WO2011058840A1 - 超音波観測装置及び超音波観測装置の制御方法 - Google Patents

超音波観測装置及び超音波観測装置の制御方法 Download PDF

Info

Publication number
WO2011058840A1
WO2011058840A1 PCT/JP2010/067950 JP2010067950W WO2011058840A1 WO 2011058840 A1 WO2011058840 A1 WO 2011058840A1 JP 2010067950 W JP2010067950 W JP 2010067950W WO 2011058840 A1 WO2011058840 A1 WO 2011058840A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
scanning
transmission
mode image
scanning plane
Prior art date
Application number
PCT/JP2010/067950
Other languages
English (en)
French (fr)
Inventor
浩仲 宮木
越前谷 孝博
修司 大谷
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN201080017634.8A priority Critical patent/CN102405020B/zh
Priority to EP10829800.1A priority patent/EP2394582B9/en
Priority to JP2011510766A priority patent/JP4801229B2/ja
Priority to US13/046,104 priority patent/US20110282209A1/en
Publication of WO2011058840A1 publication Critical patent/WO2011058840A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to an ultrasonic observation apparatus that generates a B-mode image in a subject by scanning an ultrasonic beam on a predetermined scanning plane in the subject and a method for controlling the ultrasonic observation apparatus.
  • An ultrasonic observation apparatus used in the medical field or the like includes, for example, an ultrasonic probe capable of transmitting and receiving ultrasonic waves to and from a subject as disclosed in Patent Document 1, and is a cross-sectional image of the subject.
  • a B-mode image is generated.
  • a B-mode image is obtained by scanning an ultrasonic beam on a predetermined scanning plane.
  • a treatment tool such as a puncture needle, biopsy forceps, or cytodiagnosis brush for a predetermined site in a subject is used. It is possible to perform treatment while confirming the position and orientation on the B-mode image.
  • a treatment tool such as a puncture needle, biopsy forceps, or cytodiagnosis brush
  • a force is applied to the treatment tool. It may be difficult to observe the treatment tool on the B-mode image.
  • the treatment instrument deviates from the scanning plane in this way, a complicated operation is required to change the position and orientation of the ultrasonic probe so that the scanning plane and the treatment instrument coincide with each other.
  • the present invention has been made in view of the above-described points, and in an ultrasonic observation apparatus that observes the state of treatment using a treatment tool in a subject, it is possible to continue good observation of the treatment tool. It is an object of the present invention to provide a simple ultrasonic observation apparatus and a control method for the ultrasonic observation apparatus.
  • an ultrasonic observation apparatus that generates a B-mode image in the subject by scanning the ultrasonic beam on a scanning plane in the subject, and transmits and receives the ultrasonic beam.
  • An ultrasonic probe unit capable of two-dimensional scanning of an ultrasonic beam by changing the direction to the first direction and the second direction, and the transmission / reception direction of the ultrasonic beam by the ultrasonic probe unit
  • a transmission / reception control unit that controls the ultrasound beam
  • a B-mode image calculation unit that generates the B-mode image from a result of scanning the ultrasonic beam in the first direction, and a shape of a treatment instrument that performs treatment on the subject
  • a storage unit for storing a sample image determined in advance
  • a correlation calculation unit for calculating a correlation value between the B-mode image and the sample image, wherein the transmission / reception control unit is configured to maximize the correlation value.
  • the ⁇ surface can provide an ultrasonic observation apparatus is moved to the second direction.
  • FIG. 1 shows schematic structure of the ultrasonic observation apparatus of 1st Embodiment. It is a perspective view which shows the detailed structure of the front-end
  • An ultrasonic observation apparatus 1 includes an ultrasonic endoscope 2 and an ultrasonic observation control unit 3.
  • the ultrasonic observation apparatus 1 generally generates a B-mode image (ultrasonic tomographic image) of a predetermined part in the subject by scanning an ultrasonic beam in the subject, and the image display device 4. It is the device which outputs to.
  • the ultrasonic endoscope 1 includes an insertion section 10 that can be introduced into the body of a subject, an operation section 30 that is located at the proximal end of the insertion section 10, and a universal cord 40 that extends from the side of the operation section 30. It is mainly composed.
  • the insertion portion 10 includes a distal end portion 11 disposed at the distal end, a bendable bending portion 12 disposed on the proximal end side of the distal end portion 11, and a proximal end side of the bending portion 12.
  • a flexible tube portion 13 having flexibility and connected to the distal end side is continuously provided.
  • the distal end portion 11 is provided with an ultrasonic probe portion 20, a treatment instrument insertion port 17, a fluid delivery portion 14, an imaging device 15, an illumination device 16, and the like.
  • a treatment instrument insertion conduit 18 is provided in the insertion portion 10.
  • the treatment instrument insertion conduit 18 is a conduit that communicates the treatment instrument insertion port 17, which is an opening provided in the distal end portion 10, and the conduit cap 34 provided in the operation unit 30.
  • the operation unit 30 includes an angle knob 31 for operating the bending of the bending unit 12, an air / water supply button 32 for controlling a fluid delivery operation from the fluid delivery unit 14 provided at the distal end 10, A suction button 33 for controlling the suction operation from the treatment instrument insertion port 17, a pipe cap 34, and the like are provided.
  • An endoscope connector 41 connected to a light source device is provided at the base end of the universal cord 40.
  • the light emitted from the light source device travels through the optical fiber cable inserted through the universal cord 40, the operation unit 30, and the insertion unit 10, and is emitted from the illumination device 16 at the distal end portion 11.
  • the ultrasonic endoscope 1 may have a configuration in which a light source device such as an LED is provided at the distal end portion 11.
  • An electrical cable 42 and an ultrasonic cable 44 extend from the endoscope connector 41.
  • the electric cable 42 is detachably connected to a camera control unit (not shown) via an electric connector 43.
  • the camera control unit is electrically connected to the imaging device 15 provided at the distal end portion 11 via the electric cable 42.
  • the camera control unit is electrically connected to the image display device 4 and outputs an image captured by the imaging device 15 to the image display device 4.
  • the ultrasonic cable 44 is detachably connected to an ultrasonic observation control unit 3 described later in detail via an ultrasonic connector 45.
  • the distal end portion 11 of the insertion portion 10 of the ultrasonic endoscope 2 is provided with an ultrasonic probe portion 20, a treatment instrument insertion port 17, an imaging device 15, an illumination device 16, and a fluid delivery portion 14.
  • the ultrasonic probe unit 20 is configured to be able to change the transmission / reception direction of the ultrasonic beam into the first direction L1 and the second direction L2. That is, the ultrasonic probe unit 20 is configured to be capable of two-dimensional scanning with an ultrasonic beam.
  • the configuration of the ultrasonic probe unit 20 is not particularly limited as long as two-dimensional scanning of the ultrasonic beam is possible.
  • the ultrasonic probe unit 20 includes a plurality of individually driven ultrasonic transducers arranged in a matrix, and controls the drive timing of each ultrasonic transducer. By doing so, it has a configuration for electronically performing two-dimensional scanning of an ultrasonic beam.
  • a piezoelectric element such as piezoelectric ceramics, an electrostrictive element, or an ultrasonic transducer (MUT: Micromachined Transducer) using a micromachine technique can be applied to the ultrasonic transducer constituting the ultrasonic probe unit 20.
  • MUT Micromachined Transducer
