WO2011062072A1 - 電子デバイス - Google Patents

電子デバイス Download PDF

Info

Publication number
WO2011062072A1
WO2011062072A1 PCT/JP2010/069728 JP2010069728W WO2011062072A1 WO 2011062072 A1 WO2011062072 A1 WO 2011062072A1 JP 2010069728 W JP2010069728 W JP 2010069728W WO 2011062072 A1 WO2011062072 A1 WO 2011062072A1
Authority
WO
WIPO (PCT)
Prior art keywords
line width
electrode
cnts
cnt
electronic device
Prior art date
Application number
PCT/JP2010/069728
Other languages
English (en)
French (fr)
Inventor
新井 進
康之 伊田
木村 哲也
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2011541882A priority Critical patent/JP5339222B2/ja
Publication of WO2011062072A1 publication Critical patent/WO2011062072A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to an electronic device, and more particularly to an electronic device such as a surface acoustic wave device having a conductor pattern with a fine line width.
  • electromigration refers to a phenomenon in which metal atoms diffuse and move when energized due to an increase in current density accompanying miniaturization of the conductor pattern.
  • Stress migration refers to mechanical stress caused by surface acoustic wave excitation. A phenomenon in which metal atoms diffuse and move in an attempt to locally relieve the stress when loaded.
  • voids occur in regions where metal ions are deficient, and conductor patterns may break due to void growth.
  • hillocks projections are generated in a region where metal ions are excessively present, which may cause deterioration of the electrical characteristics of the surface acoustic wave device.
  • the electronic device is required to have good migration resistance without impairing electric characteristics.
  • CNT carbon nanotubes
  • the basic skeleton (six-membered ring) of carbon is arranged in the axial direction, so that they are electrically conductive, thermally conductive, mechanical It has the characteristic that the mechanical strength is good. For this reason, CNT is attracting attention as a migration countermeasure material, and research and development of composite materials in which CNTs are combined with metal materials have been actively conducted.
  • Patent Document 1 proposes a plating structure in which CNTs are mixed in a plating film.
  • FIG. 7 is a diagram showing a method for manufacturing a plated structure of Patent Document 1.
  • the plating solution contains metal ions 101 and CNTs 102 as plating metals, and the CNT 102 is dispersed and suspended in the plating solution by a dispersant 103.
  • the plating metal 104 is deposited on the surface of the substrate 105 as shown in FIG. 7B, thereby forming the plating film 106. . That is, in this plating structure, when the plating metal 104 is deposited on the surface of the substrate 105, the CNTs 102 dispersed in the plating solution are taken into the plating metal 104, whereby the CNT 102 is combined with the plating metal 104. A film 106 is formed on the surface of the substrate 105.
  • Patent Document 2 proposes a semiconductor device in which nanomaterials are arranged substantially uniformly on the cross section of a connection plug made of metal.
  • the wiring of this semiconductor device is manufactured by a method as shown in FIG.
  • a metal particle layer in which a large number of metal particles (for example, Ni particles) 112 having a nanometer size (for example, 2 to 10 nm) are arranged is formed on the insulating film 111.
  • the CNT 113 is grown on each particle 112 using the metal particle 112 as a nucleus.
  • a metal for example, an Al-based alloy
  • a wiring 115 in which the CNT 113 is taken is obtained.
  • Patent Document 2 by combining CNTs 113 in the wiring 115, the movement of the metal particles 112 due to energization or mechanical stress load is suppressed, thereby suppressing the occurrence of electromigration or stress migration.
  • the electrode line width and the electrode interval of the electrode fingers of the IDT electrode are becoming narrower, and improvement in power resistance is required. For this purpose, it is necessary to improve resistance to stress migration.
  • Patent Document 1 when the plating structure of Patent Document 1 is applied to a surface acoustic wave device, even if an attempt is made to combine CNTs in a metal film, the desired migration resistance cannot be obtained due to an inappropriate size of CNTs. In some cases, power durability cannot be sufficiently enhanced.
  • FIGS. 9A to 9C are perspective views showing an example in which CNT is combined with the electrode finger of the IDT electrode of the surface acoustic wave device.
  • electrode fingers 122a and 122b of IDT electrodes are formed on a piezoelectric substrate 121, and a dielectric layer 123 is formed between the electrode fingers 122a and 122b. Since the electrode finger 122a and the electrode finger 122b are connected to different potentials, they are insulated from each other. Surface acoustic waves are excited by the electrode fingers 122a and 122b.
  • the CNT 124 when the length of the CNT 124 is excessively longer than the electrode line width t of the electrode fingers 122a and 122b of the IDT electrode, the CNT 124 is uniformly combined in the electrode fingers 122a and 122b.
  • the composite state of the CNTs 124 in the electrode fingers 122a and 122b is not uniform. That is, the metal film and the CNT 124 are formed in a dense part and a sparse part in the electrode finger, and the movement of metal atoms cannot be sufficiently suppressed in the sparse part. For this reason, the desired migration resistance cannot be obtained, and there is a possibility that the power resistance is lowered.
  • the CNTs 125 form a network within the electrode fingers 122a and 122b, so that the metal between the grain boundaries It may be desirable to suppress particle movement.
  • the CNTs 125 can form a network within the electrode fingers 122a and 122b. Therefore, desired resistance to stress migration cannot be obtained.
  • the diameter of the CNT 125 is too large, the CNT 126 becomes a foreign substance with respect to the metal film, and the current flow is hindered, so that the electrical conductivity is lowered and the electrical characteristics may be deteriorated.
  • Patent Document 1 is effective as a countermeasure against migration when it has an electrode structure whose line width is sufficiently larger than that of CNT, such as a printed wiring or a via of a multilayer circuit board. There are various problems with respect to the width (about 500 nm), and it is difficult to obtain desired migration resistance.
  • Patent Document 2 has a limitation on the heat treatment temperature for generating the CNT 113 because the growth of the CNT 113 is performed on the insulating film 111 formed on the substrate surface. It is difficult to obtain CNTs 113 with good quality and low resistance. Moreover, since the CNT 113 has poor wettability with the metal layer 114 and the metal layer 114 is formed after the CNT 113 is grown, it is difficult to completely fill the gap between the CNTs 113. There is a possibility that the atoms move and the migration resistance is remarkably impaired.
  • Patent Document 2 by growing the CNT 113 by the plasma CVD method, the CNT 113 can be oriented perpendicular to the insulating film 111 as shown in FIG.
  • the CNT 113 has anisotropy with respect to electrical conductivity. That is, in the direction of the arrow a shown in FIG. 8C, the current passes through the CNT 113, so that the resistance is small and desired electrical conductivity can be ensured. However, the CNT 113 is intertwined with the direction of the arrow b. Only, electrical resistance is large, and electrical conductivity is reduced. Therefore, in the case of multilayer circuit board vias, electrical conductivity in the thickness direction can be ensured, but in the case of electronic devices that require electrical conduction in multiple directions, the desired electrical conductivity must be ensured. I can't.
  • the present invention has been made in view of such circumstances, and even when it has a fine conductor pattern, it has good electrical conductivity, good migration resistance, and enhanced power durability.
  • An object is to provide an electronic device having high reliability.
  • the inventors of the present invention conducted intensive research to achieve the above object, and found that the average diameter of CNTs, the ratio of the average length of CNTs to the line width, and the volume ratio of CNTs below the line width to the total amount of CNTs.
  • the electrical resistance can be reduced, and the CNTs can form a network in the conductor pattern, thereby reducing the electrical resistance even when having a fine conductive pattern.
  • the knowledge that an electronic device with high migration tolerance can be obtained was obtained. And it is thought that this knowledge is widely applicable to the nanotube containing carbon other than CNT.
  • an electronic device includes a conductor pattern having a fine line width, and the conductor pattern includes at least carbon-containing nanotubes as a metal film.
  • the nanotube has an average diameter of 1/4 or less of the line width, an average length of 10 times or less of the line width, and a length of the line width or less.
  • the volume ratio of the nanotubes having the above is 5 to 90 vol% with respect to the total amount of the nanotubes.
  • the content of the nanotubes having an average diameter of the nanotube of 1/10 or less of the line width and a length of the line width or less is determined.
  • the composite state of the nanotubes can be further improved by satisfying at least one of 30 to 70 vol%.
  • the average diameter is preferably 1/10 or less of the line width.
  • the volume ratio of nanotubes having a length equal to or less than the line width is 30 to 70 vol% with respect to the total amount of the nanotubes.
  • the volume ratio of the nanotubes in the conductor pattern is preferably 0.5 to 20 vol%.
  • the volume ratio of the nanotubes in the conductor pattern is preferably 1 to 10 vol%.
  • the conductor pattern is formed by plating.
  • the conductor pattern is an electrode finger constituting an IDT electrode of a surface acoustic wave device.
  • the conductor pattern includes a conductor pattern having a fine line width, and the conductor pattern is formed by combining at least carbon-containing nanotubes in a metal film, and the nanotube has an average diameter of The volume ratio of nanotubes having an average length of 10 times or less of the line width and a length of the line width or less is 5% or less of the total amount of the nanotubes. Since it is ⁇ 90 vol%, the movement of the metal atoms trapped by the carbon-containing nanotube is suppressed even when energized or stressed.
  • the carbon-containing nanotubes can form a network in the conductor pattern, the movement of metal atoms between the grain boundaries is also suppressed, thereby improving the resistance to breakage due to stress migration, and better Migration resistance can be obtained. Further, since the nanotubes shorter than the line width of the conductor pattern are 5 to 90% of the total amount of the nanotubes, the short nanotubes are efficiently filled in the conductor pattern, ensuring good electrical resistance while ensuring good electrical conductivity. Power property can be obtained.
  • the average diameter of the nanotubes is 1/10 or less of the line width, and / or the volume ratio of the nanotubes having a length of the line width or less is 30 to 70 vol% with respect to the total amount of the nanotubes. Therefore, the composite state of the nanotubes can be further improved, whereby the short-circuit failure between the conductors due to the composite failure of the nanotubes can be reduced, and better power durability can be obtained.
