪みが大きく異なることが原因である。本実施例は、RΘΦ座標系における同じΦ位置に2つのROIが設定されない場合に、3次元弾性比を算出する実施例である。
 図8は、第5実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図である。図8(a)は、XYZ座標系におけるYZ面(短軸方向)の断面画像801を示したものである。また、図1に示す圧迫グラフ作成部54は、変位計測部30、弾性情報演算部32,又は圧力計測部45からの出力データを受け取って、図8(b)に示す圧迫グラフ802を作成する。
 圧迫グラフ802を生成することにより、3次元歪み比計測部52は、Φ方向に沿った変位、歪み又は応力の経時変化を把握することができる。3次元歪み比計測部52は、ROI1とROI2の圧迫グラフ同士の相関演算を行なうことにより、ROI1とROI2における圧迫状態が同等な区間(類似区間803)を検出する。そして、検出されたた2つの類似区間803を選定してそれぞれの歪み平均を算出し、それらの比を算出する。3次元弾性比の算出の方法は第1実施例と同様である。
 これにより、同等な圧迫レベルでの歪み比を比較することが可能となる。また、例えば、短軸方向に参照体(脂肪等個体差の少ない軟らかいもの)と腫瘍(良悪性の腫瘍像形成性病変)の位置が異なる場合、同じフレーム同士で比較するのが困難となる。この点、本実施例によれば、RΘΦ座標系における同じΦ位置に2つのROIが設定されない場合であっても、圧迫状態が同等な区間における歪み比を求めるので、診断部位の硬さ又は軟らかさを的確に定量化することができる。
(第6の実施例)
 本実施形態の超音波診断装置の第6の実施例について説明する。本実施例は、3次元歪み比計測部52が、RΘΦ座標系での被検体の組織に対する圧迫状態の経時的変化に基づいて、被検体の組織に対して圧迫が加えられている区間と圧迫が解除されている区間を検出し、第1の3次元関心領域及び第2の3次元関心領域における、圧迫が加えられている区間と圧迫が解除されている区間のいずれか一方のみの弾性情報に基づいて3次元弾性比を算出する点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。3次元歪み比計測部52(3次元弾性比計測部)は、被検体の組織に対する圧迫状態の経時的変化に基づいて、被検体の組織に対して圧迫が加えられている区間と圧迫が解除されている区間を検出し、第1の3次元関心領域及び第2の3次元関心領域における、圧迫が加えられている区間と圧迫が解除されている区間のいずれか一方のみの弾性情報に基づいて3次元弾性比を算出する。
 図9は、第6実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図である。図9(a)は、XYZ座標系におけるYZ面(短軸方向)の断面画像901を示したものである。また、図1に示す圧迫グラフ作成部54は、変位計測部30、弾性情報演算部32,又は圧力計測部45からの出力データを受け取って、図9(b)に示す圧迫グラフ902を作成する。
 圧迫グラフ902を生成することにより、3次元歪み比計測部52は、Φ方向に沿った変位、歪み又は応力の経時変化を把握することができる。3次元歪み比計測部52は、圧迫グラフ902で示されるROI1とROI2における圧迫状態の経時変化(Φ方向変化)に基づいて、被検体の組織に対して圧迫が加えられている区間と圧迫が解除されている区間を検出する。ここでは、被検体の組織に対して圧迫が加えられている区間を圧迫区間903として検出したとする。3次元歪み比計測部52は、図9(c)に示すように、ROI1とROI2の圧迫区間903における歪み平均を算出し、その比を算出する。3次元弾性比の算出の方法は第1実施例と同様である。
 本実施例によれば、圧迫の方向を同様なものとすることにより、組織変位による画像のズレによる計測値の劣化を低減することが可能である。したがって、高精度に3次元の歪み比を算出することができる。なお、本実施例は、圧迫が加えられている区間における歪み平均を算出する例を示したが、これに限らず圧迫が解除されている区間における歪み平均を算出するよう構成することもできる。
 (第7の実施例)
 本実施形態の超音波診断装置の第7の実施例について説明する。本実施例は、3次元歪み比計測部52が、RΘΦ座標系での被検体の組織に対する圧迫状態の経時的変化に基づいて、第1の3次元関心領域及び第2の3次元関心領域における弾性情報の積算値を求め、求められた積算値に基づいて被検体の組織に対する圧迫開始位置からの距離を推定し、推定した距離があらかじめ設定された距離閾値よりも大きい又は小さい区間の弾性情報に基づいて3次元弾性比を算出する点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。
 図10は、第7実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図である。まず、図1に示す圧迫グラフ作成部54は、変位計測部30、弾性情報演算部32,又は圧力計測部45からの出力データを受け取って、図10(a)の上段に示すようにROI1における圧迫グラフ1001を作成する。また、図10(a)の下段に示すように、ROI1における圧迫グラフ1001の圧迫情報を積算して積算グラフ1002を生成する。