  • the ultrasonic probe unit 20 of the present embodiment changes the transmission / reception direction of the ultrasonic beam in a substantially fan shape on a plane parallel to the insertion axis A of the insertion unit 10. It is possible to scan with an ultrasonic beam.
  • the amplitude direction of scanning of the ultrasonic beam on a plane substantially parallel to the insertion axis A is defined as a first direction L1.
  • a plane including the central axis of the ultrasonic beam scanned in the first direction L1 is referred to as a scanning plane, and the B-mode image generated by the ultrasonic observation apparatus 1 is an ultrasonic wave on the scanning plane. It shall be obtained by scanning the beam.
  • the ultrasonic probe unit 20 of the present embodiment changes the transmission / reception direction of the ultrasonic beam in a substantially fan shape on a plane orthogonal to the insertion axis A of the insertion unit 10 to change the ultrasonic beam.
  • a scan can be performed.
  • the amplitude direction of the scanning of the ultrasonic beam on a plane orthogonal to the insertion axis A is defined as a second direction L2.
  • the ultrasonic probe unit 20 of the present embodiment can move the scanning plane in the second direction L2 by changing the transmission / reception direction of the ultrasonic beam to the second direction L2.
  • the scanning plane can be moved to a plurality of predetermined positions within the scanning range in the second direction L2.
  • the ultrasonic probe unit 20 of the present embodiment shown in the figure is configured by arranging ultrasonic transducers in a substantially arc shape along the first direction L1 and the second direction L2. Needless to say, electronic two-dimensional scanning of an ultrasonic beam is possible even if a plurality of ultrasonic transducers are arranged in a matrix on a plane.
  • the treatment instrument insertion port 17 is an opening for projecting the treatment instrument 50 and communicates with the treatment instrument insertion conduit 18.
  • the treatment tool 50 is protruded from the treatment tool insertion port 17 of the distal end portion 11 by inserting the treatment tool 50 from the opening of the pipe base 34, thereby treating the treatment tool. 50 can be introduced into the body of the subject.
  • the type of the treatment instrument 50 is not particularly limited, and examples thereof include a puncture needle, a biopsy forceps, and a cytodiagnosis brush.
  • the treatment tool 50 is a puncture needle.
  • the treatment instrument 50 may be provided with an ultrasonic scattering unit that scatters ultrasonic waves in order to make the echo pattern of the treatment instrument 50 in the B-mode image clearer.
  • the treatment instrument insertion port 17 is formed by the treatment instrument 50 protruding from the treatment instrument insertion port 17, and the ultrasonic probe unit 20 scans the ultrasonic beam. It arrange
  • the ultrasonic observation apparatus 1 of the present embodiment is configured to be able to capture the treatment instrument 50 protruding from the treatment instrument insertion port 17 in the B-mode image by moving the scanning plane.
  • the scanning plane and the central axis of the treatment instrument insertion port 17 are positioned on substantially the same plane. It is configured.
  • the imaging device 15 includes an imaging optical system member and an imaging element, and takes an optical image.
  • the imaging device 15 is disposed along the insertion axis A so that the distal end direction is captured in the field of view.
  • the illumination device 16 emits light emitted from the light source device into the field of view of the imaging device 15.
  • the fluid delivery unit 17 is an opening provided in the distal end portion 11, and fluid is delivered from the fluid delivery unit 17 by operating an air / water feed button 32 provided in the operation unit 30.
  • the ultrasonic observation control unit 3 includes an arithmetic device, a storage device, an input / output device, a power control device, and the like, and controls the operation of the ultrasonic probe unit 20 and the B-mode image based on a predetermined program. It is a control device that performs generation output.
  • the ultrasonic observation control unit 3 includes a transmission / reception control unit 21, a B-mode image calculation unit 22, a storage unit 23, and a configuration necessary for realizing the operation described later of the ultrasonic observation apparatus 1.
  • a correlation calculation unit 24 and an ultrasonic observation switch 25 are provided.
  • the implementation of the transmission / reception control unit 21, the B-mode image calculation unit 22, and the correlation calculation unit 24 in the ultrasonic observation control unit 3 may be hardware or software. Good.
  • the transmission / reception control unit 21 controls the transmission / reception direction of the ultrasonic beam by the ultrasonic probe unit 20. That is, the transmission / reception control unit 21 controls the position of the scanning plane in the second direction L2 and the scanning of the ultrasonic beam for obtaining the B-mode image on the scanning plane.
  • the B-mode image calculation unit 22 generates a B-mode image on the scanning plane from the result of scanning the ultrasonic beam by the ultrasonic probe unit 20. For example, when the treatment tool 50 exists on the scanning plane, an echo pattern 50a of the treatment tool 50 appears in the B-mode image 60 as shown in FIG.
  • the storage unit 23 stores a predetermined sample image determined according to the shape of the treatment instrument 50.
  • the sample image is an image indicating the shape and size of an ideal echo pattern of the treatment instrument 50 in the B-mode image when the scanning plane and the central axis of the treatment instrument 50 coincide. .
  • the sample image 61 is an echo pattern of the tip of the puncture needle when the central axis of the puncture needle coincides with the scanning plane.
  • the image represents the shape and size of 50b.
  • the sample image 61 is created in advance according to the type and shape of the treatment instrument 50.
  • the sample image 61 is actually stored in the storage unit 23 when the user of the ultrasound observation apparatus 1 designates the echo pattern 50a of the treatment instrument 50 in the actual B-mode image 60, that is, by a so-called teaching operation.
  • the echo pattern 50a of the treatment instrument 50 used for the above may be stored.
  • the shape of the treatment tool 50 may be difficult to appear in the B-mode image 60.
  • a sound wave scattering unit is provided.
  • the sample image 61 is an image showing an ideal echo pattern shape of the ultrasonic scattering part in the B-mode image 60.
  • the correlation calculation unit 24 calculates a correlation value R between the B-mode image 60 and the sample image 61. Specifically, the correlation calculation unit 24 performs image processing called pattern matching on the B mode image 60 using the sample image 61 as a template, and the echo pattern in the B mode image 60 and the sample image 61 The similarity is calculated. The higher the similarity between the echo pattern in the B-mode image 60 and the sample image 61, the higher the correlation value R. Since pattern matching is a well-known technique, a detailed description thereof will be omitted.
  • the ultrasonic observation switch 25 is an input device for a user to input an instruction to start and end observation using a B-mode image.
  • the ultrasonic observation switch 25 is provided in the ultrasonic observation control unit 3, but the ultrasonic observation switch 25 is provided in the operation unit 30 of the ultrasonic endoscope 2.
  • it may be provided separately from the ultrasonic observation control unit 3 and the ultrasonic endoscope 2 like a foot switch.
  • the operation of the ultrasonic observation apparatus 1 will be described with reference to the flowcharts of FIGS.
  • the operation of generating a B-mode image performed by the ultrasonic probe unit 20 and the ultrasonic observation control unit 3 will be described, and an optical image by the imaging device 15 provided in the ultrasonic endoscope 1 will be described. Description of the observation operation will be omitted.
  • step S01 the process waits until the ultrasonic observation switch 25 is operated and an instruction to start observation using a B-mode image is input.