  • the volume ratio of the nanotubes in the conductor pattern is 0.5 to 20 vol% (preferably 1 to 10 vol%), the electric resistance of the conductor pattern is good and desired without impairing the electric conductivity of the conductor pattern. It is possible to obtain an electronic device having migration resistance of
  • the conductor pattern is formed by plating, the nanotubes can be easily taken into the metal film by dispersion plating, and thereby a conductor pattern in which the nanotubes are combined with the metal film can be easily formed.
  • the conductor pattern is an electrode finger constituting the IDT electrode of the surface acoustic wave device
  • the electrical resistance of the electrode finger constituting the IDT electrode can be reduced and good. Migration resistance can be obtained. That is, since the generation of voids and hillocks due to the movement of metal atoms in the electrode fingers can be suppressed, it is possible to suppress the occurrence of disconnection, short circuit failure, etc., and to provide a highly reliable surface acoustic wave device with enhanced power durability. Can be obtained.
  • FIG. 1 is a plan view showing an embodiment of a surface acoustic wave device as an electronic device according to the present invention.
  • FIG. 2 is an AA perspective view of FIG. 1.
  • FIG. 3 is a perspective view excluding a second dielectric body of FIG. 2.
  • It is a manufacturing-process figure (1/3) which shows the manufacturing method of the said surface acoustic wave apparatus.
  • It is a manufacturing process figure (2/3) which shows the manufacturing method of the said surface acoustic wave apparatus.
  • It is a manufacturing process figure (3/3) which shows the manufacturing method of the said surface acoustic wave apparatus.
  • It is a figure which shows the manufacturing method of the electronic component described in patent document 1.
  • FIG. It is a figure which shows the manufacturing method of the wiring described in patent document 2.
  • FIG. 10 is a diagram for explaining a problem of Patent Document 1.
  • FIG. 1 is a plan view showing an embodiment of a surface acoustic wave device as an electronic device according to the present invention.
  • FIG. 1 is a plan view showing an embodiment of a surface acoustic wave device as an electronic device according to the present invention
  • FIG. 2 is a perspective view of AA in FIG. 1
  • FIG. 3 is a second dielectric of FIG.
  • FIG. 4 is a perspective view excluding a body 4.
  • IDT electrodes including electrode fingers 2a and 2b (conductor pattern) having a fine electrode line width T (line width) are formed on the piezoelectric substrate 1, and the electrode fingers 2a and 2b A first dielectric 3 is formed between the electrodes, and a second dielectric 4 is formed on the surfaces of the electrode fingers 2 a and 2 b and the first dielectric 3.
  • the surface acoustic wave is excited by the electrode finger 2a and the electrode finger 2b.
  • the piezoelectric substrate 1 is not particularly limited as long as it is a piezoelectric material, and LiTaO 3 , quartz, LiNbO 3 , Li 2 B 4 O 7 , PZT, or the like can be used according to desired piezoelectric characteristics.
  • the first and second dielectrics 3 and 4 are not particularly limited.
  • SiO 2 , SiN x , ZnO, a resin material such as polyimide, and a low dielectric constant material (low-k material). Etc. can be used.
  • the second dielectric 4 can be omitted as long as necessary characteristics can be obtained.
  • CNT5 is (1)
  • the average diameter D is 1 ⁇ 4 or less of the electrode line width T of the electrode fingers 2a and 2b
  • the average length L of the CNT 5 is not more than 10 times the electrode line width T of the electrode fingers 2a and 2b
  • the volume ratio of the CNT 5 having a length equal to or less than the electrode line width T of the electrode fingers 2a and 2b is 5 to 90 vol% with respect to the total amount of the CNT 5 3 requirements are satisfied.
  • the high CNT 5 has.
  • the movement of the metal atoms captured by the CNTs 5 due to electrical conductivity, high thermal conductivity, and good mechanical strength is suppressed even during energization or stress loading.
  • the CNT 5 can form a network within the electrode fingers 2a and 2b, the movement of metal atoms between the grain boundaries is also suppressed, which can improve the resistance to breakage due to stress migration, which is better. Migration resistance can be obtained.
  • the CNTs 5 shorter than the electrode line width T of the electrode fingers 2a and 2b are 5 to 90% of the total amount of CNTs, the short CNTs 5 are efficiently filled in the electrode fingers 2a and 2b. Therefore, the electrical resistance can be reduced and good electrical conductivity can be obtained.
  • the electrode line width T can be further miniaturized, and the surface acoustic wave device using the electrode line width T can be further reduced in size.
  • the average diameter D of the CNT5 exceeds 1/4 of the electrode line width T, the average diameter D of the CNT5 becomes excessively larger than the electrode line width T, so that the CNT5 enters the electrode fingers 2a and 2b. Even if it is included, the CNTs 5 cannot form a network. As a result, the metal atoms move between the grain boundaries to reduce the resistance to stress migration, and voids and hillocks may be generated, leading to electrode destruction. In addition, in this case, the contact resistance between the CNT 5 and the metal film 6 is increased, and the electrical conductivity is lowered, which may cause deterioration of electrical characteristics as the surface acoustic wave device.
  • the average diameter D of the CNTs 5 is set to 1 ⁇ 4 or less of the electrode line width T of the electrode fingers 2a and 2b.
  • the average length L of the CNTs 5 exceeds 10 times the electrode line width L of the electrode fingers 2a and 2b, the amount of long CNTs becomes too large, and therefore the CNTs 5 can be uniformly combined with the metal film 6. It is not possible and lacks composite uniformity. As a result, in the electrode fingers 2a and 2b, a dense part and a sparse part are formed, and the migration of metal atoms cannot be sufficiently suppressed in the sparse part, and the migration resistance can be sufficiently improved. There is a risk that the power durability will be reduced.
  • the average length L of the CNTs 5 is set to 10 times or less of the electrode line width T of the electrode fingers 2a and 2b.
  • the volume ratio of the CNTs 5 that are equal to or smaller than the electrode line width T of the electrode fingers 2a and 2b is less than 5 vol% with respect to the total amount of CNTs, the length of the long CNTs 5 increases. Decreases and electrical resistance increases.
  • the volume ratio of the CNT5 having the electrode line width T or less of the electrode fingers 2a and 2b of the IDT electrode exceeds 90 vol% with respect to the total amount of the CNT5
  • the short CNT5 increases, and therefore the CNT5 becomes the electrode fingers 2a and 2b.
  • the force for forming the network between the CNTs 5 becomes weak, and therefore, the movement of the metal atoms between the grain boundaries cannot be sufficiently suppressed, and the desired migration resistance cannot be obtained.
  • the volume ratio of CNT5 having a length equal to or shorter than the electrode line width T of CNT5 is set to 5 to 90 vol% with respect to the total amount of CNT5.
  • the electrode fingers 2a and 2b are (4) CNT5 in which the average diameter D of the CNT5 is 1/10 or less of the electrode line width T of the IDTs 2a and 2b, and (5) the electrode line width T or less of the electrode fingers 2a and 2b.
  • the composite state of the CNTs 5 on the metal film 6 can be improved, and as a result, the short circuit failure between the electrode fingers 2a and 2b due to the composite failure can be reduced. It is possible to obtain even better electrical conductivity.
  • the composite amount of CNT5 in the electrode fingers 2a and 2b is preferably 0.5 vol% to 20 vol%. This is because, when the composite amount of CNT5 becomes less than 0.5 vol% in the metal film 6, the CNT5 becomes too small to exhibit the effect of CNT composite, while the composite amount of CNT5 is in the metal film 6. This is because if it exceeds 20 vol%, the CNT5 becomes excessive and the CNT5 becomes a foreign substance, which impedes the flow of current and may deteriorate the electrical conductivity.
  • the composite amount of CNT5 in the electrode fingers 2a and 2b is particularly preferably 1 vol% to 10 vol%, and by controlling the CNT5 within this range, the electric resistance of the electrode fingers 2a and 2b can be improved without deteriorating.
  • a surface acoustic wave device having electric power can be obtained.
  • 4 to 6 are manufacturing process diagrams showing a method for manufacturing the surface acoustic wave device.
  • a first dielectric 3 having a predetermined thickness is formed on the piezoelectric substrate 1 using a sputtering method or the like, and then using a spin coater method or the like, as shown in FIG. As shown in b), a photoresist 8 having a predetermined thickness is applied on the first dielectric 3.
  • the photoresist 8 is exposed and developed using the photomask 10 having the opening 9, and the resist corresponding to the opening 9 of the photomask 10 is removed.
  • a pattern 11 is formed.
  • one or more fluorine-based gases of CF 4 , CHF 3 , and SF 6 are used, and the resist pattern 11 is used as a mask to form the first dielectric. 3 is subjected to reactive ion etching, thereby forming a groove 12 for an IDT electrode.
  • fluorine-based gas described above as a gas used for the reactive ion etching is also preferable to add a necessary O 2.
  • the resist pattern 11 is peeled off from the first dielectric 3 as shown in FIG. 5 (e) by immersing the piezoelectric substrate 1 in a stripping solution and swinging it.
  • the CNT 5 can be produced by a CVD method (chemical vapor deposition) such as a substrate growth method or a floating growth method.
  • a CVD method chemical vapor deposition
  • a metal catalyst such as Fe or Ni is directly sprayed on the substrate and placed in the furnace core tube, and the furnace core tube is heated using an electric furnace or the like.
  • a hydrocarbon gas such as (CH 4 ) or acetylene (C 2 H 2 ) is supplied into the furnace and vapor-grown on the substrate to obtain CNT5.
  • the hydrocarbon gas and the metal catalyst are supplied into a furnace at a high temperature, suspended in a reaction atmosphere and vapor-phase grown to obtain the CNT5.
  • the length and diameter of CNT5 are distributed so as to satisfy the above three requirements (1) to (3).
  • the length and diameter of CNT5 can be distributed by changing the diameter of the metal catalyst, the type of hydrocarbon gas, or the reaction temperature.
  • the generated CNTs 5 can be selectively sorted to a desired size so that the length and diameter of the CNTs 5 have a distribution.
  • the length and diameter of the CNTs 5 can be distributed by mixing the CNTs 5 having different lengths and diameters separately produced by using these methods.
  • an electrolytic plating solution is prepared.
  • This electrolytic plating solution is dispersed and suspended in an electrolyte solution in which CNT5 serves as a metal ion source via a dispersant.
  • the electrolyte solution serving as the metal ion source is not particularly limited, and for example, Cu aqueous solution, Al aqueous solution, Ni aqueous solution, and other various alloy aqueous solutions should be used according to the desired type of the metal film 6. Can do.
  • the dispersant is added so that the CNTs 5 do not aggregate in the electrolytic plating solution, and the type thereof is not particularly limited.
  • a cationic surfactant or a nonionic surfactant is added. Can be used.
  • examples of the cationic surfactant include cetyltrimethylammonium chloride, cetyltrimethylammonium bromide, cetylpyridinium chloride and the like.
  • Nonionic surfactants include, for example, polyacrylic acid, polyethylene glycol, polyoxyethylene nonyl phenyl ether, polyoxyethylene dodecyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene fatty acid ester. , Polyoxyethylene polyoxypropylene block polymer, polyoxyethylene alkylamine, alkyl polyglucoside, glycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, propylene glycol fatty acid ester and the like.
  • the electrolytic plating solution preferably contains additives such as a pH adjuster and a brightener as necessary.
  • a barrier film 13 is formed by sputtering.
  • Ta is preferably used as a film forming material for the barrier film 13, but is not particularly limited as long as it is a material that prevents diffusion and migration of metal to the piezoelectric substrate 1.
  • Ti, Cr, Ni, NiCr A metal material such as TaN or TiN, or an oxide such as Ta 2 O 5 or TiO 2 can be used alone or in combination.
  • a seed layer 14 as a power feeding layer is formed on the barrier film 13 by a sputtering method or the like.
  • the piezoelectric substrate 1 is immersed in an electrolytic plating solution, and a predetermined current (for example, 2 mA / cm 2 ) is energized for a predetermined time (for example, 10 minutes) while stirring the electrolytic plating solution, as shown in FIG.
  • a predetermined current for example, 2 mA / cm 2
  • a predetermined time for example, 10 minutes
  • the plating layer 15 having a predetermined film thickness for example, 300 nm
  • CMP chemical mechanical polishing
  • the second dielectric 4 is formed by sputtering or the like, whereby a surface acoustic wave device is manufactured.
  • the present embodiment includes the electrode fingers 2a and 2b having the fine electrode line width T, and the electrode fingers 2a and 2b are formed by combining the CNT5 in the metal film 6, and the CNT5 has an average diameter.
  • D is not more than 1/4 of the electrode line width
  • the average length L is not more than 10 times the electrode line width T
  • the volume ratio of the CNTs 5 having a length not more than the electrode line width T is Since the total amount is 5 to 90 vol%, the metal atoms trapped in the CNT 5 due to the high electrical conductivity, high thermal conductivity, and good mechanical strength of the CNT 5 are when energized or stressed. The movement is also suppressed.
  • the CNT 5 forms a network in the electrode fingers 2a and 2b, the movement of metal atoms between the grain boundaries is also suppressed, thereby improving resistance to breakage due to stress migration, and better migration resistance. Obtainable. Further, since the CNTs 5 shorter than the electrode line width T of the electrode fingers 2a and 2B are 5 to 90% of the total amount of CNTs, the short CNTs 5 are efficiently filled in the electrode fingers 2a and 2b. The electrical resistance can be reduced and the electrical conductivity is not impaired.
  • the electrode line width T can be further miniaturized, and the surface acoustic wave device can be further reduced. Miniaturization can be achieved.
  • the electrode fingers 2a and 2b are formed by plating, the CNTs 5 are easily taken into the metal film 6, thereby easily forming the electrode fingers 2a and 2b of the IDT electrode in which the metal film 6 and the CNTs 5 are combined. Can be formed.
  • CNT5 is very stable physically and chemically and the main raw material is carbon, and it is extremely inexpensive. Therefore, it does not lead to the introduction of special equipment or a significant increase in raw material costs.
  • the IDT electrode is formed by an electrolytic plating method, but it can also be formed by an electroless plating method, or by using a sputtering method, a CVD method, or a vacuum evaporation method other than the plating method. It is also possible.
  • the first and second dielectrics 3 and 4 can be formed by a method according to the application, such as a CVD method, a vacuum deposition method, a sol-gel method, and a spin coating method, in addition to the sputtering method. .
  • the first dielectric 3 is formed by reactive ion etching.
  • physical etching is performed by a heavy element such as Ar ions. It is also preferable to use (milling), wet etching using a chemical solution, or the like. From the viewpoint of improving the adhesion between the piezoelectric substrate 1 and the first dielectric 3, the barrier layer 16, and the seed layer 17, it is also preferable to appropriately insert a Ti film or the like as the adhesion layer.
  • CNT5 is single- or multi-walled CNT with a graphene sheet as a cylinder, carbon nanotubes shaped like paper cups (for example, GSI Creos Carbale), carbon nanotwist, carbon nanocoil, etc. It can be adjusted and used appropriately.
  • the surface acoustic wave device is exemplified as the electronic device.
  • the present invention can be applied to other electronic devices, for example, electronic devices having movable parts such as MEMS, piezoelectric vibrators, and filters. . That is, in the electronic device having these movable parts, stress is applied to the electrode part, so stress migration is likely to occur due to this stress. However, by applying the present invention, good migration resistance can be obtained. it can.
  • the present invention can also be applied to small electronic components having fine wiring and increasing power density.
  • it is suitable for electronic parts that have fine conductor patterns and are concerned about migration, such as various electronic device actuators such as piezoelectric and electrostatic, pickup elements, and sensors.
  • the present invention can also be applied to circuit boards on which these are mounted and wiring portions of modules.
  • an electronic device surface acoustic wave device having a fine electrode in which CNT is compounded in a metal film
  • any carbon-containing nanotube may be used.
  • B, N, Mo, W, Nb, etc. may be contained.
  • MS 2 M is a metal such as Mo, W, Nb, etc.
  • CNTs containing inorganic substances and various functional groups may be combined in the metal film.
  • the IDT electrode was prepared such that the electrode line width T and the electrode interval of the electrode fingers were both 500 nm.
  • Table 1 shows the material, forming method, and thickness of the constituent members of the samples of Examples 1 and 2 and Comparative Examples 1 to 6.
  • the CNTs were pulverized with a ball mill with a CNT having an average length L of 10 ⁇ m, and the volume ratio of the average diameter D, the average length L, and the amount of CNT below the electrode line width T was such that It adjusted so that it might become.
  • the IDT electrode was formed by using an electroplating solution having the following composition and carrying out electroplating by applying a current having a current density of 2 mA / cm 2 for 10 minutes.
  • composition of plating solution CuSO 4 ⁇ 5H 2 O: 60 ⁇ 90g / L H 2 SO 4 : 100 to 250 g / L Cl ⁇ concentration: 40-60 ppm
  • Dispersant polyacrylic acid (molecular weight: 5000)
  • CNT amount 20g
  • SEM scanning electron microscope
  • the electrical conductivity is calculated by measuring the impedance of meandering lines having the same line width and different lengths with an alternating wave of 300 kHz, calculating the resistance from the slope of the approximate line plotting the real part of the impedance, The electrode resistance (volume resistivity) was determined from the line width, and evaluated based on this electrode resistance.
  • the power durability is applied to the surface acoustic wave device while applying 0.1 W power as the starting power, increasing the power stepwise, and confirming that the electrode finger has been melted.
  • the evaluation was based on the breakdown power.
  • the power application time at each stage was 5 minutes.
  • Table 2 shows the electrode line width T, average particle diameter D, D / T, average length L, L / T, and volume of CNT below the electrode line width in Examples 1 and 2 and Comparative Examples 1 to 6.
  • the ratio, electrode resistance, CNT composite amount in the electrode finger, breakdown power, and overall evaluation are shown.
  • the electrode resistance, the composite amount of CNT in the electrode finger, and the breakdown power indicate values (relative values) normalized based on the values of Example 1.
  • the overall evaluation was based on Example 1 (notation: ⁇ ), and two or more of the electrode resistance, the CNT composite amount of the electrode finger, and the breakdown power were inferior, and the inferior one was ⁇ .
  • the average diameter D of the CNT is 1/4 to 1/10 of the electrode line width T
  • the average length L of the CNT is 8 times the electrode line width T
  • the amount of CNT less than or equal to the electrode line width T is Since both are within the scope of the present invention, the electrical conductivity is good, and the CNTs are uniformly combined in the metal film to form a network in the electrode fingers, and are resistant to stress migration. It was improved and good power durability was obtained.
  • Example 2 since the average diameter D of CNT is 1/10 of the electrode line width T and the electrode line width T is smaller than that of the sample number 1, the electric conductivity equivalent to that of Example 1 is maintained. However, it was found that even better power durability can be obtained.
  • Comparative Example 1 was a case where CNT was not included, and the electrode resistance showed substantially the same value, but the breakdown power was lower than that of Example 1 and was found to be inferior in power durability.
  • the electrode fingers 2a and 2b were short-circuited. For this reason, the breakdown power could not be measured.
  • the average length L of the CNTs is 8 times the electrode line width T and satisfies 10 times or less.
  • the CNTs are not uniformly combined with the Cu film, Similar to Comparative Example 1, it was found that the breakdown power was lower than that of Example 1 and the power durability was inferior.
  • the filling amount into the IDT electrode is low, and thus it has been found that the electrode resistance is large and the electrical conductivity is lowered.
  • the average diameter D of the CNT was as large as 1/2 of the electrode line width T, and the current flow was hindered, and the resistance was so high that the electrode resistance could not be measured. Further, it was found that the CNT itself could not form a network within the electrode fingers of the IDT electrode, so that the breakdown power was lower than that of Example 1 and the power durability was inferior.
  • Comparative Example 6 the volume ratio of CNTs having an electrode line width T or less is 95%, and a large amount of short CNTs are combined with a Cu film, so that the network forming ability between the CNTs is weak. It was found that the breakdown power was lower than that of, and the power durability was inferior.
  • Electrode fingers (conductor pattern) 5 CNT (carbon-containing nanotube) 6 Metal film

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 微細な電極線幅Tを有するIDT電極2a、2bを備え、IDT電極2a、2bは、カーボンナノチューブ(CNT)5が金属膜6中に複合されてなる。CNT5は、平均直径Dが電極線幅Tの1/4以下であり、平均長さLは電極線幅Tの10倍以下である。また、電極線幅T以下の長さを有するCNT5の体積比率が、CNT5の全量に対し5~90vol%である。これにより微細な導体パターンを有する場合であっても、電気伝導性が良好であり、かつマイグレーション耐性が良好で耐電力性が強化された高信頼性を有する電子デバイスを実現する。

Description

電子デバイス
 本発明は電子デバイスに関し、より詳しくは線幅が微細な導体パターンを有する弾性表面波装置等の電子デバイスに関する。
 近年、種々の電子機器に搭載される電子デバイスは、高性能かつ小型化が要請されており、電子デバイスに形成される導体パターンも、微細化の傾向にある。特に、近年、携帯電話などの電波の入出力フィルタとして弾性表面波装置が広く使用されているが、この弾性表面波装置は、櫛形形状のIDT電極(インターディジタルトランスデューサ)が、互いの電極指が交差するように配されて圧電基板上に形成されている。また、IDT電極は、電極指の線幅と電極指間の間隔の和の2倍(ピッチ)が、弾性表面波装置の中心周波数に対応している。
 このような弾性表面波装置では、該弾性表面波装置の高周波化に伴って電極線幅や電極間の間隔が狭くなってきており、このため電極の更なる微細化が要請されている。
 一方、この種の弾性表面波装置では、導体パターンにはAlやCu等の金属材料が使用されており、導体パターンの微細化に伴い、エレクトロマイグレーションやストレスマイグレーション等のマイグレーション現象が生じやすくなる。ここで、エレクトロマイグレーションとは、導体パターンの微細化に伴う電流密度の増大により、通電時に金属原子が拡散して移動する現象をいい、ストレスマイグレーションとは、弾性表面波の励振によって機械的応力が負荷された場合に、その応力を局所的に緩和しようとして金属原子が拡散移動する現象をいう。
 このようなマイグレーションにより金属原子が移動すると、局所的に金属イオンの過不足が生じ、金属イオンが不足した領域ではボイド(空孔)が生じ、ボイドの成長により導体パターンの断線が生じるおそれがある。一方、金属イオンが過剰に存在する領域ではヒロック(突起物)が生成し、弾性表面波装置の電気特性の劣化を招くおそれがある。
 そして、このような断線やヒロックは、電子デバイスの信頼性低下や特性劣化を招くことから、電子デバイスには電気特性を損なうことなく、良好なマイグレーション耐性を有することが求められる。
 一方、カーボンナノチューブ(以下、「CNT」という。)は、炭素の基本骨格(六員環)が軸方向に配列した強固な共有結合を有しているため、電気伝導性、熱伝導性、機械的強度が良好であるという特性を有している。このため、CNTは、マイグレーションの対策用素材として注目されており、従来より、CNTを金属材料に複合させた複合材の研究・開発が盛んにされている。
 例えば、特許文献1には、めっき皮膜中にCNTが混入しためっき構造物が提案されている。
 図7は、特許文献1のめっき構造物の製造方法を示す図である。
 図7(a)に示すように、めっき液中には、めっき金属となる金属イオン101とCNT102とが含有されると共に、CNT102は分散剤103によりめっき液中を分散浮遊している。
 そして、このめっき液を使用して被めっき物に電解めっきを行うと、図7(b)に示すように、めっき金属104が基板105の表面に析出し、これによりめっき皮膜106が形成される。すなわち、このめっき構造物は、めっき金属104が基板105の表面に析出する際、めっき液中を分散しているCNT102がめっき金属104中に取り込まれ、これによりCNT102がめっき金属104に複合しためっき皮膜106が基板105の表面に形成される。
 また、特許文献2には、金属からなる接続プラグの断面に略均一にナノ材料が配置された半導体装置が提案されている。
 この半導体装置の配線は、図8に示すような方法で作製される。
 まず、図8(a)に示すように、ナノメートルサイズ(例えば、2~10nm)の多数の金属粒子(例えば、Ni粒子)112が列設された金属粒子層を絶縁膜111上に形成し、該金属粒子112を核として各粒子112上にCNT113を成長させる。次いで、図8(b)に示すように、CNT113が成長した絶縁膜111上に金属(例えば、Al系合金)を堆積させ、金属層114を形成する。そして、最後に、公知のリソグラフィー技術及びエッチング技術を使用し、図8(c)に示すように、CNT113が内部に取り込まれた配線115を得ている。
 特許文献2では、配線115中にCNT113を複合させることにより、通電時や機械的な応力負荷等による金属粒子112の移動を抑制し、これによりエレクトロマイグレーションやストレスマイグレーションの発生を抑制している。
特開2004-156074号公報(請求項1、段落番号〔0011〕~〔0016〕) 国際公開第2004/051726号(請求項1、請求項11)
 ところで、微細電極を有する電子デバイス、特に弾性表面波装置では、上述したようにIDT電極の電極指の電極線幅や電極間隔が狭くなってきており、耐電力性の向上が求められている。そして、そのためにはストレスマイグレーションに対する耐性を向上させる必要がある。
 しかしながら、特許文献1のめっき構造物を弾性表面波装置に適用した場合、金属膜中にCNTを複合させようとしても、CNTのサイズが不適切なために所望のマイグレーション耐性を得ることができず、耐電力性を十分に強化させることができない場合がある。
 図9(a)~(c)は、弾性表面波装置のIDT電極の電極指にCNTを複合させた場合の例を示す斜視図である。
 この弾性表面波装置では、圧電基板121上にIDT電極の電極指122a、122bが形成され、電極指122aと電極指122bとの間には誘電体層123が形成されている。電極指122aと電極指122bとは異なる電位に接続されるため、互いに絶縁されている。電極指122aと電極指122bとにより弾性表面波が励振される。
 そして、図9(a)に示すように、CNT124の長さがIDT電極の電極指122a、122bの電極線幅tよりも過度に長すぎる場合、CNT124を電極指122a、122b中に均一に複合させることができず、電極指122a、122b中でのCNT124の複合状態が不均一となる。すなわち、電極指中で金属膜とCNT124の複合が密な部分と疎な部分が生じるため、疎な部分では金属原子の移動を十分に抑制できない。このため所望のマイグレーション耐性を得ることができず、却って耐電力性の低下を招くおそれがある。
 また、図9(b)に示すように、CNT125の直径が電極指122a、122bの電極線幅tよりも過度に大きい場合、CNT125を電極指122a、122b内に取り込めたとしても、CNT125の直径が大きすぎるため、CNT125同士でネットワークを形成することができない。
 すなわち、ストレスマイグレーションに対する十分な耐性を得るためには、CNT125自体の補強効果による金属原子の移動阻止の他、CNT125同士が電極指122a、122b内でネットワークを組むことにより、粒界間での金属粒子の移動を抑制するのが望ましいと考えられる。
 しかしながら、図9(b)に示すように、CNT125の直径が電極指122a、122bの電極線幅tよりも過度に大きい場合は、CNT125同士が電極指122a、122b内でネットワークを組むことができず、ストレスマイグレーションに対する所望の耐性を得ることができない。しかも、CNT125の直径が大きすぎるため、CNT126が金属膜に対する異物となり、電流の流れを阻害するため電気伝導性が低下し、電気特性の劣化を招くおそれがある。
 また、図9(c)に示すように、CNT126が、電極指122a、122bの電極線幅tに対し、十分に細くかつ短い場合は、大量のCNT126をIDT122a、122b内に十分に取り込むことができるため、CNT126により捕捉された金属原子はCNT126の有する熱伝導性、機械的強度、及び電気伝導性により移動が抑制され、マイグレーション耐性の向上を期待することができる。
 しかしながら、この場合はCNT126のアスペクト比(=長さ/直径)が小さいため、電極指122a、122b内でネットワークを形成する力が弱い。このため粒界間での金属原子の移動を十分に抑制するのは困難となり、したがって所望のマイグレーション耐性を得ることができず、耐電力性を十分に強化することができない。
 このように特許文献1は、プリント配線や多層回路基板のビアのようにCNTよりも線幅が十分に大きい電極構造を有する場合は、マイグレーション対策として有効であるが、微細な電極(例えば、線幅500nm程度)に対しては種々の課題が存在し、所望のマイグレーション耐性を得るのは困難な状況にある。
 また、特許文献2は、図8に示したように、CNT113の成長を基板表面に形成された絶縁膜111上で行うため、CNT113を生成する熱処理温度に制限があり、このため電極材に適した品質が良好で低抵抗なCNT113を得るのが困難である。しかも、CNT113は金属層114との濡れ性が悪く、しかもCNT113を成長させた後、金属層114を成膜しているため、CNT113の隙間を完全に埋めることは難しく、さらにはこの隙間に金属原子が移動してしまいマイグレーション耐性を著しく損なうおそれがある。
 また、特許文献2では、プラズマCVD法でCNT113を成長させることにより、図8(a)に示すように、CNT113を絶縁膜111に対して垂直に配向させることができる。
 しかしながら、この場合、CNT113は電気伝導性に対し異方性を有する。すなわち、図8(c)に示す矢印a方向に対してはCNT113内部を電流が通過するため抵抗が小さく、所望の電気伝導性を確保できるが、矢印b方向に対してはCNT113が絡み合っているのみであり、電気抵抗が大きく、電気伝導性が低下する。したがって、多層回路基板のビアのような場合は厚み方向への電気伝導性を確保できるものの、多元的な方向への電気伝導を必要とする電子デバイスの場合は所望の電気伝導性を確保することができない。
 本発明は、このような事情に鑑みなされたものであって、微細な導体パターンを有する場合であっても、電気伝導性が良好であり、しかもマイグレーション耐性が良好で耐電力性が強化された高信頼性を有する電子デバイスを提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を行なったところ、CNTの平均直径、CNTの平均長さの線幅に対する比率、及び線幅以下のCNTの体積比率のCNTの全量に対する比率を規定することにより、電気抵抗を低減させることができると共に、導体パターン中でCNT同士がネットワークを形成することができ、これにより微細な導電パターンを有する場合であっても、電気抵抗が小さく、かつマイグレーション耐性の大きい電子デバイスを得ることができるという知見を得た。そして、この知見は、CNTの他、カーボンを含有したナノチューブに広く適用できると考えられる。
 本発明はこのような知見に基づきなされたものであって、本発明に係る電子デバイスは、微細な線幅を有する導体パターンを備えると共に、該導体パターンは、少なくともカーボンを含有したナノチューブが金属膜中に複合されてなり、前記ナノチューブは、平均直径が前記線幅の1/4以下とされると共に、平均長さが前記線幅の10倍以下とされ、かつ、前記線幅以下の長さを有するナノチューブの体積比率が、前記ナノチューブの全量に対し5~90vol%であることを特徴としている。
 さらに、本発明者らが鋭意研究を重ねたところ、前記ナノチューブの平均直径が前記線幅の1/10以下、及び線幅以下の長さを有する前記ナノチューブの含有量を、前記ナノチューブの全容量に対し30~70vol%のうちの少なくともいずれか一方を満足することにより、前記ナノチューブの複合化状態をより一層向上できることが分かった。
 すなわち、本発明の電子デバイスは、前記平均直径が前記線幅の1/10以下であるのが好ましい。
 また、本発明の電子デバイスは、前記線幅以下の長さを有するナノチューブの体積比率が、前記ナノチューブの全量に対し30~70vol%であるのが好ましい。
 さらに、本発明の電子デバイスは、前記導体パターン中の前記ナノチューブの体積比率は、0.5~20vol%であるのが好ましい。
 また、本発明の電子デバイスは、前記導体パターン中の前記ナノチューブの体積比率は、1~10vol%であるのが好ましい。
 さらに、本発明の電子デバイスは、前記導体パターンは、めっき処理で形成されているのが好ましい。
 また、本発明の電子デバイスは、前記導体パターンが、弾性表面波装置のIDT電極を構成する電極指であるのが好ましい。
 本発明の電子デバイスによれば、微細な線幅を有する導体パターンを備えると共に、該導体パターンは、少なくともカーボンを含有したナノチューブが金属膜中に複合されてなり、前記ナノチューブは、平均直径が前記線幅の1/4以下とされると共に、平均長さが前記線幅の10倍以下とされ、かつ、前記線幅以下の長さを有するナノチューブの体積比率が、前記ナノチューブの全量に対し5~90vol%であるので、カーボン含有のナノチューブに捕捉された金属原子は、通電時や応力負荷時であっても、その移動は抑制される。しかも、前記カーボン含有のナノチューブは導体パターン内でネットワークを形成することができるので、粒界間の金属原子の移動も抑制され、これによりストレスマイグレーションによる破壊に対する耐性を向上させることができ、より良好なマイグレーション耐性を得ることができる。また、導体パターンの線幅よりも短いナノチューブがナノチューブ全量の5~90%であるので、短尺のナノチューブが効率よく導体パターン内に充填されることとなり、電気伝導性を確保しつつ、良好な耐電力性を得ることができる。
 そして、このように電気伝導性を確保しつつマイグレーション耐性の向上を図ることができるので、耐電力性を向上させることができ、これにより線幅のより一層の微細化が可能となり、電子デバイスのより一層の小型化を図ることができる。
 また、前記ナノチューブの平均直径が前記線幅の1/10以下であり、及び/又は前記線幅以下の長さを有する前記ナノチューブの体積比率が、前記ナノチューブの全量に対し30~70vol%であるので、ナノチューブの複合化状態をより一層向上させることができ、これによりナノチューブの複合不良による導体間の短絡不良を低減でき、より一層良好な耐電力性を得ることが可能となる。
 また、前記導体パターン中の前記ナノチューブの体積比率は、0.5~20vol%(好ましくは1~10vol%)であるので、導体パターンの電気伝導性を損なうことなく、耐電力性が良好で所望のマイグレーション耐性を有する電子デバイスを得ることができる。
 また、導体パターンは、めっき処理で形成されているので、分散めっきによりナノチューブを金属膜内に容易に取り込むことができ、これによりナノチューブが金属膜と複合した導体パターンを容易に形成することができる。
 また、本発明の電子デバイスは、導体パターンが弾性表面波装置のIDT電極を構成する電極指であるので、IDT電極を構成する電極指の電気抵抗の低減化を図ることができると共に、良好なマイグレーション耐性を得ることができる。すなわち、電極指内の金属原子の移動によるボイドやヒロックの発生を抑制できるので、断線や短絡不良等が生じるのを抑制でき、耐電力性が強化された高信頼性を有する弾性表面波装置を得ることが可能となる。
本発明に係る電子デバイスとしての弾性表面波装置の一実施の形態を示す平面図である。 図1のA-A斜視図である。 図2の第2の誘電体を除いた斜視図である。 上記弾性表面波装置の製造方法を示す製造工程図(1/3)である。 上記弾性表面波装置の製造方法を示す製造工程図(2/3)である。 上記弾性表面波装置の製造方法を示す製造工程図(3/3)である。 特許文献1に記載された電子部品の製造方法を示す図である。 特許文献2に記載された配線の製造方法を示す図である。 特許文献1の問題点を説明するための図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係る電子デバイスとしての弾性表面波装置の一実施の形態を示す平面図であり、図2は図1のA-A斜視図、図3は図2の第2の誘電体4を除いた斜視図である。
 すなわち、本弾性表面波装置は、微細な電極線幅T(線幅)を有する電極指2a、2b(導体パターン)を含むIDT電極が圧電基板1上に形成され、該電極指2a、2bの各電極間には第1の誘電体3が形成され、かつ電極指2a、2b及び第1の誘電体3の表面には第2の誘電体4が形成されている。そして、弾性表面波は、電極指2a及び電極指2bにより励振される。
 圧電基板1としては、圧電性材料であれば特に限定されるものではなく、所望する圧電特性に応じLiTaO、水晶、LiNbO、Li、PZT等を使用することができる。
 第1及び第2の誘電体3、4についても、特に限定されるものではなく、例えば、SiO、SiN、ZnO、更にはポリイミド等の樹脂材料、低誘電率材料(low-k材料)等を使用することができる。尚、第2の誘電体4は、必要な特性が得られるのであれば、適宜省略することが可能である。
 IDT電極の電極指2a、2bは、CNT5が、下記(1)~(3)を満足するように、金属膜6中に複合されている。すなわち、CNT5は、
(1)平均直径Dが、電極指2a、2bの電極線幅Tの1/4以下であり、
(2)CNT5の平均長さLは、電極指2a、2bの電極線幅Tの10倍以下であり、
(3)電極指2a、2bの電極線幅T以下の長さを有するCNT5の体積比率が、CNT5の全量に対し5~90vol%
 の3要件を満足している。
 このように本実施の形態は、IDT電極の電極指2a、2bが、上記(1)~(3)を満足するように、金属膜6中にCNT5が複合されているので、CNT5の有する高い電気伝導性、高い熱伝導性、及び良好な機械的強度によりCNT5に捕捉された金属原子は、通電時や応力負荷時であっても、その移動が抑制される。しかも、CNT5は電極指2a、2b内でネットワークを形成することができるので、粒界間の金属原子の移動も抑制され、これによりストレスマイグレーションによる破壊に対する耐性を向上させることができ、より良好なマイグレーション耐性を得ることができる。また、電極指2a、2bの電極線幅Tよりも短いCNT5がCNT全量の5~90%であるので、短尺のCNT5が効率よく電極指2a、2b内に充填されることとなり、金属膜6との接触抵抗が増大することもなく、電気抵抗を低減でき、良好な電気伝導性を得ることができる。
 そして、このように電気伝導性を確保しつつマイグレーション耐性の向上を図ることができるので、耐電力性を向上させることができる。そしてこれにより電極線幅Tのより一層の微細化が可能となり、これを用いた弾性表面波装置のより一層の小型化を図ることができる。
 次に、CNT5が前記(1)~(3)を満足するようにした理由を述べる。
(1)CNT5の平均直径D
 CNT5を金属膜6中に複合させることにより、CNT5の有する電気伝導性、熱伝導性、及び機械的強度により金属電極のマイグレーション耐性、特に高電圧印加時の弾性表面波による応力を原因としたストレスマイグレーションに対する耐性が向上し、これにより金属膜6自体の耐電力性の向上を図ることができる。また、CNT5が電極指2a、2b内でネットワークを形成することにより粒界間の金属原子の移動を抑制できることから、ストレスマイグレーションを原因とする電極に対する破壊耐性を向上させることができる。
 しかしながら、CNT5の平均直径Dが電極線幅Tの1/4を超えると、CNT5の平均直径Dが電極線幅Tに比べて過度に大きくなり、このためCNT5が電極指2a、2b内に入り込めてもCNT5同士がネットワークを形成することができなくなる。そしてその結果、金属原子が粒界間を移動してストレスマイグレーションに対する耐性が低下し、ボイドやヒロックが発生して電極破壊を招くおそれがある。しかも、この場合、CNT5と金属膜6との接触抵抗が大きくなって電気伝導性が低下し、このため弾性表面波装置としての電気特性の劣化を招くおそれがある。
 そこで、本実施の形態では、CNT5の平均直径Dを電極指2a、2bの電極線幅Tの1/4以下としている。
(2)CNT5の平均長さL
 上述したようにCNT5を金属膜6中に複合させることにより、金属膜6自体の耐電力性が向上すると共に、電極の破壊耐性を向上することができる。
 しかしながら、CNT5の平均長さLが電極指2a、2bの電極線幅Lの10倍を超えると、長尺のCNT量が多くなりすぎ、このためCNT5を金属膜6と均一に複合することができず、複合の均一性を欠く。その結果、電極指2a、2b中、CNTとの複合が密な部分と疎な部分が形成され、疎な部分では金属原子の移動を十分に抑制できず、マイグレーション耐性を十分に向上させることができなくなり、却って耐電力性の低下を招くおそれがある。
 そこで、本実施の形態では、CNT5の平均長さLを電極指2a、2bの電極線幅Tの10倍以下としている。
(3)電極線幅T以下の長さを有するCNT5の体積比率
 上述したようにCNT5を金属膜6中に複合させることにより、金属膜6自体の耐電力向上を図ることができると共に、電極に対する破壊耐性を向上させることができる。
 しかしながら、電極指2a、2bの電極線幅T以下のCNT5の体積比率がCNTの全量に対し5vol%未満になると、長尺のCNT5が多くなるため、CNT5の電極指2a、2bの充填効率が低下し、電気抵抗が大きくなる。
 一方、IDT電極の電極指2a、2bの電極線幅T以下のCNT5の体積比率がCNT5の全量に対し、90vol%を超えると、短尺のCNT5が多くなり、このためCNT5が電極指2a、2b内に入り込めてもCNT5同士のネットワークを形成する力が弱くなり、したがって金属原子の粒界間の移動を十分に抑制することができず、所望のマイグレーション耐性を得ることができなくなる。
 そこで、本実施の形態では、CNT5の電極線幅T以下の長さを有するCNT5の体積比率を、CNT5の全量に対し5~90vol%としている。
 また、上記電極指2a、2bは、(4)CNT5の平均直径DがIDT2a、2bの電極線幅Tの1/10以下、及び(5)電極指2a、2bの電極線幅T以下のCNT5がCNT全量の30vol%~70vol%の少なくともいずれか一方を満たすのが好ましい。
 上記(4)、(5)の条件を満たすことにより、金属膜6へのCNT5の複合状態を向上させることができ、その結果、複合不良による電極指2a、2b間の短絡不良を低減することができ、より一層良好な電気伝導性を得ることが可能となる。
 尚、電極指2a、2b中のCNT5の複合量は0.5vol%~20vol%が好ましい。これは、CNT5の複合量が金属膜6中で0.5vol%未満になると、CNT5が過少となってCNT複合の効果を発揮することができず、一方CNT5の複合量が金属膜6中で20vol%を超えるとCNT5が過剰となって該CNT5が異物となり、電流の流れを阻害するため電気伝導性が悪化するおそれがあるからである。
 電極指2a、2b中のCNT5の複合量は、特に、1vol%~10vol%が好ましく、CNT5をこの範囲で制御することにより、電極指2a、2bの電気伝導性を損なうことなく、良好な耐電力を有する弾性表面波装置を得ることができる。
 次に、上記弾性表面波装置の製造方法を詳述する。
 図4~図6は、上記弾性表面波装置の製造方法を示す製造工程図である。
 まず、図4(a)に示すように、スパッタ法等を使用して圧電基板1上に所定厚みの第1の誘電体3を成膜し、次いで、スピンコータ法等を使用し、図4(b)に示すように、所定厚みのフォトレジスト8を第1の誘電体3上に塗布する。次いで、図4(c)に示すように、開口部9を有するフォトマスク10を使用してフォトレジスト8を露光し、現像し、フォトマスク10の開口部9に相当する部分が除去されたレジストパターン11を形成する。
 次に、図5(d)に示すように、例えばCF、CHF、SFのうちの1種又は2種以上のフッ素系ガスを使用し、レジストパターン11をマスクとして第1の誘電体3に対し、反応性イオンエッチングを行い、これによりIDT電極用の溝部12を形成する。尚、反応性イオンエッチングに使用するガスとしては上述したフッ素系ガスに加え、必要に応じOを添加するのも好ましい。
 次に、圧電基板1を剥離液に浸漬し、揺動等することにより、図5(e)に示すように、レジストパターン11を第1の誘電体3から剥離させる。
 次いで、CNT5を作製する。このCNT5は基板成長法や浮遊成長法等のCVD法(化学気相成長法:Chemical Vapor Deposition)で作製することができる。例えば、CNT5を基板成長法で作製する場合は、FeやNi等の金属触媒を基板に直接散布して炉心管内に配し、電気炉等を使用して炉心管を加熱し、高温下、メタン(CH)やアセチレン(C)等の炭化水素ガスを炉内に供給して基板上に気相成長させてCNT5を得る。また、CNT5を浮遊成長法で作製する場合は、炭化水素ガスと金属触媒と一緒に高温下の炉内に供給し、反応雰囲気に浮遊させて気相成長させ、CNT5を得る。
 そして、このCNT5の作製過程で、上述した(1)~(3)の3要件を満足するように長さ及び直径に分布を持たせる。具体的には、CNT5を気相成長させる際に、金属触媒の直径や炭化水素ガスの種類或いは反応温度を変化させることにより、CNT5の長さや直径に分布を持たせることができる。また、生成されたCNT5を所望サイズに選択的に選り分けてCNT5の長さや直径に分布を持たせることができる。さらに、これらの方法を用いて別個に作製した長さや直径の異なるCNT5を混ぜ合わせることによっても、CNT5の長さや直径に分布を持たせることができる。
 次に、電解めっき液を調製する。この電解めっき液は、CNT5が分散剤を介して金属イオン源となる電解質溶液中に分散浮遊している。
 ここで、金属イオン源となる電解質溶液は、特に限定されるものではなく、所望する金属膜6の種類に応じ、例えば、Cu水溶液、Al水溶液、Ni水溶液、その他種々の合金水溶液を使用することができる。
 また、分散剤は、電解めっき液中でCNT5同士が凝集しないように添加されるものであり、その種類は特に限定されるものではなく、例えば、カチオン系界面活性剤、ノニオン系界面活性剤を使用することができる。
 ここで、カチオン系界面活性剤としては、例えば、塩化セチルトリメチルアンモニウム、臭化セチルトリメチルアンモニウム、塩化セチルピリジニウム等を挙げることができる。
 また、ノニオン系界面活性剤としては、例えば、ポリアクリル酸、ポリエチレングリコール、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンアルキルアミン、アルキルポリグルコシド、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、プロピレングリコール脂肪酸エステル等を挙げることができる。
 また、電解めっき液は、必要に応じpH調整剤、光沢剤等の添加剤を含有するのが好ましい。
 次に、図5(f)に示すように、スパッタ法によりバリア膜13を成膜する。バリア膜13の成膜材としてはTaが好んで使用されるが、金属の圧電基板1への拡散やマイグレーションを防ぐ材料であれば、特に限定されるものではなく、Ti、Cr,Ni,NiCrなどの金属材料、TaN、TiNなどの窒化系材料、或いはTaやTiOなどの酸化物から1種また2種以上を組み合わせて使用することができる。
 次いで、バリア膜13上に給電層としてのシード層14をスパッタ法等で形成する。
 次に、圧電基板1を電解めっき液に浸漬し、電解めっき液を撹拌しながら所定電流(例えば、2mA/cm)を所定時間(例えば、10分)通電し、図6(g)に示すように、所定膜厚(例えば、300nm)のめっき層15を形成する。すなわち、電解めっきを行うことにより、金属膜6がシード層14の表面に析出する際、CNT5が金属膜6中に取り込まれ、金属膜6とCNT5とが複合しためっき層15がシード層14の表面に形成される。
 次いで、上面を化学機械的研磨(CMP)し、図6(h)に示すように、第1の誘電体3が表面露出する程度にほぼ同一平面とし、これにより電極指2a、2bを有するIDT電極が作製される。
 その後、図6(i)に示すように、第2の誘電体4をスパッタ法等で形成し、これにより弾性表面波装置が製造される。
 このように本実施の形態は、微細な電極線幅Tを有する電極指2a、2bを備えると共に、電極指2a、2bが、CNT5が金属膜6中に複合されてなり、CNT5は、平均直径Dが前記電極線幅の1/4以下とされると共に、平均長さLが電極線幅Tの10倍以下とされ、電極線幅T以下の長さを有するCNT5の体積比率が、CNT5の全量に対し5~90vol%であるので、CNT5の有する高い電気伝導性、高い熱伝導性、及び良好な機械的強度によりCNT5に捕捉された金属原子は、通電又は応力負荷された場合であってもその移動が抑制される。しかも、CNT5は電極指2a、2b内でネットワークを形成するので、粒界間の金属原子の移動も抑制され、これによりストレスマイグレーションによる破壊に対する耐性を向上させることができ、より良好なマイグレーション耐性を得ることができる。また、電極指2a、2Bの電極線幅Tよりも短いCNT5が、CNT全量の5~90%であるので、短尺のCNT5が効率よく電極指2a、2b内に充填されることとなり、金属膜との接触抵抗が増大することもなく、電気抵抗を低減でき、電気伝導性を損なうこともない。
 そして、このように電気伝導性を損なうことなくマイグレーション耐性が強化されたことから、耐電力性が向上し、電極線幅Tのより一層の微細化が可能となり、弾性表面波装置のより一層の小型化を図ることができる。
 また、電極指2a、2bは、めっき処理で形成されているので、CNT5は金属膜6内に容易に取り込まれ、これにより金属膜6とCNT5が複合したIDT電極の電極指2a、2bを容易に形成することができる。
 また、CNT5は物理的・化学的に非常に安定で主原料がカーボンであり、極めて安価であることから、特殊な設備の導入や原材料費の大幅なコストアップを招くこともない。
 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態ではIDT電極を電解めっき法で形成しているが、無電解めっき法で形成することもでき、また、めっき法以外のスパッタ法、CVD法、真空蒸着法を使用して形成することも可能である。
 また、第1及び第2の誘電体3、4についても、スパッタ法の他、CVD法、真空蒸着法、ゾル-ゲル法、スピンコート法等、用途に応じた方法で成膜することができる。
 また、上記実施の形態では、第1の誘電体3を反応性イオンエッチングで形成しているが、使用する誘電体やフォトレジスト等の素材に応じて、Arイオン等の重元素により物理的エッチング(ミリング)、薬液を用いたウェットエッチング等を使用するのも好ましい。また、圧電基板1と第1の誘電体3、バリア層16、シード層17との密着性を良くする観点から、密着層としてTi膜等を適宜介装するのも好ましい。
 また、CNT5の形状もグラフェンシートを筒にした単層又は多層のCNT、紙コップを重ねたような形状のカーボンナノチューブ(例えば、GSIクレオス社製カルベール)、カーボンナノツイスト、カーボンナノコイルなどをサイズ調整して適宜使用することができる。
 また、上記実施の形態では、電子デバイスとして弾性表面波装置を例示したが他の電子デバイス、例えば、MEMS、圧電振動子、フィルタ等の可動部を有する電子デバイスに適用できるのはいうまでもない。すなわち、これら可動部を有する電子デバイスは、電極部に応力が負荷されるため、この応力に起因してストレスマイグレーションが生じやすいが、本発明を適用することにより、良好なマイグレーション耐性を得ることができる。
 さらに、本発明は、微細配線を有し、電力密度が大きくなる小型電子部品にも適用できる。例えば、圧電式、静電式等の各種電子デバイスアクチュエーターやピックアップ素子、センサーなど、微細な導体パターンを有しておりマイグレーションが懸念される電子部品には好適である。さらに、これらを搭載する回路基板やモジュールの配線部にも適用できる。
 また、上記実施の形態では、CNTを金属膜中に複合させた微細電極を有する電子デバイス(弾性表面波装置)について説明したが、カーボンを含有したナノチューブであればよく、必要に応じ、例えば、B、N、Mo、W、Nb等を含有していてもよい。また、CNTとBN、BCN、MS(MはMo、W、Nb等の金属)とを複合した場合、CNTの表面を改質した場合、CNTを他の物質で修飾した場合にも適用でき、さらに、無機物や各種官能基を内包したCNTを金属膜中に複合してもよい。
 次に、本発明の実施例を具体的に説明する。
 上記実施の形態に記載した製法に従い、実施例1、2及び比較例1~6の試料を作製した。
 これらの各試料は、IDT電極内のCNTの複合割合を除き、同一仕様である。また、IDT電極は、電極指の電極線幅T及び電極間隔をいずれも500nmに作製した。
 表1は、実施例1、2及び比較例1~6の各試料の構成部材の材質、形成方法、及び厚みを示している。
Figure JPOXMLDOC01-appb-T000001
 また、CNTは、平均長さLが10μmのCNTをボールミルで粉砕し、平均直径D、平均長さL、及び電極線幅T以下のCNT量の体積比率が、表2のような配合割合となるように調整した。
 また、IDT電極は、下記組成を有する電解めっき液を使用し、電流密度2mA/cmの電流を10分間通電して電解めっきを行ない、形成した。
〔めっき液の組成〕
 CuSO・5HO:60~90g/L
 HSO:100~250g/L
 Cl濃度:40~60ppm
 分散剤:ポリアクリル酸(分子量:5000)
 CNT量:20g
 次に、実施例1、2及び比較例1~6の各試料について、SEM(走査型電子顕微鏡)で観察し、IDT電極におけるCu膜とCNTの複合状態を調べ、また、以下の方法で電気伝導性及び耐電力性を評価した。
 すなわち、電気伝導性は、線幅が同じで長さの異なるミアンダ状線路のインピーダンスを300kHzの交流波で測定し、インピーダンスの実部をプロットした近似線の傾きから抵抗を算出し、膜厚と線幅より電極抵抗(体積抵抗率)を求め、この電極抵抗により評価した。
 また、耐電力性は、弾性表面波装置に電力を印加しつつ、0.1Wの電力を開始電力として印加し、電力を段階的に上げていき、電極指が溶断したと確認された電力を破壊電力とし、この破壊電力により評価した。尚、各段階における電力印加時間は5分間とした。
 表2は、実施例1、2及び比較例1~6における電極指の電極線幅T、平均粒径D、D/T、平均長さL、L/T、電極線幅以下のCNTの体積比率、電極抵抗、電極指中のCNT複合量、破壊電力、及び総合評価を示している。なお、電極抵抗、電極指中へのCNTの複合量、破壊電力は実施例1の値を基準に規格化した値(相対値)を示している。また、総合評価は実施例1を基準(表記は○)とし、電極抵抗、電極指のCNT複合量、破壊電力のうち2つ以上が劣るものを×、1つが劣るものを△とした。
Figure JPOXMLDOC01-appb-T000002
 実施例1及び2は、CNTの平均直径Dは電極線幅Tの1/4~1/10、CNTの平均長さLは電極線幅Tの8倍、電極線幅T以下のCNT量が40vol%であり、いずれも本発明の範囲内であるので、電気伝導性は良好であり、かつCNTは金属膜内に均一に複合されて電極指内でネットワークを形成し、ストレスマイグレーションに対する耐性が向上し、良好な耐電力性を得ることができた。
 特に、実施例2は、CNTの平均直径Dが電極線幅Tの1/10であり、電極線幅Tが試料番号1に比べてより小さいので、実施例1と同等の電気伝導性を保ちつつ、より一層良好な耐電力性を得られることが分かった。
 一方、比較例1は、CNTを含まなかった場合であり、電極抵抗は略同等の値を示したが、破壊電力は実施例1に比べて低く、耐電力性に劣ることがわかった。
 また、比較例2は、CNTの平均長さLが7500nmであり、平均長さLが電極線幅T(=500nm)の15倍と長いので、CNTはIDT電極内へほとんど複合させることができず、電極指2a,2bが短絡した。このため破壊電力を測定できなかった。
 比較例3は、CNTの平均長さLは電極線幅Tの8倍であり、10倍以下を満たしている。しかし、電極線幅T以下の長さのCNTが含まれておらず、電極線幅Tよりも長いCNTのみがIDT電極中に混入しているので、CNTがCu膜と均一に複合せず、比較例1と同様、実施例1に比べ破壊電力が低く、耐電力性に劣ることが分かった。しかも、長尺のCNTのみであるので、IDT電極への充填量も低く、このため電極抵抗が大きく、電気伝導性が低下することが分かった。
 比較例4は、CNTの平均直径Dは電極線幅Tの1/2と大きく、電流の流れを阻害してしまい、電極抵抗が測定できないほど高抵抗になった。また、CNT自体がIDT電極の電極指内でネットワークを組むことができず、このため実施例1に比べて破壊電力が低下し、耐電力性に劣ることがわかった。
 比較例5も、比較例1と同様、CNTの平均長さLが7500nmであり、平均長さLが電極線幅T(=500nm)の15倍と長いが、CNTの平均直径Dが50nmと小さいため、電極指への複合量は大きくなったものの、実施例1に比べると小さかった。また、電極指が短絡したため、破壊電力を測定することができなかった。
 比較例6は、電極線幅T以下のCNTの体積比率が95%であり、短尺のCNTが多量にCu膜に複合されているため、CNT同士のネットワーク形成力が弱く、このため実施例1に比べ破壊電力が低下し、耐電力性に劣ることが分かった。
 微細な電極線幅を有する場合であっても、電気抵抗が低く電気伝導性及びマイグレーション耐性が良好で耐電力性の優れた電子デバイスを実現でき、特に微細電極を有する電子デバイス、例えば、弾性表面波装置に好適である。
2a、2b 電極指(導体パターン)
5 CNT(カーボンを含有したナノチューブ)
6 金属膜

Claims (7)

  1.  微細な線幅を有する導体パターンを備えると共に、該導体パターンは、少なくともカーボンを含有したナノチューブが金属膜中に複合されてなり、
     前記ナノチューブは、平均直径が前記線幅の1/4以下とされると共に、平均長さが前記線幅の10倍以下とされ、
     かつ、前記線幅以下の長さを有するナノチューブの体積比率が、前記ナノチューブの全量に対し5~90vol%であることを特徴とする電子デバイス。
  2.  前記平均直径が、前記線幅の1/10以下であることを特徴とする請求項1記載の電子デバイス。
  3.  前記線幅以下の長さを有する前記ナノチューブの体積比率が、前記ナノチューブの全量に対し30~70vol%であることを特徴とする請求項1又は請求項2記載の電子デバイス。
  4.  前記導体パターン中の前記ナノチューブの体積比率が、0.5~20vol%であることを特徴とする請求項1乃至請求項3のいずれかに記載の電子デバイス。
  5.  前記導体パターン中の前記ナノチューブの体積比率は、1~10vol%であることを特徴とする請求項4記載の電子デバイス。
  6.  前記導体パターンは、めっき処理で形成されていることを特徴とする請求項1乃至請求項5のいずれかに記載の電子デバイス。
  7.  前記導体パターンが、弾性表面波装置のIDT電極を構成する電極指であることを特徴とする請求項1乃至請求項6のいずれかに記載の電子デバイス。
PCT/JP2010/069728 2009-11-19 2010-11-05 電子デバイス WO2011062072A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011541882A JP5339222B2 (ja) 2009-11-19 2010-11-05 電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-263959 2009-11-19
JP2009263959 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011062072A1 true WO2011062072A1 (ja) 2011-05-26

Family

ID=44059553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069728 WO2011062072A1 (ja) 2009-11-19 2010-11-05 電子デバイス

Country Status (2)

Country Link
JP (1) JP5339222B2 (ja)
WO (1) WO2011062072A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960985A1 (en) 2014-06-27 2015-12-30 TDK Corporation High-frequency transmission line, antenna and electronic circuit board
EP2960982A1 (en) 2014-06-27 2015-12-30 TDK Corporation High-frequency transmission line, antenna and electronic circuit board
JP2020170983A (ja) * 2019-04-05 2020-10-15 三安ジャパンテクノロジー株式会社 表面弾性波デバイス及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111254A (ja) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd 電子デバイスの電気的接続用金属含有組成物
WO2004051726A1 (ja) * 2002-11-29 2004-06-17 Nec Corporation 半導体装置およびその製造方法
JP2008293821A (ja) * 2007-05-25 2008-12-04 Panasonic Corp 導電性ペースト、それを用いた回路基板および電子電気機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009511B2 (ja) * 2005-06-06 2012-08-22 富士通株式会社 電気的接続構造、その製造方法および半導体集積回路装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111254A (ja) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd 電子デバイスの電気的接続用金属含有組成物
WO2004051726A1 (ja) * 2002-11-29 2004-06-17 Nec Corporation 半導体装置およびその製造方法
JP2008293821A (ja) * 2007-05-25 2008-12-04 Panasonic Corp 導電性ペースト、それを用いた回路基板および電子電気機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960985A1 (en) 2014-06-27 2015-12-30 TDK Corporation High-frequency transmission line, antenna and electronic circuit board
EP2960982A1 (en) 2014-06-27 2015-12-30 TDK Corporation High-frequency transmission line, antenna and electronic circuit board
JP2016012799A (ja) * 2014-06-27 2016-01-21 Tdk株式会社 高周波伝送線路、アンテナ及び電子回路基板
JP2016012798A (ja) * 2014-06-27 2016-01-21 Tdk株式会社 高周波伝送線路、アンテナ及び電子回路基板
CN105323954A (zh) * 2014-06-27 2016-02-10 Tdk株式会社 高频传输线路、天线以及电子电路基板
US9620840B2 (en) 2014-06-27 2017-04-11 Tdk Corporation High-frequency transmission line, antenna and electronic circuit board
US9627737B2 (en) 2014-06-27 2017-04-18 Tdk Corporation High-frequency transmission line, antenna and electronic circuit board
CN105323954B (zh) * 2014-06-27 2018-05-29 Tdk株式会社 高频传输线路、天线以及电子电路基板
JP2020170983A (ja) * 2019-04-05 2020-10-15 三安ジャパンテクノロジー株式会社 表面弾性波デバイス及びその製造方法
JP7175503B2 (ja) 2019-04-05 2022-11-21 三安ジャパンテクノロジー株式会社 表面弾性波デバイス及びその製造方法

Also Published As

Publication number Publication date
JPWO2011062072A1 (ja) 2013-04-04
JP5339222B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
Arjmand et al. Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes
TWI460126B (zh) 奈米碳管強化的金屬複合物
US9570207B2 (en) Electrical contact materials and method for preparing the same
JP4683188B2 (ja) 半導体装置およびその製造方法
Yi et al. Reliability issues and solutions in flexible electronics under mechanical fatigue
US20120177934A1 (en) Method for the production of stretchable electrodes
Chen et al. Core-satellite ultra-small hybrid Ni@ BT nanoparticles: A new route to enhanced energy storage capability of PVDF based nanocomposites
US8663446B2 (en) Electrochemical-codeposition methods for forming carbon nanotube reinforced metal composites
WO2009104769A1 (ja) タッチパネルセンサー
KR20100066780A (ko) 전도성 페이스트와 이를 이용한 전도성 기판
KR20090047328A (ko) 도전성 페이스트 및 이를 이용한 인쇄회로기판
JP2012209148A (ja) 導電性粒子、導電性ペースト、及び、回路基板
JP5339222B2 (ja) 電子デバイス
Oh et al. Silver-plated carbon nanotubes for silver/conducting polymer composites
JP2004111254A (ja) 電子デバイスの電気的接続用金属含有組成物
KR101025523B1 (ko) 캐패시터
KR20120124485A (ko) 소결체, 그 제조 방법 및 고주파 투과 재료
JP2008028165A (ja) ノイズ抑制構造体および多層プリント回路基板
JP5505142B2 (ja) ヒューズおよびその製造方法
JP4248944B2 (ja) 導電性ペースト、回路パターンの形成方法、突起電極の形成方法
JP2006173408A (ja) 回路付基板の製造方法および該方法で得られた回路付基板
JP2015084301A (ja) 導電シートおよび導電シートの製造方法
JP2010277974A (ja) 導電性薄膜基板及びその製造方法
Su et al. Contamination-free and damage-free patterning of single-walled carbon nanotube transparent conductive films on flexible substrates
US20200303251A1 (en) Semiconductor Device and Method of Manufacturing the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541882

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831467

Country of ref document: EP

Kind code of ref document: A1