WO2011058891A1 - 放射線撮像装置およびそれを用いた核医学診断装置 - Google Patents

放射線撮像装置およびそれを用いた核医学診断装置 Download PDF

Info

Publication number
WO2011058891A1
WO2011058891A1 PCT/JP2010/069286 JP2010069286W WO2011058891A1 WO 2011058891 A1 WO2011058891 A1 WO 2011058891A1 JP 2010069286 W JP2010069286 W JP 2010069286W WO 2011058891 A1 WO2011058891 A1 WO 2011058891A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
collimator
septa
plan
detectors
Prior art date
Application number
PCT/JP2010/069286
Other languages
English (en)
French (fr)
Inventor
香里 服部
敦郎 鈴木
土屋 一俊
崇章 石津
啓司 小橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/508,753 priority Critical patent/US20120232385A1/en
Publication of WO2011058891A1 publication Critical patent/WO2011058891A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1648Ancillary equipment for scintillation cameras, e.g. reference markers, devices for removing motion artifacts, calibration devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography

Definitions

  • the present invention relates to a radiation imaging apparatus having a pixel-type measurement system for imaging incident radiation distribution, and a nuclear medicine diagnostic apparatus using the same.
  • SPECT Single Photon Emission Computed Tomography
  • gamma camera an apparatus in which the radiation measurement apparatus is applied to the nuclear medicine field.
  • This SPECT device measures the distribution of a compound containing a radioactive isotope and provides an image of a tomographic plane.
  • the radiation detectors used in conventional SPECT apparatuses are mainly a combination of a scintillator consisting of one large crystal and a plurality of photomultipliers.
  • this SPECT device performs position determination of radiation by gravity center calculation from output signals of a plurality of photomultiplier tubes.
  • this method has a limit of about 10 mm in resolution and is insufficient for use in a clinical site, a SPECT device having a higher resolution is required.
  • Pixel-type radiation detectors (hereinafter referred to as detectors) have been developed as ones with higher resolution.
  • Pixel-type detectors include those configured with a scintillator and a photodiode, and those configured with a semiconductor that converts radiation into an electrical signal. All acquire position signals in small detector units, ie, in pixel units.
  • the intrinsic resolution of the detector is determined by the pixel size, making spatially discrete measurements.
  • a pixel type detector with a pixel size of about 1 to 2 mm has been developed, and the resolution has been significantly improved, achieving 10 mm or less.
  • the reconstruction method of the fault plane has also been developed and improved, which greatly contributes to the improvement of resolution.
  • the filtered back projection method FBP method: filtered back-projection method
  • the successive approximation method without resolution correction maximum likelihood estimation maximization method (MLEM method)
  • MLEM method maximum likelihood estimation maximization method
  • OSEM method Ordered Subset Expectation Maximization method
  • a successive approximation method with resolution correction has been developed. By this method, it is possible to reconstruct an image in consideration of physical factors such as the geometry of a collimator or a detector, scattered radiation, etc., and to provide a more accurate image.
  • the terms “detector” and “detector group” are used, but the detector means one that constitutes one pixel of an arbitrary shape, and the detector group is a detector It refers to an assembly in which the vessels are arranged.
  • the shape of the detector is rectangular, and when the group of detectors is viewed from the radiation incident side, the rectangle is closely packed.
  • the through holes of the collimator and the detectors are often arranged in a one-to-one correspondence.
  • the shape of the through hole of the collimator is generally rectangular in accordance with the shape of the detector.
  • the detectors are rectangular, one detector is in contact with the next detector in four planes. The surface in contact with the adjacent detector is defined as "the interface between detectors".
  • the boundary surface between the detectors when viewed in plan from the direction perpendicular to the incident surface of the detectors is defined as “a boundary between the detectors”.
  • the septa of the collimator are disposed on the boundary between the detectors.
  • SPECT devices with high spatial resolution and high sensitivity are required in the clinic.
  • factors that determine the resolution and sensitivity such as the distance between the radiation source and the detector, the thickness of the septa, the energy of the radiation, scattering, and absorption.
  • the height of the septa of the collimator and the size of the through hole of the collimator are greatly involved in the determination of the resolution and sensitivity. That is, in order to obtain high resolution, it is necessary to restrict the incoming direction of radiation incident on the detector with a collimator. For this purpose, the field of view in which the detector looks at the measurement object may be narrowed by the collimator.
  • a LEHR Low Energy High Resolution
  • the shape of the collimator be uniform and that the alignment between the collimator and the detector be properly performed.
  • a plurality of detectors are included in one through hole, and when viewed in a plan view from the direction perpendicular to the incident surface of the detectors, the septa of the collimators are arranged to be on the boundary between the detectors.
  • the SPECT apparatus including the configuration is required to have higher accuracy in the manufacturing accuracy and alignment of the collimator as compared to the conventional machine in which the through hole and the detector are in one-to-one correspondence. The reason is as follows.
  • the position of the collimator In a configuration in which a plurality of detectors are included in one through hole and the septa are arranged on the boundary between the detectors when viewed in plan from a direction perpendicular to the incident surface of the detectors, the position of the collimator The impact of the deviation is more serious.
  • the collimator is displaced, in addition to the global sensitivity unevenness due to moiré, streak-like periodic patterns appear. This is because the misalignment of the collimator places the septa on a certain detector and does not place the septa on a certain detector. Therefore, if the collimator is displaced, periodic streaky sensitivity unevenness occurs.
  • the periodic streak-like sensitivity unevenness is determined by the positional relationship between the septa and the detector, so the cycle is about several pixels.
  • the collimator used in the SPECT device is usually made of lead, it is difficult to maintain sufficient manufacturing accuracy because lead is relatively soft and easily deformed. Also, if the area of the collimator is large, the weight of the lead itself may cause the collimator to bend.
  • the SPECT device makes complex movements such as rotating a camera incorporating a detector and a collimator at the time of imaging. At that time, there is also a problem that the collimator is deviated from the predetermined position.
  • the detector is arranged with a spread as a plane, and a pixel type detection in which each detector constitutes a pixel
  • a radiation imaging apparatus having a radiation imaging circuit including a radiation detector group, a radiation measurement circuit for reading out a detection signal from the detector group, and a collimator having a plurality of through holes separated by septa and extending in a direction perpendicular to a plane.
  • the size is set such that one or more pixels are arrayed in plan view in the vertical direction, and the septa are arranged offset from the boundary between the detectors in plan view in the vertical direction Further, the septa are disposed so as to be orthogonal to the boundary between the detectors in a plan view in the vertical direction, and the apexes of the through holes viewed in a plan view in the vertical direction are from the boundary between the detectors. It arranged Rashi, vertex detector viewed in plan from the vertical direction, by being arranged so as line of sight from the through hole, and wherein the obtaining the incident position information of the radiation for each detector.
  • FIG. 5 illustrates another arrangement of collimators and detectors according to an embodiment of the present invention.
  • FIG. 5 illustrates another arrangement of collimators and detectors according to an embodiment of the present invention.
  • FIG. 5 illustrates another arrangement of collimators and detectors according to an embodiment of the present invention.
  • FIG. 5 illustrates another arrangement of collimators and detectors according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a SPECT apparatus according to an embodiment of the present invention.
  • the SPECT device 1 is configured to include a gantry 10, cameras (radiographic imaging devices) 11A and 11B, a data processing device 12, a display device 13, and a bed 14.
  • the subject 15 receives a radioactive drug, for example, a drug containing 99m Tc with a half life of 6 hours.
  • ⁇ -rays (radiation) emitted from 99m Tc in the body of the subject 15 placed on the bed 14 are detected by the camera 11 (11A, 11B) supported by the gantry 10 so as to capture a tomographic image ing.
  • the camera 11 incorporates a collimator 26 and a large number of detectors 21.
  • the collimator 26 has a through hole 27 and a septa 28 separating the through hole 27 and separates ⁇ rays emitted from 99m Tc in the body of the subject 15 (restricts the incident angle), and It has a role to let pass only.
  • the ⁇ -ray that has passed through the collimator 26 (through hole 27) is detected by the detector 21.
  • the camera 11 includes an application specific integrated circuit (hereinafter referred to as an application specific integrated circuit (ASIC)) (a radiation measurement circuit) 25 for measuring a ⁇ -ray detection signal.
  • ASIC application specific integrated circuit
  • the ID of the detector 21 that detects the ⁇ ray, the peak value of the detected ⁇ ray and the detection time are input to the ASIC 25 through the detector substrate 23 and the ASIC substrate 24. These are surrounded by a light shielding / ⁇ ray / electromagnetic shield 29 made of iron, lead or the like which constitutes the camera 11 to block light, ⁇ rays and electromagnetic waves.
  • the camera 11 can be moved in the radial and circumferential directions of the central axis of the cylindrical opening provided in the central portion of the gantry 10. At the time of imaging, the camera 11 draws an image by drawing a closest orbit around the subject 15. Moreover, the camera 11 can also be rotated centering
  • the data processing device 12 has a storage device (not shown) and a tomogram information creation device (not shown).
  • the data processor 12 takes in packet data including detected peak value of ⁇ -ray, detection time data and detector (channel) ID from the ASIC 25 and generates a plane image or converts it into sinogram data to generate tomographic image information And display on the display device 13.
  • the response function of the detector 21 may be used.
  • the response function is the probability that a certain detector 21 detects the ⁇ ray with respect to the ⁇ ray emitted from a certain minute region. In general, the response function considers not only the geometrical shape but also physical factors such as the performance of scattering, absorption and the like.
  • the SPECT device 1 images the radioactive drug accumulated in a tumor or the like in the body of the subject 15 and identifies the position of the tumor.
  • FIG. 2 is a perspective view showing a pixel type detector incorporated in the camera according to the embodiment of the present invention.
  • Detectors 21 using a CdTe semiconductor are two-dimensionally arrayed on the detector substrate 23 (see FIG. 1) to constitute a detector group 21A.
  • each detector 21 constitutes one pixel.
  • the upper surface side is the incident surface 21 f of the detector 21, and the electrodes 22 a and 22 b to which a voltage is applied are disposed on the side surface of the detector 21.
  • detection signals are collected in units of each detector 21, that is, in units of pixels.
  • the detector group 21A In order to obtain the response function, it is preferable that the detector group 21A have a periodic structure. Otherwise, the response function will be determined for each pixel.
  • the detectors 21 used for the camera 11 are not limited to those divided into pixels as shown in FIG. 2, but the detectors shown in FIGS. 3 to 7 (detector group 21B, 21C, 21D, 21E) may be used.
  • FIG. 3 is a perspective view showing another example of the pixel type detector. In the detector (detector group 21B) shown in FIG.
  • the common electrode 22c is disposed on one surface of the CdTe semiconductor substrate, that is, the entire surface on the incident surface 21f side with respect to one CdTe semiconductor substrate,
  • the electrode 22d divided in pixel units is disposed on the surface opposite to the incident surface 21f, and the CdTe semiconductor substrate and the common electrode 22c in the area corresponding to one electrode 22d correspond to the pixels, respectively. Constitute a detector.
  • FIG. 4 is a perspective view showing the incident surface side of the first modified example of another pixel type detector
  • FIG. 5 is the opposite of the incident surface of the first modified example of another pixel type detector It is a perspective view showing a field side.
  • the detector (detector group 21C) shown in FIGS. 4 and 5 has the common electrode 22c disposed on the entire surface on the incident surface 21f side with respect to one CdTe semiconductor substrate, and the incident surface 21f of the CdTe semiconductor substrate
  • An electrode 22d divided in pixel units is disposed on the side opposite to the side, and in addition, a groove formed by dicing is divided into individual detectors.
  • FIG. 6 is a perspective view showing a second modified example of another pixel type detector.
  • the detector (detector group 21D) shown in FIG. 6 has a plurality of strip electrodes 22e and 22f facing the top and bottom of the CdTe semiconductor substrate in a right-angled torsion relation to a single CdTe semiconductor substrate. Are arranged.
  • the strip electrode 22e on one of the upper surface and the lower surface is used as an anode, and the strip electrode 22f on the other surface is used as a cathode.
  • Crossed portions of the anode electrode 21e and the cathode electrode 21f form one detector (see Japanese Patent Laid-Open No. 2004-125757).
  • FIG. 7 is a perspective view showing a pixel type scintillator detector.
  • the structure of the detector may be a scintillator detector configured to be divided into pixel units consisting of a scintillator 21g and a photodiode 21h.
  • the side surfaces of the individual scintillators 21g are surrounded by a light shielding material (not shown).
  • the scintillator detector shown in FIG. 7 it may be composed of a scintillator 21g divided for each pixel and a position-sensitive photomultiplier tube (PSPMT).
  • PSPMT position-sensitive photomultiplier tube
  • FIG. 8 is a perspective view showing the arrangement of a collimator and a detector according to an embodiment of the present invention.
  • FIG. 10 is a view of the arrangement of a collimator and a detector according to an embodiment of the present invention as seen from the radiation irradiation direction.
  • the collimator 26A is made of lead, and has a through hole 27A in a visible direction when viewed in plan from a direction perpendicular to the incident surface 21f of the detector 21, and the through hole 27A is arranged in a grid. Further, each through hole 27A is partitioned by the septa 28A. Further, as shown in FIG. 10, the M detectors 21 are configured to include one through hole 27A (in FIG. 10, four detectors 21 are configured to one through hole 27A). Indicates the case of the included configuration). M may not be an integer.
  • the septa 28A of the collimator 26A according to the embodiment of the present invention is disposed to pass through the center of the detector 21, as shown in FIG.