  • an observation start instruction using a B-mode image is input, the process proceeds to step S02, and a scanning plane position optimization process shown in the flowchart of FIG. 9 is executed.
  • step S10 the transmission / reception control unit 21 moves the scanning plane to one end of the scanning range in the second direction L2.
  • the transmission / reception control unit 21 controls the ultrasonic probe unit 20, and scans the ultrasonic beam in the first direction L1 on the scanning plane whose position is determined in the second direction L2. .
  • step S12 the B-mode image calculation unit 22 generates a B-mode image from the result of scanning in step S11.
  • the correlation calculation unit 24 calculates a correlation value between the B-mode image obtained in step S ⁇ b> 12 and the sample image stored in the storage unit 23.
  • step S14 it is determined whether or not scanning has been performed at all predetermined positions with respect to positions in the second direction L2 on the scanning plane. If scanning is not performed at all positions in the second direction L2, the process proceeds to step S15. In step S15, after the scanning plane is moved to the next position on the other end side in the second direction L2, steps S11 to S13 are repeated.
  • step S14 If it is determined in step S14 that scanning has been performed at all predetermined positions for the position in the second direction L2 of the scanning plane, the process proceeds to step S16.
  • Steps S10 to S15 obtain a plurality of B-mode images with the scanning plane positioned at a plurality of locations in the second direction L2, and calculate correlation values between the plurality of B-mode images and the sample images. It is a process to do.
  • step S16 it is determined whether or not the maximum correlation value between the plurality of B-mode images obtained in the above process and the sample image is equal to or greater than a predetermined threshold value. If the maximum correlation value is equal to or greater than the predetermined threshold value, the process proceeds to step S17.
  • step S17 the transmission / reception control unit 21 moves the position of the scanning plane in the second direction L2 to the position where the largest correlation value is obtained among the plurality of B-mode images. That is, step S17 is a step of moving the scanning plane so that the correlation value between the B-mode image and the sample image is maximized.
  • step S18 the transmission / reception controller 21 moves the position of the scanning plane in the second direction L2 to the center of the scanning range. Since it is assumed that the state where the maximum correlation value is not equal to or greater than the predetermined threshold is the case where the treatment instrument 50 does not protrude from the treatment instrument insertion port 17, in step S18, the treatment instrument is inserted through the scanning plane. It is moved to a position substantially coincident with the central axis of the mouth 17.
  • step S04 the ultrasonic beam is scanned in the first direction L1 on the scanning plane whose position is determined in the scanning plane position optimization step in step 02.
  • step S05 the B-mode image calculation unit 22 generates a B-mode image from the result of scanning in step S04.
  • the generated B-mode image is output to the image display device 4. Thereby, the B-mode image is displayed on the image display device 4.
  • step S07 it is determined whether or not the ultrasonic observation switch 25 has been operated to input an observation end instruction using the B-mode image.
  • the operation is stopped when an observation end instruction using a B-mode image is input.
  • step S08 it is determined whether or not the counter value t is smaller than a predetermined threshold value Th.
  • the process returns to step S04, and the scanning of the ultrasonic beam and the generation of the B mode image are repeated.
  • the process returns to step S02, and the scanning plane position optimization process is executed again.
  • the scanning plane position is optimized after repeating scanning of the ultrasonic beam and generation of the B-mode image a predetermined number of times on the scanning plane defined at a certain position in the second direction L2. Execute the conversion process.
  • the scanning plane position is optimized so that the correlation value between the B-mode image and the sample image is maximized, that is, the shape of the treatment instrument 50 appears most clearly on the B-mode image.
  • the position is determined.
  • the scanning plane is changed as in the related art. If it remains fixed at a position that substantially coincides with the central axis of the treatment instrument insertion port 17 (position indicated by a two-dot chain line L21 in FIG. 10), the treatment instrument 50 on the B-mode image 60 as shown in FIG. Observation becomes difficult.
  • the echo pattern of the treatment instrument 50 is obtained by performing the scanning plane position optimization process.
  • the scanning plane automatically moves to a position that clearly shows the shape of the treatment instrument 50 (a position indicated by a two-dot chain line L22 in FIG. 10).
  • the scanning plane position optimization process is periodically performed during the period in which the observation with the B-mode image is continued, the treatment tool 50 has deviated from the scanning plane during the treatment of the subject. Even in this case, the scanning plane is automatically moved, and the treatment tool 50 can be recaptured in the B-mode image 60 without the user performing an intended operation.
  • the ultrasonic observation apparatus 1 of the present embodiment it is possible to continue good observation of the treatment instrument 50 on the B-mode image 60 without performing complicated operations.
  • the ultrasonic observation apparatus of this embodiment is different from the first embodiment in the form of scanning of the ultrasonic beam by the ultrasonic probe unit 20a.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the ultrasonic probe unit 20a of the present embodiment has a so-called convex scanning type in which a plurality of ultrasonic transducers are arranged in a line in a substantially arc shape.
  • the plurality of ultrasonic transducers constituting the ultrasonic probe unit 20a are arranged so that the ultrasonic beam can be scanned in a substantially fan shape on a plane parallel to the insertion axis A of the insertion unit 10. Yes. That is, the ultrasonic probe 20a is configured to be able to electronically scan an ultrasonic beam in the first direction L1.
  • the ultrasonic probe portion 20a is disposed so as to be swingable around an axis parallel to the insertion axis A of the insertion portion 10. That is, the ultrasonic probe unit 20a is configured to be able to mechanically scan the ultrasonic beam in the second direction L2 by swinging in the second direction L2.
  • the ultrasonic probe unit 20 a is connected to an electric motor 26 provided in the operation unit 30 via a flexible shaft 27 inserted through the insertion unit 10.
  • the ultrasonic probe portion 20 a swings around an axis parallel to the insertion axis A by the driving force generated by the electric motor 26.
  • the electric motor 26 is electrically connected to the transmission / reception control unit 21, and the operation of the electric motor 26 is controlled by the transmission / reception control unit 21.
  • the ultrasonic probe unit 20a of the present embodiment can perform two-dimensional scanning of an ultrasonic beam by combining electronic scanning and mechanical scanning. And the scanning direction of the ultrasonic beam of the ultrasonic probe part 20a is controlled by the transmission / reception control part similarly to 1st Embodiment.
  • an ultrasonic observation apparatus capable of continuing good observation of the treatment tool is realized. Can do.
  • the present invention is suitable for an ultrasonic observation apparatus that observes the state of treatment using a treatment tool in a subject.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Gynecology & Obstetrics (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 本発明の超音波観測装置は、超音波ビームの2次元走査が可能な超音波探触子部と、超音波探触子部による超音波ビームの送受信方向を制御する送受信制御部と、超音波ビームの走査の結果から走査平面上のBモード画像を生成するBモード画像演算部と、被検体に処置を行う処置具の形状に応じて定められた所定の見本画像を記憶する記憶部と、Bモード画像と見本画像との相関値を演算する相関演算部と、を備え、送受信制御部は、相関値が最も大きくなるように走査平面を移動させる。