 一方、圧迫グラフ作成部54は、ROI2についても同様に、図10(b)に示すように、ROI2における圧迫グラフ1003、及びROI2における圧迫グラフ1003の圧迫情報を積算して積算グラフ1004を生成する。
 3次元歪み比計測部52は、積算グラフ1002,1004を参照することにより、超音波探触子の初期圧迫位置からの移動距離を推定することができる。3次元歪み比計測部52は、図10(c)に示すように、積算グラフ1002の積算値が、距離閾値1005よりも小さい区間すなわち初期圧迫位置からの探触子の移動量が小さい区間におけるROI1とROI2の歪み平均を算出し、その比を算出する。3次元弾性比の算出の方法は第1実施例と同様である。
 本実施例によれば、ROI1,2について圧迫位置が同じレベルのもの同士で比を算出することができるので、計測値の劣化を低減することが可能となる。その結果、高精度に歪み比を検出することができる。なお、本実施例は、積算グラフの積算値が距離閾値よりも小さい区間における歪み平均を算出する例を示したが、これに限らず積算グラフの積算値が距離閾値よりも小さい区間すなわち初期圧迫位置からの探触子の移動量が大きい区間における歪み平均を算出するよう構成することもできる。
 (第8の実施例)
 本実施形態の超音波診断装置の第8の実施例について説明する。本実施例は、3次元歪み比計測部52が、RΘΦ座標系での被検体の組織に対する圧迫状態の経時的変化に基づいて、被検体の組織に対して圧迫が加えられている区間と圧迫が解除されている区間を検出し、第1の3次元関心領域及び第2の3次元関心領域における圧迫が加えられている区間又は圧迫が解除されている区間のピークの弾性情報に基づいて3次元弾性比を算出する点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。
 図11は、第8実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図である。図11(a)は、XYZ座標系におけるYZ面(短軸方向)の断面画像1101を示したものである。また、図1に示す圧迫グラフ作成部54は、変位計測部30、弾性情報演算部32,又は圧力計測部45からの出力データを受け取って、図9(b)に示す圧迫グラフ1102を作成する。
 圧迫グラフ1102を生成することにより、3次元歪み比計測部52は、Φ方向に沿った変位、歪み又は応力の経時変化を把握することができる。3次元歪み比計測部52は、圧迫グラフ1102で示されるROI1とROI2における圧迫状態の経時変化(Φ方向変化)に基づいて、被検体の組織に対して圧迫が加えられている区間と圧迫が解除されている区間のピーク1103を検出する。ここでは、被検体の組織に対して圧迫が加えられている区間において圧迫状態がピークになる時相を選択したとする。3次元歪み比計測部52は、図11(c)に示すように、ROI1とROI2それぞれのピーク1103における歪み平均を算出し、その比を算出する。3次元弾性比の算出の方法は第1実施例と同様である。
 本実施例によれば、弾性情報(歪み)を参照する計測点の数が少なくなるというデメリットはあるが、例えば上述の第6の実施例よりも高精度に3次元の歪み比を計測することができる。なお、本実施例は、圧迫が加えられている区間における圧迫状態のピーク時の歪み平均を算出する例を示したが、これに限らず圧迫が解除されている区間における圧迫状態のピーク時の歪み平均を算出するよう構成することもできる。また、圧迫状態のピークに限らず、入力インターフェース部43を介して例えば圧迫状態が0の位置など任意に歪み平均を算出する位置を選択できるようにしてもよい。
 (第9の実施例)
 本実施形態の超音波診断装置の第9の実施例について説明する。本実施例は、3次元歪み比計測部52が、被検体の組織に対する圧迫状態が同等な複数の断層面(弾性フレームデータ)のそれぞれにおいて算出された2次元弾性比のうち、あらかじめ設定された弾性比閾値範囲から外れる2次元弾性比を除外して、残りの複数の断層面における2次元弾性比に基づいて3次元弾性比を算出する点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。
 図12は、第9実施例の弾性情報の3次元歪み比を求めるための処理の概念を示す図である。図12(a)は、横軸にΦ方向の推移、縦軸に歪み比(SR)をとった2次元歪み比グラフの一例である。図12(a)の2次元歪み比グラフ1201に示すように、3次元の歪み比を算出する際に、Φ方向にノイズ等による異常数値が発生して定量性が低下する場合がある。そこで、3次元歪み比計測部52は、Φ方向に沿って算出された2次元弾性比のうち、あらかじめ設定された弾性比閾値範囲から外れる2次元弾性比を除外する。