  • the collimator 26A when viewed from above in a direction perpendicular to the incident surface 21f of the detector 21, the collimator 26A makes the boundary 32 between the detectors 21 orthogonal to the septa 28A. In this configuration, even if the position of the collimator 26A is shifted, the leaked radiation and the shadow of the septa 28A fall within substantially the same pixel, so the change in the radiation count number of the detector 21 is small.
  • FIG. 9 is a perspective view showing the arrangement of a collimator and a detector according to a comparative example.
  • FIG. 11 is a view of the arrangement of the collimator and the detector according to the comparative example as viewed from the radiation irradiation direction.
  • the collimator 26B is made of lead and has through holes 27B, and the through holes 27B are arranged in a grid. In addition, each through hole 27B is partitioned by the septa 28B. Further, as shown in FIG. 11, M detectors 21 are included in one through hole 27 B (in FIG. 10, four detectors 21 in one through hole 27 B).
  • the collimator 26A according to the embodiment of the present invention and the collimator 26B according to the comparative example have the same configuration except that the arrangement with respect to the detector 21 (the detector group 21A) is different.
  • the septa 28B of the collimator 26B according to the comparative example is disposed on the boundary 32 between the detectors 21 when viewed in plan from the direction perpendicular to the incident surface 21f of the detector 21. Be done. In this configuration, when the position of the collimator 26B shifts, a short period ring artifact appears as described later.
  • the relationship between the positional deviation of the collimator 26 and the response function will be described.
  • the response function changes.
  • the reason is that the shadow by the collimator 26 is seen around the septa 28.
  • the distance between the detector 21 and the collimator 26 can not be made zero due to physical limitations. Therefore, as shown in FIG. 15 described later, leakage radiation from adjacent pixels can be seen.
  • the leaked radiation is detected by a detector 21 located near the septa 28.
  • the position of the shadow of the collimator 26 and the leaked radiation distribution also move along with the collimator 26. From this, the radiation distribution near the septa 28 strongly depends on the position of the collimator 26.
  • the count number and response function of the radiation detected by the detector 21 change.
  • FIG. 13 when viewed in a plan view from a direction perpendicular to the incident surface 21 f of the detector 21, the intersection points of the septa 28 on and around the boundary 32 between the detectors 21 (a through hole When the 27 apexes contain a certain configuration, for the same reason as above, displacement of the collimator 26 causes an artifact.
  • FIG. 14 also in the detector 21 including a configuration in which the apex of the detector 21 intersects and approaches the septa 28 when viewed in plan from a direction perpendicular to the incident surface 21 f of the detector 21. For the same reason as described above, when the collimator 26 shifts, an artifact appears.
  • FIG. 13 although the septa 28 is expressed as a straight line, you may curve.
  • the general pixel type detector 21 has a dead area 31 (see FIG. 15 described later) between the detector 21 and the detector 21. Therefore, in the configuration of FIGS. 12, 13 and 14, if the collimator 26 is slightly deviated, the amount of leaked radiation distributed on the insensitive region 31 changes. As a result, the radiation count number of the detector 21 changes. That is, it is not possible to completely prevent moire due to positional displacement and rotation of the collimator 26.
  • the septa 28 is a boundary line 32 between the detectors 21. It should not be close to the top. Also, the intersection point of the septa 28 (the apex of the through hole 27) should not be close on the boundary 32 between the detectors 21. Also, the apex of the detector 21 should not be close to the septa 28.
  • FIG. 15 is a schematic cross-sectional view for explaining the relationship between the collimator, the detector, and the leaked radiation according to the comparative example.
  • the height of the collimator 26 is l, the distance between the collimator 26 and the detector 21 is ⁇ l, the thickness of the septa 28 is t, the distance from the center of the detector 21 to the center of the adjacent detector 21 is d, one septa Assuming that the distance from the center of 28 to the center of the next septa 28 (that is, the pitch of the septa 28 and the pitch of the through holes 27) is Nd (however, N is not limited to an integer)
  • N is not limited to an integer
  • the maximum distance X between the point and the septa 28 is
  • (Nd ⁇ t) ⁇ l / l ⁇ t / 2 It becomes.
  • N 2.
  • the range of the leaked radiation is about 30% of the size of the detector 21 (ie,
  • FIG. 16 is a schematic cross-sectional view for explaining the relationship between the collimator, the detector, and the leaked radiation according to the embodiment of the present invention. Therefore, in the configuration using the collimator 26A (see FIGS. 8 and 10) according to the embodiment of the present invention, when viewed in plan from the direction perpendicular to the incident surface 21f of the detector 21, the displacement ⁇ X of the collimator 26A is , And in the direction orthogonal to the septa 28A, and when ⁇ X ⁇ d / 2 ⁇
  • the response function is stable with respect to the positional deviation of the collimator 26A within the range.
  • Leakage radiation is concentrated near the septa 28, while the shadows from the collimator 26 are widely distributed throughout the pixel. Therefore, the leaked radiation distribution is most affected by the misalignment of the collimator 26.
  • the boundary line between the detectors 21 If there is a distance of (Nd ⁇ t) ⁇ l / l ⁇ t / 2 or more between the light source 32 and the septa 28 parallel to the boundary line 32, leaked radiation distributed near the septa 28 is in the same pixel. Subside. When there is an insensitive region 31 between the detectors 21 and 21, assuming that the width is T, it is necessary to have a distance of (Nd ⁇ t) ⁇ l / l ⁇ t / 2 + T / 2 or more.
  • the positional deviation ⁇ X of the collimator 26A is perpendicular to the plane formed by the septa 28A and ⁇ X ⁇ (d + t ⁇ T) / 2 ⁇ (Nd ⁇ t)
  • ⁇ l / l the leaked radiation falls within the same pixel and the count of leaked radiation is constant.
  • the collimator 26 slightly deviates in a direction parallel to the septa 28, since the area covered by the leaked radiation counted by the detector 21 is constant, the count number of the leaked radiation is constant.
  • FIGS. 17A-17C and FIGS. 18A-18C show the results of imaging simulation of the configuration using the collimator according to the embodiment of the present invention.
  • the simulation was done. Further, the deviation of the collimator 26 from the predetermined position is taken as ⁇ X.
  • FIG. 19 is a diagram showing a change in imaging simulation result due to a displacement of a collimator in a configuration using a collimator according to a comparative example
  • FIG. 20 is an imaging simulation due to a displacement of a collimator in a configuration using a collimator according to an embodiment of the present invention It is a figure which shows the change of a result. That is, FIG. 19 is obtained by dividing FIG. 17C to FIG.
  • FIG. 17A, and FIG. 20 is obtained by dividing FIG. 18C and FIG. 18A.
  • FIG. 19 in the configuration using the collimator 26B according to the comparative example, streaks orthogonal to the direction of displacement of the collimator 26B appear periodically at every other row.
  • FIG. 20 in the configuration using the collimator 26A according to the embodiment of the present invention, although streaks perpendicular to the direction of displacement of the collimator 26A appear at the end of the planar source. The way of change elsewhere is irregular. This is the effect of using the Monte Carlo method for simulation. As described above, it is understood that the configuration using the collimator 26A according to the embodiment of the present invention is stable against the positional deviation of the collimator 26.
  • Image evaluation of a uniform planar source is an indicator of whether an artifact appears. This is because artefacts are noticeable in areas where the radiation count number is substantially uniform or in areas where changes in the count number occur on a scale sufficiently larger than the pixel size. Therefore, evaluation of the artifact may be performed using a source having a uniform distribution. For simplicity, we will consider planar images obtained from a uniform planar source and parallel to the collimator 26. Also, assuming that the displacement of the collimator 26 is only one direction, it is assumed that it is parallel to the detector 21.
  • FIG. 21 is a graph showing the amount of change of the surface line source image in the configuration using the collimator according to the comparative example.
  • (DELTA) l / d four types of values of 2.1, 4.3, 6.4, and 8.6 were used.
  • a value obtained by averaging the ratio of the count number of peaks and valleys by the detector group 21A is set as R, and is set as the vertical axis of the graph. Further, the displacement ⁇ X of the collimator 26 B is divided by d to make it non-dimensional, which is taken as the horizontal axis of the graph.
  • FIG. 22 shows how the surface line source image changes with respect to the shift of the collimator 26A.
  • FIG. 22 is a graph showing the amount of change of the surface radiation source image in the configuration using the collimator according to the embodiment of the present invention.
  • ⁇ l / d is four values of 2.1, 4.3, 6.4, and 8.6.
  • the ratio of the count numbers changes in the column orthogonal to the direction of the shift.
  • R changes in any ⁇ l / d within the range of
  • the configuration using the collimator 26A according to the embodiment of the present invention is different from the configuration using the collimator 26B according to the comparative example in the change of
  • the FBP method can not be applied because the images in FIGS. 18A-18C have unique patterns. Also, as shown in FIG. 16, the detector 21 below the septa 28 has a disrupted visual field. However, the image can be reconstructed by successive approximation using a response function. In addition, the resolution hardly decreases if the response function considering the divided visual field is used. It should be noted that when a uniform planar source is irradiated, an image with a periodic pattern can be obtained, so the response function has a complicated shape.
  • FIG. 24 is an example of the result of the image reconstruction simulation in the configuration using the collimator according to the embodiment of the present invention.
  • FIG. 25 is an example of the result of the image reconstruction simulation in the configuration using the collimator according to the comparative example.
  • FIG. 26 is a diagram showing a change in simulation results of image reconstruction due to a displacement of a collimator in a configuration using a collimator according to an embodiment of the present invention
  • FIG. 27 is a diagram of a collimator in a configuration using a collimator according to a comparative example. It is a figure which shows the change of the image reconstruction simulation result by shift
  • the scale of FIG. 26, FIG. 27 is unifying.
  • the sensitivity of the detector 21 may be reduced by the shadow of the collimator 26.
  • the decrease in sensitivity may be slight or even increased. This is because, in general, in the pixel-type detector 21, there is a gap between the detector 21 and the detector 21. Therefore, the area is insensitive (corresponding to the insensitive area 31 in FIG. 15).
  • the septa 28 is disposed on or in the vicinity of the boundary 32 between the detectors 21 in plan view in a direction perpendicular to the incident surface 21 f of the detector 21, leaked radiation is distributed in the insensitive region 31. Do. Thus, these radiations are not detected.
  • these leaked radiation are all detected because they are distributed on the detector 21.
  • the sensitivity is maintained by the tradeoff between the shadow of the collimator 26 and the leaked radiation.
  • the collimator 26 having the conventional manufacturing accuracy can be used.
  • the alignment of the collimator 26 may be less accurate than that of the configuration using the collimator 26B according to the comparative example. This can reduce the time required for alignment.
  • the accuracy of alignment of the collimator 26 may be about 0.1 mm, which is a realistic value.
  • it is more stable against the displacement of the collimator 26 at the time of measurement than the configuration using the collimator 26B according to the comparative example an image with less artifact can be obtained.
  • the count number of each detector 21 is recorded at the time of measurement, and the count number of a plurality of adjacent detectors 21 is combined off-line after measurement, the number of detectors 21 to be combined is free. Can be changed to This makes it possible to reconstruct the image at various resolutions after the measurement. In this SPECT device 1, resolution and the minimum number of counts required for imaging can be selected without changing the device configuration.
  • this configuration is effective when using a medium energy collimator or a high energy collimator.
  • the resolution can be maintained even if the hole diameter is increased. Therefore, it is effective for imaging using high energy gamma rays.
  • the collimator 26A has been described as including four detectors 21 for one through hole 27A, the present invention is not limited to this.
  • the septa 28 passes through the center of the detector 21, and the detector 21
  • the number of detectors 21 included in the through hole 27 may be arbitrary as long as it is orthogonal to the end. For example, as shown in FIG. 28, two detectors 21 may be included, or nine detectors 21 may be included as shown in FIG.
  • the length of one side of the through hole 27 of one collimator 26 is L.
  • L Nd-t.
  • the length of any line connecting the boundary 32 between the detectors 21 and the septa 28 is always L ⁇ l / l + (T ⁇ If t) / 2 or more, the leaked radiation falls within the same pixel and is stable against displacement of the collimator 26. At this time, it is stable against the rotation of the collimator 26 and can prevent moire.
  • the septa 28 are arranged in parallel with the array of the detectors 21. This is to make the sensitivity of each detector 21 uniform. In these configurations shown in FIGS. 30 and 31, image reconstruction is possible by the FBP method and the successive approximation method.
  • the SPECT device 1 provided with the detector 21 of an arbitrary shape and the collimator 26 having the through hole 27 of an arbitrary shape, this detection when viewed in plan from a direction perpendicular to the incident surface 21 f of the detector 21
  • the distance between the boundary line 32 between the vessels 21 and the septa 28 may be L ⁇ l / l + (T ⁇ t) / 2 or more. Then the leaked radiation will be in the same pixel.
  • L is defined as the maximum width of the through hole 27 in any through hole 27 shape.
  • the distance between the septa 28 perpendicular to each other and the boundary 32 between the detectors 21 may be equal to or less than the above value.
  • the length of any line drawn from the top of the through hole 27 to the boundary 32 between the detectors 21 should always be L ⁇ l / l + (T ⁇ t) / 2 or more.
  • the length of any line drawn from the top of the detector 21 to the septa 28 should always be L ⁇ l / l + (T ⁇ t) / 2 or more. Even if the collimator 26 moves within the above range, the area where leaked radiation is distributed on one detector 21 is constant.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 従来の製作精度の検出器およびコリメータを用いても、コリメータの位置ずれに対してロバスト(安定)な放射線撮像装置およびそれを用いた核医学診断装置であって、貫通穴(27)は、垂直方向から平面視して、一つまたは複数のピクセルが配列されるようにサイズが設定され、セプタ(28)は、垂直方向から平面視して、検出器同士の間の境界線からはずらして配置され、さらに、セプタ(28)は、垂直方向から平面視して、検出器同士の境界線とは直交するように配置され、垂直方向から平面視した貫通穴(27)の頂点は、検出器同士の境界線からはずらして配置され、垂直方向から平面視した検出器(21)の頂点は、貫通穴(27)から見通せるように配置されることで、検出器(21)ごとに放射線の入射位置情報を得ることを特徴とする。