Description

超音波観測装置及び超音波観測装置の制御方法
 本発明は、被検体内において超音波ビームを所定の走査平面上において走査することによって前記被検体内のBモード画像を生成する超音波観測装置及び超音波観測装置の制御方法に関する。
 医療分野等において使用される超音波観測装置は、例えば特許文献1に開示されているように、被検体に対して超音波を送受信可能な超音波探触子を備え、被検体の断面像であるBモード画像を生成する。Bモード画像は、超音波ビームを所定の走査平面上において走査することによって得られる。
 このような超音波観測装置を用いることによって、特開2006-175006号公報に開示されているように、被検体内における所定の部位に対する穿刺針、生検鉗子又は細胞診ブラシ等の処置具の位置や姿勢をBモード画像上で確認しながら処置を行うことが可能となる。
 穿刺針、生検鉗子又は細胞診ブラシ等の処置具を用いて被検体の所定の部位に対して処置を行う場合には処置具に力が加えられるため、処置具の位置が走査平面上から逸れてしまい、Bモード画像上における処置具の観測が困難となる場合がある。このように処置具が走査平面上から逸れてしまった場合には、超音波探触子の位置や向きを変更して、走査平面と処置具とを一致させる煩雑な操作が必要となる。
 本発明は、上述した点に鑑みてなされたものであって、被検体内における処置具を用いた処置の様子を観測する超音波観測装置において、処置具の良好な観測を継続することが可能な超音波観測装置及び超音波観測装置の制御方法を提供することを目的とする。
 本発明の一態様によれば、被検体内において超音波ビームを走査平面上において走査することによって前記被検体内のBモード画像を生成する超音波観測装置であって、前記超音波ビームの送受信方向を第1の方向及び第2の方向に変更することによって、超音波ビームの2次元走査が可能な超音波探触子部と、前記超音波探触子部による前記超音波ビームの送受信方向を制御する送受信制御部と、前記超音波ビームを前記第1の方向に走査した結果から前記Bモード画像を生成するBモード画像演算部と、前記被検体に処置を行う処置具の形状に応じて定められた見本画像を記憶する記憶部と、前記Bモード画像と前記見本画像との相関値を演算する相関演算部と、を備え、前記送受信制御部は、前記相関値が最も大きくなるように前記走査平面を前記第2の方向へ移動させる超音波観測装置を提供することができる。
第1の実施形態の超音波観測装置の概略的な構成を示す図である。 第1の実施形態の超音波内視鏡の挿入部の先端部の詳細な構成を示す斜視図である。 第1の実施形態の挿入部の先端部の側面部である。 第1の実施形態の挿入部の先端部を、挿入軸の先端方向から見た図である。 第1の実施形態の超音波観察制御部の構成を説明する図である。 第1の実施形態の走査平面上に処置具が存在する場合のBモード画像の一例を示す図である。 第1の実施形態の見本画像の一例を示す図である。 第1の実施形態の超音波観察制御部の動作を説明するフローチャートである。 第1の実施形態の走査平面最適化工程のフローチャートである。 第1の実施形態の処置具の進出方向が、処置具挿通口の中心軸から逸れてしまった状態を示す図である。 第1の実施形態の走査平面上から処置具が逸れてしまった場合のBモード画像の一例を示す図である。 第2の実施形態の超音波探触子部の構成を示す図である。 第2の実施形態の超音波観察制御部の構成を説明する図である。
 以下に、本発明の好ましい形態について図面を参照して説明する。なお、以下の説明に用いる各図においては、各構成要素を図面上で認識可能な程度の大きさとするため、各構成要素毎に縮尺を異ならせてあるものであり、本発明は、これらの図に記載された構成要素の数量、構成要素の形状、構成要素の大きさの比率、及び各構成要素の相対的な位置関係のみに限定されるものではない。
(第1の実施形態) 
 以下に、本発明の第1の実施形態を説明する。図1に示す本実施形態の超音波観測装置1は、超音波内視鏡2、及び超音波観測制御部3を具備して構成されている。
 超音波観測装置1は、概略的には、被検体内において超音波ビームを走査することによって、被検体内の所定の部位のBモード画像(超音波断層像)を生成し、画像表示装置4に出力する装置である。
 超音波内視鏡1は、被検体の体内に導入可能な挿入部10と、挿入部10の基端に位置する操作部30と、操作部30の側部から延出するユニバーサルコード40とを具備して主に構成されている。
 挿入部10は、先端に配設される先端部11、先端部11の基端側に配設される湾曲自在な湾曲部12、及び湾曲部12の基端側に配設され操作部30の先端側に接続される可撓性を有する可撓管部13が連設されて構成されている。詳しくは後述するが、先端部11には、超音波探触子部20、処置具挿通口17、流体送出部14、撮像装置15及び照明装置16等が設けられている。
 挿入部10内には、処置具挿通管路18が設けられている。処置具挿通管路18は、先端部10に設けられた開口部である処置具挿通口17と、操作部30に設けられた管路口金34と、を連通する管路である。
 操作部30には、湾曲部12の湾曲を操作するためのアングルノブ31、先端部10に設けられた流体送出部14からの流体の送出動作の制御を行うための送気・送水ボタン32、処置具挿通口17からの吸引動作の制御を行うための吸引ボタン33、及び管路口金34等が設けられている。
 ユニバーサルコード40の基端部には図示しない光源装置に接続される内視鏡コネクタ41が設けられている。光源装置から発せられた光は、ユニバーサルコード40、操作部30及び挿入部10に挿通された光ファイバケーブルを伝わって、先端部11の照明装置16から出射される。なお、超音波内視鏡1は、先端部11にLED等の光源装置が設けられる構成であってもよい。
 内視鏡コネクタ41からは、電気ケーブル42及び超音波ケーブル44が延出している。電気ケーブル42は、図示しないカメラコントロールユニットに電気コネクタ43を介して着脱自在に接続される。カメラコントロールユニットは、電気ケーブル42を介して先端部11に設けられた撮像装置15に電気的に接続される。カメラコントロールユニットは、画像表示装置4に電気的に接続されており、撮像装置15によって撮像された画像を画像表示装置4に出力する。
 超音波ケーブル44は、詳しくは後述する超音波観測制御部3に超音波コネクタ45を介して着脱自在に接続される。
 次に、超音波内視鏡2の挿入部10の先端部11の詳細な構成を説明する。図2に示すように、先端部11には、超音波探触子部20、処置具挿通口17、撮像装置15、照明装置16及び流体送出部14が配設されている。
 超音波探触子部20は、超音波ビームの送受信方向を第1の方向L1及び第2の方向L2に変更可能に構成されている。すなわち、超音波探触子部20は、超音波ビームの2次元走査が可能に構成されている。
 超音波探触子部20の構成は、超音波ビームの2次元走査が可能であれば特に限定されるものではない。本実施形態では一例として、超音波探触子部20は、行列状に配列された個別に駆動可能な複数の超音波振動子を具備してなり、個々の超音波振動子の駆動タイミングを制御することによって電子的に超音波ビームの2次元走査を行う構成を有する。
 超音波探触子部20を構成する超音波振動子には、例えば圧電セラミクス等の圧電素子や電歪素子、又はマイクロマシン技術による超音波トランスデューサ(MUT;Micromachined Ultrasonic Transducer)等が適用され得る。
 より具体的に本実施形態の超音波探触子部20は、図3に示すように、挿入部10の挿入軸Aと平行な平面上において略扇状に超音波ビームの送受信方向を変更して超音波ビームの走査を行うことが可能である。ここで、図3中において矢印L1で示すように、挿入軸Aと略平行な平面上における超音波ビームの走査の振幅方向を、第1の方向L1とする。