 具体的には、弾性比閾値範囲を定めるために、下記の数23式、数24式により、歪み平均(SRave)と、歪み平均に対する偏差(σ)を算出する。図12(b)に示すように、SRave±σの範囲で示される弾性比閾値範囲1202が決定される。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 そして、3次元歪み比計測部52は、下記の数25式で示すように、Φ方向におけるSRave±σの範囲内の2次元歪み比のみを選択し、これら選択された2次元歪み比を加算平均することにより、3次元の歪み比を算出する。言い換えれば、図12(c)に示すように、SRave+σよりも大きい値をとる2次元歪み比1203はノイズとして3次元歪み比を算出するための計算から除外される。本実施例によれば、弾性比閾値範囲内の値のみを採用して3次元歪み比を演算するので、ノイズの影響を除去した適性な3次元歪み比を算出することができる。
Figure JPOXMLDOC01-appb-M000025
 (第10の実施例)
 本実施形態の超音波診断装置の第10の実施例について説明する。本実施例は、弾性スライス画像生成部48が、XYZ座標系に変換された弾性ボリュームデータから切り出された1のスライス画像を生成して画像表示器13に表示し、表示されたXYZ座標の1のスライス画像上に入力インターフェース部43を介して複数の関心領域を設定すると、設定された複数の関心領域のそれぞれについて、1のスライス画像に直交する方向の複数のスライス画像上で対応する領域を検出して、設定された関心領域及び検出された複数の領域に基づいて第1の3次元関心領域と第2の3次元関心領域を自動生成する点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。
 図13は、第10実施例のROI1,2の自動設定の処理の概念を示す図である。まず、図13(a)に示すように、画像表示器13には、MPR画像1301と、弾性レンダリング画像1302が表示される。具体的には、画面の4分割された左上、左下、右上の領域に、MPR画像1301として、XYZ座標系のXY面、YZ面、XZ面の弾性画像が表示され、画面の右下の領域に、弾性レンダリング画像1302が表示される。ただし、弾性レンダリング画像1302は表示しなくてもよい。
 検者は、例えば、MPR画像1301のうちのXY断面の任意のスライス面を選択し、図13(b)に示すように、腫瘍等の関心領域の境界部分を選択点1303により数点選択する(この実施例では4点)。すると、選択点1303を互いに結ぶ選択径に従った内接円が関心領域1304として設定される。続いて、関心領域1304で設定された境界が組織トラッキング法に代表されるような信号追跡手法により、Z方向のスライドした各断面において検出領域1305として検出される。関心領域1304及び複数の検出領域1305をZ軸方向に結ぶことにより、自動的に3次元のROIが生成される。
 本実施例によれば、検者が1つの断面において関心領域を設定するだけで、自動的に3次元関心領域が設定されるので、装置の使い勝手がよく、診断の効率を向上させることができる。なお、この実施例では説明の便宜のため、1つのROIを設定する例を示したが、実際には、3次元歪み比を算出するために複数(例えば2つ)のROIが設定される。
3次元ROIが設定された後の処理は第1実施例と同様である。
 (第11の実施例)
 本実施形態の超音波診断装置の第11の実施例について説明する。本実施例は、弾性MPR画像上で2つの関心領域を設定するにあたって、最初に設定された関心領域の位置及び大きさに基づいて、次に関心領域を設定する際に適切な位置に関心領域が設定されるようにガイド表示を行なう点が、第1の実施例と異なる。したがって、第1の実施例と重複する部分については説明を省略する。
 図14は、第11実施例のROIを設定する際のガイド表示の例を示す図である。まず、図14(a)に示すように、画像表示器13には、MPR画像1401と、弾性レンダリング画像1402が表示される。具体的には、画面の4分割された左上、左下、右上の領域に、MPR画像1401として、XYZ座標系のXY面、YZ面、XZ面の弾性画像が表示され、画面の右下の領域に、弾性レンダリング画像1402が表示される。ただし、弾性レンダリング画像1402は表示しなくてもよい。
 ところで、3次元の歪み比を算出するためには、同フレーム上で2つのROIの設定を行うことが望ましく、3次元計測する際に設定されるROIは、Z座標(時間方向)に対になって設定されることが望ましい。そこで、図14(b)に示すように、MPR画像1401のYZ面上で関心領域を設定する際には、最初に設定された或いは指定されたROI(第1のROI1403)の左右方向の両端の接線をスキャンフレームラインに沿うように延長させて2本のガイドライン1404を表示する。
 検者は、2本のガイドライン1404を参照することにより、これらガイドライン1404に挟まれて、かつガイドライン1404に接するように次のROI(第2のROI1405)を設定すれば良いことを把握することができる。したがって、本実施例によれば、検者は、簡便に、2つの関心領域がZ座標(時間方向)に対に設定することができるので、3次元弾性情報の比を適切に算出できるとともに、装置の使い勝手がよい。
 またこのガイドライン1404の角度を基準に第2のROI1405を自動で設定することもできる。また、設定されたROIの修正は、第1又は第2のいずれかのROIの修正に連動して、他方のROIの大きさを自動変更することもできる。また図14(b)に示すように、YZ面(時間方向)に腫瘍の輪郭に沿ってガイドライン1404を設定する様にすることで、検者の労力を低減することが可能である。