Description

放射線撮像装置およびそれを用いた核医学診断装置
 本発明は、ピクセル型の計測体系を持ち入射放射線分布を画像化する放射線撮像装置およびそれを用いた核医学診断装置に関するものである。
 放射線計測装置を核医学分野に応用した装置として、ガンマカメラを用いた単一光子放射型コンピュータ断層撮影装置(以下、SPECT(Single Photon Emission Computed Tomography)装置と称する)がある。このSPECT装置は、放射性同位体を含む化合物の分布を測定し、断層面のイメージを提供するものである。
 これまでのSPECT装置に使用されている放射線検出器は、一枚の大きな結晶からなるシンチレータと複数の光電子増倍管とを組み合わせたものが主流である。また、このSPECT装置は放射線の位置決定を複数の光電子増倍管の出力信号から重心演算により行う。
 しかしながら、この方法では分解能10mm程度が限界であり、臨床現場で用いるには不十分であるため、より高い分解能を持つSPECT装置が求められている。
 近年、より高い分解能をもつものとして、ピクセル型の放射線検出器(以下、検出器と称する)が開発されてきている。ピクセル型の検出器には、シンチレータとフォトダイオードで構成されたものや、放射線を電気信号に変換する半導体で構成されたもの等がある。いずれも、小さな検出器単位、すなわちピクセル単位で位置信号を取得する。したがって、検出器の固有分解能は、ピクセルサイズで決定され、空間的に離散した計測を行う。また、ピクセルサイズが1,2mm程度のピクセル型検出器も開発され、分解能は10mm以下を達成し、大幅に改善されてきた。
 一方、断層面の再構成方法も開発・改良され、分解能向上に大きく貢献している。これまでは、フィルタ補正逆投影法(FBP法:filtered back-projection法)、分解能補正なしの逐次近似法(最尤推定期待値最大化法(MLEM法:Maximum Likelihood Expectation Maximization法)、サブセット化による期待値最大化法(OSEM法:Ordered Subset Expectation Maximization法))等が用いられていた。近年、分解能補正ありの逐次近似法が開発されている。この方法により、コリメータや検出器の幾何学的形状、散乱線等の物理的要因を考慮して画像を再構成することができ、より正確な画像を提供することができる。
 なお、以下のピクセル型の検出器の説明において、「検出器」と「検出器群」という用語を用いるが、検出器は任意の形状の1ピクセルを構成するものをいい、検出器群は検出器が配列された集合体をいうものとする。
 一般に、検出器の形状は矩形であり、放射線入射側から検出器群を見ると長方形が稠密に詰まった構成となっている。
 検出器群をなす全ての検出器において、感度を一様にするために、コリメータの貫通穴と検出器とが、一対一対応となるように配置されることが多い。また扱いやすさの点から、検出器の形状に合わせて、コリメータの貫通穴の形状も矩形であるのが一般的である。
 ここで、検出器が矩形であるとき、1つの検出器は4つの面で隣の検出器と接している。この隣の検出器と接している面を「検出器同士の境界面」と定義するものとする。また、検出器の入射面に対して垂直方向から平面視した際の検出器同士の境界面を「検出器同士の間の境界線」と定義するものとする。
 従来のSPECT装置では、検出器の入射面に対して垂直方向から平面視した際、この検出器同士の間の境界線上にコリメータのセプタがくるように配置される。
 一方で、コリメータと検出器の位置がずれると、モアレが生じるという問題が知られている。この課題を解決するために、コリメータを回転させた構成が開示されている(特許文献1)。これらの構成では、コリメータが所定の位置からずれても、検出器上を横切るセプタの面積が一定に保たれることにより、モアレを低減し均一化することができる。
 現在、高空間分解能かつ高感度であるSPECT装置が、臨床において求められている。分解能や感度を決定する要因としては、放射線源と検出器との距離、セプタの厚さ、放射線のエネルギ、散乱、吸収等多くの要因がある。
 これらの要因のうち、コリメータのセプタの高さとコリメータの貫通穴の大きさが、分解能と感度の決定に大きく関与する。
 すなわち、高分解能を得るためには、検出器に入射する放射線の到来方向をコリメータで制限する必要がある。このためには、検出器が測定対象物を見込む視野を、コリメータによって狭めればよい。このようなコリメータとして、LEHR(Low Energy High Resolution)コリメータが知られている。しかし、この制限によって、感度が犠牲になる。
 一方、高感度を得るために、コリメータの貫通穴のサイズを大きくする必要がある。このようなコリメータとして、LEGP(Low Energy General Purpose)コリメータやLEHS(Low Energy High Sensitivity)コリメータが知られている。しかし、貫通穴のサイズを大きくすることによって、分解能が悪化する。
 このように、従来のSPECT装置では、高分解能と高感度が両立しないため、用途に応じてコリメータを入れ替える必要があり、臨床現場の負担となる。
 そこで、感度と分解能を両立するSPECT装置として、一つの矩形貫通穴に複数の検出器が含まれる、SPECT装置が発明された。このSPECT装置では、貫通穴のサイズが同じとき、貫通穴と検出器とが一対一対応である従来のSPECT装置よりも、高い分解能が得られることが実証されている(特許文献2、非特許文献1)。
特許第3928647号 国際公開第2008/046971号
C. Robert et al. (2008) 2008 IEEE Nuclear Science Symposium Conference Record Vol6 pp.4246-4251
 SPECT装置において感度ムラやアーチファクトのない一様な画像を得るためには、コリメータの形状が一様性であること、および、コリメータと検出器との位置合わせを正しく行うことが重要である。
 また、一つの貫通穴に複数の検出器が含まれ検出器の入射面に対して垂直方向から平面視した際、この検出器同士の間の境界線上にコリメータのセプタがくるように配置される構成が含まれるSPECT装置は、貫通穴と検出器とが一対一対応である従来機に比べて、コリメータの製作精度、位置合わせにおいて、より高い精度が求められる。その理由は以下の通りである。
 一つの貫通穴に複数の検出器が含まれ、検出器の入射面に対して垂直方向から平面視した際、この検出器同士の間の境界線上にセプタを配置する構成においては、コリメータの位置ずれによる影響がより深刻である。コリメータがずれると、モアレによる大局的な感度ムラに加えて、筋状の周期的なパターンが現れる。これは、コリメータのずれにより、ある検出器上にセプタが配置され、ある検出器上にはセプタが配置されない、という配置になるためである。したがって、コリメータがずれると、周期的な筋状の感度ムラが生じる。なお、この周期的な筋状の感度ムラは、セプタと検出器との位置関係で決まるので、周期は数ピクセル程度である。
 筋状の感度ムラのある画像を用いて再構成すると、リングアーチファクトが生じることが知られている。短周期の感度ムラは短周期のアーチファクトを生む。このとき、断層像の細かい構造が失われ、画質が大幅に劣化する。
 したがって、一つの矩形貫通穴に複数の検出器が含まれるSPECT装置においては、より厳密なコリメータの位置合わせが求められる。しかし、現在のコリメータ製作精度および位置合わせ方法では、アーチファクトを完全に防ぐことは難しい。
 なお、この現象は、貫通穴と検出器とが一対一対応である従来のSPECT装置では起こらない。コリメータがずれても、局所的には全ての検出器とセプタの位置関係が同一であるためである。
 また、SPECT装置に用いられるコリメータは、通常、鉛で製作されるが、鉛は比較的軟らかく変形しやすい性質を備えるため十分な製作精度を維持することは困難である。 また、コリメータの面積が大きいと、鉛自身の重量でコリメータがたわんでしまう。
 加えて、SPECT装置は撮像時に、検出器とコリメータを内蔵するカメラを回転するなど複雑な動きをさせる。その際、コリメータが所定の位置からずれてしまうという問題もある。
 一方、点線源で応答関数を測定し、測定した応答関数を用いて画像を再構成する手法が知られている。しかし、点線源を多数の位置で測定しなければならず、応答関数の測定に時間がかかる。前述のように、SPECT装置では、用途に応じてしばしば、さまざまな種類のコリメータに取り換えて使用する。その度に、上記のような較正をするのは、合理的ではない。したがって、コリメータのずれに対してロバストなSPECT装置が求められている。
 そこで本発明は、従来の製作精度の検出器およびコリメータを用いても、コリメータの位置ずれに対してロバスト(安定)な放射線撮像装置およびそれを用いた核医学診断装置を提供することを課題とする。
 本発明は、このような課題を解決するために、請求項1に係る放射線撮像装置は、検出器が平面としての広がりを持って配列されて各検出器がそれぞれピクセルを構成するピクセル型の検出器群と、検出器群からの検出信号を読み出す放射線計測回路と、セプタで仕切られ、平面に対して垂直方向に伸びる貫通穴が複数配列されたコリメータとを有する放射線撮像装置において、貫通穴は、垂直方向から平面視して、一つまたは複数のピクセルが配列されるようにサイズが設定され、セプタは、垂直方向から平面視して、検出器同士の間の境界線からはずらして配置され、さらに、セプタは、垂直方向から平面視して、検出器同士の境界線とは直交するように配置され、垂直方向から平面視した貫通穴の頂点は、検出器同士の境界線からはずらして配置され、垂直方向から平面視した検出器の頂点は、貫通穴から見通せるように配置されることで、検出器ごとに放射線の入射位置情報を得ることを特徴とする。
 本発明によれば、従来の製作精度の検出器およびコリメータを用いても、コリメータの位置ずれに対してロバスト(安定)な放射線撮像装置およびそれを用いた核医学診断装置を提供することができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
本発明の実施形態に係るSPECT装置の構成図である。 本発明の実施形態に係るカメラに内蔵するピクセル型の検出器を示す斜視図である。 ピクセル型の検出器の別の例を示す斜視図である。 別のピクセル型の検出器の第一の変形例の入射面側を示す斜視図である。 別のピクセル型の検出器の第一の変形例の入射面の反対面側を示す斜視図である。 別のピクセル型の検出器の第二の変形例を示す斜視図である。 ピクセル型のシンチレータ検出器を示す斜視図である。 本発明の実施形態に係るコリメータと検出器の配置を示した斜視図である。 比較例に係るコリメータと検出器の配置を示した斜視図である。 本発明の実施形態に係るコリメータと検出器の配置を放射線照射方向から見た図である。 比較例に係るコリメータと検出器の配置を放射線照射方向から見た図である。 ピクセル型の検出器とコリメータのセプタとの配置例を示した図である。 ピクセル型の検出器とコリメータのセプタとの配置例を示した図である。 ピクセル型の検出器とコリメータのセプタとの配置例を示した図である。 比較例に係るコリメータと検出器と漏れ放射線の関係を説明する断面模式図である。 本発明の実施形態に係るコリメータと検出器と漏れ放射線の関係を説明する断面模式図である。 比較例にかかるコリメータを用いた構成の撮像シミュレーションの結果である。 比較例にかかるコリメータを用いた構成の撮像シミュレーションの結果である。 比較例にかかるコリメータを用いた構成の撮像シミュレーションの結果である。 本発明の実施形態に係るコリメータを用いた構成の撮像シミュレーションの結果である。 本発明の実施形態に係るコリメータを用いた構成の撮像シミュレーションの結果である。 本発明の実施形態に係るコリメータを用いた構成の撮像シミュレーションの結果である。 比較例にかかるコリメータを用いた構成におけるコリメータのずれによる撮像シミュレーション結果の変化を示す図である。 本発明の実施形態に係るコリメータを用いた構成におけるコリメータのずれによる撮像シミュレーション結果の変化を示す図である。 比較例に係るコリメータを用いた構成において、面線源イメージの変化量を示すグラフである。 本発明の実施形態に係るコリメータを用いた構成において、面線源イメージの変化量を示すグラフである。 本発明の実施形態に係るコリメータを用いた構成と比較例に係るコリメータを用いた構成において、Δl/d=4.3における面線源イメージの変化量を比較するグラフである。 本発明の実施形態に係るコリメータを用いた構成における画像再構成シミュレーションの結果の例である。 比較例に係るコリメータを用いた構成における画像再構成シミュレーションの結果の例である。 本発明の実施形態に係るコリメータを用いた構成におけるコリメータのずれによる画像再構成シミュレーション結果の変化を示す図である。 比較例に係るコリメータを用いた構成におけるコリメータのずれによる画像再構成シミュレーション結果の変化を示す図である。 本発明の実施形態に係るコリメータと検出器の別の配置を示す図である。 本発明の実施形態に係るコリメータと検出器の別の配置を示す図である。 本発明の実施形態に係るコリメータと検出器の別の配置を示す図である。 本発明の実施形態に係るコリメータと検出器の別の配置を示す図である。
