WO2011057585A1 - 一种上下表面结构对称的聚烯烃微孔膜制备方法 - Google Patents

一种上下表面结构对称的聚烯烃微孔膜制备方法 Download PDF

Info

Publication number
WO2011057585A1
WO2011057585A1 PCT/CN2010/078747 CN2010078747W WO2011057585A1 WO 2011057585 A1 WO2011057585 A1 WO 2011057585A1 CN 2010078747 W CN2010078747 W CN 2010078747W WO 2011057585 A1 WO2011057585 A1 WO 2011057585A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
polyolefin microporous
preparing
stretching
temperature
Prior art date
Application number
PCT/CN2010/078747
Other languages
English (en)
French (fr)
Inventor
陈秀峰
高东波
陈勇
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Publication of WO2011057585A1 publication Critical patent/WO2011057585A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/917Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means by applying pressurised gas to the surface of the flat article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • the present invention relates to a method for preparing a polyolefin microporous membrane, and more particularly to the preparation of a polyolefin microporous membrane symmetrical to the upper and lower surface structures.
  • the polyolefin microporous membrane is a plastic film having a plurality of interpenetrating micropores and a pore diameter in the range of 0.01 to ⁇ , and has been widely used in a separator for lithium ion batteries.
  • the methods for industrially producing such microporous membranes at home and abroad mainly include melt stretching method and heat induced phase separation method.
  • the melt drawing method ie, dry method
  • a crystalline polymer such as polypropylene
  • This method has disadvantages such as difficulty in controlling the pore diameter and porosity, and the transverse strength of the film is poor because only longitudinal stretching is performed.
  • the thermally induced phase separation method is to dissolve a polymer (such as HDPE) in a high-boiling, low-volatility solvent (thinner such as mineral oil) at a high temperature such as a twin-screw extruder. After homogenizing the solution, the slab is extruded through a die and quenched and cooled on a chill roll to cause phase separation of the solution to obtain a slab having a phase separation structure, followed by a biaxial stretching apparatus simultaneously or stepwise.
  • a polymer such as HDPE
  • a high-boiling, low-volatility solvent thinner such as mineral oil
  • the slab is first extruded through an extruder, usually in the process of slab preparation, the slab is in contact with the chill roll on one side and the air is in contact with the other side.
  • the sheet is better attached to the roll, and the other side is assisted by an air knife.
  • the degree of phase separation is different.
  • the size of the micropores formed after the subsequent extraction is asymmetrical, the structure of the microporous membrane is uneven, and the gas permeability is not good.
  • the microporous film is warped and deformed.
  • the microporous membrane after the production is used for a lithium ion battery separator, has poor gas permeability, low lithium ion penetration ability, and poor battery performance. Summary of the invention
  • the object of the present invention is to provide a preparation method of a polyolefin microporous membrane with small investment, easy control, symmetrical pore size, uniform microporous membrane structure and good gas permeability.
  • the embodiment of the present invention is achieved by a method for preparing a polyolefin microporous membrane having a symmetrical upper and lower surface structure, comprising the following steps:
  • the polyolefin resin is mixed with a diluent, and the weight ratio of the polyolefin resin to the diluent is 1-6: 4-9.
  • the content of the diluent is too small, and the obtained film has insufficient porosity and too much content.
  • the molding process is difficult, the uniformity and stability of the bubble are insufficient, and on the other hand, the film strength is insufficient.
  • the uniformly mixed polymer and diluent solution are passed through an extruder die and the cast piece is cooled.
  • preheating the cooled slab preheating and then using a biaxial stretching device to perform longitudinal and transverse stretching simultaneously or stepwise, and the film is subjected to a certain temperature condition between softening temperature and melting temperature. Stretch longitudinally or/and transversely to several times the original length.
  • the polyolefin resin may be selected from high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, ethylene, propylene. Or one of butene, octene, hexene copolymer, or a mixture of the above.
  • the above polyolefin resin is preferably high density polyethylene (HDPE) and ultra high molecular weight polyethylene, which is a high crystallinity, non-polar thermoplastic resin, non-hygroscopic and has good water vapor resistance, and has good electric power. performance.