 また本実施形態では、第1の方向L1に走査される超音波ビームの中心軸を含む平面を走査平面と称し、超音波観測装置1が生成するBモード画像は、前記走査平面上において超音波ビームを走査することによって得られるものとする。
 図4に示すように、本実施形態の超音波探触子部20は、挿入部10の挿入軸Aと直交する平面上において略扇状に超音波ビームの送受信方向を変更して超音波ビームの走査を行うことが可能である。ここで、図4中において矢印L2で示すように、挿入軸Aと直交する平面上における超音波ビームの走査の振幅方向を、第2の方向L2とする。
 すなわち本実施形態の超音波探触子部20は、超音波ビームの送受信方向を第2の方向L2に変更することによって、走査平面を第2の方向L2に移動させることが可能である。本実施形態では一例として、第2の方向L2の走査範囲内において、走査平面をあらかじめ定められた複数箇所の位置に移動させることができるものとする。
 なお、図示する本実施形態の超音波探触子部20は、第1の方向L1及び第2の方向L2に沿って略円弧状に超音波振動子を配列することによって構成されているが、複数の超音波振動子を平面上において行列状に配列しても超音波ビームの電子的な2次元走査が可能であることは言うまでもない。
 処置具挿通口17は、処置具50を突出させるための開口部であり、処置具挿通管路18に連通している。本実施形態の超音波内視鏡2では、例えば、管路口金34の開口部から処置具50を挿入することにより、処置具50を先端部11の処置具挿通口17から突出させ、処置具50を被検体の体内に導入することができる。
 なお、処置具50の種類は特に限定されるものではないが、例えば穿刺針、生検鉗子、又は細胞診ブラシ等が挙げられる。本実施形態では、図2に示すように、処置具50は穿刺針である。処置具50には、Bモード画像中における処置具50のエコーパターンをより明瞭なものとするために、超音波を散乱させる超音波散乱部が設けられていてもよい。
 そして本実施形態では、処置具挿通口17は、図3及び図4に示すように、処置具挿通口17から突出される処置具50が、超音波探触子部20による超音波ビームの走査範囲内に進出するように配設されている。
 言い換えれば本実施形態の超音波観測装置1では、走査平面を移動させることによって、Bモード画像中に処置具挿通口17から突出される処置具50を捉えることが可能に構成されている。
 また、本実施形態では一例として、走査平面を第2の方向L2の走査範囲の中央に移動させた場合に、走査平面と処置具挿通口17の中心軸とが略同一平面上に位置するように構成されている。
 撮像装置15は、結像光学系部材と撮像素子を具備してなり、光学像を撮像するものである。撮像装置15は、挿入軸Aに沿って先端方向を視野内に捉えるように配設されている。照明装置16は、光源装置から発せられた光を、撮像装置15の視野内に出射するものである。流体送出部17は、先端部11に設けられた開口部であって、操作部30に設けられた送気・送水ボタン32を操作することによって、流体送出部17から流体が送出される。
 次に、超音波観測制御部3の詳細な構成を説明する。超音波観測制御部3は、演算装置、記憶装置、入出力装置及び電力制御装置等を具備して構成され、所定のプログラムに基づいて超音波探触子部20の動作制御及びBモード画像の生成出力を行う制御装置である。
 超音波観測制御部3は、超音波観測装置1の後述する動作を実現するために必要な構成として、図5に示すように、送受信制御部21、Bモード画像演算部22、記憶部23、相関演算部24、及び超音波観測スイッチ25を具備して構成される。なお、送受信制御部21、Bモード画像演算部22、及び相関演算部24の超音波観測制御部3への実装は、ハードウェア的なものであってもよいしソフトウェア的なものであってもよい。
 送受信制御部21は、超音波探触子部20による超音波ビームの送受信方向を制御する。すなわち、送受信制御部21によって、走査平面の第2の方向L2についての位置の制御、及び走査平面上におけるBモード画像を得るための超音波ビームの走査が制御される。
 Bモード画像演算部22は、超音波探触子部20による超音波ビームの走査の結果から、走査平面上におけるBモード画像を生成する。例えば走査平面上に処置具50が存在している場合には、図6に示すように、Bモード画像60中に処置具50のエコーパターン50aが現れる。
 記憶部23は、処置具50の形状に応じて定められた所定の見本画像を記憶している。具体的には、見本画像は、走査平面と処置具50の中心軸とが一致している場合におけるBモード画像中の処置具50の理想的なエコーパターンの形状及び大きさを示す画像である。
 本実施形態のように処置具50が穿刺針であれば、図7に示すように、見本画像61は、穿刺針の中心軸が走査平面と一致した場合における、穿刺針の先端部のエコーパターン50bの形状及び大きさを表す画像となる。
 本実施形態では一例として、見本画像61は、処置具50の種類や形状に応じてあらかじめ作成されるものである。なお、見本画像61は、超音波観測装置1の使用者が実際のBモード画像60中における処置具50のエコーパターン50aを指定することによって記憶部23に記憶される形態、いわゆるティーチング操作によって実際に使用する処置具50のエコーパターン50aが記憶される形態であってもよい。
 また、処置具50の形状や処置具50を構成する材料によっては、Bモード画像60中に処置具50の形状が現れにくい場合があるが、この場合には、処置具50の一部に超音波散乱部が設けられる。処置具50に超音波散乱部が設けられている場合には、見本画像61は、Bモード画像60中における超音波散乱部の理想的なエコーパターンの形状を示す画像となる。
 相関演算部24は、Bモード画像60と見本画像61との相関値Rを演算する。具体的には、相関演算部24は、Bモード画像60に対して、見本画像61をテンプレートとしたパターンマッチングと称される画像処理を行い、Bモード画像60中のエコーパターンと見本画像61との類似度を算出する。Bモード画像60中のエコーパターンと見本画像61との類似度が高いほど、相関値Rは高くなる。パターンマッチングは周知の技術であるため、詳細な説明は省略するものとする。
 超音波観測スイッチ25は、使用者がBモード画像による観測の開始及び終了の指示を入力するための入力装置である。本実施形態では、一例として超音波観測スイッチ25は超音波観測制御部3に設けられているが、超音波観測スイッチ25は、超音波内視鏡2の操作部30に設けられる構成であってもよいし、フットスイッチのように超音波観測制御部3や超音波内視鏡2から分離して設けられる形態であってもよい。
 次に、超音波観測装置1の動作を図8及び図9のフローチャートを参照して説明する。なお、以下では超音波探触子部20及び超音波観察制御部3によって行われるBモード画像を生成する動作について説明するものとし、超音波内視鏡1に設けられた撮像装置15による光学像の観察動作の説明は省略するものとする。
 まず、ステップS01において、超音波観測スイッチ25が操作されて、Bモード画像による観測開始の指示が入力されるまで待機する。Bモード画像による観測開始指示が入力された場合にはステップS02に移行し、図9のフローチャートに示す走査平面位置最適化工程を実行する。
 走査平面位置最適化工程では、まずステップS10において、送受信制御部21は、走査平面を、第2の方向L2の走査範囲の一端に移動させる。そして、ステップS11において、送受信制御部21は、超音波探触子部20を制御し、第2の方向L2について位置が定められた走査平面上で超音波ビームを第1の方向L1に走査する。