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。
<SPECT装置(核医学診断装置)1>
 本発明の実施形態に係るSPECT装置(核医学診断装置)1の全体の構成について図1を用いて説明する。
 図1は、本発明の実施形態に係るSPECT装置の構成図である。
 SPECT装置1は、ガントリ10、カメラ(放射線撮像装置)11A,11B、データ処理装置12、表示装置13、ベッド14を含んで構成されている。
 被検者15は、放射性薬剤、例えば、半減期が6時間の99mTcを含んだ薬剤を投与される。ベッド14に載せられた被検者15の体内の99mTcから放出されるγ線(放射線)をガントリ10に支持されたカメラ11(11A,11B)で検出して断層画像を撮像するようになっている。
 カメラ11は、コリメータ26と多数の検出器21を内蔵している。コリメータ26は、貫通穴27と貫通穴27を仕切るセプタ28とを有し、被検者15の体内の99mTcから放出されるγ線を選別(入射角を規制)し、一定方向のγ線のみを通過させる役割を有している。コリメータ26(貫通穴27)を通過したγ線を検出器21で検出する。
 カメラ11は、γ線の検出信号を計測するための特定用途向け集積回路(以下、ASIC(Application Specific Integrated Circuit)と称する)(放射線計測回路)25を備える。γ線の検出信号は、検出器基板23、ASIC基板24を介して、ASIC25にγ線を検出した検出器21のID、検出したγ線の波高値や検出時刻が入力される。これらはカメラ11を構成する鉄、鉛等でできた遮光・γ線・電磁シールド29によって囲まれており、光、γ線、電磁波を遮断している。
 カメラ11は、ガントリ10の中央部分に設けられた円筒形開口部の中心軸の半径方向及び周方向に可動させることができる。撮像時には、カメラ11は被検者15の周りに最近接軌道を描いて撮像していく。また、カメラ11は、ガントリ10との取り付け部(図示せず)を軸として回転させることもでき、2つのカメラ11A,11Bを並べて固定することで、STATIC画像を撮像させることもできる。
 データ処理装置12は、記憶装置(図示せず)及び断層像情報作成装置(図示せず)を有する。データ処理装置12は、検出したγ線の波高値、検出時刻のデータ及び検出器(チャンネル)IDを含むパケットデータをASIC25から取り込み、平面像を生成もしくはサイノグラムデータに変換して断層像情報を生成し、表示装置13に表示する。
 データ処理装置12において画像再構成をする際、検出器21の応答関数を用いることがある。応答関数とは、ある微少領域から発したγ線に対して、ある検出器21がそのγ線を検出する確率である。一般に、応答関数は、幾何学的形状だけでなく、散乱、吸収等の性能等の物理的要因も考慮する。この応答関数を用いることで、逐次近似法(MLEM法、OSEM法)等からより正確な画像を再構成することができる。なお、正しくない応答関数を用いて画像を再構成すると、分解能が低下したり、アーチファクトを生じたりする。
 一般に、断層撮影を行うとき、被写体との角度を変えながら、プラナーイメージを複数取得する。検出器群21Aが測定対象に対してある角度をなしているとき、検出器iのカウント数yは、検出再構成画素jのカウント数をλとして、
   y=ΣCij λ
となる。上式から、逐次近似法等(MLEM法、OSEM法、MAP法等)を用いて画像を再構成する。ここで、Cijは、幾何的に決定される定数である。
 このようにして、SPECT装置1は被検者15の体内の腫瘍等に集積した放射性の薬剤を撮像し、腫瘍の位置を同定する。
<検出器21>
 次に、カメラ11に用いられる検出器21について図2を用いて説明する。
 図2は、本発明の実施形態に係るカメラに内蔵するピクセル型の検出器を示す斜視図である。
 検出器基板23(図1参照)に、CdTe半導体を用いた検出器21を2次元に配列し検出器群21Aを構成している。また、個々の検出器21が1つのピクセルを構成する。
 図2において、上面側が検出器21の入射面21fであり、電圧を印加する電極22a,22bは検出器21の側面に配置される。このように、1枚の大きな結晶からなるシンチレータと異なり、検出信号は、各検出器21単位、つまりピクセル単位で収集される。
 なお、応答関数を求める都合上、検出器群21Aは周期構造を持っていることが望ましい。そうでない場合、一つ一つのピクセルについて応答関数を求めることになる。
 なお、カメラ11に用いられる検出器21(検出器群21A)は、図2に示すようにピクセルごとに区切られたものに限られず、図3から図7に示す検出器(検出器群21B,21C,21D,21E)を用いてもよい。
 図3は、ピクセル型の検出器の別の例を示す斜視図である。
 図3に示す検出器(検出器群21B)は、1枚のCdTe半導体の基板に対して、共通電極22cをCdTe半導体の基板の一方の面、つまり、入射面21f側の全面に配置し、入射面21fの反対側の面にピクセル単位で区切られた電極22dを配置して、電極22dの1個分に相当する面積部分のCdTe半導体の基板と共通電極22cとで、それぞれがピクセルに対応した検出器を構成するものである。
 次に、図3に示す検出器(検出器群21B)の変形例を図4から図6に示す。
 図4は、別のピクセル型の検出器の第一の変形例の入射面側を示す斜視図であり、図5は、別のピクセル型の検出器の第一の変形例の入射面の反対面側を示す斜視図である。
 図4、図5に示す検出器(検出器群21C)は、1枚のCdTe半導体の基板に対して、入射面21f側の全面に共通電極22cを配置し、CdTe半導体の基板の入射面21f側と反対面側にピクセル単位で区切られた電極22dを配置し、加えて、ダイシングによって形成された溝で個々の検出器に区切られた構造をしている。
 図6は、別のピクセル型の検出器の第二の変形例を示す斜視図である。
 図6に示す検出器(検出器群21D)は、1枚のCdTe半導体の基板に対して、複数の帯状の電極22e,22fをCdTe半導体の基板の上面と下面に直角ねじれの関係で対向して配置している。上面および下面のいずれか一方の帯状の電極22eを陽極とし、他方の面の帯状の電極22fを陰極とする。陽極の電極21eと陰極の電極21fのクロスした部分が1つの検出器を形成する(特開2004-125757号公報参照)。
 図7は、ピクセル型のシンチレータ検出器を示す斜視図である。
 また、検出器の構造は図7に示す検出器(検出器群21E)のように、シンチレータ21gとフォトダイオード21hからなるピクセル単位に区切って構成されたシンチレータ検出器でもよい。
 この場合、個々のシンチレータ21gの側面は、図示しない遮光材で囲われている。また、図7に示すシンチレータ検出器の変形として、ピクセル毎に区切られたシンチレータ21gと位置感応型光電子増倍管(PSPMT:Position-Sensitive Photomultiplier Tube)で構成されたものであってもよい。
 <コリメータ26>
 次に、カメラ11に用いられるコリメータ26について、本発明の実施形態に係るコリメータ26Aと比較例に係るコリメータ26Bを図8から図11を用いて説明する。
 まず、本発明の実施形態に係るコリメータ26Aについて図8、図10を用いて説明する。図8は、本発明の実施形態に係るコリメータと検出器の配置を示した斜視図である。図10は、本発明の実施形態に係るコリメータと検出器の配置を放射線照射方向から見た図である。
 コリメータ26Aは鉛製であり、検出器21の入射面21fに対して垂直方向から平面視した際、見通せる方向に貫通穴27Aを有し、貫通穴27Aは碁盤目状に配置されている。また、各貫通穴27Aは、セプタ28Aによって仕切られている。
 また、図10に示すように、1つの貫通穴27Aに対しM個分の検出器21が含む構成となっている(図10では、1つの貫通穴27Aに対し4個分の検出器21を含む構成の場合を示す)。なお、Mは整数でなくてもよい。
 本発明の実施形態に係るコリメータ26Aのセプタ28Aは、図10に示すように、検出器21の中心を通るように配置される。また、コリメータ26Aは、検出器21の入射面21fに対して垂直方向から平面視した際、この検出器21同士の間の境界線32とセプタ28Aとは直交する。この構成では、コリメータ26Aの位置がずれても、漏れ放射線やセプタ28Aの影は、ほぼ同一ピクセル内に収まるので、検出器21の放射線のカウント数の変化が少ない。
 次に、比較例に係るコリメータ26Bについて図9、図11を用いて説明する。図9は、比較例に係るコリメータと検出器の配置を示した斜視図である。図11は、比較例に係るコリメータと検出器の配置を放射線照射方向から見た図である。
 コリメータ26Bは鉛製であり、貫通穴27Bを有し、貫通穴27Bは碁盤目状に配置されている。また、各貫通穴27Bは、セプタ28Bによって仕切られている。
 また、図11に示すように、1つの貫通穴27Bに対しM個分の検出器21が含まれる構成となっている(図10では、1つの貫通穴27Bに対し4個分の検出器21を含む構成の場合を示す)。なお、Mは整数でなくてもよい。
 このように、本発明の実施形態に係るコリメータ26Aと比較例に係るコリメータ26Bは、検出器21(検出器群21A)に対する配置が異なる点を除けば同一の構成である。
 比較例に係るコリメータ26Bのセプタ28Bは、図11に示すように、検出器21の入射面21fに対して垂直方向から平面視した際、この検出器21同士の間の境界線32上に配置される。この構成では、コリメータ26Bの位置がずれると、後述のように、短周期のリングアーチファクトが現れる。
 ここで、コリメータ26の位置ずれと応答関数との関係について説明する。
 コリメータ26の位置がずれると、応答関数が変化する。その理由は、セプタ28周辺に、コリメータ26による影がみられるためである。また、検出器21とコリメータ26間の距離を、物理的制約から0にすることができない。したがって、後述する図15に示すように、隣接ピクセルからの漏れ放射線がみられる。漏れ放射線は、セプタ28付近に位置する検出器21で検出される。このように、コリメータ26の位置が動くと、コリメータ26の影の位置や、漏れ放射線分布もコリメータ26に随伴して動く。
 このことより、セプタ28付近の放射線分布は、コリメータ26の位置に強く依存する。放射線分布が変化すると、検出器21で検出される放射線のカウント数および応答関数が変化する。
 図12に示すように、セプタ28をはさんで、異なる検出器21が配置される構成を含むとき、即ち、検出器21の入射面21fに対して垂直方向から平面視した際、この検出器21同士の間の境界線32上にセプタ28が配置されるとき、応答関数は、コリメータ26のずれに対して変動が大きい。
 ここで、Mが1より大きいとき、コリメータ26がずれると、ある検出器21上にセプタ28が位置し、別の検出器21上にはない、というように感度ムラが生じ、取得イメージおよび応答関数が変化する。この感度ムラは周期的な筋状となる。なお、感度ムラは、セプタ28と検出器21の位置関係で決まるため、周期は数ピクセル程度の短い周期となる。
 一般に、断層撮影を行うとき、被写体との角度を変えながら、プラナーイメージを複数取得する。角度に関わらず、一定の筋状のパターンがプラナーイメージに出現するとき、再構成画像には、リングアーチファクトが現れることが知られている。上記の場合、感度ムラが短周期であるので、短周期のリングアーチファクトが現れる。短周期のアーチファクトは、断層像の細かい構造を消し、画質を大幅に劣化させる原因となる。