  • HDPE high density polyethylene
  • ultra high molecular weight polyethylene which is a high crystallinity, non-polar thermoplastic resin, non-hygroscopic and has good water vapor resistance, and has good electric power. performance.
  • the diluent of the invention is a high boiling point, non-volatile solvent which has good compatibility with polyolefin resin at high temperature, and can be hydrocarbon: decane, naphthene, liquid paraffin, paraffin wax; or ester Class of compounds: dioctyl phthalate, dibutyl phthalate, stearate; or a mixture of the above compounds.
  • liquid paraffin is preferred, and the viscosity of the liquid paraffin is between 70 and 120 cst, the viscosity is too high, it is not easily extracted by the extracting agent, the viscosity is too low, and the thickness stability of the cast piece is insufficient.
  • step 1) when a plurality of polyolefin resins are used, they are first mixed by a high-mixer, or in an internal mixer or an extruder, and the extruder is preferably a twin-screw extruder, and then further The mixing of the diluent is carried out in a high temperature reactor or extruder, and the mixing temperature of the polyolefin resin and the diluent is 180 to 240 °C.
  • the uniformly mixed polymer and the diluent solution are cooled through a die die, and the die is T-shaped or a hanger type, and the die temperature is 180-240.
  • the cooling method is to install a set of rollers of the same diameter on the upper and lower surfaces of the cast piece, or to install a set of rollers on the side of the air knife to assist cooling on the large cold roll and the air knife auxiliary patch device.
  • the slab is obtained, the roller has a diameter of 200 to 1000 mm, and the roller temperature is 15 to 50 °C. In this way, the upper and lower surfaces of the cast piece can be uniformly contracted in the process of forming the thick piece.
  • the degree of phase separation is the same, and the size of the micropores formed after the subsequent extraction can be symmetric, and the structure of the microporous film is uniform. There is no warpage deformation.
  • the slab is preheated in an oven or preheated by a roller, the preheating temperature is 100 ⁇ 150 ° C, and the preheating time is l ⁇ 100 s; , or stepwise stretching in the vertical and horizontal directions, or simultaneous stretching, the longitudinal stretching ratio is 3 to 7 times, the transverse stretching ratio is 3 to 9 times, stretching The temperature is ⁇ 150 °C.
  • the stretched film is subjected to a shaping treatment, the treatment temperature is 100 to 150 ° C, and the treatment time is l to 100 s.
  • the extracting agent in the step 5) is selected to have good compatibility with a dilute agent, and is incompatible with a polyolefin resin, a chlorinated hydrocarbon, a fluorinated hydrocarbon or a ketone solvent.
  • a polyolefin resin e.g., a chlorinated hydrocarbon, a fluorinated hydrocarbon or a ketone solvent.
  • the hydrocarbon solvent is pentane, hexane, heptane, decane
  • the chlorinated hydrocarbon is trichlorodecane or carbon tetrachloride
  • the ketone solvent is acetone or methyl ethyl ketone
  • the organic solvent is diethyl Glycol oxime ether, dihydroxyethyl butyl ether, diethylene glycol monoethyl ether or diethylene glycol diethyl ether.
  • the step 6) is subjected to a second heat setting process after the transverse stretching and setting process, wherein the heat setting temperature is 100 to 150 ° C, the treatment time is 1 to 100 seconds, and the stretching ratio is 1 ⁇ 1.5 times.
  • a filler which can improve the wear resistance and improve the subsequent use performance of the microporous film may be added, and the filler accounts for 5 to 15% of the total weight.
  • the filler may be selected from one of silica, titania, calcium carbonate or a mixture thereof, preferably a surface-treated, highly dispersible silica.
  • a nucleating agent or/and an antioxidant may be added, and the proportion of the nucleating agent is 1 to 5% of the total weight, and the antioxidant is The proportion is 0.1 to 0.5% of the total weight, and the nucleating agent is selected from a fatty carboxylic acid metal compound, a sorbitol benzylidene derivative, an aromatic carboxylic acid metal compound, an organic phosphate, and a lignoric acid and a derivative thereof.