 1 被検体、2 超音波探触子、6 整相加算部、30 変位計測部、32 弾性情報演算部、34 弾性画像構成部、39 2次元弾性画像記憶部、40 弾性ボリュームデータ作成部、41 弾性3次元スキャンコンバージョン部、42 弾性ボリュームレンダリング部、48 弾性スライス画像生成部、44 画像系制御部、43 入力インターフェース部、50 座標変換部、52 3次元歪み比計測部、100 超音波診断装置、201,601,1302,1402 弾性レンダリング画像、202,203,402,403,502,503,602,603 3次元関心領域、401,1301,1401 MPR画像、501 弾性マルチスライス画像、802,902,1001,1003,1102 圧迫グラフ、803 類似区間、903 圧迫区間、1002,1004 積算グラフ、1005 距離閾値、1103 ピーク、1201 2次元歪み比グラフ、1202 弾性比閾値範囲、1303 選択点、1304 関心領域、1305 検出領域、、、

Claims (15)

  1.  被検体との間で超音波を送受信する超音波探触子と、該超音波探触子で計測された反射エコー信号に基づいて硬さ又は軟らかさを表す弾性情報を演算して弾性フレームデータを生成する弾性情報演算部と、複数の前記弾性フレームデータに基づいて弾性ボリュームデータを作成する弾性ボリュームデータ作成部と、前記弾性ボリュームデータに基づいて作成された弾性レンダリング画像及び複数断面の弾性スライス画像の少なくとも一方を表示する表示部と、表示された前記弾性レンダリング画像及び複数断面の弾性スライス画像の少なくとも一方を介して複数の3次元関心領域を設定する入力部と、設定された第1の3次元関心領域における前記弾性情報と第2の3次元関心領域における前記弾性情報との3次元弾性比を算出する3次元弾性比計測部とを備え、前記算出された3次元弾性比を前記表示部に表示することを特徴とする超音波診断装置。
  2.  前記3次元弾性比計測部は、前記弾性レンダリング画像を構成する複数の前記弾性フレームデータにおける前記第1の3次元関心領域に対応する領域の弾性情報と前記第2の3次元関心領域に対応する領域の弾性情報との2次元弾性比をそれぞれ算出し、それぞれの前記弾性フレームデータにおける前記2次元弾性比に基づいて前記3次元弾性比を算出することを特徴とする請求項1記載の超音波診断装置。
  3.  前記3次元弾性比計測部は、それぞれの前記弾性フレームデータにおいて算出された前記2次元弾性比を加算平均して前記3次元弾性比を算出することを特徴とする請求項2記載の超音波診断装置。
  4.  前記3次元弾性比計測部は、前記被検体の組織に対する圧迫状態が同等な複数の前記弾性フレームデータにおいて、前記第1の3次元関心領域に対応する領域の弾性情報と前記第2の3次元関心領域に対応する領域の弾性情報との前記3次元弾性比を算出することを特徴とする請求項2記載の超音波診断装置。
  5.  前記3次元弾性比計測部は、前記被検体の組織に対する圧迫状態の経時的変化に基づいて、前記被検体の組織に対して圧迫が加えられている区間と圧迫が解除されている区間を検出し、前記第1の3次元関心領域及び前記第2の3次元関心領域における、前記圧迫が加えられている区間と圧迫が解除されている区間のいずれか一方のみの前記弾性情報に基づいて前記3次元弾性比を算出することを特徴とする請求項4記載の超音波診断装置。
  6.  前記弾性ボリュームデータをRΘΦ座標系で生成した場合、
     前記弾性ボリュームデータをRΘΦ座標系からXYZ座標系に変換する弾性3次元スキャンコンバージョン部と、XYZ座標系に変換された弾性ボリュームデータの直交3断面のMPR画像を生成する弾性スライス画像生成部と、前記表示部に表示されたXYZ座標系のMPR画像上に設定された前記第1の3次元関心領域と前記第2の3次元関心領域を、XYZ座標系からRΘΦ座標系に変換する座標変換部とを備え、
     前記3次元弾性比計測部は、前記RΘΦ座標系に変換された第1の3次元関心領域の弾性情報と第2の3次元関心領域の弾性情報とに基づいて前記3次元弾性比を算出することを特徴とする請求項1記載の超音波診断装置。
  7.  前記弾性ボリュームデータをRΘΦ座標系で生成した場合、
     前記弾性ボリュームデータをRΘΦ座標系からXYZ座標系に変換する弾性3次元スキャンコンバージョン部と、XYZ座標系に変換された弾性ボリュームデータに基づいて前記弾性レンダリング画像を生成する弾性ボリュームレンダリング部と、前記表示部に表示されたXYZ座標系の弾性レンダリング画像上に設定された前記第1の3次元関心領域と前記第2の3次元関心領域を、XYZ座標系からRΘΦ座標系に変換する座標変換部とを備え、
     前記3次元弾性比計測部は、前記RΘΦ座標系に変換された第1の3次元関心領域の弾性情報と第2の3次元関心領域の弾性情報とに基づいて前記3次元弾性比を算出することを特徴とする請求項1記載の超音波診断装置。
  8.  前記RΘΦ座標系に変換された第1の3次元関心領域と第2の3次元関心領域をRΘΦ座標系で前記表示部に表示し、該RΘΦ座標系で表示された第1の3次元関心領域及び第2の3次元関心領域の少なくとも一方の3次元関心領域を画像上で調整可能に構成されてなることを特徴とする請求項6記載の超音波診断装置。
