WO2011058176A1 - Gedopte alpha-beta-sialonkeramiken - Google Patents
Gedopte alpha-beta-sialonkeramiken Download PDFInfo
- Publication number
- WO2011058176A1 WO2011058176A1 PCT/EP2010/067496 EP2010067496W WO2011058176A1 WO 2011058176 A1 WO2011058176 A1 WO 2011058176A1 EP 2010067496 W EP2010067496 W EP 2010067496W WO 2011058176 A1 WO2011058176 A1 WO 2011058176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- siaion
- rare earth
- atomic number
- vol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/593—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
- C04B35/5935—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3856—Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3891—Silicides, e.g. molybdenum disilicide, iron silicide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/766—Trigonal symmetry, e.g. alpha-Si3N4 or alpha-Sialon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/767—Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the invention relates to an a- and ⁇ -SiAION composite comprising an a-SiAlON, a ⁇ -SiAION and an intergranular amorphous and / or crystalline phase.
- the ⁇ -SiAION phase is prepared from a multi-cation mixture containing the element calcium, at least one element of yttrium and / or rare earths having an atomic number greater than 62 and at least one rare earth element having an atomic number equal to or smaller than 62.
- Silicon nitride and SiAlON ceramics are engineering ceramics characterized by an excellent combination of physical properties such as stiffness, strength, toughness and toughness, which are theoretically maintained even at very high temperatures (> 1000 ° C).
- the SiAlONs are based on compositions of the elements Si, Al, O, N, from which I also have the acronym a.
- the most successful SiAlON ( ⁇ -SiAION) has a ⁇ -Si3N crystal structure in which some of the silicon atoms are replaced by aluminum atoms and the same number of nitrogen atoms are replaced by oxygen atoms to form a Si6-zAlzOzN8 -z in which 0 ⁇ z ⁇ 4.2.
- ⁇ -SiAION with the general composition MxSii2-m-nAl m + nOnN i6 -n , in which the counter stands SiN bonds, which are replaced by Al-N in the unit cell, and n for the number of Si-N bonds replaced by Al-O in the unit cell and 0 ⁇ x ⁇ 2 and M for a cation such as Li, Mg, Ca, Y and rare earth element (excluding La, Ce ) stands.
- ⁇ -SiAION is a solid technical ceramic of good oxidation resistance and creep resistance up to 1300 ° C.
- ⁇ -SiAION has a high hardness but a slightly lower strength, toughness and oxidation resistance than ⁇ -SiAION.
- Suitable combinations of ⁇ - ⁇ -SiAIONs can be used to produce optimized composite materials.
- SiAIONe are usually prepared by mixing Si3N, Al2O3, AIN powders with one or more metal oxides (often Y2O3), compacting the powders to the desired shape, and then firing the components at 1750 ° C for several hours.
- the function of the metal oxide is to react with the silicon oxide which is always present on the surface of each silicon nitride particle so as to obtain a liquid phase which promotes densification.
- the liquid phase which also contains nitrogen, cools and absorbs a small amount of phosphorus between the SiAlON grains.
- the amorphous phase begins to soften at temperatures slightly above its glass transition temperature (T g ), and the mechanical properties deteriorate rapidly. Even with the most refractory oxide additives, the T g is barely above 1000 ° C.
- the prior art proposes providing high temperature ceramic SiAlON ceramic compositions consisting of a combination of ⁇ -SiAION, ⁇ -SiAION and intergranular phases.
- U.S. Patents 4,563,433 and 4,171,144 disclose a ceramic containing a-SiAION, ⁇ -SiAION, and an intergranular phase.
- the ⁇ -SiAION phase is prepared by using yttrium and / or other rare earth elements.
- U.S. Patent 5,200,374 discloses a ceramic having ⁇ -SiAION, ⁇ -SiAION and an intergranular phase.
- the ⁇ -SiAION phase is prepared by using rare earth elements from the group Ho, Er, Tm, Yb and Lu.
- U.S. Patents 5,227,346 and 5,413,972 disclose a ceramics with a-SiAION, ⁇ -SiAION, and intergranular phases.
- This SiAlON material is prepared by using a compound of the group of oxides and nitrides of Sr, at least one element of Ca, Mg, Li, or Na and at least one element of yttrium or rare earth elements.
- the referenced publications use yttrium and / or rare earth cations except US Pat. Nos. 5,227,346 and 5,413,972.
- the microstructures are and to a greater extent the body and / or thermal properties not as hoped. This can be explained by the conversion of ⁇ -SiAION to ⁇ -SiAION, if depletion of the ⁇ -SiAION phase occurs during use.
- the object of the present invention is the production of a multi-phase SiAlON material with better properties and stable microstructure at high temperatures, which does not have the disadvantages of the prior art.
- the object according to the invention is surprisingly achieved by a hard-reinforced SiAlON material having three phases. These phases are the a- and ⁇ -SiAIONe and the amorphous and / or crystalline grain boundary phase (s).
- the ⁇ -SiAION contains the element calcium, at least one element of yttrium and / or a rare earth element with an atomic number greater than 62, and at least one rare earth element with an atomic number equal to or less than 62.
- the ⁇ -SiAION is either with equiaxed or elongated grain morphology, whereas the ⁇ -SiAION phase occurs only in the longitudinal form.
- phase By adjusting the amounts of phase to one another according to the invention can surprisingly be provided materials that have high hardness, strength and toughness at room temperature and high temperature.
- SiC, Ti (C, N) and / or other hard materials are preferably added as hard materials.
- the invention discloses the introduction of three different cation types into the ⁇ -SiAION structure.
- Calcium is the largest ⁇ -SiAION generator and stabilizes ⁇ -SiAION, so that it does not convert to ⁇ -SiAION upon sintering during cooling and reduces the amount of grain boundary phase remaining.
- Yttrium or rare earth elements with an atomic number greater than 62 They also stabilize the ⁇ -SiAION and increase the hardness of the finished material.