  • the nucleating agent can promote the crystallization process of the molecule and accelerate the crystallization rate, improve the crystallinity of the polymer, thereby improving the hardness, elastic modulus, tensile strength and yield strength of the plastic, and preventing the post-crystallization phenomenon of the plastic, thereby Increased dimensional stability of the article.
  • the antioxidant can inhibit or delay the oxidative degradation of the plastic to prolong its service life, and can improve the quality of the plastic film.
  • the present invention is based on a thermally induced phase separation mechanism. In the process of fabricating a polyolefin microporous membrane, a set of rolls of the same diameter is mounted on the upper and lower surfaces of the slab, or in a conventional cold roll and air knife assist.
  • a set of rollers is used to assist the cooling on one side of the air knife to obtain a thick sheet, and then the conventional stretching and extraction are applied to the thick sheet, and finally the micropore structure on the upper and lower surfaces can be obtained symmetrically and uniformly, and the gas permeability is good.
  • the slab is preheated and stretched by a biaxial stretching device, the preheating time is 10S, the preheating temperature is 100° C., and the stretching ratio is 3 ⁇ 3 times (ie, the longitudinal stretching ratio is 3 times and the transverse stretching ratio is 3 times);
  • the setting treatment is carried out, the treatment temperature is 100 ° C, and the treatment time is 10 s.
  • the liquid paraffin in the film is extracted with methyl ethyl ketone, dried and then subjected to transverse stretching and setting treatment at 100 ° C, and the stretching ratio is 1.0 times, and the polyolefin micropores are obtained. After the film is finished, it is wound up.
  • Preheating the slab Stretching by means of biaxial stretching equipment preheating temperature 150 ° C, stretching ratio 5x9 times (ie longitudinal stretching ratio 5 times, transverse stretching ratio 9 times); then shaping treatment, processing temperature 150 ° C, treatment After 100s; the liquid paraffin in the film was extracted with methyl ethyl ketone, dried and then subjected to transverse stretching and setting treatment at 150 ° C, and the stretching ratio was 1.5 times, and the finished polyolefin microporous film was obtained and wound up.
  • the slab preheating foundation stone is stretched in two directions, the preheating temperature is 125 °C, the stretching ratio is 3x3 times (ie, the longitudinal stretching ratio is 3 times, the transverse stretching ratio is 3 times); then the setting treatment is performed, and the processing temperature is 125°. C, treatment time 10s; after the use of methyl ethyl ketone extraction film of dioctyl phthalate, dried and then subjected to transverse stretching at 125 ° C, the draw ratio of 1.4 times, the finished polyolefin microporous film After the volume.
  • the slab is preheated on the basis of biaxial stretching, preheating temperature is 125 ° C, the stretching ratio is 3x3 times (ie, the longitudinal stretching ratio is 3 times, the transverse stretching ratio is 3 times); then the setting treatment is performed, and the processing temperature is 125 ° C.
  • the stearic acid ester in the film is extracted with dichloromethane, dried and then subjected to transverse stretching and setting treatment at 140 ° C, and the stretching ratio is 1.3 times, and the finished product of the polyolefin microporous film is obtained. .
  • the slab preheating foundation stone is stretched in both directions, the preheating temperature is 125 °C, the stretching ratio is 4x5 times (ie, the longitudinal stretching ratio is 4 times, the transverse stretching ratio is 5 times); and the shaping treatment is performed, the processing temperature is 140°. C, the treatment time is 70s; after that, the liquid paraffin in the film is extracted by diethylene glycol oxime ether, dried and then subjected to transverse stretching and setting treatment at 140 ° C, and the stretching ratio is 1.2 times, and the finished product of the polyolefin microporous film is obtained. volume.
  • liquid paraffin kinematic viscosity 90cst / 40 ° C
  • silica filler melt-kneading at 200 ° C, 150 rpm to prepare a solution
  • the solution A thick piece is obtained by a T-type die (a lip opening degree of 0.8 mm, a die temperature of 200 ° C) and a conventional cold roll (diameter of 800 mm) by a gas knife casting method, and a diameter of 500 mm is mounted on one side of the air knife. Roller, two rolls at a temperature of 30 °C.