  9.  前記3次元弾性比計測部は、前記RΘΦ座標系での前記被検体の組織に対する圧迫状態の経時的変化に基づいて、前記第1の3次元関心領域及び第2の3次元関心領域における圧迫状態が同等な区間を検出し、検出された圧迫状態が同等な区間の弾性情報に基づいて前記3次元弾性比を算出することを特徴とする請求項6記載の超音波診断装置。
  10.  前記3次元弾性比計測部は、前記RΘΦ座標系での前記被検体の組織に対する圧迫状態の経時的変化に基づいて、前記第1の3次元関心領域及び第2の3次元関心領域における弾性情報の積算値を求め、該求められた積算値に基づいて前記被検体の組織に対する圧迫開始位置からの距離を推定し、該推定した距離があらかじめ設定された距離閾値よりも大きい又は小さい区間の弾性情報に基づいて前記3次元弾性比を算出することを特徴とする請求項6記載の超音波診断装置。
  11.  前記3次元弾性比計測部は、前記RΘΦ座標系での前記被検体の組織に対する圧迫状態の経時的変化に基づいて、前記被検体の組織に対して圧迫が加えられている区間と圧迫が解除されている区間を検出し、前記第1の3次元関心領域及び第2の3次元関心領域における前記圧迫が加えられている区間又は圧迫が解除されている区間のピークの前記弾性情報に基づいて前記3次元弾性比を算出することを特徴とする請求項6記載の超音波診断装置。
  12.  前記3次元弾性比計測部は、前記被検体の組織に対する圧迫状態が同等な複数の断層面のそれぞれにおいて算出された2次元弾性比のうち、あらかじめ設定された弾性比閾値範囲から外れる2次元弾性比を除外して、残りの複数の断層面における2次元弾性比に基づいて前記3次元弾性比を算出することを特徴とする請求項1記載の超音波診断装置。
  13.  被検体との間で超音波を送受信するステップと、反射エコー信号に基づいて硬さ又は軟らかさを表す弾性情報を演算して弾性フレームデータを生成するステップと、複数の弾性フレームデータに基づいて弾性ボリュームデータを作成するステップと、前記弾性ボリュームデータに基づいて作成された弾性レンダリング画像及び複数断面の弾性スライス画像の少なくとも一方を表示するステップと、表示された前記弾性レンダリング画像及び複数断面の弾性スライス画像の少なくとも一方を介して複数の3次元関心領域を設定するステップと、設定された第1の3次元関心領域における前記弾性情報と第2の3次元関心領域における前記弾性情報との3次元弾性比を算出するステップとを有することを特徴とする3次元弾性比算出方法。
  14.  弾性レンダリング画像を構成する複数の前記弾性フレームデータにおける前記第1の3次元関心領域に対応する領域の弾性情報と前記第2の3次元関心領域に対応する領域の弾性情報との2次元弾性比をそれぞれ算出するステップと、それぞれの前記弾性フレームデータにおける前記2次元弾性比に基づいて前記3次元弾性比を算出するステップを有することを特徴とする請求項13記載の3次元弾性比算出方法。
  15.  それぞれの前記弾性フレームデータにおいて算出された前記2次元弾性比を加算平均して前記3次元弾性比を算出するステップを有することを特徴とする請求項14記載の3次元弾性比算出方法。
PCT/JP2010/070078 2009-11-18 2010-11-11 超音波診断装置、及び3次元弾性比算出方法 WO2011062106A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011541897A JP5689073B2 (ja) 2009-11-18 2010-11-11 超音波診断装置、及び3次元弾性比算出方法
US13/503,987 US9044175B2 (en) 2009-11-18 2010-11-11 Ultrasonic diagnostic apparatus and three-dimensional elastic ratio calculating method
CN201080052221.3A CN102647946B (zh) 2009-11-18 2010-11-11 超声波诊断装置和三维弹性比计算方法
EP10831501.1A EP2502566A4 (en) 2009-11-18 2010-11-11 ULTRASOUND DIAGNOSTIC DEVICE AND THREE-DIMENSIONAL ELASTICITY COEFFICIENT CALCULATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-262705 2009-11-18
JP2009262705 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011062106A1 true WO2011062106A1 (ja) 2011-05-26

Family

ID=44059585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070078 WO2011062106A1 (ja) 2009-11-18 2010-11-11 超音波診断装置、及び3次元弾性比算出方法

Country Status (5)

Country Link
US (1) US9044175B2 (ja)