- Rare Earth elements with an atomic number equal to or less than 62 support the formation of an elongated grain morphology for ⁇ - and ⁇ -SiAIONe.
- the combination of the three different cation types significantly reduces the amorphous and / or crystalline grain boundary phase (s) after sintering.
- the present invention is a hartstoffver prisoner, multiphase SiAlON ceramic material containing a mixture of three phases and at least one hard material. These phases include ⁇ - and ⁇ -SiAIONe and amorphous and / or crystalline grain boundary phase (s).
- the ⁇ -SiAlON has the composition M x Sii2 m + NALM nonn i6 -n, where m is the number of SiN bonds replaced by Al-N per unit cell, n is the number of the SiN bonds by Al-O per unit cell are replaced, 0 ⁇ x ⁇ 2 and M (i) calcium, (ii) at least one element of yttrium and / or a rare earth element having an atomic number greater than 62 and (iii) at least one rare earth element having an atomic number is equal to or less than 62.
- the hard materials used are preferably SiC, Ti (C, N) and / or other hard materials (carbides, nitrides, silicides or mixtures thereof).
- the ⁇ -SiAION phase is a crystalline line phase which, depending on the starting composition, exists as fine grains with equiaxed or elongated grain morphology. Micrograms were through
- SEM Scanning electron microscopy
- EDX energy dispersive X-ray analysis
- the EDX analysis results showed three different types of cation, (i) calcium, (ii) at least one element of yttrium and / or a rare earth element having an atomic number greater than 62 and (iii) at least one rare earth element having an atomic number equal to or less 62 include.
- the second phase of the SiAlON ceramic material is a ⁇ -SiAION of the general formula Sie-zAlzOzNs-z, in which, according to the invention, the values for z 0 ⁇ z ⁇ 1, 6 instead of usually 0 ⁇ z ⁇ 4.2.
- Micrographs recorded by SEM show elongated grain morphology.
- the weight percent ratio of ⁇ to ⁇ -SiAlON preferably changes from about 20:80 to about 80:20.
- the third phase of the multiphase SiAlON ceramic material comprises intergranular and / or crystalline phase (s) with Si, Al, O, N in combination with (i) calcium, (ii) at least one element of yttrium and / or a rare earth element having an atomic number greater than 62 and (iii) at least one rare earth element having an atomic number equal to or less than 62.
- the intergranular amorphous and / or crystalline phase (s) are in a range between 0 and 1 6% by volume on the total volume of the workpiece, in front.
- the present invention furthermore relates to a process for the production of multiphase SiAlON ceramic materials.
- the method comprises the steps: (a) preparing a mixture of Si 3 N, AlN, Al 2 O 3, a compound from the group of oxides and nitrides of calcium, at least one compound from the group of oxides and nitrides of yttrium and / or a rare earth element having an atomic number greater than 62, at least one compound selected from the group consisting of oxides and nitrides of a rare earth element having an atomic number equal to or less than 62 and at least one carbide, nitride or silicide carbide, preferably from the SiC series , Ti (C, N) or mixtures thereof,
- the invention relates to multi-phase SiAlON ceramic materials, wherein the respective material comprises at least a first, a second and a third phase and a hard material, wherein the first phase is an ⁇ -SiAION, the second phase is a ⁇ -SiAION and the third phase is intergranular amorphous and / or crystalline and the hard material is selected from a carbide, nitride or silicide or mixtures thereof.
- the ⁇ -SiAION corresponds to the general formula MxSM 2-m-n Al m + n Onn 16-n, where 0 ⁇ x ⁇ 2 and M is a mixture of several cations selected from
- Rare earth element with an atomic number greater than 62;
- the hard material is selected from the series SiC, Ti (C, N) or mixtures thereof; that the hard material according to d) in amounts of 10 to 40 vol.%, Preferably in amounts of 13 to 30 vol.%, Particularly preferably in amounts of 15 to 20 vol.%, Based on the total volume of the material is included; that the intragranular phase is present in an amount between 0 to 16% by volume, based on the total volume of the material;
- the weight ratio of ⁇ -SiAION to ⁇ -SiAION ranges from about 20:80 to about 80:20;
- the teaching according to the invention furthermore relates to a method for producing a SiAlON ceramic material according to the invention: which comprises the steps (a) to (e):
- a preferred process is one in which: the hard material is selected from the series SiC, Ti (C, N) or mixtures thereof;
- the hard material is added in amounts of from 10 to 40% by volume, preferably in amounts of from 13 to 30% by volume, more preferably in amounts of from 15 to 20% by volume, based on the total volume of the material.
- a mixture of the above five components was mixed in the indicated amounts by grinding with Si 3 N medium in water for 2 hours to obtain a mixed powder, which was then added with suitable binders, press additives and plasticizers and dried by a spray dryer , The dried powders were sieved and pressed uniaxially at a pressure of 150 MPa.
- the unsintered pellets were sintered with a five-step cycle for 2 hours at 1800 ° C in a gas pressure sintering furnace at a pressure of up to 22 bar.
- the material was fully dense with a density of 3.26 g / cm 3 as measured by immersion in water. X-ray diffraction showed a- and ⁇ -SiAIONe. An a-ß ratio of 50:50 was obtained.
- Example 2 A mixture of the five components indicated above was mixed by grinding as in Example 1 in the stated amounts and separated by gas pressure. Sintered sintered. The material density was measured at 3.25 g / cm 3 . X-ray diffraction showed a- and ⁇ -SiAIONe. An a-ß ratio of 50:50 was obtained.
- Example 2 A mixture of the six components listed above was mixed by grinding milling as in Example 1 in the indicated amounts and sintered by gas pressure sintering. The material density was measured at 3.25 g / cm 3 . X-ray diffraction showed a- and ⁇ -SiAIONe. An a-ß ratio of 75:25 was obtained. The extent of grain boundary phase is significantly reduced in this example.