  • the slab preheating foundation stone is stretched in two directions, the preheating temperature is 125 ° C, the stretching ratio is 6 ⁇ 8 times (ie, the longitudinal stretching ratio is 6 times, the transverse stretching ratio is 8 times); and the shaping treatment is performed, the processing temperature is 125°. C, the treatment time is 10s; after that, the liquid paraffin in the film is extracted by methyl ethyl ketone, dried and then subjected to transverse stretching and setting treatment at 125 ° C, and the stretching ratio is 1.4 times, and the polyolefin microporous film is obtained and wound up.
  • a slab is obtained by adding a gas knife to form a slab.
  • a roller having a diameter of 500 mm is mounted on one side of the air knives, and the temperature of the two rolls is 30 °C.
  • the slab preheating foundation stone is stretched in two directions, the preheating temperature is 125 ° C, the stretching ratio is 3x3 times (ie, the longitudinal stretching ratio is 3 times, the transverse stretching ratio is 3 times); and the setting treatment is performed, and the processing temperature is 125 °. C, processing time 60s.
  • the slab is preheated on the basis of biaxial stretching, preheating temperature is 125 ° C, and the stretching ratio is 3x3 times.
  • the liquid paraffin in the film was extracted with methyl ethyl ketone, dried and then subjected to a setting treatment at 125 ° C, and the stretching ratio was 1.4 times, and the polyolefin microporous film was obtained and wound up.
  • the slab is preheated on the basis of biaxial stretching, preheating temperature is 125 ° C, and the stretching ratio is 3x3 times.