EP (1) EP2502566A4 (ja)
JP (1) JP5689073B2 (ja)
CN (1) CN102647946B (ja)
WO (1) WO2011062106A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115283A (ja) * 2010-11-29 2012-06-21 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
US20130030293A1 (en) * 2011-07-28 2013-01-31 Shunichiro Tanigawa Ultrasound diagnostic apparatus and method thereof
WO2013183432A1 (ja) * 2012-06-07 2013-12-12 日立アロカメディカル株式会社 関心領域設定方法及び超音波診断装置
CN103857343A (zh) * 2011-08-19 2014-06-11 不列颠哥伦比亚大学 使用薄体积的超声成像的弹性成像
US20150297187A1 (en) * 2012-12-06 2015-10-22 Hitachi Aloka Medical, Ltd. Ultrasound diagnostic apparatus and method of displaying ultrasound image
WO2017183466A1 (ja) * 2016-04-21 2017-10-26 株式会社日立製作所 超音波診断装置
CN112074717A (zh) * 2018-05-03 2020-12-11 维美德自动化有限公司 移动幅材的弹性模量的测量

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016144A (ja) * 2013-07-11 2015-01-29 セイコーエプソン株式会社 超音波測定装置、超音波画像装置及び超音波測定方法
US11058397B2 (en) * 2015-01-02 2021-07-13 Esaote S.P.A. Method for quantifying the elasticity of a material by ultrasounds
US10380786B2 (en) * 2015-05-29 2019-08-13 General Electric Company Method and systems for shading and shadowing volume-rendered images based on a viewing direction
US10824315B2 (en) * 2015-05-29 2020-11-03 Canon Medical Systems Corporation Medical image processing apparatus, magnetic resonance imaging apparatus and medical image processing method
US10839509B2 (en) 2015-07-10 2020-11-17 3Scan Inc. Spatial multiplexing of histological stains
CN114931396A (zh) * 2015-08-10 2022-08-23 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像系统和方法
KR102545007B1 (ko) * 2015-10-20 2023-06-20 삼성메디슨 주식회사 초음파 영상장치 및 그 제어방법
KR102695456B1 (ko) * 2017-01-25 2024-08-14 삼성메디슨 주식회사 대상체에 관한 횡파 탄성 데이터를 표시하는 초음파 진단 장치 그 동작 방법
CN110418609B (zh) 2017-10-19 2021-04-20 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性测量装置及弹性对比测量方法
US11576654B2 (en) * 2017-12-21 2023-02-14 Samsung Medison Co., Ltd. Ultrasound diagnosis apparatus for measuring and displaying elasticity of object and method of operating the same
CN110458836A (zh) * 2019-08-16 2019-11-15 深圳开立生物医疗科技股份有限公司 一种超声造影成像方法、装置和设备及可读存储介质
CN110477949B (zh) * 2019-08-26 2022-11-29 东软医疗系统股份有限公司 超声成像方法、装置及超声成像设备
CN116058868B (zh) * 2022-12-30 2024-10-15 清华大学 便携式增强现实超声影像可视化方法、装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020178833A1 (en) * 2001-04-04 2002-12-05 Siemens Medical System, Inc Method and system for improving the spatial resolution for strain imaging