 次にステップS12において、Bモード画像演算部22は、ステップS11の走査の結果から、Bモード画像を生成する。そして、ステップS13において、相関演算部24は、ステップS12で得られたBモード画像と、記憶部23に記憶されている見本画像との相関値を演算する。
 次に、ステップS14において、走査平面の第2の方向L2に関する位置について、あらかじめ定められた全ての位置において走査を行ったか否かを判定する。第2の方向L2について、全ての位置での走査が行われていない場合には、ステップS15へ移行する。ステップS15では、走査平面を、第2の方向L2の他端側の次の位置へ移動させた後に、ステップS11からステップS13を繰り返す。
 そして、ステップS14において、走査平面の第2の方向L2に関する位置について、あらかじめ定められた全ての位置において走査が行われたと判定した場合には、ステップS16へ移行する。
 すなわち、ステップS10からステップS15は、走査平面を第2の方向L2の複数箇所に位置させた状態で複数のBモード画像を取得し、この複数のBモード画像と見本画像との相関値を演算する工程である。
 ステップS16では、上記工程で得られた複数のBモード画像と見本画像との相関値の最大値が、所定のしきい値以上であるか否かを判定する。相関値の最大値が所定のしきい値以上であった場合には、ステップS17へ移行する。
 ステップS17では、送受信制御部21は、走査平面の第2の方向L2についての位置を、複数のBモード画像のうちの最も大きい相関値が得られた位置に移動させる。すなわち、ステップS17は、Bモード画像と見本画像との相関値が最も大きくなるように走査平面を移動させる工程である。
 一方、相関値の最大値が所定のしきい値よりも小さい場合には、ステップS18へ移行する。ステップS18では、送受信制御部21は、走査平面の第2の方向L2についての位置を、走査範囲の中央に移動させる。相関値の最大値が所定のしきい値以上とならない状態は、処置具挿通口17から処置具50が突出されていない場合であると想定されるため、ステップS18では、走査平面を処置具挿通口17の中心軸と略一致する位置に移動させるのである。
 以上で走査平面位置最適化工程は終了し、図8のステップS03へ戻る。ステップS03では、カウンタ値tの値をリセットして0とする(t=0)。そして、ステップS04では、ステップ02の走査平面位置最適化工程で位置が定められた走査平面上において、超音波ビームを第1の方向L1に走査する。
 次にステップS05において、Bモード画像演算部22は、ステップS04の走査の結果から、Bモード画像を生成する。そしてステップS06において、生成したBモード画像を、画像表示装置4へ出力する。これにより、Bモード画像が画像表示装置4に表示される。
 次に、ステップS07において、超音波観測スイッチ25が操作されて、Bモード画像による観測終了の指示が入力されたか否かを判定する。Bモード画像による観測終了指示が入力された場合には動作を停止する。
 一方、Bモード画像による観測終了の指示が入力されていない場合には、ステップS08へ移行し、カウンタ値tの値に1を加える(t=t+1)。そしてステップS09において、カウンタ値tの値が所定のしきい値Thよりも小さいか否かを判定する。
 カウンタ値tの値が所定のしきい値Thよりも小さい場合には、ステップS04に戻り、超音波ビームの走査及びBモード画像の生成を繰り返す。そして、カウンタ値tの値が所定のしきい値Thに達した場合には、ステップS02へ戻り、再び走査平面位置最適化工程を実行する。
 すなわち、本実施形態においては、第2の方向L2についてある位置に定められた走査平面上において、超音波ビームの走査及びBモード画像の生成を所定の回数Thだけ繰り返した後に、走査平面位置最適化工程を実行する。
 そして、この走査平面位置最適化工程では、Bモード画像と見本画像との相関値が最も大きくなるように、すなわちBモード画像上において処置具50の形状が最も明瞭に現れるように、走査平面の位置が決定される。
 例えば、図10に示すように、処置具挿通口17から突出される処置具50の突出方向が、処置具挿通口17の中心軸に対して傾いてしまった場合、従来のように走査平面が処置具挿通口17の中心軸と略一致する位置(図10中の2点鎖線L21で示す位置)に固定されたままであると、図11に示すようにBモード画像60上での処置具50の観測が困難となる。
 本実施形態の超音波観測装置1では、このように処置具50の突出方向が傾いてしまった場合であっても、走査平面位置最適化工程が行われることによって、処置具50のエコーパターンが処置具50の形状を最も明瞭に示す位置(図10中の2点鎖線L22で示す位置)に、走査平面が自動的に移動する。
 また、走査平面位置最適化工程は、Bモード画像による観測を続けている期間中において定期的に実施されるため、処置具50が被検体への処置の途中で走査平面上から逸れてしまった場合であっても走査平面が自動的に移動し、使用者が意図に操作を行うことなく処置具50をBモード画像60中に捉え直すことができる。
 すなわち、本実施形態の超音波観測装置1によれば、煩雑な操作を行うことなくBモード画像60上において処置具50の良好な観測を継続することが可能となる。
(第2の実施形態)
 以下に、本発明の第2の実施形態を図12及び図13を参照して説明する。本実施形態の超音波観測装置は、超音波探触子部20aによる超音波ビームの走査の形態が第1の実施形態と異なる。以下では第1の実施形態との相違点のみを説明するものとし、第1の実施形態と同様の構成要素については同一の符号を付し、その説明を適宜に省略するものとする。
 図12に示すように、本実施形態の超音波探触子部20aは、複数の超音波振動子が略円弧状に一列に配列されて構成された、いわゆるコンベックス走査式と称される形態を有する。超音波探触子部20aを構成する複数の超音波振動子は、挿入部10の挿入軸Aと平行な平面上において略扇状に超音波ビームの走査を行うことが可能なように配列されている。すなわち、超音波探触子20aは、第1の方向L1に超音波ビームを電子的に走査可能に構成されている。
 また超音波探触子部20aは、挿入部10の挿入軸Aに平行な軸周りに揺動可能に配設されている。すなわち、超音波探触子部20aは、第2の方向L2に揺動することによって、第2の方向L2に超音波ビームを機械的に走査可能に構成されている。
 超音波探触子部20aは、挿入部10内に挿通されたフレキシブルシャフト27を介して操作部30に設けられた電動モータ26に接続されている。電動モータ26が発生する駆動力によって、超音波探触子部20aは挿入軸Aに平行な軸周りに揺動する。図13に示すように、電動モータ26は、送受信制御部21に電気的に接続されており、電動モータ26の動作は送受信制御部21によって制御される。
 以上のように、本実施形態の超音波探触子部20aは、電子的な走査及び機械的な走査を組み合わせることによって、超音波ビームの2次元走査を行うことができる。そして、超音波探触子部20aの超音波ビームの走査方向は、第1の実施形態と同様に、送受信制御部によって制御される。
 以上に説明した本実施形態であっても、第1の実施形態と同様の効果が得られることは言うまでもない。
 上述した実施形態によれば、被検体内における処置具を用いた処置の様子を観測する超音波観測装置において、処置具の良好な観測を継続することが可能な超音波観測装置を実現することができる。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う超音波観察装置もまた本発明の技術的範囲に含まれるものである。
 上述のように、本発明は、被検体内における処置具を用いた処置の様子を観測する超音波観測装置に対して好適である。