  • the liquid paraffin in the film was extracted with methyl ethyl ketone, dried and then subjected to a setting treatment at 125 ° C, and the stretching ratio was 1.4 times, and the polyolefin microporous film was obtained and wound up.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

说 明 书 一种上下表面结构对称的聚烯烃微孔膜制备方法
技术领域
本发明涉及一种聚烯烃微孔膜的制备方法, 尤其涉及一种上下表面结构对 称的聚烯烃微孔膜的制备。 背景技术
聚烯烃微孔膜是具有无数互通微孔, 孔径在 0.01 ~ ΙΟμιη范围内的塑料薄 膜, 目前已广泛应用于锂离子电池用隔离膜中。 国内外工业化生产该种微孔膜 的方法主要有熔融拉伸法和热诱导相分离法。
熔融拉伸法 (即干法)是在提高熔融聚合物应力的条件下先将结晶性聚合 物(如聚丙烯)挤塑成膜, 然后使薄膜在无张力或低张力下经退火得到必要结 晶结构, 后进行纵向拉伸产生一种狭缝状空隙的网状结构。 该法存在孔径及孔 隙率较难控制等缺点, 而且由于只进行纵向拉伸, 薄膜横向强度较差。 具体描 述可见 U.S. Patent 3558764(1971), 5385777(1995)。 工业化产品由美国 Celgard 和曰本 Ube公司提供。
热诱导相分离法 (TIPS ,即湿法)是在高温下如双螺杆挤出机内把聚合物(如 HDPE )溶于高沸点、 低挥发性的溶剂 (稀释剂, 如矿物油),形成均一溶液, 后通过口模挤出成型厚片, 在骤冷辊上骤冷冷却, 导致溶液产生相分离, 得到 具有相分离结构的厚片, 后采用双向拉伸设备同时或分步进行纵横向拉伸, 获 得具有相分离结构的薄膜,其中在双向拉伸之前或之后采用挥发性有机溶剂(萃 取剂)将稀释剂萃取出来,从而获得一定结构形状的高分子微孔。 日本的 Asahi - Kasei、 Mitsui Chemical和 Tonen公司的相关专利 JP 2004323820(2004), U.S. Patent 6245272(2001)报道了该法。 中国专利局公开的 200410051437.4、 200510035680.1等专利文献中也介绍了依据热诱导相分离法制取微孔膜的流程 和配方。 工业化产品国外由 Asahi、 Tonen、 Entek等公司提供, 而国内主要由 佛山金辉在量产。
在依据热诱导相分离法制取微孔膜过程中, 首先是通过挤出机挤出厚片, 通常在厚片制取过程中, 厚片一面与冷辊接触, 另一面与空气接触, 而为了使 片材更好地贴辊, 在另一面采用气刀辅助。 这样铸片方式造成厚片上下表面受 热不对称, 在冷却诱导相分离过程中, 相分离程度不同, 在后续萃取后形成的 微孔大小不对称, 微孔膜结构不均匀, 透气性不佳。 而且由于上下两表面收缩 不对称, 导致微孔膜发生翘曲变形。 制作后的微孔膜在用于锂离子电池隔离膜 时, 透气性差, 锂离子穿过能力低, 电池性能差。 发明内容
本发明实施例的目的在于提供一种投资小、 易控制、 微孔大小对称, 微孔 膜结构均匀, 透气性好的聚烯烃微孔膜制备方法。
本发明实施例是这样实现的, 一种上下表面结构对称的聚烯烃微孔膜制备 方法, 包括下述步骤:
1 )、 将聚烯烃树脂与稀释剂混合, 所述聚烯烃树脂与稀释剂重量比为 1-6: 4-9。 稀释剂含量太小, 得到的薄膜孔隙率不够, 含量太多, 一方面成型加工困 难, 膜泡均匀性和稳定性不够, 另一方面薄膜强度不够。
2 )、 将混合均匀的聚合物和稀释剂溶液经由挤出机口模后冷却铸片。
3 )、 将冷却后的厚片再进行预热, 预热后采用双向拉伸设备同时或分步进 行纵横向拉伸, 将薄膜在软化温度至熔融温度之间的某一温度条件下, 沿纵向 或 /和横向方向拉伸至原长度的几倍。
4 )、 在张力下, 在高于其拉伸温度而低于熔点的温度区间内某个适宜的温 度下保持几秒钟, 最后冷却至室温, 即经热定型处理制成定向拉伸薄膜。