WO2006121031A1 (ja) * 2005-05-09 2006-11-16 Hitachi Medical Corporation 超音波診断装置及び超音波画像表示方法
JP2007105400A (ja) * 2005-10-17 2007-04-26 Toshiba Corp 超音波診断装置及び画像処理装置
JP3991282B2 (ja) * 2004-08-05 2007-10-17 株式会社日立メディコ 弾性像表示方法及び超音波診断装置
JP2008259555A (ja) * 2007-04-10 2008-10-30 Hitachi Medical Corp 超音波診断装置
JP2009042251A (ja) * 2008-11-21 2009-02-26 Shimadzu Corp 構造物試験機
WO2010026823A1 (ja) * 2008-09-08 2010-03-11 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268396B2 (ja) 1992-05-15 2002-03-25 石原 謙 超音波診断装置
US7601122B2 (en) * 2003-04-22 2009-10-13 Wisconsin Alumni Research Foundation Ultrasonic elastography with angular compounding
US9389203B2 (en) * 2005-06-17 2016-07-12 Wisconsin Alumni Research Foundation Automated ultrasonic elasticity image formation with quality measure
JP5264097B2 (ja) * 2007-04-11 2013-08-14 株式会社日立メディコ 超音波診断装置
JP2009045251A (ja) 2007-08-21 2009-03-05 Toshiba Corp 治療支援装置
US7905835B2 (en) * 2008-01-15 2011-03-15 General Electric Company Method for assessing mechanical properties of an elastic material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020178833A1 (en) * 2001-04-04 2002-12-05 Siemens Medical System, Inc Method and system for improving the spatial resolution for strain imaging
JP3991282B2 (ja) * 2004-08-05 2007-10-17 株式会社日立メディコ 弾性像表示方法及び超音波診断装置
WO2006121031A1 (ja) * 2005-05-09 2006-11-16 Hitachi Medical Corporation 超音波診断装置及び超音波画像表示方法
JP2007105400A (ja) * 2005-10-17 2007-04-26 Toshiba Corp 超音波診断装置及び画像処理装置
JP2008259555A (ja) * 2007-04-10 2008-10-30 Hitachi Medical Corp 超音波診断装置
WO2010026823A1 (ja) * 2008-09-08 2010-03-11 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法
JP2009042251A (ja) * 2008-11-21 2009-02-26 Shimadzu Corp 構造物試験機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2502566A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115283A (ja) * 2010-11-29 2012-06-21 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
US20130030293A1 (en) * 2011-07-28 2013-01-31 Shunichiro Tanigawa Ultrasound diagnostic apparatus and method thereof
CN103857343A (zh) * 2011-08-19 2014-06-11 不列颠哥伦比亚大学 使用薄体积的超声成像的弹性成像
WO2013183432A1 (ja) * 2012-06-07 2013-12-12 日立アロカメディカル株式会社 関心領域設定方法及び超音波診断装置
CN104334086A (zh) * 2012-06-07 2015-02-04 日立阿洛卡医疗株式会社 关心区域设定方法及超声波诊断装置
JPWO2013183432A1 (ja) * 2012-06-07 2016-01-28 日立アロカメディカル株式会社 関心領域設定方法及び超音波診断装置
JP2017136451A (ja) * 2012-06-07 2017-08-10 株式会社日立製作所 超音波診断装置
US10028727B2 (en) * 2012-12-06 2018-07-24 Hitachi, Ltd. Ultrasound diagnostic apparatus and method of displaying ultrasound image
US20150297187A1 (en) * 2012-12-06 2015-10-22 Hitachi Aloka Medical, Ltd. Ultrasound diagnostic apparatus and method of displaying ultrasound image
WO2017183466A1 (ja) * 2016-04-21 2017-10-26 株式会社日立製作所 超音波診断装置
JP2017192575A (ja) * 2016-04-21 2017-10-26 株式会社日立製作所 超音波診断装置
CN109069117A (zh) * 2016-04-21 2018-12-21 株式会社日立制作所 超声波诊断装置
CN109069117B (zh) * 2016-04-21 2021-03-12 株式会社日立制作所 超声波诊断装置
CN112074717A (zh) * 2018-05-03 2020-12-11 维美德自动化有限公司 移动幅材的弹性模量的测量
US11828736B2 (en) 2018-05-03 2023-11-28 Valmet Automation Oy Measurement of elastic modulus of moving web
CN112074717B (zh) * 2018-05-03 2024-01-19 维美德自动化有限公司 移动幅材的弹性模量的测量

Also Published As

Publication number Publication date
CN102647946A (zh) 2012-08-22
US20120269416A1 (en) 2012-10-25
EP2502566A1 (en) 2012-09-26
EP2502566A4 (en) 2016-11-23
JPWO2011062106A1 (ja) 2013-04-04
US9044175B2 (en) 2015-06-02
JP5689073B2 (ja) 2015-03-25
CN102647946B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5689073B2 (ja) 超音波診断装置、及び3次元弾性比算出方法
JP5770189B2 (ja) 超音波診断装置
JP5730196B2 (ja) 超音波診断装置、超音波画像処理装置、超音波画像生成方法
JP5479353B2 (ja) 超音波診断装置
KR101121301B1 (ko) 3차원 측정을 수행하는 초음파 시스템 및 방법
JP5199690B2 (ja) 超音波診断装置
US9514564B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
WO2011030812A1 (ja) 超音波診断装置及び弾性画像表示方法
JP5087341B2 (ja) 超音波診断装置
JP5438012B2 (ja) 超音波診断装置
JP5647990B2 (ja) 超音波診断装置及び画像構成方法
JP2008259605A (ja) 超音波診断装置
CN102711625B (zh) 超声波诊断装置以及超声波图像显示方法
JP2007282932A (ja) 弾性画像生成方法及び超音波診断装置
WO2010024023A1 (ja) 超音波診断装置及び超音波画像表示方法
EP2623035B1 (en) Ultrasound diagnostic apparatus
JP5074097B2 (ja) 超音波診断装置
EP2612600A1 (en) Three-dimensional elastic image generation method and ultrasonic diagnosis device
JPWO2009063691A1 (ja) 超音波撮像システム
JP4515799B2 (ja) 超音波診断装置
JP5623609B2 (ja) 超音波診断装置
JP4615528B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052221.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541897

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010831501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13503987

Country of ref document: US