- the mixture B is formed from the mixture A with the addition of 25 mass% silicon carbide (Table 1).
- the preparation of the mass was carried out by standard methods (wet grinding in Attritor to a fineness of D 50 about 1 ⁇ ; Binderzugabe; spray drying; pressing; Binderausbrand).
- the samples were gas sintered under the following conditions: sintering at 1990 ° C, 100 bar N 2 , 2h.
- sintering at 1990 ° C, 100 bar N 2 , 2h.
- 100% of the theoretical density can be achieved (Table 1).
- the phase relationship of alpha to beta-SiAION is not significantly affected by the addition of hard material.
- composition and properties of a mixture without or with 25% hard material additive are provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Die Erfindung betrifft einen α- und ß-SiAION-Verbundstoff, umfassend eine α-SiAION-, eine ß-SiAION- und eine intergranuläre amorphe und/oder kristalline Phase. Die α--SiAION-Phase wird hergestellt aus einem Multikation-Gemisch, umfassend das Element Calcium, mindestens ein Element aus Yttrium und/oder Seltenen Erden mit einer Atomzahl größer 62 und mindestens ein Seltenerd- Element mit einer Atomzahl gleich oder kleiner 62, dem zur Verbesserung der Härte Hartstoffe zugemischt sind.
Description
Gedopte Alpha-Beta-Sialonkeramiken
Die Erfindung betrifft einen a- und β-SiAION-Verbundstoff, der eine a-SiAlON-, eine β-SiAION- und eine intergranuläre amorphe und/oder kristall ine Phase umfasst. Die α-SiAION-Phase wird hergestellt aus einem Multikation-Gemisch, das das Element Calcium, mindestens ein Element aus Yttrium und/oder Seltenen Erden mit einer Atomzahl größer 62 und mindestens ein Seltenerd-Element mit einer Atomzahl gleich oder kleiner 62 enthält.
Siliziumnitrid- und SiAlON-Keramiken sind technische Keramikwerkstoffe, die sich durch eine hervorragende Kombination von Körpereigenschaften wie Steifigkeit, Festigkeit, Härte und Zähigkeit auszeichnen, die theoretisch auch bei sehr hohen Temperaturen (>1000°C) erhalten bleiben.
Die SiAlONe beruhen auf Zusammensetzungen der Elemente Si, AI, O, N, woraus s ich auch das Akronym a bl eitet. Das kom m erziel l erfolgreichste SiAlON (β-SiAION) weist eine ß-Si3N -Kristallstruktur auf, in der einige Siliziumatome durch Aluminiumatome und die gleiche Anzahl Stickstoffatome durch Sauerstoffatome ersetzt sind, so dass ein Si6-zAlzOzN8-z entsteht, in dem 0<z<4,2 ist. Eine weitere übl iche SiAlON-Phase ist α-SiAION mit der allgemeinen Zusammensetzung MxSii2-m-nAlm+nOnN i6-n, i n d e r m fü r d i e Za h l d e r S i-N- Bindungen steht, die in der Einheitszelle durch Al-N ersetzt sind, und n für die Zahl der Si-N-Bindungen, die durch Al-O in der Einheitszelle ersetzt sind, und 0<x<2 ist und M für ein Kation wie Li, Mg, Ca, Y und Seltenerd-Element (ausschließlich La, Ce) steht. β-SiAION ist eine feste technische Keramik von guter Oxidationsbeständigkeit und Kriechfestigkeit bis zu 1300°C. α-SiAION hat eine hohe Härte aber eine etwas schlechtere Festigkeit, Zähigkeit und Oxidationsbeständigkeit als β-SiAION. Durch Wahl einer besonderen Phase kann man recht genau eine optimale Kombination vo n Körpereigenschaften definieren. Durch geeignete Kombinationen von α-β-SiAIONen lassen sich optimierte Verbundwerkstoffe herstellen.
SiAIONe werden gewöhnlich hergestellt durch Mischen von Si3N -, AI2O3-, AIN- Pulvern mit einem oder mehreren Metalloxiden (oft mit Y2O3), Kompaktieren der Pulver auf die gewünschte Form und dann Brennen der Komponenten bei 1750°C für einige Stunden . Die Funktion des Metalloxids ist die Umsetzung mit dem Siliziumoxid, das immer auf der Oberfläche jedes Siliziumnitridteilchens anwesend ist, so dass eine flüssige Phase erhalten wird, die die Verdichtung unterstützt. Nach dem Sintern kühlt die flüssige Phase, die auch Stickstoff enthält, ab und b i ld et e i n e a morph e P h a se zwisch e n den SiAlON-Körnern. Bei der anschließenden Verwendung dieser Werkstoffe beginnt die amorphe Phase bei Temperaturen leicht über ihrer Glasübergangstemperatur (Tg) zu erweichen, und die mechanischen Eigenschaften verschlechtern sich rasch. Selbst bei den feuerfestesten Oxid-Additiven liegt der Tg kaum über 1000°C.
Im Stand der Technik wird die Bereitstellung von hochtemperaturfesten keramischen SiAlON-Zusammensetzungen vorgeschlagen, die aus einer Kombination von α-SiAION, β-SiAION und intergranulären Phasen bestehen.
Die US-Patente 4 563 433 und 4 71 1 644 offenbaren eine Keramik, die a-SiAION, β-SiAION und eine intergranuläre Phase enthält. Die α-SiAION-Phase wird hergestellt durch Verwendung von Yttrium und/oder anderen Seltenerd-Elementen.
Das US-Patent 5 200 374 offenbart eine Keramik mit α-SiAION, β-SiAION und einer intergranulären Phase. Die α-SiAION-Phase wird hergestel lt d urch Verwendung von Seltenerd-Elementen aus der Gruppe Ho, Er, Tm, Yb und Lu.