5 )、 萃取膜内稀释剂并进行干燥处理。 6 )、 横向拉伸定型处理。
7 )、 收卷。 上述本发明的技术方案中, 所述聚烯烃树脂可选用高密度聚乙 烯、 中密度聚乙婦、 低密度聚乙烯、 线性低密度聚乙烯、 超高分子量聚乙烯、 聚丙烯、 乙烯、 丙烯, 或为丁烯、 辛烯、 己烯共聚物中的一种, 或者是上述物 质的混合物。 上述聚烯烃树脂优选高密度聚乙烯(HDPE ) 和超高分子量聚乙 烯, 这是一种结晶度高、 非极性的热塑性树脂, 不吸湿并具有好的防水蒸 汽性, 且具有很好的电性能。
本发明所述的稀释剂选用在高温下与聚烯烃树脂具有良好相容性的高沸 点、 难挥发的溶剂, 可为碳氢化合物: 壬烷、 奈烷、 液体石蜡、 固体石蜡; 或 为酯类化合物: 邻苯二曱酸二辛酯、 邻苯二曱酸二丁酯、 硬脂酸酯; 或者是上 述化合物的混合物。 上述稀释剂中优选液体石蜡, 液体石蜡的黏度 70 ~ 120cst 之间, 黏度太高, 不易被萃取剂萃取, 黏度太低, 铸片厚度稳定性不够。
具体地, 所述步骤 1 ) 中, 采用多种聚烯烃树脂时需先通过高混机混合, 或在密炼机或挤出机中进行, 挤出机优选双螺杆挤出机, 之后进一步与稀释剂 的混合在高温反应釜或挤出机内进行, 所述聚烯烃树脂与稀释剂的混合温度为 180 ~ 240°C。
具体地, 所述步骤 2 ) 中, 将混合均匀的聚合物和稀释剂溶液经由挤出机 口模后冷却铸片, 所述口模为 T-型或衣架式, 口模温度为 180 ~ 240°C , 所述冷 却方式采用在铸片上下两表面分别安装一套直径相同的辊筒, 或是在大冷辊和 气刀辅助贴片装置上, 在其气刀一面安装一套辊筒辅助冷却而得到厚片, 所述 辊筒直径 200 ~ 1000mm, 辊筒温度 15 ~ 50°C。 这样, 可使铸片在形成厚片的过 程中, 上下表面收缩一致, 在冷却诱导相分离过程中, 相分离程度相同, 可使 后续萃取后形成的微孔大小对称, 微孔膜结构均匀, 不会产生翘曲变形现象。 具体地, 所述步骤 3 ) 中, 先将厚片置于烘箱中预热, 或通过辊筒进行预热, 预热温度 100 ~ 150°C , 预热时间 l ~ 100s; 之后进行双向拉伸, 或是先纵后横 的分步拉伸, 或同步拉伸, 其纵向拉伸比 3 ~ 7倍, 横向拉伸比 3 ~ 9倍, 拉伸 温度謂〜 150°C。
具体地, 所述步骤 4 )中, 经过拉伸后的薄膜做定型处理, 处理温度 100 ~ 150°C , 处理时间 l ~ 100s。 具体地, 所述步骤 5 ) 中的萃取剂选用与稀译剂具 有良好的相容性, 而与聚烯烃树脂之间不相容的烃类、 氯代烃、 氟化烃或酮类 溶剂中的一种, 或采用非易燃易爆且不含 素的具有高度环保安全性的有机溶 剂。 其中, 所述烃类溶剂为戊烷、 己烷、 庚烷、 癸烷, 氯代烃为三氯曱烷或四 氯化碳, 酮类溶剂为丙酮或丁酮, 所述有机溶剂为二乙二醇曱醚、 二羟乙基丁 醚、 二乙二醇单乙醚或二乙二醇二乙醚。 萃取时首先萃取聚烯烃微孔膜生产所 用原料高沸点稀释剂,后再采用常温下易挥发并且非易燃易爆溶剂来清洗薄膜, 这类溶剂于常温或加热状态下挥发后, 于薄膜中留下微孔结构。
为进一步完善薄膜中微孔结构, 所述步骤 6 )之横向拉伸定型处理后进行 二次热定型处理, 其中热定型处理温度 100 ~ 150°C , 处理时间 1 ~ 100秒, 拉 伸倍率 1 ~ 1.5倍。
作为本发明的进一步, 所述步骤 1 ) 中, 还可添加有可提高耐磨性, 改善 微孔膜后续使用性能的填料, 所述填料所占比例为总重量的 5 ~ 15%, 所述填 料可选用二氧化硅、 二氧化钛、 碳酸钙中的一种或它们的混合物, 优选经过表 面处理的分散性优的二氧化硅。