 本出願は、2009年11月16日に日本国に出願された特願2009-261153号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (15)

  1.  被検体内において超音波ビームを走査平面上において走査することによって前記被検体内のBモード画像を生成する超音波観測装置であって、
     前記超音波ビームの送受信方向を第1の方向及び第2の方向に変更することによって、超音波ビームの2次元走査が可能な超音波探触子部と、
     前記超音波探触子部による前記超音波ビームの送受信方向を制御する送受信制御部と、
     前記超音波ビームを前記第1の方向に走査した結果から前記Bモード画像を生成するBモード画像演算部と、
     前記被検体に処置を行う処置具の形状に応じて定められた見本画像を記憶する記憶部と、
     前記Bモード画像と前記見本画像との相関値を演算する相関演算部と、
    を備え、
     前記送受信制御部は、前記相関値が最も大きくなるように前記走査平面を前記第2の方向へ移動させることを特徴とする超音波観測装置。
  2.  前記超音波探触子部は、被検体内に導入可能な超音波内視鏡に設けられるものであって、
     前記超音波内視鏡は、前記超音波探触子部による超音波ビームの走査範囲内に前記処置具を突出させることが可能な処置具挿通口を備えることを特徴とする請求項1に記載の超音波観測装置。
  3.  前記超音波探触子部は、前記走査平面が前記処置具挿通口の中心軸と平行となり、かつ前記第2の方向が前記走査平面と直交する平面に沿うように設けられており、
     前記送受信制御部は、前記処置具が前記挿通口から突出された状態において、前記走査平面を前記第2の方向の複数箇所に前記走査平面を移動させ、
     前記Bモード画像演算部は、前記走査平面が前記第2の方向の複数箇所に位置した状態において得られた複数の前記Bモード画像を生成し、
     前記相関演算部は、前記複数の前記Bモード画像について前記見本画像との相関値を演算し、
     前記送受信制御部は、前記複数の前記Bモード画像のうちの最も大きい前記相関値が得られた位置に前記走査平面を移動させることを特徴とする請求項2に記載の超音波観測装置。
  4.  前記送受信制御部は、前記相関値の最大値が所定のしきい値よりも小さい場合は、前記走査平面を、前記第2の方向における所定の位置に移動させることを特徴とする請求項3に記載の超音波観測装置。
  5.  前記送受信制御部は、前記相関値が最も大きくなるように前記走査平面を移動することを、定期的に行うことを特徴とする請求項1から3のいずれか一項に記載の超音波観測装置。
  6.  前記送受信制御部は、前記Bモード画像演算部が前記Bモード画像の生成を所定回数を行った後に、前記相関演算部による前記相関値の演算を行うことによって、前記走査平面を移動することを定期的に行うことを特徴とする請求項5に記載の超音波観測装置。
  7.  前記見本画像は、前記走査平面と前記処置具の中心軸とが一致した場合における前記Bモード画像中の前記処置具の形状及び大きさを示す画像であることを特徴とする請求項1から3のいずれか一項に記載の超音波観測装置。
  8.  前記見本画像は、前記Bモード画像演算部によって生成された前記Bモード画像中の前記処置具のエコーパターンを指定することによって、前記記憶部に記憶された画像であることを特徴とする請求項7に記載の超音波観測装置。
  9.  前記超音波探触子部は、行列状に配列された個別に駆動可能な複数の超音波振動子を具備し、個々の超音波振動子の駆動タイミングを制御することによって電子的に前記超音波ビームの前記2次元走査を行うように構成されていることを特徴とする請求項1から3のいずれか一項に記載の超音波観測装置。
  10.  前記超音波探触子部は、円弧状に一列に配設された複数の超音波振動子を具備し、前記第1の方向において個々の超音波振動子の駆動タイミングを制御することによって電子的に前記超音波ビームを走査し、第2の方向においては機械的に前記超音波ビームを走査することによって、前記超音波ビームの前記2次元走査を行うように構成されていることを特徴とする請求項1から3のいずれか一項に記載の超音波観測装置。
  11.  前記見本画像は、穿刺針、生検鉗子、又は細胞診ブラシの前記Bモード画像中における形状を表すものであることを特徴とする請求項1から3のいずれか一項に記載の超音波観測装置。
  12.  被検体内において超音波ビームを走査平面上において走査することによって前記被検体内のBモード画像を生成する超音波観測装置の制御方法は、
     超音波探触子部により、前記超音波ビームの送受信方向を第1の方向及び第2の方向に変更することによって、超音波ビームの2次元走査を行うこと、
     送受信制御部により、前記超音波探触子部による前記超音波ビームの送受信方向を制御すること、
     Bモード画像演算部により、前記超音波ビームを前記第1の方向に走査した結果から前記Bモード画像を生成すること、
     前記被検体に処置を行う処置具の形状に応じて定められた見本画像を記憶部に記憶すること、
     相関演算部により、前記Bモード画像と前記見本画像との相関値を演算すること、
     前記送受信制御部により、前記相関値が最も大きくなるように前記走査平面を前記第2の方向へ移動させること、
    を有する。
  13.  前記送受信制御部は、前記相関値の最大値が所定のしきい値よりも小さい場合は、前記走査平面を、前記第2の方向における所定の位置に移動させることを特徴とする請求項12に記載の超音波観測装置の制御方法。
  14.  前記送受信制御部は、前記相関値が最も大きくなるように前記走査平面を移動することを、定期的に行うことを特徴とする請求項12に記載の超音波観測装置の制御方法。
  15.  前記送受信制御部は、前記Bモード画像演算部が前記Bモード画像の生成を所定回数を行った後に、前記相関演算部による前記相関値の演算を行うことによって、前記走査平面を移動することを定期的に行うことを特徴とする請求項14に記載の超音波観測装置の制御方法。
PCT/JP2010/067950 2009-11-16 2010-10-13 超音波観測装置及び超音波観測装置の制御方法 WO2011058840A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080017634.8A CN102405020B (zh) 2009-11-16 2010-10-13 超声波观测装置以及超声波观测装置的控制方法
EP10829800.1A EP2394582B9 (en) 2009-11-16 2010-10-13 Ultrasound observation apparatus
JP2011510766A JP4801229B2 (ja) 2009-11-16 2010-10-13 超音波観測装置及び超音波観測装置の制御方法
US13/046,104 US20110282209A1 (en) 2009-11-16 2011-03-11 Ultrasound observation apparatus and control method of ultrasound observation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-261153 2009-11-16
JP2009261153 2009-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/046,104 Continuation US20110282209A1 (en) 2009-11-16 2011-03-11 Ultrasound observation apparatus and control method of ultrasound observation apparatus