 このとき、応答関数を用いない画像再構成法(FBP法等)で再構成しても、リングアーチファクトが現れる。周期的なパターンは、再構成後も周期的なパターンとして残り、アーチファクトとなるためである。また、コリメータ26の「位置ずれなし」のときの応答関数を用いて再構成した場合においても、短周期のアーチファクトが現れる。これは、「位置ずれなし」のときの応答関数は、周期的なパターンを再現しないので、補正することもできないためである。
 また、図13に示すように、検出器21の入射面21fに対して垂直方向から平面視した際、この検出器21同士の間の境界線32上およびその付近にセプタ28の交点(貫通穴27の頂点)がある構成を含むとき、上記と同様の理由により、コリメータ26がずれるとアーチファクトを生じる。
 また、図14に示すように、検出器21の入射面21fに対して垂直方向から平面視した際、検出器21の頂点がセプタ28と交わる、および接近する構成を含む検出器21においても、上記と同様の理由により、コリメータ26がずれるとアーチファクトが現れる。
 なお、図13、図14において、セプタ28は直線で表現しているが、湾曲していてもよい。
 M≧1のとき、モアレを防ぐために、検出器21上を横切るセプタ28の面積を一定に保ちながら、コリメータ26をずらして配置する構成(レイアウト)が知られている(特許文献1参照)。したがって、一つの検出器21上における漏れ放射線が分布する面積は、コリメータ26の位置にかかわらず同じである。ただし、これらの構成(レイアウト)においては、図12、図13、図14の構成を一部に含んでいる。
 図2から図7に示すように、一般的なピクセル型の検出器21は、検出器21と検出器21の間に不感領域31(後述する図15参照)がある。したがって、図12、図13、図14の構成があるとき、わずかでもコリメータ26がずれると、不感領域31上に分布する漏れ放射線の量が変化する。結果、検出器21の放射線のカウント数が変化する。すなわち、コリメータ26の位置ずれおよび回転によるモアレを完全に防ぐことはできない。
 以上より、コリメータ26の位置がずれても、コリメータ26の影および漏れ放射線ができるだけ同一検出器に含まれる構成がよい。したがって、比較例に係るコリメータ26Bと検出器21の配置のように、検出器21の入射面21fに対して垂直方向から平面視した際、セプタ28は、検出器21同士の間の境界線32上に近接してはならない。
 また、セプタ28の交点(貫通穴27の頂点)は、検出器21同士の間の境界線32上に近接してはならない。また、検出器21の頂点がセプタ28に近接してはならない。
 ここで、比較例に係るコリメータ26B(図9、図11参照)を例に再度説明する。
 比較例に係るコリメータ26Bと検出器21(検出器群21A)との配置構成は、図12に示す構成を含んでおり、コリメータ26Bのズレに対して不安定である。
 図15は比較例に係るコリメータと検出器と漏れ放射線の関係を説明する断面模式図である。
 コリメータ26の高さをl、コリメータ26と検出器21との距離をΔl、セプタ28の厚さをt、検出器21の中心から隣接する検出器21の中心までの距離をd、一つのセプタ28の中心から次のセプタ28の中心までの距離(即ち、セプタ28のピッチであり、貫通穴27のピッチ)をNd(ただし、Nは整数に限られない)とすると、漏れ放射線の到達する地点とセプタ28の距離の最大値Xは、
   |X|=(Nd-t)Δl/l-t/2
となる。
 本発明の実施形態に係るコリメータ26Aおよび比較例に係るコリメータ26Bにおいて、N=2である。l/d=16、Δl/d=4.3、t/d=0.3としたとき、漏れ放射線の及ぶ範囲は、検出器21のサイズの30%程度(即ち、|X|/dが0.3程度)となる。これは、d=1mmの検出器21では、|X|=0.3mm程度となる。
 図16は本発明の実施形態に係るコリメータと検出器と漏れ放射線の関係を説明する断面模式図である。
 したがって、本発明の実施形態に係るコリメータ26A(図8、図10参照)を用いた構成において、検出器21の入射面21fに対して垂直方向から平面視した際、コリメータ26Aの位置ずれΔXが、セプタ28Aと直交する方向であり、かつΔX≦d/2-|X|、即ち、ΔX≦(d+t)/2-(Nd-t)Δl/lであるとき、漏れ放射線は同一ピクセル内におさまり、漏れ放射線のカウント数は一定となる。
 また、前記範囲内のコリメータ26Aの位置ずれに対して応答関数は安定である。漏れ放射線はセプタ28付近に集中するのに対して、コリメータ26による影はピクセル全体に広く分布する。したがって、漏れ放射線分布が最も、コリメータ26の位置ずれの影響を受ける。
 矩形の検出器21と、矩形の貫通穴27を持つコリメータ26を備えるSPECT装置1において、検出器21の入射面21fに対して垂直方向から平面視した際、検出器21同士の間の境界線32と、この境界線32に平行なセプタ28の間に(Nd-t)Δl/l-t/2以上の距離があいていれば、セプタ28付近に分布する漏れ放射線は、同一ピクセル内におさまる。
 検出器21と検出器21の間に不感領域31があるとき、その幅をTとすると、(Nd-t)Δl/l-t/2+T/2以上の距離をあける必要がある。また、本発明の実施形態に係るコリメータ26Aを用いた構成において、コリメータ26Aの位置ずれΔXが、セプタ28Aのなす面と垂直方向であり、かつΔX≦(d+t-T)/2-(Nd-t)Δl/lであるとき、漏れ放射線は同一ピクセル内におさまり、漏れ放射線のカウント数は一定となる。
 なおコリメータ26が、セプタ28と平行方向に僅かにずれても、検出器21でカウントされる漏れ放射線の及ぶ面積は一定なので、漏れ放射線のカウント数は一定である。
 一方、比較例に係るコリメータ26Bを用いた構成では、d=1mmの検出器21では、|X|=0.3mm程度であることより、0.1mmオーダでコリメータ26の位置がずれると、一つのピクセルで検出される漏れ放射線の量が大幅に変化することがわかる。0.1mm以下の精度で位置合わせを行うのは難しい。また、この精度で鉛製のコリメータ26を作成するのも難しい。
<面線源を照射した場合の撮像シミュレーション>
 前述のように、コリメータ26が所定の位置からずれることにより、取得イメージが変化する。比較例に係るコリメータ26B(図9、図11参照)を用いた構成と、本発明の実施形態に係るコリメータ26A(図8、図10参照)を用いた構成について、一様な面線源を照射した場合のモンテカルロ法を用いたシミュレーションによって得られたイメージを図17A-17C、図18A-18Cに示す。
 図17A-17Cは比較例にかかるコリメータを用いた構成の撮像シミュレーションの結果であり、図18A-18Cは本発明の実施形態に係るコリメータを用いた構成の撮像シミュレーションの結果である。
 なお、モンテカルロ法を用いたシミュレーションにおいて、面線源をコリメータ26の上端から50mmの位置とし、l=26mm、Δl=6mm、d=1.4mm、t=0.4mm、T=0.1mmとしてシミュレーションを行った。
 また、コリメータ26の所定の位置からのずれをΔXとする。
 また、図17A-17Cおよび図18A-18Cにおいて、図17A、18Aはコリメータ26が所定の位置にある場合(ΔX/d=0)、図17B、18Bはコリメータ26が所定の位置から右方向にΔX/d=0.07ずれた位置にある場合、図17C、18Cはコリメータ26が所定の位置から右方向にΔX/d=0.14ずれた場合を示している。
 なお、ΔX/d=0.07はd=1.4mmのときΔXが約0.1mmであることに相当し、ΔX/d=0.14はd=1.4mmのときΔXが約0.2mmであることに相当する値である。
 比較例に係るコリメータ26Bを用いた構成において、コリメータ26Bが所定の位置にある場合(ΔX=0)、図17Aに示すように一様なイメージが得られる。しかし、図17B,17Cに示すように、コリメータ26Bがわずかでもずれた場合、一列おきの縞が出現する。
 一方、本発明の実施形態に係るコリメータ26Aを用いた構成においては、図18A,18B,18Cに示すように、格子縞が出現する。
 これは、検出器21の上方にセプタ28が配置される検出器21と、セプタ28が配置されない検出器21とで、放射線のカウント数が異なることによる。したがって、コリメータ26の上端から面線源までの距離は格子縞の位置に影響しない。
 比較例に係るコリメータ26Bを用いた構成と、本発明の実施形態に係るコリメータ26Aを用いた構成とにおいて、ΔX/d=0.14におけるシミュレーション結果からΔX/d=0におけるシミュレーション結果をそれぞれ除算したものを図19、図20に示す。
 図19は比較例にかかるコリメータを用いた構成におけるコリメータのずれによる撮像シミュレーション結果の変化を示す図であり、図20は本発明の実施形態に係るコリメータを用いた構成におけるコリメータのずれによる撮像シミュレーション結果の変化を示す図である。
 即ち、図19は図17Cから図17Aを除算したものであり、図20は図18Cから図18Aを除算したものである。
 図19に示すように、比較例に係るコリメータ26Bを用いた構成においては、コリメータ26Bのずれの方向に対して直交する筋が一列おきに周期的に現れている。
 一方、図20に示すように、本発明の実施形態に係るコリメータ26Aを用いた構成においては、面線源の端においてはコリメータ26Aのずれの方向に対して直交する筋が現れているものの、それ以外の場所における変化の仕方は不規則である。これは、シミュレーションにモンテカルロ法を用いたことによる影響である。
 このように、本発明の実施形態に係るコリメータ26Aを用いた構成は、コリメータ26の位置ずれに対して安定であることがわかる。
 比較例に係るコリメータ26Bを用いた構成においては、コリメータ26Bの位置ずれにより、図17B,17Cに示すように、縞状のパターンが生じるため、後述する図27のように、ピクセルサイズ程度でリングアーチファクトが出現する。このアーチファクトによって再構成画像の細かい構造が失われ、画質が大幅に劣化する。
 一様な面線源のイメージによる評価は、アーチファクトが現れるか否かの指標となる。放射線のカウント数がほぼ一様な領域や、カウント数の変化がピクセルサイズよりも十分大きなスケールで起こる領域において、アーチファクトは目立つためである。したがって、アーチファクトの評価は、一様な分布を持つ線源を用いて行えばよい。
 簡単のため、一様な面線源であり、かつコリメータ26に平行であるものから得られるプラナーイメージについて考察する。また、コリメータ26の位置ずれは一方向のみであると仮定し、検出器21の並びに平行であるとする。
 比較例に係るコリメータ26Bを用いた構成において、面線源イメージが、コリメータ26Bの位置ずれに対してどう変化するかを図21に示す。
 図21は、比較例に係るコリメータを用いた構成において、面線源イメージの変化量を示すグラフである。
 なお、l/d=16、t/d=0.3とし、Δl/dについては、2.1、4.3、6.4、8.6の4種類の値を用いた。
 コリメータ26Bの位置がずれると、位置ずれの方向と直交する列に、一列おきにカウント数の山と谷が現れる(図17A-17C参照)。このカウント数の山と谷のカウント数の比を検出器群21Aで平均した値をRとし、グラフの縦軸とした。また、コリメータ26BのずれΔXをdで除算し無次元化したものをグラフの横軸とした。
 比較例に係るコリメータ26Bを用いた構成においては、ずれなし(ΔX=0)の場合、R=1となる。また、Δlが大きくなるほどRの変化率が大きくなる。これは、Δlが増えるほど隣接する貫通穴27からの漏れ放射線が増えるためである。
 一方、Δl/d=8.6におけるRは、Δl/d=6.4におけるRよりも小さい。これは、Δl/d=8.6、Δl/d=6.4においては、X/d>0.5となるため、漏れ放射線が全ての検出ピクセルを覆い、山と谷のパターンを打ち消す方向に作用するためである。それに伴って分解能も低下するが、アーチファクトも現れにくくなる。しかし、Δl/d=8.6以上の間隔を開けると、分解能の劣化が著しいので考慮しなくてよい。
 本発明の実施形態に係るコリメータ26Aを用いた構成において、面線源イメージが、コリメータ26Aのずれに対してどう変化するかを図22に示す。
 図22は、本発明の実施形態に係るコリメータを用いた構成において、面線源イメージの変化量を示すグラフである。
 なお、図21と同様に、l/d=16、t/d=0.3とし、Δl/dについては、2.1、4.3、6.4、8.6の4種類の値を用いた。