Die US-Patente 5 227 346 und 5 413 972 offenbaren eine Keramik mit a-SiAION-, β-SiAION- und intergranulärer Phase. Dieser SiAlON-Werkstoff wird hergestellt durch die Verwendung einer Verbindung aus der Gruppe der Oxide und Nitride von Sr, mindestens einem Element von Ca, Mg, Li, oder Na und mindestens einem Element von Yttrium oder Seltenerd-Elementen.
Die erwähnten Veröffentl ichungen verwenden Yttrium und/oder Seltenerd- Kationen, ausgenommen die US-Patente 5 227 346 und 5 413 972. Obwohl die Verwendung von Yttrium und/oder Seltenerd-Kationen die erforderlichen mehrphasigen SiAlON-Keramikwerkstoffe erg ibt, sind die M ikrostruktur und in größerem Maße die körper- und/oder thermischen Eigenschaften nicht wie erhofft. Dies lässt sich durch die Umwandlung von α-SiAION zu β-SiAION erklären, wenn es bei Gebrauch zu einer Abreicherung der α-SiAION-Phase kommt.
Aufgabe der vorliegenden Erfindung ist die Herstellung eines mehrphasigen SiAlON -Werkstoffs mit besseren Eigenschaften und stabiler Mikrostruktur bei hohen Temperaturen, der die Nachteile des Standes der Technik nicht aufweist.
Die erfindungsgemäße Aufgabe wird ü berraschenderweise durch einen hartstoffverstärkten SiAlON -Werkstoff mit drei Phasen gelöst. Diese Phasen sind die a- und β-SiAIONe und die amorphe und/oder kristalline Korngrenzenphase(n). Das α-SiAION enthält das Element Calcium, mindestens ein Element aus Yttrium und/oder ein Seltenerd-Element mit einer Atomzahl größer 62, und mindestens ein Seltenerd-Element mit einer Atomzahl gleich oder kleiner 62. Das α-SiAION liegt entweder mit gleichachsiger oder länglicher Kornmorphologie vor, wohingegen die β-SiAION-Phase nur in der längl ichen Form vorkommt. Durch Einstellen der Phasenmengen zueinander können erfindungsgemäß überraschenderweise Werkstoffe bereitgestellt werden, die hohe Härte, Festigkeit und Zähigkeit bei Raumtemperatur und hoher Temperatur aufweisen. Als Hartstoffe werden vorzugsweise SiC, Ti(C,N) und/oder andere Hartstoffe (Karbide, Nitride, Silizide oder Mischungen daraus) zugesetzt.
Die Erfindung offenbart die Einführung von drei verschiedenen Kation-Typen in die α-SiAION-Stru ktur. Calcium ist der größte α-SiAION-Bildner und stabilisiert α-SiAION, so dass es sich nach dem Sintern während des Abkühlens nicht in β-SiAION umwandelt und die Menge an verbliebener Korngrenzenphase reduziert wird. Yttrium beziehungsweise Seltenerd-Elemente mit einer Atomzahl größer 62
stabilisieren auch das α-SiAION und steigern so die Härte des fertigen Werkstoffs. Seltenerd-Elemente mit einer Atomzahl gleich oder kleiner 62 unterstützen die Bildung einer länglichen Kornmorphologie für ß- und α-SiAIONe. Durch die Kombination der drei verschiedenen Kationtypen wird die amorphe und/oder kristalline Korngrenzenphase(n) nach dem Sintern erheblich reduziert.
Gegenstand der vorliegenden Erfindung ist ein hartstoffverstärkter, mehrphasiger SiAlON-Keramikwerkstoff, der ein Gemisch von drei Phasen und mindestens einen Hartstoff enthält. Diese Phasen umfassen a- und β-SiAIONe und amorphe u nd/oder kristal l ine Korngrenzen phase(n ) . Das α-SiAION weist die Zusammensetzung MxSii2-m-nAlm+nOnN i6-n auf, wobei m die Anzahl der SiN- Bindungen, die durch Al-N pro Einheitszelle ersetzt sind, n die Anzahl der SiN- Bindungen, die durch Al-O pro Einheitszelle ersetzt sind, 0<x<2 und M (i) Calcium, (ii) mindestens ein Element aus Yttrium und/oder einem Seltenerd-Element mit einer Atomzahl größer 62 und (iii) mindestens ein Seltenerd-Element mit einer Atomzahl gleich oder kleiner als 62 ist. Als Hartstoffe werden vorzugsweise SiC, Ti(C,N) und/oder andere Hartstoffe (Karbide, Nitride, Silizide oder Mischungen daraus) eingesetzt.
Die α-SiAION-Phase ist ei ne kristal line Phase, die je nach Ausgangs- Zusammensetzung als feine Körner mit gleichachsiger oder länglicher Kornmorphologie existiert. Mikrogramme wurden durch
Rasterelektronenmikroskopie (SEM) aufgenommen, und chemische Analysen von α-SiAIONen erfolgten durch energiedispersive Röntgenanalyse (EDX). Die EDX- Analyseergebnisse zeigten drei verschiedene Kationentypen, die (i) Calcium, (ii) mindestens ein Element aus Yttrium und/oder einem Seltenerd-Element mit einer Atomzahl größer 62 und (iii) mindestens ein Seltenerd-Element mit einer Atomzahl gleich oder kleiner 62 umfassen.
Die zweite Phase des SiAlON-Keramikwerkstoffs ist ein β-SiAION der allgemeinen Formel Sie-zAlzOzNs-z, in der erfindungsgemäß die Werte für z 0<z<1 ,6 anstelle von
üblicherweise 0<z<4,2 sind. Durch SEM aufgenommene Mikrogramme zeigen eine längliche Kornmorphologie. Das Gewichtsprozent-Verhältnis von a- zu ß- SiAlON ändert sich vorzugsweise von etwa 20:80 bis etwa 80:20.