Publications (1)

Publication Number Publication Date
WO2011058840A1 true WO2011058840A1 (ja) 2011-05-19

Family

ID=43991500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067950 WO2011058840A1 (ja) 2009-11-16 2010-10-13 超音波観測装置及び超音波観測装置の制御方法

Country Status (5)

Country Link
US (1) US20110282209A1 (ja)
EP (1) EP2394582B9 (ja)
JP (1) JP4801229B2 (ja)
CN (1) CN102405020B (ja)
WO (1) WO2011058840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062668A (ja) * 2013-08-30 2015-04-09 富士フイルム株式会社 超音波装置および超音波画像生成方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945753B (zh) * 2012-10-10 2016-01-20 奥林巴斯株式会社 处理器具
WO2016027508A1 (ja) * 2014-08-22 2016-02-25 オリンパス株式会社 超音波内視鏡、超音波内視鏡用送液装置、及び、超音波内視鏡システム
WO2016059913A1 (ja) 2014-10-16 2016-04-21 オリンパス株式会社 超音波観測装置
JP1561942S (ja) * 2016-02-23 2016-10-31
WO2020118709A1 (zh) * 2018-12-14 2020-06-18 深圳先进技术研究院 一种超声波内镜系统
CN109431547B (zh) * 2018-12-14 2024-10-22 深圳先进技术研究院 多频面阵超声波内镜系统
WO2023192875A1 (en) * 2022-03-29 2023-10-05 Intuitive Surgical Operations, Inc. Needle sensor derived image plane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185041A (ja) * 1998-10-14 2000-07-04 Toshiba Corp 超音波診断装置
JP2005058584A (ja) * 2003-08-19 2005-03-10 Toshiba Corp 超音波診断装置
JP2005342128A (ja) * 2004-06-02 2005-12-15 Toshiba Corp 超音波診断装置及び超音波診断装置の制御方法
JP2006175006A (ja) 2004-12-22 2006-07-06 Fuji Photo Film Co Ltd 超音波観測装置、超音波内視鏡装置、及び、画像処理方法
JP2007175431A (ja) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp 超音波診断装置
JP2009118961A (ja) * 2007-11-13 2009-06-04 Toshiba Corp 超音波診断装置及び超音波診断装置制御プログラム
JP2009254780A (ja) * 2008-03-26 2009-11-05 Fujifilm Corp 超音波診断装置
JP2009261153A (ja) 2008-04-17 2009-11-05 Autonetworks Technologies Ltd 電力供給制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002360567A (ja) * 2001-05-30 2002-12-17 Ge Medical Systems Global Technology Co Llc 超音波撮影方法および超音波撮影装置
JP3748848B2 (ja) * 2002-11-11 2006-02-22 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
US20040106869A1 (en) * 2002-11-29 2004-06-03 Ron-Tech Medical Ltd. Ultrasound tracking device, system and method for intrabody guiding procedures
US7275439B2 (en) * 2003-04-22 2007-10-02 Wisconsin Alumni Research Foundation Parametric ultrasound imaging using angular compounding
US20050113690A1 (en) * 2003-11-25 2005-05-26 Nahi Halmann Methods and systems for providing portable device extended resources
JP4575728B2 (ja) * 2004-08-25 2010-11-04 富士フイルム株式会社 超音波内視鏡及び超音波内視鏡装置
JP2009066074A (ja) * 2007-09-11 2009-04-02 Olympus Medical Systems Corp 超音波診断装置
US20100063401A1 (en) * 2008-09-09 2010-03-11 Olympus Medical Systems Corp. Ultrasound endoscope system and ultrasound observation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185041A (ja) * 1998-10-14 2000-07-04 Toshiba Corp 超音波診断装置
JP2005058584A (ja) * 2003-08-19 2005-03-10 Toshiba Corp 超音波診断装置
JP2005342128A (ja) * 2004-06-02 2005-12-15 Toshiba Corp 超音波診断装置及び超音波診断装置の制御方法
JP2006175006A (ja) 2004-12-22 2006-07-06 Fuji Photo Film Co Ltd 超音波観測装置、超音波内視鏡装置、及び、画像処理方法
JP2007175431A (ja) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp 超音波診断装置
JP2009118961A (ja) * 2007-11-13 2009-06-04 Toshiba Corp 超音波診断装置及び超音波診断装置制御プログラム
JP2009254780A (ja) * 2008-03-26 2009-11-05 Fujifilm Corp 超音波診断装置
JP2009261153A (ja) 2008-04-17 2009-11-05 Autonetworks Technologies Ltd 電力供給制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2394582A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062668A (ja) * 2013-08-30 2015-04-09 富士フイルム株式会社 超音波装置および超音波画像生成方法

Also Published As

Publication number Publication date
EP2394582A1 (en) 2011-12-14
EP2394582B9 (en) 2013-04-10
CN102405020B (zh) 2014-02-26
US20110282209A1 (en) 2011-11-17
EP2394582A4 (en) 2012-02-01
JPWO2011058840A1 (ja) 2013-03-28
JP4801229B2 (ja) 2011-10-26
CN102405020A (zh) 2012-04-04
EP2394582B1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP4801229B2 (ja) 超音波観測装置及び超音波観測装置の制御方法
CN106913359B (zh) 内窥镜
CN109890263B (zh) 内窥镜
JP2007289715A (ja) 超音波診断治療システム
JP6637609B2 (ja) 超音波内視鏡および超音波内視鏡システム
JP7086015B2 (ja) 超音波内視鏡
CN109431547B (zh) 多频面阵超声波内镜系统
JP5981081B1 (ja) 超音波内視鏡、超音波内視鏡用吸引装置、及び、超音波内視鏡システム
JPH11299789A (ja) 体腔内超音波プローブ
JP7184928B2 (ja) 超音波内視鏡及び内視鏡システム
JPH08126644A (ja) 超音波内視鏡
EP3136940B1 (en) Ultrasound imaging probe
JP5165499B2 (ja) コンベックス型超音波内視鏡
JP2004154300A (ja) 超音波内視鏡の先端部
JP6001230B2 (ja) 超音波内視鏡、超音波観察装置および超音波内視鏡システム
JP3735239B2 (ja) 超音波内視鏡
JP5437178B2 (ja) 超音波内視鏡及び挿入補助具
JP7422616B2 (ja) 医療器具および内視鏡
JP2012192022A (ja) 超音波内視鏡及び内視鏡装置
JP7044904B2 (ja) 内視鏡システム、制御方法、及び制御プログラム
JP2001299754A (ja) 超音波診断装置
JP5479762B2 (ja) 超音波内視鏡
JP4302292B2 (ja) 超音波内視鏡
JP2002191602A (ja) 内視鏡下外科手術用超音波探触子
JP2022029325A (ja) フレキシブル超音波発生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017634.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011510766

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829800

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010829800

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE