WO2011060582A1 - 多头激光加工方法及其装置 - Google Patents

多头激光加工方法及其装置 Download PDF

Info

Publication number
WO2011060582A1
WO2011060582A1 PCT/CN2009/075032 CN2009075032W WO2011060582A1 WO 2011060582 A1 WO2011060582 A1 WO 2011060582A1 CN 2009075032 W CN2009075032 W CN 2009075032W WO 2011060582 A1 WO2011060582 A1 WO 2011060582A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
head
focusing
laser processing
unit
Prior art date
Application number
PCT/CN2009/075032
Other languages
English (en)
French (fr)
Inventor
高云锋
高昆
邴虹
Original Assignee
深圳市大族激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大族激光科技股份有限公司 filed Critical 深圳市大族激光科技股份有限公司
Priority to CN2009801618507A priority Critical patent/CN102612420A/zh
Priority to PCT/CN2009/075032 priority patent/WO2011060582A1/zh
Publication of WO2011060582A1 publication Critical patent/WO2011060582A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses

Definitions

  • the present invention relates to the field of laser processing technology, and more particularly to a multi-head laser processing method and apparatus for performing multi-beam laser removal processing on the same area of a workpiece.
  • laser processing equipment includes laser systems, associated mechanical systems and control detection systems.
  • N is a positive integer
  • N workpieces need a processing area of "N" times larger. Thus the entire device has to be much larger.
  • N workpiece placement positions need to accurately coordinate the machining position of N laser systems, which may be a bigger problem. Moreover, in this way, the processing time of a single workpiece is not reduced.
  • the technical problem to be solved by the present invention is to provide a multi-head laser processing method which can realize multi-beam laser and process the same area of a workpiece.
  • Another technical problem to be solved by the present invention is to provide a multi-head laser processing apparatus which can realize a plurality of laser beams and process the same area of a workpiece.
  • a multi-head laser processing method which realizes the laser beam by adjusting a positional relationship between at least two laser beams before focusing Adjustment of the distance between the focused points after focusing.
  • the above technical problem is solved by: providing a multi-head laser processing apparatus comprising at least two laser heads for generating a laser beam, which can perform laser beam from the laser head
  • the focused focusing unit further includes a beam expanding unit disposed between the laser head and the focusing unit, the number of the beam expanding units corresponding to the number of the laser heads, and respectively pivotally positioned.
  • the position of the laser beam before focusing is adjusted, the position of the laser beam between the focus points after focusing also changes, and the laser is precisely processed, even if the distance between the workpiece processing points is very close. , can also achieve distance adjustment of multi-head machining points.
  • the multi-head laser processing apparatus of the present invention uses a plurality of beam expander units that are pivotally positioned to change the position of the laser beam before focusing, thereby achieving precise adjustment of the distance between the focus points, and performing laser precision processing, even if two
  • the distance between the machining points is very close, and the distance adjustment of the multi-head machining points can also be realized, thereby realizing the processing of the same area of the workpiece by the multi-beam laser, greatly improving the work efficiency and effectively reducing the equipment cost while ensuring the accuracy. And volume.
  • FIG. 1 is a schematic diagram of an optical path principle of a first embodiment of a multi-head laser processing apparatus according to the present invention
  • Figure 2 is a partial enlarged view of the embodiment shown in Figure 1;
  • FIG. 3 is a schematic diagram of an optical path principle of a second embodiment of the multi-head laser processing apparatus of the present invention.
  • a multi-head laser processing method for adjusting the distance between the focused points of the laser beam after focusing by adjusting the positional relationship between the at least two laser beams before focusing.
  • the position of the laser beam before focusing is adjusted, the position of the laser beam between the focus points after focusing also changes, and the laser is precisely processed, even if the distance between the workpiece processing points is very close. , can also achieve distance adjustment of multi-head machining points.
  • a first embodiment of a multi-head laser processing apparatus includes three laser heads 1, 2, and 3 for generating laser beams A, B, and C.
  • a focusing unit G that can focus the laser beams, B, C from the laser heads 1, 2, 3, and further includes a beam expander disposed between the laser heads 1, 2, 3 and the focusing unit G unit.
  • the number of the beam expanding units corresponds to the number of the laser heads, and is also three, which are respectively the beam expanding units 1), E, F, and the beam expanding units 1), E, and F are respectively pivotally positioned.
  • the laser beams, B, C are expanded by the beam expanding units D, E, F and focused by the focusing unit G, the focus points H, I, Jo are formed, of course, the number of the laser beams is not shown
  • the three are limited to two or more.
  • the laser heads 1, 2, and 3 are disposed at an equal angle with respect to the center of the focusing unit G.
  • the positional relationship between the three laser heads is not limited thereto, and the three may be Parallel to each other, the control of the laser beam A, B, and C can be achieved by adjusting the positions of the beam expanding units D, E, and F.
  • the distance between the focus points 11, I is a
  • the distance between the focus points I, J is b
  • the distance between the focus points H, J is a + b.
  • the beam expanding units D, E, and F are respectively pivotally positioned by a pivot, and are respectively driven by a control motor.
  • the beam expanding units D, E, and F can also be pivotally positioned by the cardan shaft structure, respectively, so that the relative distance between the focus points 11, I, and J can be adjusted in the three-dimensional space, respectively.
  • the beam expanding units D, E, and F also improve the optical performance by expanding and collating the optical path.
  • the beam expanding unit D, E, F may be a beam expander lens or a beam expander lens. Group.
  • the focusing unit G may be a focusing lens or a focusing lens group, and the function of the focusing unit G is to perform some form of focusing of the light beams emitted from the beam expanding units D, E, F according to the use requirements.
  • FIG. 3 is a second embodiment of a multi-head laser processing apparatus according to the present invention.
  • the multi-head laser processing apparatus includes three laser heads disposed in parallel with each other to generate laser beams A, B, and C (not shown in the drawings).
  • a mirror K1, ⁇ 2, ⁇ 3 corresponding to the number of laser heads and capable of reflecting the laser beams A, B, C, and focusing the laser beams from the respective mirrors K1, ⁇ 2, ⁇ 3, respectively
  • the focusing unit G, the mirrors are respectively pivotally positioned by K1, ⁇ 2, and ⁇ 3.
  • the focus points ⁇ , I, Jo are formed, of course, the number of the laser beams is not shown in the figure three. It can be two or more.
  • the positional relationship between the three laser heads is not limited to being parallel to each other, and the three can be arranged at an angle.
  • the positions of the laser beams A, B, and C can be realized by adjusting the positions of the mirrors K1, ⁇ 2, and ⁇ 3. control. In this embodiment, it is assumed that the distance between the focus points H, I is a, the distance between the focus points I, J is b, and the distance between the focus points H, J is a + b.
  • the distance between the focus points ⁇ , I, J can be changed, for example, when the reverse needle rotates the mirror K1 ⁇ , the corresponding H
  • the point or point J changes position, and the a size or the b size also changes accordingly, so that the adjustment of the relative position between the focus points is achieved.
  • a beam expanding unit 1 is respectively disposed between the laser head and the mirror by K1, ⁇ 2, and ⁇ 3.
  • E, F, the beam expanding unit 0 , E, F may be a beam expanding lens or a beam expanding lens group.
  • the focusing unit P may be a focusing lens or a focusing lens group, and its function is to perform some form of focusing of the light beams reflected by the mirrors K1, K2, and ⁇ 3 according to the use requirements.
  • the mirrors K1, ⁇ 2, and ⁇ 3 are pivotally positioned by the pivots 01, 02, and 03, respectively, and are respectively driven by the control motor, and! ⁇ , MN is the normal of the three mirrors K1, ⁇ 2, ⁇ 3.
  • the mirrors K1, ⁇ 2, and ⁇ 3 can also be pivotally positioned by the cardan shaft structure, respectively, so that the relative distances between the focus points ⁇ , I, and J can be adjusted in the three-dimensional space, respectively.
  • the plurality of laser beams A, B, C are arranged by the beam expanding units D, E, F, and are reflected by the mirrors K1, ⁇ 2, ⁇ 3, and then focused by the focusing unit G, then the focus point is passed. 11, I, J to achieve laser processing of the workpiece processing point. Since the mirrors are pivotally positioned by the pivots 01, 02, and 0 3, respectively, and are respectively driven by the control motor, the mirrors K1, ⁇ 2, and ⁇ 3 can be pivoted. The precise adjustment of the distance between the focus points I, I and J, even if the distance between the two machining points is very close, the distance adjustment of the multi-head machining point can be realized, thereby greatly improving the work efficiency while ensuring the accuracy.
  • the distance between multiple lasers is difficult to achieve miniaturization before the focusing unit. This is determined by the technical factors generated by the laser beam in the prior art. Supporting the laser beam requires certain hardware devices. The hardware device is required to occupy a space. In the embodiment, the distance between the multiple laser beams can be adjusted, so that the device can be implemented in a wide area or even in a very small area. Accurate laser processing to greatly improve work efficiency while maintaining accuracy.
  • the multi-head laser processing apparatus includes three laser heads 1, 2, and 3 disposed in parallel with each other to generate laser beams A, B, and C.
  • a focusing unit G that can focus the laser beams, B, C from the laser heads 1, 2, 3, and a three position adjustment structure P that can respectively adjust the position of the laser heads 1, 2, and 3 , Q, R, and a beam expanding unit 1) located between the position adjustment structures P, Q, R and the focusing unit G.
  • the focus points H, I, Jo are formed, of course, the number of the laser beams is not shown by the three For the limit, it can also be two or more.
  • the positional relationship between the three laser heads is not limited to being parallel to each other, and the three can be arranged at an angle.
  • the three position adjustment structures P, Q, R, the laser beams A, B, and C can be realized. control.
  • the distance between the focus points I is a
  • the distance between the focus points I and J is b
  • the distance between the focus points H and J is a+b.
  • Adjust the position adjustment structure! One, two or three 5 of 5 , Q, R, can change the distance between the focus points 11, I, J, thus achieving the relative position between the focus points H, I, J Adjustment.
  • the position adjustment structure P, Q, R is a sleeve that can drive the laser heads 1, 2, 3 to translate and/or pivot relative to the focusing unit G, the sleeve It can be supported by linear bearings, etc., and driven by a motor.
  • the linear bearing can also be pivotally positioned in conjunction with the cardan shaft structure, so that the relative positions between the focus points 11, I, and J can be adjusted in three-dimensional space, respectively.
  • the beam expander unit D enhances optical performance by expanding and arranging the optical path.
  • the beam expander unit D may be a beam expander lens or a beam expander lens group.
  • the focusing unit G may be a focusing lens or a focusing lens group, and the function of the focusing unit G is to perform some form of focusing of the light beam emitted from the expanding unit D according to the use requirements.
  • the three laser beams A, B, and C are sorted by the expanding unit D, and after being focused by the focusing unit G, the processing points of the workpiece can be laser processed by the focusing points H, I, and J.
  • the processing points of the workpiece can be laser processed by the focusing points H, I, and J.
  • the control motor thereby passing Pivot and / or move the position adjustment structure! 5 , Q, R can achieve precise adjustment of the distance between the focus points 11, I, J, even if the distance between the two machining points is very close, the distance adjustment of the multi-head machining point can be realized, thereby ensuring In the case of precision, the work efficiency is greatly improved.
  • the implementation of the multi-head laser processing apparatus of the present invention is not limited to the above three embodiments, and any two or three of the above three schemes may be used in combination to adjust the focus between the laser beams.
  • the previous positional relationship achieves an adjustment of the distance between the focused points of the laser beam after focusing.
  • the beam expanding unit and the mirror are pivotally positioned and the like.

Description

说明书
Title of Invention:多头激光加工方法及其装置 技术领域
技术领域
[1] 本发明涉及激光加工技术领域, 更具体地说, 是涉及一种可实现多束激光, 对 工件同一区域进行去除加工的多头激光加工方法及其装置。
背景技术
背景技术
[2] 我们知道, 激光加工设备包括激光系统、 与之配套的机械系统及控制检测系统
、 以及附属环境系统。 在精密激光加工中, 与激光系统配套的高精密机械设备 、 高精密控制检测系统等都非常昂贵, 附属环境须是常温无尘空间。 因此, 在 这里激光系统的成本在整个激光加工设备中所占的比例就已经变得非常小了, 大约只占几分之一。
[3] 而精密加工由于加工点的细腻性, 加工速度也相应很慢。 在生产中非常需要, 在一台设备上配 N (N为正整数) 个激光头或 N束激光束来加工。 这样不但会使 效率提高 N倍, 相应地, 成本也会降低至 N分之一。
[4] 现有技术通常的一种做法是釆用 N个激光系统实现对 N个工件的加工, 这种方 式解决问题并不彻底, 首先, N个工件需要" N"倍大的加工区域, 从而整个设备 要变大很多。 另外, N个工件摆放位置须要准确地协调 N个激光系统的加工位置 , 这个可能是更大的难题。 而且, 釆用这种方式, 单个工件的加工吋间并没有 减少。
[5] 现有技术通常的另一种做法是釆用 N个激光系统实现对一个工件的加工, 釆用 这种做法吋, 由于多路光加工点距离比较大, 需要在一个工件上, 分区加工工 件不同的部位。 这种做法会给控制系统和机械系统带来非常大的困难, 甚至需 要两套独立加工系统。 另外, 由于多路光加工点的距离大, 给在线检测也带来 麻烦, 特别是两个加工点之间的距离是否准确。 所以这种做法在实际应用中很 少釆用。 对发明的公开
技术问题
本发明所要解决的技术问题在于提供一种可实现多束激光, 对工件同一区域进 行加工的多头激光加工方法。
本发明所要解决的另一技术问题在于提供一种可实现多束激光, 对工件同一区 域进行加工的多头激光加工装置。
技术解决方案
对于本发明多头激光加工方法来说, 上述技术问题是这样加以解决的: 提供一 种多头激光加工方法, 通过调整至少两个激光束之间在聚焦前的位置关系, 实 现对所述激光束在聚焦后的聚焦点之间距离的调整。
对于本发明多头激光加工装置来说, 上述技术问题是这样加以解决: 提供一种 多头激光加工装置, 包括至少两个用以产生激光束的激光头、 可对来自所述激 光头的激光束进行聚焦的聚焦单元, 还包括设在所述激光头与所述聚焦单元之 间的扩束单元, 所述扩束单元的数量与所述激光头的数量对应, 并分别被枢接 定位。
有益效果
这样, 当对聚焦前的激光束位置进行调整吋, 所述激光束在聚焦后的聚焦点之 间的位置亦随之变化, 在进行激光精密加工吋, 即使工件加工点之间的距离很 近, 也能实现多头加工点的距离调整。 本发明的多头激光加工装置釆用枢接定 位的多个扩束单元以改变激光束在聚焦之前的位置, 实现对所述聚焦点之间距 离的精确调整, 在进行激光精密加工吋, 即使两个加工点之间的距离很近, 也 能实现多头加工点的距离调整, 从而实现多束激光对工件同一区域的加工, 在 保证精度的情况下大大提高了工作效率, 并有效减小设备成本及体积。
附图说明
图 1是本发明多头激光加工装置实施例一的光路原理示意图;
图 2是图 1所示实施例的局部放大图;
图 3是本发明多头激光加工装置实施例二的光路原理示意图;
4是本发明多头激光加工装置实施例三的光路原理示意图。 本发明的实施方式
[15] 为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下 结合附图及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的 具体实施例仅仅用以解释本发明, 并不用于限定本发明。
[16] 提供一种多头激光加工方法, 通过调整至少两个激光束之间在聚焦前的位置关 系, 实现对所述激光束在聚焦后的聚焦点之间距离的调整。 这样, 当对聚焦前 的激光束位置进行调整吋, 所述激光束在聚焦后的聚焦点之间的位置亦随之变 化, 在进行激光精密加工吋, 即使工件加工点之间的距离很近, 也能实现多头 加工点的距离调整。
[17] 请参照图 1及图 2, 为本发明多头激光加工装置的实施例一, 该多头激光加工装 置包括三个用以产生激光束 A、 B、 C的激光头 1、 2、 3, 可对来自所述激光头 1 、 2、 3的激光束 、 B、 C进行聚焦的聚焦单元 G, 还包括设在所述激光头 1、 2、 3与所述聚焦单元 G之间的扩束单元。 所述扩束单元的数量与所述激光头的数量 对应, 也为三个, 分别是扩束单元1)、 E、 F, 扩束单元1)、 E、 F分别被枢接定位 。 这样, 当激光束 、 B、 C经过扩束单元 D、 E、 F扩束、 并经聚焦单元 G聚焦后 , 即形成聚焦点 H、 I、 Jo 当然, 所述激光束的数量不以图示的三个为限, 还可 以为两个或者多个。 本实施例中, 所述激光头 1、 2、 3以所述聚焦单元 G的中心 为中心等角度设置, 同样, 三个激光头之间的位置关系亦不仅限于此, 三者之 间还可互相平行, 此吋, 通过调整扩束单元 D、 E、 F的位置即可实现对激光束 A 、 B、 C走向的控制。 本实施例中, 设聚焦点11、 I之间的距离为 a, 聚焦点 I、 J之 间的距离为 b, 聚焦点 H、 J之间的距离为 a+b。 通过调节扩束单元 D、 E、 F中的 一个、 两个或者三个吋, 可使聚焦点 H、 I、 J之间的距离变化, 从而实现了对聚 焦点 H、 I、 J之间相对位置的调整。
[18] 本实施例中, 所述扩束单元 D、 E、 F可分别通过枢轴枢接定位, 并分别通过控 制电机驱动。 当然, 所述扩束单元 D、 E、 F还可分别通过万向轴结构枢接定位, 从而可分别在三维空间内调节聚焦点11、 I、 J之间的相对距离。
[19] 除此之外, 所述扩束单元 D、 E、 F还通过对光路进行的扩束、 整理等环节, 以 提高光学性能。 本实施例中, 所述扩束单元 D、 E、 F可为扩束镜片或者扩束镜片 组。 所述聚焦单元 G可为聚焦镜片或者聚焦镜片组, 聚焦单元 G的功能是按照使 用要求, 使从所述扩束单元 D、 E、 F射出的光束进行某种形式的聚焦。
[20] 这样, 三个激光束 A、 B、 C经扩束单元 D、 E、 F整理, 并经聚焦单元 G聚焦后 , 即可通过聚焦点11、 I、 J实现对工件的加工点进行激光加工工作。 而由于所述 激光头 1、 2、 3与所述聚焦单元 G之间设有扩束单元 D、 E、 F, 所述扩束单元 D、 E、 F的数量与所述激光头 1、 2、 3的数量对应, 并分别通过控制电机驱动枢转, 从而可实现对所述聚焦点 H、 I、 J之间距离的精确调整, 即使两个加工点之间的 距离很近, 也能实现多头加工点的距离调整, 从而在保证精度的情况下大大提 高工作效率。
[21] 请参照图 3, 为本发明多头激光加工装置的实施例二, 该多头激光加工装置包 括三个互相平行设置并用以产生激光束 A、 B、 C的激光头 (图中未示出) 、 与 所述激光头数量对应并可对所述激光束 A、 B、 C进行反射的反射镜 Kl、 Κ2、 Κ3 , 以及可分别对来自各反射镜 Kl、 Κ2、 Κ3的激光束进行聚焦的聚焦单元 G, 所 述反射镜被 Kl、 Κ2、 Κ3分别枢接定位。 这样, 当激光束 、 B、 C经过反射镜 K1 、 Κ2、 Κ3反射、 并经聚焦单元 G聚焦后, 即形成聚焦点 Η、 I、 Jo 当然, 所述激 光束的数量不以图示的三个为限, 还可以为两个或者多个。 三个激光头之间的 位置关系亦不仅限于互相平行, 三者之间还可呈一定角度排列, 通过调整反射 镜 Kl、 Κ2、 Κ3的位置即可实现对激光束 A、 B、 C走向的控制。 本实施例中, 设 聚焦点 H、 I之间的距离为 a, 聚焦点 I、 J之间的距离为 b, 聚焦点 H、 J之间的距离 为 a+b。 通过旋转反射镜 Kl、 Κ2、 Κ3中的一个、 两个或者三个吋, 可使聚焦点 Η 、 I、 J之间的距离变化, 例如, 当逆吋针旋转反射镜 K1吋, 对应的 H点或 J点会 变化位置, a尺寸或 b尺寸亦相应发生变化, 这样, 即实现了对聚焦点之间相对 位置的调整。
[22] 为了提高光学性能, 通常需要把光路进行扩束、 整理等环节, 本实施例中, 在 所述激光头与所述反射镜被 Kl、 Κ2、 Κ3之间分别设有扩束单元1)、 E、 F, 所述 扩束单元0、 E、 F可为扩束镜片或者扩束镜片组。 本实施例中, 所述聚焦单元 P 可为聚焦镜片或者聚焦镜片组, 它的功能是按照使用要求, 使被所述反射镜 K1 、 K2、 Κ3反射的光束进行某种形式的聚焦。 [23] 本实施例中, 所述反射镜 Kl、 Κ2、 Κ3分别通过枢轴 01、 02、 03枢接定位, 并分别通过控制电机驱动, 而!^、 M N为三个反射镜 Kl、 Κ2、 Κ3的法线。 当然 , 所述反射镜 Kl、 Κ2、 Κ3还可分别通过万向轴结构枢接定位, 从而可分别在三 维空间内调节聚焦点 Η、 I、 J之间的相对距离。
[24] 这样, 多个激光束 A、 B、 C经扩束单元 D、 E、 F整理, 并被反射镜 Kl、 Κ2、 Κ 3反射, 然后经聚焦单元 G聚焦后, 即可通过聚焦点11、 I、 J实现对工件的加工点 进行激光加工工作。 而由于所述反射镜被 Kl、 Κ2、 Κ3分别通过枢轴 01、 02、 0 3枢接定位, 并分别通过控制电机驱动, 通过枢转所述反射镜 Kl、 Κ2、 Κ3即可 实现对所述聚焦点 Η、 I、 J之间距离的精确调整, 即使两个加工点之间的距离很 近, 也能实现多头加工点的距离调整, 从而在保证精度的情况下大大提高工作 效率。
[25] 通常, 多束激光之间的距离在聚焦单元前, 是很难实现微小化的, 这是受现有 技术中激光束产生的技术因素决定的, 支撑激光束需要一定的硬件设备, 而所 述硬件设备是要占用空间的, 本实施例通过上述技术方案, 可使多个激光束之 间的距离可调, 从而可在较广泛的区域, 甚至是在非常微小的区域内, 实现精 确的激光加工工作, 从而在保证精度的情况下大大提高工作效率。
[26] 请参照图 4, 为本发明多头激光加工装置的实施例三, 该多头激光加工装置包 括三个互相平行设置并用以产生激光束 A、 B、 C的激光头 1、 2、 3, 可对来自所 述激光头 1、 2、 3的激光束 、 B、 C进行聚焦的聚焦单元 G, 还包括可分别对所 述激光头 1、 2、 3进行位置调节的三个位置调节结构 P、 Q、 R, 以及位于所述位 置调节结构 P、 Q、 R和聚焦单元 G之间的扩束单元1)。 这样, 当激光束八、 B、 C 经过扩束单元 D扩束、 并经聚焦单元 G聚焦后, 即形成聚焦点 H、 I、 Jo 当然, 所 述激光束的数量不以图示的三个为限, 还可以为两个或者多个。 三个激光头之 间的位置关系亦不仅限于互相平行, 三者之间还可呈一定角度排列, 通过调整 三个位置调节结构 P、 Q、 R即可实现对激光束 A、 B、 C走向的控制。 本实施例 中, 设聚焦点 I之间的距离为 a, 聚焦点 I、 J之间的距离为 b, 聚焦点 H、 J之间 的距离为 a+b。 通过调节位置调节结构!5、 Q、 R中的一个、 两个或者三个吋, 可 使聚焦点11、 I、 J之间的距离变化, 从而实现了对聚焦点 H、 I、 J之间相对位置的 调整。
[27] 本实施例中, 所述位置调节结构 P、 Q、 R为可带动所述激光头 1、 2、 3相对所 述聚焦单元 G平移和 /或枢转的套筒, 所述套筒可通过直线轴承等支撑定位, 并 分别通过控制电机驱动。 当然, 所述直线轴承还可结合万向轴结构枢接定位, 从而可分别在三维空间内调节聚焦点11、 I、 J之间的相对位置。
[28] 所述扩束单元 D通过对光路进行的扩束、 整理等环节, 以提高光学性能, 本实 施例中, 所述扩束单元 D可为扩束镜片或者扩束镜片组。 所述聚焦单元 G可为聚 焦镜片或者聚焦镜片组, 聚焦单元 G的功能是按照使用要求, 使从所述扩束单元 D射出的光束进行某种形式的聚焦。
[29] 这样, 三个激光束 A、 B、 C经扩束单元 D整理, 并经聚焦单元 G聚焦后, 即可 通过聚焦点 H、 I、 J实现对工件的加工点进行激光加工工作。 而由于设有可分别 对所述激光头 1、 2、 3进行位置调节的三个位置调节结构 P、 Q、 R, 并分别通过 控制电机驱动三个位置调节结构 P、 Q、 R, 从而通过枢转和 /或移动位置调节结 构!5、 Q、 R即可实现对所述聚焦点11、 I、 J之间距离的精确调整, 即使两个加工 点之间的距离很近, 也能实现多头加工点的距离调整, 从而在保证精度的情况 下大大提高工作效率。
[30] 本发明多头激光加工装置的实现方式并不以上述三个实施例为限, 还可以将上 述三个方案中的任意两个或者三个结合使用, 从而通过调整激光束之间在聚焦 前的位置关系, 实现对所述激光束在聚焦后的聚焦点之间距离的调整。 例如在 实施例二中, 可同吋使所述扩束单元和所述反射镜枢接定位等。
[31] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
一种多头激光加工方法, 其特征在于: 通过调整至少两个激光束 之间在聚焦前的位置关系, 实现对所述激光束在聚焦后的聚焦点 之间距离的调整。
如权利要求 1所述的多头激光加工方法, 其特征在于: 所述至少两 个激光束由至少两个激光头分别产生, 所述聚焦点由聚焦单元对 所述激光束聚焦所形成, 在所述激光头与所述聚焦单元之间设有 扩束单元, 所述扩束单元的数量与所述激光头的数量对应, 并分 别被枢接定位。
如权利要求 1所述的多头激光加工方法, 其特征在于: 所述至少两 个激光束由至少两个激光头分别产生, 所述聚焦点由聚焦单元对 所述激光束聚焦所形成, 在所述激光头与所述聚焦单元之间设有 反射镜, 所述反射镜的数量与所述激光头的数量对应, 并分别枢 接定位。
如权利要求 1所述的多头激光加工方法, 其特征在于: 所述至少两 个激光束由至少两个激光头分别产生, 所述聚焦点由聚焦单元对 所述激光束聚焦所形成, 还设有与所述激光头连接并可对所述激 光头进行位置调节的位置调节结构。
一种多头激光加工装置, 包括至少两个用以产生激光束的激光头 、 可对来自所述激光头的激光束进行聚焦的聚焦单元, 其特征在 于: 还包括设在所述激光头与所述聚焦单元之间的扩束单元, 所 述扩束单元的数量与所述激光头的数量对应, 并分别被枢接定位
如权利要求 5所述的多头激光加工装置, 其特征在于: 所述扩束单 元分别通过枢轴枢接定位。
如权利要求 5所述的多头激光加工装置, 其特征在于: 所述扩束单 元分别通过万向轴结构枢接定位。
如权利要求 5所述的多头激光加工装置, 其特征在于: 所述激光头 以所述聚焦单元的中心为中心等角度设置。
[Claim 9] 如权利要求 5至 8任意一项所述的多头激光加工装置, 其特征在于
: 所述扩束单元为扩束镜片或者扩束镜片组。
[Claim 10] 如权利要求 5至 8任意一项所述的多头激光加工装置, 其特征在于
: 所述聚焦单元为聚焦镜片或者聚焦镜片组。
PCT/CN2009/075032 2009-11-19 2009-11-19 多头激光加工方法及其装置 WO2011060582A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801618507A CN102612420A (zh) 2009-11-19 2009-11-19 多头激光加工方法及其装置
PCT/CN2009/075032 WO2011060582A1 (zh) 2009-11-19 2009-11-19 多头激光加工方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075032 WO2011060582A1 (zh) 2009-11-19 2009-11-19 多头激光加工方法及其装置

Publications (1)

Publication Number Publication Date
WO2011060582A1 true WO2011060582A1 (zh) 2011-05-26

Family

ID=44059186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075032 WO2011060582A1 (zh) 2009-11-19 2009-11-19 多头激光加工方法及其装置

Country Status (2)

Country Link
CN (1) CN102612420A (zh)
WO (1) WO2011060582A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11253955B2 (en) * 2016-06-14 2022-02-22 Evana Technologies, Uab Multi-segment focusing lens and the laser processing for wafer dicing or cutting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107890A (ja) * 1985-11-07 1987-05-19 Toshiba Corp レ−ザ加工装置
JPH01316415A (ja) * 1988-06-17 1989-12-21 Nippon Steel Corp ポリゴンミラーを用いたレーザ熱処理装置及び方法
CN201067830Y (zh) * 2007-07-30 2008-06-04 深圳市大族激光科技股份有限公司 一种多光束激光切割机
US7518086B2 (en) * 2004-03-19 2009-04-14 Ricoh Company, Ltd. Method and device for adjusting wavelength distribution pattern in laser
CN101432094A (zh) * 2006-04-27 2009-05-13 日立造船株式会社 激光加工方法及激光加工装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577833A4 (en) * 1991-01-11 1994-06-29 Nippon Steel Corp Cooling drum for casting thin cast piece; device for and method of forming dimples on peripheral surface of said drum
EP0656241B1 (en) * 1993-06-04 1998-12-23 Seiko Epson Corporation Apparatus and method for laser machining
JPH07276071A (ja) * 1994-02-18 1995-10-24 Matsushita Electric Ind Co Ltd レーザー加工装置とレーザー加工方法
JP3436862B2 (ja) * 1997-04-07 2003-08-18 新日本製鐵株式会社 厚鋼板のレーザ切断方法及び装置
JP3665297B2 (ja) * 2002-02-05 2005-06-29 ニューデルタ工業株式会社 散布機
CN101013200A (zh) * 2007-02-12 2007-08-08 苏州德龙激光有限公司 激光精密加工的光学系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107890A (ja) * 1985-11-07 1987-05-19 Toshiba Corp レ−ザ加工装置
JPH01316415A (ja) * 1988-06-17 1989-12-21 Nippon Steel Corp ポリゴンミラーを用いたレーザ熱処理装置及び方法
US7518086B2 (en) * 2004-03-19 2009-04-14 Ricoh Company, Ltd. Method and device for adjusting wavelength distribution pattern in laser
CN101432094A (zh) * 2006-04-27 2009-05-13 日立造船株式会社 激光加工方法及激光加工装置
CN201067830Y (zh) * 2007-07-30 2008-06-04 深圳市大族激光科技股份有限公司 一种多光束激光切割机

Also Published As

Publication number Publication date
CN102612420A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
CN101419336B (zh) 一种振镜式激光三维扫描系统
CN110695523B (zh) 一种激光扫描装置
US3762821A (en) Lens assembly
US10583524B2 (en) Laser processing head comprising a lens interchange system
CN204353654U (zh) 可实现零锥度和倒锥沟槽加工的激光装置
WO2022052162A1 (zh) 一种含双抛物面镜动态聚焦模块的三维扫描系统
CN108581182A (zh) 激光加工装置及方法
JPS6299719A (ja) レ−ザビ−ム補正用のアナモルフイツク光学系
JP2000071088A (ja) レ−ザ加工機
WO2011060582A1 (zh) 多头激光加工方法及其装置
TW201702762A (zh) 圖案描繪裝置及圖案描繪方法
CN110837215B (zh) 一种可实现长焦深小焦斑结构的高效率激光直写光刻方法
CN112469527A (zh) 用于提供两个偏移激光束的光学设备和方法
JP2007065365A (ja) レンズ位置合わせ方法およびレンズ位置合わせ装置
CN201596848U (zh) 一种多头激光加工装置
TW201004729A (en) Modifying entry angles associated with circular tooling actions to improve throughput in part machining
RU2283738C1 (ru) Установка для лазерной обработки
EP4161729A1 (en) Laser machine, laser machine and laser beam alignment detection tool assembly, alignment and calibration method
KR100904034B1 (ko) 레이저멀티커팅장치
KR100857595B1 (ko) 드럼을 이용한 레이저 가공장치 및 가공방법
JP4251791B2 (ja) レーザ加工装置
JP2001334380A (ja) レーザ加工方法及びその装置
CN218135683U (zh) 一种用于三维五轴激光切割头的装置
JPH05228673A (ja) レ−ザ−加工装置
CN112264721B (zh) 激光微孔加工装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161850.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851374

Country of ref document: EP

Kind code of ref document: A1