Die d ritte Phase des mehrphasigen SiAlON-Keramikwerkstoffs umfasst intergranuläre und/oder kristalline Phase(n) mit Si, AI, O, N in Kombination mit (i) Calcium, (ii) mindestens einem Element aus Yttrium und/oder einem Seltenerd- Element mit einer Atomzahl größer 62 und (iii) mindestens einem Seltenerd- Element mit einer Atomzahl gleich oder kleiner 62. Die intergranuläre amorphe und/oder kristalline Phase(n) liegen i n e i n er M eng e zwi sch en 0 u nd 1 6 Volumenprozent, bezogen auf das Gesamtvolumen des Werkstücks, vor.
Überraschenderweise wurde festgestellt, dass die oben beschriebenen, keinen Hartstoff enthaltenden, aber bereits einen hohen Verschleißwiderstand aufweisenden a-/ß-SiAIONe erfindungsgemäß überraschenderweise durch den Zusatz von mindestens einem Hartstoff, insbesondere durch den Zusatz von SiC, Ti(C,N) und/oder anderen Hartstoffen (Karbide, Nitride, Silizide oder Mischungen daraus), weiter verbessert werden können. Die Hartstoffe können zu einem hohen Prozentsatz zugesetzt werden, so dass erfindungsgemäß ausreichend dichte Werkstoffe hergestellt werden können. Derartige Werkstoffe mit deutlich gesteigerter Härte weisen einen nochmals verbesserten Verschleißwiderstand beim Zerspanen von Metallen aus und eignen sich hervorragend für die Anwendung als Schneidstoff.
Gegenstand der vorliegenden Erfindung ist weiterhin ein Verfahren zur Herstellung von mehrphasigen SiAlON-Keramikwerkstoffen.
Das Verfahren umfasst die Schritte: (a) Herstellen eines Gemisches aus Si3N , AIN, AI2O3, einer Verbindung aus der Gruppe der Oxide und Nitride des Calciums, mindestens einer Verbindung aus der Gruppe der Oxide und Nitride des Yttriums und/oder
eines Seltenerd-Elements mit einer Atomzahl größer 62, mindestens einer Verbindung aus der Gruppe der Oxide und Nitride eines Seltenerd- Elements mit einer Atomzahl gleich oder kleiner 62 und mindestens einem Hartstoff aus der Reihe eines Karbids, Nitrids oder Silizids, vorzugsweise aus der Reihe SiC, Ti(C,N) oder aus Mischungen daraus,
(b) Zerreibmahlen dieses Gemisches in Wasser oder in einem organischen Lösungsmittel, beispielsweise in einem Alkohol wie Ethanol,
(c) Trocknen des Gemisches,
(d) Pressen bei 150 MPa und
(e) mindestens 18-minütiges Sintern zwischen 1600 und 2000°C, vorzugsweise zwischen 1700 und 1850°C in einem Gasdruck-Sinterofen unter einem Druck zwischen 1 und 100 bar.
Aus dem Vorstehenden erg ibt sich , dass d ie erfi nd u ngsg emä ße Leh re mehrphasige SiAlON-Keramikwerkstoffe betrifft, wobei der jeweilige Werkstoff: mindestens eine erste, eine zweite und eine dritte Phase und einen Hartstoff enthält, wobei die erste Phase ein α-SiAION, die zweite Phase ein β-SiAION und die dritte Phase intergranulär amorph und/oder kristallin ist und der Hartstoff ausgewählt ist aus einem Karbid, Nitrid oder Silizid oder aus Mischungen daraus.
Bei dem jeweiligen Werkstoff ist dabei bevorzugt: dass das α-SiAION der allgemeinen Formel MxSM 2-m-nAlm+nOnN16-n entspricht, wobei 0 < x < 2 ist und M für ein Gemisch aus mehreren Kationen steht, ausgewählt aus
(i) dem Element Calcium;
(ii) mindestens einem Element aus der Reihe Yttrium und/oder einem
Seltenerd-Element mit einer Atomzahl größer 62;
(iii) mindestens einem Seltenerd-Element mit einer Atomzahl gleich oder kleiner 62;
dass das β-SiAION der allgemeinen Formel Si6-zAlzOzN8-z entspricht, wobei 0 < z < 1 ,6 ist;
dass die dritte intergranulär amorphe und/oder kristalline Phase neben den Elementen Si, AI, O und N,
(i) das Element Calcium;
(ii) mindestens ein Element aus Yttrium und/oder einem Seltenerd- Element mit einer Atomzahl größer 62;
(iii) mindestens ein Seltenerd-Element mit einer Atomzahl gleich oder kleiner 62 enthält;
dass der Hartstoff ausgewählt ist aus der Reihe SiC, Ti(C,N) oder aus Mischungen daraus; dass der Hartstoff gemäß d) in Mengen von 10 bis 40 Vol.%, bevorzugt in Mengen von 13 bis 30 Vol.%, besonders bevorzugt in Mengen von 15 bis 20 Vol.%, bezogen auf das Gesamtvolumen des Materials, enthalten ist; dass die intragranuläre Phase in einer Menge zwischen 0 bis 16 Vol.%, bezogen auf das Gesamtvolumen des Materials, vorliegt;
dass das Gewichtsverhältnis von α-SiAION zu β-SiAION von etwa 20 : 80 bis etwa 80 : 20 reicht;
Die erfindungsgemäße Lehre betrifft weiterhin ein Verfahren zur Herstellung eines erfindungsgemäßen SiAlON-Keramikwerkstoffs: das die Schritte (a) bis (e) umfasst:
(a) Herstellen eines Gemisches aus Si3N , AIN, AI2O3, einer Verbindung aus der Gruppe der Oxide und Nitride des Calciums, mindestens einer Verbindung aus der Gruppe der Oxide und Nitride des Yttriums und/oder eines Seltenerd-Elements mit einer Atomzahl größer 62, mindestens einer Verbindung aus der Gruppe der Oxide und Nitride eines Seltenerd-Elements mit einer Atomzahl gleich oder kleiner 62 und
mindestens einem Hartstoff aus der Reihe eines Karbids, Nitrids oder Silizids oder Mischungen daraus,
(b) Zerreibmahlen dieses Gemisches in Wasser oder in einem organischen Lösungsmittel, beispielsweise in einem Alkohol wie Ethanol,
(c) Trocknen des Gemisches,
(d) Pressen bei 150 MPa und
(e) m indestens 1 8-minütiges Sintern zwischen 1600 und 2000°C, vorzugsweise zwischen 1700 und 1850°C in einem Gasdruck-Sinterofen unter einem Druck zwischen 1 und 100 bar.
Bevorzugt ist ein Verfahren, bei dem: der Hartstoff ausgewählt ist aus der Reihe SiC, Ti(C,N) oder aus Mischungen daraus;
der Hartstoff in Mengen von 10 bis 40 Vol.%, bevorzugt in Mengen von 13 bis 30 Vol.%, besonders bevorzugt in Mengen von 15 bis 20 Vol.%, bezogen auf das Gesamtvolumen des Materials, zugegeben wird.
Die folgenden Beispiele dienen der Veranschaulichung der erfindungsgemäßen Lehre, ohne den Schutzbereich dieser Erfindung einzuschränken. Sämtliche Prozentangaben beziehen sich, wenn nicht anders angegeben, auf das Gewicht.
BEISPIEL 1 (Hartstoff-frei)
Verbindung Gewichtsprozent
Si3N4 89,34
AIN 5,330
Sm2O3 0,412
CaCO3 0,1 18
Ein Gemisch der oben angegebenen fünf Komponenten wurde in den angegebenen Mengen durch Zerreibmahlen mit Si3N -Medium in Wasser für 2 Std. gemischt, so dass ein Pulvergemisch erhalten wurde, das dann mit geeigneten Bindemitteln, Presszusätzen und Weichmachern versetzt wurde und durch einen Sprühtrockner getrocknet wurde. Die getrockneten Pulver wurden gesiebt und uniaxial mit einem Druck von 150 MPa gepresst. Die ungesinterten Presspellets wurden mit einem Fünfschritt-Zyklus für 2 Std. auf 1800°C in einem Gasdruck-Sinterofen bei einem Druck von bis zu 22 bar gesintert. Der Werkstoff war vollständig dicht mit einer Dichte von 3,26 g/cm3, gemessen durch Eintauchen in Wasser. Die Röntgenbeugung zeigte a- und β-SiAIONe. Es wurde ein a-ß- Verhältnis von 50:50 erhalten.
BEISPIEL 2 (Hartstoff-frei)
Verbindung Gewichtsprozent
Si3N4 89,22
AIN 5,32
Sm2O3 1 ,234
CaCO3 0,236
Ein Gemisch der oben angegebenen fünf Komponenten wurde wie in Beispiel 1 in den angegebenen Mengen durch Zerreibmahlen gemischt und durch Gasdruck-
Sintern gesintert. Die Werkstoffdichte wurde bei 3,25 g/cm3 gemessen . Die Röntgenbeugung zeigte a- und β-SiAIONe. Es wurde ein a-ß-Verhältnis von 50:50 erhalten.
BEISPIEL 3 (Hartstoff-frei)
Verbindung Gewichtsprozent
Si3N4 72,52
AIN 13,61
AI2O3 6,61
Sm2O3 2,43
CaCO3 2,09
Ein Gemisch der oben angegebenen sechs Komponenten wurde wie in Beispiel 1 in den angegebenen Mengen durch Zerreibmahlen gemischt und durch Gasdruck- Sintern gesintert. Die Werkstoffdichte wurde bei 3,25 g/cm3 gemessen . Die Röntgenbeugung zeigte a- und β-SiAIONe. Es wurde ein a-ß-Verhältnis von 75:25 erhalten. Das Ausmaß der Korngrenzenphase ist in diesem Beispiel erheblich reduziert.
BEISPIEL 4 (erfindunqsqemäß)
In d iesem Beispiel wird ü berraschenderweise der positive Effekt einer Hartstoffzugabe verdeutlicht. Die Mischung B entsteht aus der Mischung A unter Zugabe von 25 Massen% Siliziumkarbid (Tabelle 1 ). Die Aufbereitung der Masse wurde mittels Standardverfahren durchgeführt (Nassmahlung in Attritor bis zu einer Feinheit von D50 ca. 1 μιτι; Binderzugabe; Sprühtrocknen; Pressen; Binderausbrand). Die Proben wurden unter folgenden Bedingungen gasdruckgesintert: Sintern bei 1990°C, 100 bar N2, 2h. Auch bei der Zusammensetzung mit hohem Hartstoffzusatz kann 100% der theoretischen Dichte erreicht werden (Tabelle 1 ). Das Phasenverhältnis von alpha-
zu beta-SiAION wird durch den Hartstoffzusatz nicht wesentlich beeinflusst. Es ergibt sich jedoch eine deutliche Härtesteigerung. Die Zähigkeit sinkt minimal, da die Hartstoffpartikel das Längenwachstum der beta-SiAlON-Körner behindern.
Tabelle 1 :
A (Hartstoff-frei) B
Zusammensetzung Rohstoffe:
in Masse-%:
Si3N4 89,69 67,31 ÜBE SNE10
AIN 4,69 3,52 Tokuyama, Gr. H
AI2O3 0,49 0,37 B a i kows ky , RC-HP
DBM
Y2O3 4,61 3,46 HCST, Gr. C
Sm2O3 0,40 0,30 Treibacher, 99,9%
CaCO3 0,1 1 0,085 Merck, z.A.
SiC - 25 HCST, UF15
Dichte / g/cm3 3,254 3,250
% theoret. Dichte 100 100
Alpha: Beta 24:76 23:77
HV10 /GPa 15,4 19,2
Kic /MParn0 5 6,4 5,2
Zusammensetzung und Eigenschaften einer M ischung ohne bzw. mit 25% Hartstoffzusatz.
Die stark erhöhte Härte wirkt sich in einem verringertem Verschleiß bei der Zerspanung aus (s. Tabelle 2).
Anzahl der Schnitte Foto der Verschleißmarke
Sorte in mm 16 Sehn. 32 Sehn.
Tabelle 2: Ergebnisse des Anwendungstest„Kerbverschleiß";
Schnittbedingungen: vc=800m/nnin, f=0.5mnn/U, ap=1 ,3mm; Werkstoff
Claims
Mehrphasiger SiAlON-Kerannikwerkstoff, dadurch gekennzeichnet, dass er mindestens eine erste, eine zweite und eine dritte Phase und einen Hartstoff enthält, wobei die erste Phase ein α-SiAION, die zweite Phase ein ß-SiAlON und die dritte Phase intergranulär amorph und/oder kristallin ist und der Hartstoff ausgewählt ist aus einem Karbid, Nitrid oder Silizid oder aus Mischungen daraus.
Mehrphasiger SiAlON-Kerannikwerkstoff gemäß Anspruch 1 , dadurch g e ken n ze i ch n et, d ass d as α-SiAION der allgemeinen Formel MxSii2-m-nAlm+nOnN i6-n entspricht, wobei 0 < x < 2 ist und M für ein Gemisch aus mehreren Kationen steht, ausgewählt aus
(i) dem Element Calcium;
(ii) mindestens einem Element aus der Reihe Yttrium und/oder einem Seltenerd-Element mit einer Atomzahl größer 62;
(iii) mindestens einem Seltenerd-Element mit einer Atomzahl gleich oder kleiner 62.
Mehrphasiger SiAlON-Keramikwerkstoff gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das β-SiAION der allgemeinen Formel Siö-zAlzOzNs-z entspricht, wobei 0 < z < 1 ,6 ist.
Mehrphasiger SiAlON-Keramikwerkstoff gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die dritte intergranulär amorphe und/oder kristalline Phase neben den Elementen Si, AI, O und N,
(i) das Element Calcium;
(ii) mindestens ein Element aus Yttrium und/oder einem Seltenerd- Element mit einer Atomzahl größer 62;
(iii) mindestens ein Seltenerd-Element mit einer Atomzahl gleich oder kleiner 62 enthält.
Mehrphasiger SiAlON-Keramikwerkstoff gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Hartstoff ausgewählt ist aus der Reihe SiC, Ti(C,N) oder aus Mischungen daraus.
Mehrphasiger SiAlON-Keramikwerkstoff gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Hartstoff gemäß d) in Mengen von 1 0 bis 40 Vol.%, bevorzugt in Mengen von 13 bis 30 Vol.%, besonders bevorzugt in Mengen von 15 bis 20 Vol.%, bezogen auf das Gesamtvolumen des Materials, enthalten ist.
Mehrphasiger SiAlON-Keramikwerkstoff gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die intragranuläre Phase in einer Menge zwischen 0 bis 16 Vol.%, bezogen auf das Gesamtvolumen des Materials, vorliegt.
Mehrphasiger SiAlON-Keramikwerkstoff gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Gewichtsverhältnis von α-SiAION zu β-SiAION von etwa 20 : 80 bis etwa 80 : 20 reicht.
Verfahren zur Herstellung eines SiAlON-Keramikwerkstoffs gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es die Schritte (a) bis (e) umfasst:
(a) Herstellen eines Gemisches aus Si3N , AIN, AI2O3, einer Verbindung aus der Gruppe der Oxide und Nitride des Calciums, mindestens einer Verbindung aus der Gruppe der Oxide und Nitride des Yttriums und/oder eines Seltenerd-Elements mit einer Atomzahl größer 62, mindestens einer Verbindung aus der Gruppe der Oxide und Nitride eines Seltenerd-Elements mit einer Atomzahl gleich oder kleiner 62 und mindestens einem Hartstoff aus der Reihe eines Karbids, Nitrids oder Silizids oder Mischungen daraus,
(b) Zerreibmahlen dieses Gemisches in Wasser oder in einem organischen Lösungsmittel, beispielsweise in einem Alkohol wie Ethanol, (c) Trocknen des Gemisches,
(d) Pressen bei 150 MPa und
(e) mindeste n s 1 8-minütiges Sintern zwischen 1600 und 2000°C, vorzugsweise zwischen 1700 und 1850°C in einem Gasdruck-Sinterofen unter einem Druck zwischen 1 und 100 bar.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass der Hartstoff ausgewählt ist aus der Reihe SiC, Ti(C,N) oder aus Mischungen daraus.
1 1 . Verfahren gemäß Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Hartstoff in Mengen von 10 bis 40 Vol.%, bevorzugt in Mengen von 13 bis 30 Vol.%, besonders bevorzugt in Mengen von 15 bis 20 Vol.%, bezogen auf das Gesamtvolumen des Materials, zugegeben wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10776735.2A EP2499105B1 (de) | 2009-11-13 | 2010-11-15 | Gedopte alpha-beta-sialonkeramiken |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009046690 | 2009-11-13 | ||
DE102009046690.8 | 2009-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011058176A1 true WO2011058176A1 (de) | 2011-05-19 |
Family
ID=43532829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/067496 WO2011058176A1 (de) | 2009-11-13 | 2010-11-15 | Gedopte alpha-beta-sialonkeramiken |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2499105B1 (de) |
DE (1) | DE102010043927A1 (de) |
WO (1) | WO2011058176A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2692711A1 (de) * | 2012-08-02 | 2014-02-05 | MDA Ileri Teknoloji Seramikleri Sanayi Ticaret Ltd. STi. | SiAlON-Keramik |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108610067B (zh) * | 2018-05-18 | 2021-06-15 | 中钢洛耐科技股份有限公司 | 一种高赛隆相的碳化硅制品及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4563433A (en) | 1982-02-22 | 1986-01-07 | Kennametal Inc. | Ceramic material and method of manufacture |
US4711644A (en) | 1982-02-22 | 1987-12-08 | Kennametal Inc. | Ceramic material and method of manufacture |
GB2243364A (en) * | 1990-04-06 | 1991-10-30 | Ube Industries | SiAlON-based sintered body and process for producing same |
US5227346A (en) | 1992-03-06 | 1993-07-13 | The Dow Chemical Company | Sialon composites and method of preparing the same |
US5413972A (en) | 1993-12-23 | 1995-05-09 | The Dow Chemical Company | SiAlON composites and method of preparing the same |
WO2005016847A1 (de) * | 2003-08-07 | 2005-02-24 | Ceramtec Ag Innovative Ceramic Engineering | Werkstoff auf basis von sialonen |
DE102004035364A1 (de) * | 2003-08-07 | 2005-03-03 | Ceram Tec Ag Innovative Ceramic Engineering | Werkstoff auf der Basis von SiAIONen |
-
2010
- 2010-11-15 DE DE102010043927A patent/DE102010043927A1/de not_active Withdrawn
- 2010-11-15 WO PCT/EP2010/067496 patent/WO2011058176A1/de active Application Filing
- 2010-11-15 EP EP10776735.2A patent/EP2499105B1/de not_active Not-in-force
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4563433A (en) | 1982-02-22 | 1986-01-07 | Kennametal Inc. | Ceramic material and method of manufacture |
US4711644A (en) | 1982-02-22 | 1987-12-08 | Kennametal Inc. | Ceramic material and method of manufacture |
GB2243364A (en) * | 1990-04-06 | 1991-10-30 | Ube Industries | SiAlON-based sintered body and process for producing same |
US5200374A (en) | 1990-04-06 | 1993-04-06 | Ube Industries, Ltd. | Sialon-based sintered body and process for producing same |
US5227346A (en) | 1992-03-06 | 1993-07-13 | The Dow Chemical Company | Sialon composites and method of preparing the same |
US5413972A (en) | 1993-12-23 | 1995-05-09 | The Dow Chemical Company | SiAlON composites and method of preparing the same |
WO2005016847A1 (de) * | 2003-08-07 | 2005-02-24 | Ceramtec Ag Innovative Ceramic Engineering | Werkstoff auf basis von sialonen |
DE102004035364A1 (de) * | 2003-08-07 | 2005-03-03 | Ceram Tec Ag Innovative Ceramic Engineering | Werkstoff auf der Basis von SiAIONen |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2692711A1 (de) * | 2012-08-02 | 2014-02-05 | MDA Ileri Teknoloji Seramikleri Sanayi Ticaret Ltd. STi. | SiAlON-Keramik |
Also Published As
Publication number | Publication date |
---|---|
EP2499105B1 (de) | 2017-08-23 |
EP2499105A1 (de) | 2012-09-19 |
DE102010043927A1 (de) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3610041C2 (de) | Keramik auf Zirkoniumdioxidbasis mit Aluminiumoxid, Spinell, Mullit oder Spinell und Mullit und mit verbesserter hydrothermaler und thermischer Stabilität | |
DE69111715T2 (de) | Selbstarmierte Siliziumnitridkeramik von hoher Bruchzähigkeit und Verfahren zu deren Herstellung. | |
DE3414979C2 (de) | ||
DE69326562T2 (de) | Siliziumnitridkeramik und daraus hergestelltes schneidwerkzeug | |
DE69005664T2 (de) | Verfahren zur Erzeugung keramischer Verbundwerkstoffe. | |
EP0021239B1 (de) | Verfahren zur Herstellung von dichten Formkörpern aus polykristallinem alpha-Siliciumcarbid durch Heisspressen und so hergestellte Formkörper | |
DE60222906T2 (de) | Mit mehreren kationen gedopte alpha-beta-sialonkeramiken | |
DE69403209T2 (de) | Gesintertes selbstarmiertes siliciumnitrid | |
DE69309664T2 (de) | Sialon-verbundwerkstoffe und verfahren zu ihrer herstellung | |
DE69015882T2 (de) | Siliciumnitrid-Siliciumkarbidverbundmaterial und Verfahren zu seiner Herstellung. | |
DE69225304T2 (de) | Gesinterter siliciumnitridverbundkörper und seine herstellung | |
DE69112542T2 (de) | Selbstarmierter Siliciumnitrid-Keramikkörper und Verfahren zu seiner Herstellung. | |
DE3938879C2 (de) | Sinterkörper auf Siliziumnitridbasis | |
DE69212398T2 (de) | Siliciumnitridkeramik mit einer dispergierten Pentamolybdäntrisilicidphase | |
EP0022522B1 (de) | Dichte Formkörper aus polykristallinem Beta-Siliciumcarbid und Verfahren zu ihrer Herstellung durch Heisspressen | |
DE69018868T2 (de) | Siliciumnitridkeramik mit einer Metallsilizidphase. | |
DE69317254T2 (de) | Siliciumnitrid-Sinterkörper | |
EP2499105B1 (de) | Gedopte alpha-beta-sialonkeramiken | |
DE68918690T2 (de) | Gesintertes erzeugnis vom siliziumnitridtyp und verfahren zur herstellung. | |
DE69518750T2 (de) | Herstellungsverfahren für keramik | |
DE3873767T2 (de) | Verfahren zur herstellung keramischer verbundwerkstoffe, enthaltend siliziumoxynitrid und zirkoniumoxid. | |
DE3617282A1 (de) | Polykristalline sinterkoerper auf basis von siliciumnitrid mit hoher bruchzaehigkeit und haerte | |
DE19850597B4 (de) | α-SiAION-Werkstoffe | |
DE2937740A1 (de) | Oxidationsbestaendiges siliziumnitrid mit einem gehalt an seltenerdenoxid | |
DE112004001760T5 (de) | Behälter zum Verdampfen von Metall und Verfahren zu seiner Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10776735 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010776735 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010776735 Country of ref document: EP |