 本発明の実施形態に係るコリメータ26Aを用いた構成において、コリメータ26Aがずれていない状態であっても格子縞が現れる(図18A-18C参照)。ここで、コリメータ26Aがずれると、ずれの方向と直交する列では、カウント数の比が変化する。しかし、ずれの方向と平行な列では、カウント数の比は変化しない。
 したがって、直交する列におけるカウント数の比のみをRとした。また、ずれなし(ΔX=0)におけるカウント数の比Rを1に規格化した。
 図22のように、本発明の実施形態に係るコリメータ26Aを用いた構成においてΔX/dが増えるほどRが減少する。また、図21の場合と同様に、Δl/d=8.6、Δl/d=6.4においては、X/d>0.5となるため、Δl/d=8.6におけるRは、Δl/d=6.4におけるRよりも小さい。
 |ΔX|≦d/2-X、即ち、|ΔX|≦(d+t-T)/2-(Nd-t)Δl/lの範囲内において、いずれのΔl/dにおいても、Rは変化している。これは、漏れ放射線だけでなく、セプタ28の影もカウント数および応答関数の変化に寄与しているためである。しかし、Rの変化は、図22に示すように、10%以内である。実使用条件では、1検出器当たり100カウント程度であり、これは統計誤差の範囲内に収まる。
 したがって、本発明の実施形態に係るコリメータ26Aを用いた構成において、|ΔX|≦(d+t-T)/2-(Nd-t)Δl/lの範囲内でコリメータ26が動いてもカウント数は統計誤差の範囲内で変化しない。
 図21と図22におけるΔl/d=4.3のときを例に比較例に係るコリメータ26Bを用いた構成と本発明の実施形態に係るコリメータ26Aを用いた構成について比較する。
 図23は、本発明の実施形態に係るコリメータを用いた構成と比較例に係るコリメータを用いた構成において、Δl/d=4.3における面線源イメージの変化量を比較するグラフである。
 コリメータ26の位置ずれなし(ΔX=0)におけるカウント数の比との差の絶対値、即ち、|R-1|を縦軸にとする。
 図23に示すように、本発明の実施形態に係るコリメータ26Aを用いた構成は、比較例に係るコリメータ26Bを用いた構成と対比して、ΔX=0近傍での|R-1|の変化が小さい、即ちコリメータ26の位置ずれに対して安定である。
 これまでは、コリメータ26の一方向の位置ずれについてのみ考察をした。しかし、二方向の位置ずれでも同様のことがいえる。また、コリメータ26の微少な回転については、局所的にみれば、二方向の位置ずれと同等である。したがって、位置ずれに対して安定な構成は、回転に対しても安定といえる。
<分解能>
 図18A-18Cのイメージは固有のパターンがあるので、FBP法は適用できない。また、図16のように、セプタ28の下にある検出器21は、見込む視野が分断される。しかし、応答関数を用いた逐次近似法では、画像は再構成可能である。また、前記の分断された視野を考慮した応答関数を用いれば、分解能はほとんど低下しない。なお、一様な面線源を照射すると、周期的なパターンのある画像が得られるので、応答関数は複雑な形状となる。
 本発明の実施形態に係るコリメータ26A(図8、図10参照)を用いた構成と、比較例に係るコリメータ26B(図9、図11参照)を用いた構成における分解能をシミュレーションで比較した。なお、l/d=18.6、Δl/d=5.7、T/d=0.07、t/d=0.3、ΔX=0としてシミュレーションを行った。それぞれの構成において、応答関数を求め、それを利用してデジタルファントムからサイノグラムを作成した。なお、統計ゆらぎは考慮していない。そして、得られたサイノグラムをOSEM法で再構成した結果を図24、図25に示す。
 図24は、本発明の実施形態に係るコリメータを用いた構成における画像再構成シミュレーションの結果の例である。図25は、比較例に係るコリメータを用いた構成における画像再構成シミュレーションの結果の例である。
 このように、コリメータ26の位置ずれがない(ΔX=0)とき、二つの構成間に、分解能の差はないことが分かる。
 次に、ΔX/d=0のときに得られた再構成画像とΔX/d=0.07のときに得られた再構成画像との差の絶対値を図26、図27に示す。
 図26は、本発明の実施形態に係るコリメータを用いた構成におけるコリメータのずれによる画像再構成シミュレーション結果の変化を示す図であり、図27は、比較例に係るコリメータを用いた構成におけるコリメータのずれによる画像再構成シミュレーション結果の変化を示す図である。
 なお、図26、図27のスケールは統一している。
 比較例に係るコリメータ26Bを用いた構成においては、図27に示すように、筋状のアーチファクトが出現していることがよくわかる。ΔX/d=0のときに得られた再構成画像とΔX/d=0.07のときに得られた再構成画像との差の絶対値は、15%程度ある。
 一方、本発明の実施形態に係るコリメータ26Aを用いた構成においては、図26に示すように、ほとんどアーチファクトはみられず、ΔX/d=0のときに得られた再構成画像とΔX/d=0.07のときに得られた再構成画像との差の絶対値は3%程度であり、比較例の1/5程度である。これは、100カウント/検出器の条件下では、統計誤差(10%)よりずっと小さい。なお、ΔX/d=0.07は、d=1mm程度のピクセルサイズの検出器21では、ΔX=0.07mmのずれに相当する。コリメータ26の製作精度から、この程度のずれは不可避である。
 したがって、比較例に係るコリメータ26Bを用いた構成では、アーチファクトの出現は不可避であるが、本発明の実施形態に係るコリメータ26Aを用いた構成では大幅に低減できる。
 また、本発明の実施形態に係るコリメータ26Aを用いた構成のように、コリメータ26を検出器21の中心付近に配置すると、コリメータ26の影によって、検出器21の感度が低下する懸念がある。しかし、実機では感度の低下はわずかであるか、むしろ増加することもある。なぜなら、一般にピクセル型の検出器21においては、検出器21と検出器21の間に隙間がある。したがって、その領域は不感である(図15の不感領域31に相当する)。検出器21の入射面21fに対して垂直方向から平面視した際、検出器21同士の間の境界線32上かその付近にセプタ28が配置されるとき、漏れ放射線はその不感領域31に分布する。したがって、これらの放射線は検出されない。一方、本発明では、これらの漏れ放射線は検出器21上に分布するので、全て検出される。このように、コリメータ26の影と漏れ放射線のトレードオフによって、感度が維持されるのである。
 したがって、本発明の実施形態に係るコリメータ26Aを用いた構成によるSPECT装置1においては、従来通りの製作精度を持つコリメータ26で使用可能である。また、コリメータ26の位置合わせにおいても、比較例に係るコリメータ26Bを用いた構成のものよりも精度が低くてよい。これにより、位置合わせにかかる時間を短縮できる。また、ピクセルサイズが1mmの検出器21においても、コリメータ26の位置合わせの精度は0.1mm程度でよく、現実的な値である。また、比較例に係るコリメータ26Bを用いた構成のものよりも、測定時におけるコリメータ26のずれに対して安定であるため、アーチファクトのより少ない画像が得られる。
 さらに、測定時は各検出器21のカウント数を記録しておき、測定後にオフラインで、隣接しあう複数の検出器21のカウント数を結合する手法を用いれば、結合する検出器21数を自由に変化させることができる。これにより、測定後に、さまざまな分解能で画像を再構成することができる。このSPECT装置1では、装置の構成を変えることなく、分解能と、イメージングに必要な最低カウント数を選ぶことができる。
 また、この構成は、中エネルギ用コリメータや高エネルギコリメータを使用する際に有効である。用いる放射線エネルギが高くなるほど、物質の透過能力が高くなるので、セプタ28の厚みを増す必要がある。それに伴い、デッドスペースが増加し、感度が低下する。それを防ぐために、貫通穴27のサイズが大きいものを使用するのが、一般的である。 しかし、本発明では、一つの貫通穴27に複数の検出器21を配置することで、孔径を大きくしても、分解能を維持することができる。したがって、高いエネルギのγ線を用いたイメージングに有効である。
 なお、コリメータ26Aは、1つの貫通穴27Aに対し4個分の検出器21を含む構成として説明したが、これに限られるものではなく、セプタ28は検出器21の中心を通り、検出器21端部と直交しさえすれば、貫通穴27内に含まれる検出器21の数は任意でよい。例えば、図28に示すように2個分の検出器21を含む構成としてもよく、図29のように9個分の検出器21を含む構成としてもよい。
 <変形例>
 コリメータ26の貫通穴27と検出器21が一対一対応となるように配置される構成が一般的である。この構成の場合、検出器21の並びに平行にコリメータ26の位置がずれた場合、それぞれの検出器21で、応答関数の変化は同一である。
 したがって、検出器21の並びに平行にコリメータ26の位置がずれた場合、コリメータ26の「位置ずれなし」のときの応答関数で画像を再構成すると、分解能は低下するが、アーチファクトは生じない。
 しかし、コリメータ26の位置ずれに回転が加わると、検出器21の場所によって、コリメータ26のずれ方が変化する。それが大局的な感度ムラとなって現れ、モアレを生じる。このモアレは、大幅に画質を劣化させることはないが、より高画質な断層像を提供するためには、モアレを取り除く必要がある。特に、検出器21のサイズが小さくなればなるほど、回転による影響が顕著である。微少な回転であっても、コリメータ26と検出器21の位置関係が大きく変わるからである。近年、検出器21のサイズが1mm程度のものも開発されてきており、回転によるモアレを取り除く必要性が高まっている。
 この場合においても、コリメータ26の位置ずれに対して、応答関数が安定な構成がある。図30のように、検出器21およびセプタ28で囲まれた貫通穴27は矩形であるのが一般的だが、図31のように平行四辺形の場合も同様である。
 一つのコリメータ26の貫通穴27の一辺の長さをLとする。前出の例では、L=Nd-tである。検出器21の入射面21fに対して垂直方向から平面視した際、この検出器21同士の間の境界線32とセプタ28とを結ぶ任意の線の長さが常に、LΔl/l+(T-t)/2以上あれば、漏れ放射線は同一ピクセル内におさまり、コリメータ26の位置ずれに対して安定である。
 このとき、コリメータ26の回転に対しても安定であり、モアレを防ぐことができる。
 また、セプタ28は検出器21の並びと平行に配置される。これは、各検出器21の感度をそろえるためである。図30、図31に示すこれらの構成においては、FBP法および逐次近似法で画像再構成が可能である。
 また、任意の形の検出器21と、任意の形の貫通穴27を持つコリメータ26を備えるSPECT装置1においては、検出器21の入射面21fに対して垂直方向から平面視した際、この検出器21同士の間の境界線32とセプタ28との距離がLΔl/l+(T-t)/2以上あればよい。そうすれば、漏れ放射線は同一ピクセルにおさまる。ただし、任意の貫通穴27の形状において、Lは貫通穴27の最大幅と定義する。また、互いに垂直するセプタ28と検出器21同士の間の境界線32との距離は、上記の値以下であってもよい。これによって、僅かにコリメータ26がずれても、検出器21上の漏れ放射線が分布する領域の面積は一定に保たれる。貫通穴27の頂点から検出器21同士の間の境界線32に下ろした任意の線の長さが常に、LΔl/l+(T-t)/2以上あればよい。検出器21の頂点からセプタ28に下ろした任意の線の長さが常に、LΔl/l+(T-t)/2以上あればよい。
 以上の範囲内でコリメータ26が動いても、一つの検出器21上における漏れ放射線が分布する面積が一定である。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
 1 SPECT装置(核医学診断装置)
 10 ガントリ
 11A,11B カメラ(放射線撮像装置)
 12 データ処理装置(断層像情報作成装置)
 13 表示装置
 14 ベッド
 15 被検者
 21 検出器
 21A,21B,21C,21D,21E 検出器群
 21f 入射面
 21g シンチレータ
 21h フォトダイオード
 22a,22b,22d,22e,22f 電極
 22c 共通電極
 23 検出器基板
 24 ASIC基板
 25 ASIC(放射線計測回路)
 26,26A,26B コリメータ
 27,27A,27B 貫通穴
 28,28A,28B セプタ
 29 遮光・γ線・電磁シールド
 30 境界面
 31 不感領域
 32 境界線

Claims (9)

  1.  検出器が平面としての広がりを持って配列されて各検出器がそれぞれピクセルを構成するピクセル型の検出器群と、
     前記検出器群からの検出信号を読み出す放射線計測回路と、
     セプタで仕切られ、前記平面に対して垂直方向に伸びる貫通穴が複数配列されたコリメータとを有する放射線撮像装置において、
     前記貫通穴は、前記垂直方向から平面視して、一つまたは複数の前記ピクセルが配列されるようにサイズが設定され、
     前記セプタは、前記垂直方向から平面視して、前記検出器同士の間の境界線からはずらして配置され、
     さらに、前記セプタは、前記垂直方向から平面視して、前記検出器同士の境界線とは直交するように配置され、
     前記垂直方向から平面視した前記貫通穴の頂点は、前記検出器同士の境界線からはずらして配置され、
     前記垂直方向から平面視した前記検出器の頂点は、前記貫通穴から見通せるように配置されることで、
     前記検出器ごとに放射線の入射位置情報を得る
     ことを特徴とする放射線撮像装置。
  2.  請求項1に記載の放射線撮像装置において、
     前記コリメータの高さをl、前記コリメータと前記検出器間の距離をΔl、前記セプタの厚さをt、前記貫通穴の最大幅をL、前記検出器と検出器の間に不感領域の幅をTとして、
     前記垂直方向から平面視した前記セプタと前記検出器同士の境界線とを結ぶ任意の線の長さが常にLΔl/l+(T-t)/2以上であり、
     前記垂直方向から平面視した前記セプタが前記検出器同士の境界線と直交するときは、前記長さは任意でよく、
     前記垂直方向から平面視した前記貫通穴の頂点から前記検出器同士の境界線に下ろした線の長さが常にLΔl/l+(T-t)/2以上であり、
     前記垂直方向から平面視した前記検出器の頂点から前記セプタに下ろした線の長さが常にLΔl/l+(T-t)/2以上である
     ことを特徴とする放射線撮像装置。
  3.  請求項2に記載の放射線撮像装置を有する核医学診断装置において、
     前記検出器からの検出信号を得て、
     画像情報を生成する断層像情報作成装置を有する
     ことを特徴とする核医学診断装置。
  4.  請求項1に記載の放射線撮像装置を有する核医学診断装置において、
     前記貫通穴は矩形であり、前記貫通穴の最大幅をLとして、
     前記垂直方向から平面視した前記セプタの頂点が前記検出器の中心から(d+t-T)/2-LΔl/l以内に配置されていることを特徴とする放射線撮像装置と、
     前記検出器からの検出信号を得て、
     応答関数を用いて画像情報を生成する断層像情報作成装置を有する
     ことを特徴とする核医学診断装置。
  5.  請求項2に記載の放射線撮像装置を有する核医学診断装置において、
     前記貫通穴は矩形であり、前記貫通穴の最大幅をLとして、
     前記垂直方向から平面視した前記セプタの頂点が前記検出器の中心から(d+t-T)/2-LΔl/l以内に配置されていることを特徴とする放射線撮像装置と、
     前記検出器からの検出信号を得て、
     応答関数を用いて画像情報を生成する断層像情報作成装置を有する
     ことを特徴とする核医学診断装置。
  6.  請求項1に記載の放射線撮像装置を有する核医学診断装置において、
     前記垂直方向から平面視した前記セプタの頂点が前記検出器の中心に配置されていることを特徴とする放射線撮像装置と、
     前記検出器からの検出信号を得て、
     応答関数を用いて画像情報を生成する断層像情報作成装置を有する
     ことを特徴とする核医学診断装置。
  7.  請求項2に記載の放射線撮像装置を有する核医学診断装置において、
     前記垂直方向から平面視した前記セプタの頂点が前記検出器の中心に配置されていることを特徴とする放射線撮像装置と、
     前記検出器からの検出信号を得て、
     応答関数を用いて画像情報を生成する断層像情報作成装置を有する
     ことを特徴とする核医学診断装置。
  8.  請求項1に記載の放射線撮像装置を有する核医学診断装置において、
     前記貫通穴は矩形であり、
     前記垂直方向から平面視した前記セプタの頂点が前記検出器の中心に配置されていることを特徴とする放射線撮像装置と、
     前記検出器からの検出信号を得て、
     応答関数を用いて画像情報を生成する断層像情報作成装置を有する
     ことを特徴とする核医学診断装置。
  9.  請求項2に記載の放射線撮像装置を有する核医学診断装置において、
     前記貫通穴は矩形であり、
     前記垂直方向から平面視した前記セプタの頂点が前記検出器の中心に配置されていることを特徴とする放射線撮像装置と、
     前記検出器からの検出信号を得て、
     応答関数を用いて画像情報を生成する断層像情報作成装置を有する
     ことを特徴とする核医学診断装置。
PCT/JP2010/069286 2009-11-13 2010-10-29 放射線撮像装置およびそれを用いた核医学診断装置 WO2011058891A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/508,753 US20120232385A1 (en) 2009-11-13 2010-10-29 Radiation imaging device and nuclear medicine diagnostic device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009260389A JP5237919B2 (ja) 2009-11-13 2009-11-13 核医学診断装置
JP2009-260389 2009-11-13

Publications (1)

Publication Number Publication Date
WO2011058891A1 true WO2011058891A1 (ja) 2011-05-19

Family

ID=43991550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069286 WO2011058891A1 (ja) 2009-11-13 2010-10-29 放射線撮像装置およびそれを用いた核医学診断装置

Country Status (3)

Country Link
US (1) US20120232385A1 (ja)
JP (1) JP5237919B2 (ja)
WO (1) WO2011058891A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860934B2 (en) * 2012-01-13 2014-10-14 Interfiber Analysis, LLC System and method for measuring an optical fiber
US10987069B2 (en) 2012-05-08 2021-04-27 Spectrum Dynamics Medical Limited Nuclear medicine tomography systems, detectors and methods
JP5852540B2 (ja) 2012-10-04 2016-02-03 株式会社日立製作所 放射線撮像装置
US8867028B2 (en) 2012-10-19 2014-10-21 Interfiber Analysis, LLC System and/or method for measuring waveguide modes
JP2015025665A (ja) * 2013-07-24 2015-02-05 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
US9801591B2 (en) * 2013-11-01 2017-10-31 Lickenbrock Technologies, LLC Fast iterative algorithm for superresolving computed tomography with missing data
JP7059180B6 (ja) * 2015-11-20 2022-06-02 コーニンクレッカ フィリップス エヌ ヴェ 検出値決定システム
US10779778B2 (en) * 2017-05-08 2020-09-22 General Electric Company Reference detector elements in conjunction with an anti-scatter collimator
US10610191B2 (en) * 2017-07-06 2020-04-07 Prismatic Sensors Ab Managing geometric misalignment in x-ray imaging systems
ES2757984B2 (es) 2018-10-31 2021-02-16 Univ Valencia Politecnica Dispositivo para la deteccion de rayos gamma con tabiques activos
DE102019207899B4 (de) * 2019-05-29 2021-07-15 Siemens Healthcare Gmbh Röntgenbildgebungsvorrichtung umfassend eine Detektionseinheit mit einem Streustrahlenkollimator
US11141128B2 (en) 2019-12-13 2021-10-12 General Electric Company Systems and methods for focal spot motion detection and correction
ES2850778B2 (es) * 2020-02-28 2023-02-21 Consejo Superior Investigacion Detector de rayos gamma con colimador multi-orificio y region de muestreo variable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022678A (ja) * 2000-07-10 2002-01-23 Hitachi Medical Corp X線計測装置
JP2002529712A (ja) * 1998-10-29 2002-09-10 ディレクト レディオグラフィ コーポレーション 検出素子を有した検出器用散乱防止放射線グリッド
JP2005106704A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd 核医学診断装置及びコリメータ
JP2005308748A (ja) * 2004-04-23 2005-11-04 Siemens Ag X線を検出するための検出器モジュールおよび検出器
JP2006119113A (ja) * 2004-09-24 2006-05-11 Hitachi Ltd 放射線撮像装置およびそれを用いた核医学診断装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294311B2 (ja) * 1992-03-19 2002-06-24 オリンパス光学工業株式会社 外部光電効果型固体撮像装置
JPH08160145A (ja) * 1994-12-06 1996-06-21 Toshiba Corp X線検出器
US5668851A (en) * 1996-06-21 1997-09-16 Analogic Corporation X-ray Tomography system with stabilized detector response
JP2010507090A (ja) * 2006-10-20 2010-03-04 コミサリア、ア、レネルジ、アトミク−セーエーアー 検出器における相互作用深度を用いるガンマカメラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529712A (ja) * 1998-10-29 2002-09-10 ディレクト レディオグラフィ コーポレーション 検出素子を有した検出器用散乱防止放射線グリッド
JP2002022678A (ja) * 2000-07-10 2002-01-23 Hitachi Medical Corp X線計測装置
JP2005106704A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd 核医学診断装置及びコリメータ
JP2005308748A (ja) * 2004-04-23 2005-11-04 Siemens Ag X線を検出するための検出器モジュールおよび検出器
JP2006119113A (ja) * 2004-09-24 2006-05-11 Hitachi Ltd 放射線撮像装置およびそれを用いた核医学診断装置

Also Published As

Publication number Publication date
JP5237919B2 (ja) 2013-07-17
US20120232385A1 (en) 2012-09-13
JP2011106887A (ja) 2011-06-02

Similar Documents

Publication Publication Date Title
WO2011058891A1 (ja) 放射線撮像装置およびそれを用いた核医学診断装置
US7442937B2 (en) Radiation imaging apparatus and nuclear medicine diagnosis apparatus using the same
US11501474B2 (en) Collimators for medical imaging systems and image reconstruction methods thereof
JP4902753B2 (ja) 放射線撮像装置およびコリメータの位置推定方法
US20140343412A1 (en) Whole-body spect system
JP5707478B2 (ja) ガンマ線検出モジュール及びpetスキャナ
CN115988994A (zh) 用于基于辐射的成像的扩散场成像准直器及其使用方法
US9390823B2 (en) Radiation image acquiring device
JP2012177555A (ja) 放射線撮像装置
WO2010035586A1 (ja) 核医学診断装置およびその調整方法
JP2017058191A (ja) 放射線撮像装置
JP4479699B2 (ja) ガンマカメラ
JP5723256B2 (ja) 断層画像作成方法および放射線撮像装置
JP2012189345A (ja) 放射線撮像装置および核医学診断装置
JP2012137349A (ja) ピクセル型放射線撮像装置,画像作成方法,プラナー画像の奥行き位置推定方法
WO2016162962A1 (ja) 放射線撮像装置
Ljungberg Instrumentation, Calibration, Quantitative Imaging, and Quality Control
JP6131043B2 (ja) 放射線撮像装置
JP2013053992A (ja) 放射線撮像装置
JP2015230194A (ja) 位置同定型検出器を用いた放射線撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13508753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829851

Country of ref document: EP

Kind code of ref document: A1