作为本发明的更进一步, 所述步骤 1 ) 中, 还可添加成核剂或 /和抗氧剂, 所述成核剂所占比例为总重量的 1 ~ 5%,所述抗氧剂所占比例为总重量的 0.1 ~ 0.5% ), 所述成核剂选用脂肪羧酸金属化合物、 山梨醇苄叉衍生物、 芳香族羧 酸金属化合物、 有机磷酸盐和木质酸及其衍生物类、 苯曱酸钠和双 (对叔丁基苯 曱酸)羧基铝等中的一种或混合物,抗氧剂选用聚烯烃中常用的 1010或 1076与 168 配合使用。 其中所述成核剂能促进分子的结晶过程和加快结晶速度, 提 高聚合物的结晶度, 从而提高塑料的硬度、 弹性模量、 拉伸强度、 屈服强度, 还可防止塑料后结晶现象, 从而提高了制品的尺寸稳定性。 所述抗氧剂能够抑 制或延緩塑料的氧化降解而延长其使用寿命, 可提高塑料薄膜品质。 综上,本发明依据热诱导相分离机理,在制作聚烯烃微孔膜的工艺过程中, 采用在厚片上下两表面分别安装一套直径相同的辊筒, 或在常规的冷辊和气刀 辅助贴片装置上, 在气刀一面安装一套辊筒辅助冷却的方式得到厚片, 然后针 对厚片采用常规的拉伸和萃取后, 最终可获得上下表面微孔结构对称均匀、 透 气性好的聚烯烃微孔膜产品, 且加工过程中不会产生翘曲变形现象。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以 解释本发明, 并不用于限定本发明。
实施例 1:
将 10% (重量) 的高密度聚乙烯(熔点 133 °C )投入双螺杆挤出机(直径 78mm, L/D=50、 强混炼型) 中, 用计量泵通过侧向喂料口加入 90% (重量) 的液体石蜡(运动黏度 90cst/40°C ), 在 200°C、 150转 /分的条件下熔融混炼调 制成溶液, 将该溶液通过 T-型模头 (模唇开口度 0.8mm, 模头温度 180°C )和 两直径对称的辊筒铸片后得到厚片, 辊筒直径 200mm, 辊筒温度 15°C。 将厚片 预热基础上通过双向拉伸设备拉伸,预热时间 10S ,预热温度 100°C ,拉伸比 3x3 倍 (即纵向拉伸比 3倍,横向拉伸比 3倍); 然后做定型处理, 处理温度 100°C , 处理时间 10s; 后采用丁酮萃取薄膜中的液体石蜡, 干燥后在 100°C进行横向拉 伸定型处理, 拉伸倍率 1.0倍, 制得聚烯烃微孔膜成品后收卷。
实施例 2:
将 60% (重量) 的聚丙烯(熔点 167°C )投入双螺杆挤出机(直径 78mm、 L/D=50、 强混炼型) 中, 用计量泵通过侧向喂料口加入 40% (重量)的液体石 蜡(运动黏度 90cst/40°C ), 在 200°C、 150转 /分的条件下熔融混炼调制成溶液, 将该溶液通过 T-型模头 (模唇开口度 0.8mm, 模头温度 240°C )和两直径对称 的辊筒铸片后得到厚片, 辊筒直径 1000mm, 辊筒温度 50°C。 将厚片预热基础 上通过双向拉伸设备拉伸, 预热温度 150°C , 拉伸比 5x9倍 (即纵向拉伸比 5 倍, 横向拉伸比 9倍); 然后做定型处理, 处理温度 150°C , 处理时间 100s; 后 采用丁酮萃取薄膜中的液体石蜡, 干燥后在 150°C进行横向拉伸定型处理, 拉 伸倍率 1.5倍, 制得聚烯烃微孔膜成品后收卷。
实施例 3:
将 20% (重量) 的聚乙烯(熔点 133 °C )投入预先设定温度为 180°C的密 炼机内, 用计量泵通过侧向喂料口加入 80% (重量) 的邻苯二曱酸二辛酯, 在 200°C、 150转 /分的条件下熔融混炼调制成溶液, 将该溶液通过衣架式口模(模 唇开口度 0.8mm, 模头温度 200°C )和两直径对称的辊筒铸片后得到厚片, 辊 筒直径 800mm,辊筒温度 15°C。将厚片预热基石出上双向拉伸,预热温度 125 °C , 拉伸比 3x3倍 (即纵向拉伸比 3倍, 横向拉伸比 3倍); 然后做定型处理, 处理 温度 125°C , 处理时间 10s; 后采用丁酮萃取薄膜中的邻苯二曱酸二辛酯, 干燥 后在 125 °C进行横向拉伸定型处理,拉伸倍率 1.4倍,制得聚烯烃微孔膜成品后 收卷。
实施例 4:
将 30% (重量) 的聚丙烯(熔点 167°C )投入双螺杆挤出机(直径 78mm、 L/D=50、 强混炼型) 中, 用计量泵通过侧向喂料口加入 70% (重量)的硬脂酸 脂, 在 200°C、 150转 /分的条件下熔融混炼调制成溶液, 将该溶液通过 T-型模 头 (模唇开口度 0.8mm, 模头温度 200°C )和常规的冷辊(直径 800mm )加气 刀铸片方式得到厚片, 在气刀一面安装一直径为 300mm 的辊筒, 两辊筒温度 15°C。 将厚片预热基础上双向拉伸, 预热温度 125°C , 拉伸比 3x3倍(即纵向 拉伸比 3倍, 横向拉伸比 3倍); 然后做定型处理, 处理温度 125 °C , 处理时间 50s; 后采用二氯曱烷萃取薄膜中的硬脂酸脂, 干燥后在 140°C进行横向拉伸定 型处理, 拉伸倍率 1.3倍, 制得聚烯烃微孔膜成品后收卷。
实施例 5:
先将 30% (重量) 的高密度聚乙烯和中密度聚乙婦投入高混机混合, 然后 (熔点 133 °C )投入双螺杆挤出机(直径 78mm、 L/D=50、 强混炼型) 中, 用 计量泵通过侧向喂料口加入 70% (重量) 的液体石蜡(运动黏度 90cst/40°C ), 在 200°C、 150转 /分的条件下熔融混炼调制成溶液,将该溶液通过 T-型模头(模 唇开口度 0.8mm, 模头温度 200°C )和两直径对称的辊筒铸片后得到厚片, 辊 筒直径 500mm,辊筒温度 50°C。将厚片预热基石出上双向拉伸,预热温度 125 °C , 拉伸比 4x5倍(即纵向拉伸比 4倍, 横向拉伸比 5倍); 再做定型处理, 处理温 度 140°C , 处理时间 70s; 后采用二乙二醇曱醚萃取薄膜中的液体石蜡, 干燥后 在 140°C进行横向拉伸定型处理,拉伸倍率 1.2倍,制得聚烯烃微孔膜成品后收 卷。
实施例 6:
将 30% (重量) 的高密度聚乙烯(熔点 133 °C )投入双螺杆挤出机(直径 78mm, L/D=50、 强混炼型) 中, 用计量泵通过侧向喂料口加入 65% (重量) 的液体石蜡(运动黏度 90cst/40°C ), 同时加入 5%的二氧化硅填料, 在 200°C、 150转 /分的条件下熔融混炼调制成溶液, 将该溶液通过 T-型模头(模唇开口度 0.8mm, 模头温度 200°C )和常规的冷辊(直径 800mm )加气刀铸片方式得到 厚片, 在气刀一面安装一直径为 500mm的辊筒, 两辊筒温度 30°C。 将厚片预 热基石出上双向拉伸, 预热温度 125°C , 拉伸比 6x8倍(即纵向拉伸比 6倍, 横 向拉伸比 8倍); 再做定型处理, 处理温度 125°C , 处理时间 10s; 后采用丁酮 萃取薄膜中的液体石蜡, 干燥后在 125 °C进行横向拉伸定型处理, 拉伸倍率 1.4 倍, 制得聚烯烃微孔膜成品后收卷。
实施例 7:
将 20% (重量) 的聚丙烯(熔点 167°C )投入双螺杆挤出机(直径 78mm、 L/D=50、 强混炼型) 中, 用计量泵通过侧向喂料口加入 70% (重量)的液体石 蜡(运动黏度 90cst/40°C ), 同时加入 3%的二氧化硅, 1.8%的苯曱酸钠成核剂, 0.2%的 1010/168抗氧剂, 在 200 °C、 150转 /分的条件下熔融混炼调制成溶液, 将该溶液通过 T-型模头 (模唇开口度 0.8mm, 模头温度 200°C )和常规的冷辊 (直径 800mm )加气刀铸片方式得到厚片, 在气刀一面安装一直径为 500mm 的辊筒, 两辊筒温度 30°C。 将厚片预热基石出上双向拉伸, 预热温度 125°C , 拉 伸比 3x3倍(即纵向拉伸比 3倍, 横向拉伸比 3倍); 再做定型处理, 处理温度 125 °C , 处理时间 60s。 后采用丁酮萃取薄膜中的液体石蜡, 干燥后在 145°C进 行定型处理, 拉伸倍率 1.4倍, 制得聚烯烃微孔膜成品后收卷。 比较例 1:
将 30% (重量) 的高密度聚乙烯(熔点 133 °C )投入双螺杆挤出机(直径 78mm, L/D=50、 强混炼型) 中, 用计量泵通过侧向喂料口加入 70% (重量) 的液体石蜡(运动黏度 90cst/40°C ), 在 200°C、 150转 /分的条件下熔融混炼调 制成溶液, 将该溶液通过 T-型模头 (模唇开口度 0.8mm, 模头温度 200°C )和 常规的冷辊(直径 800mm )加气刀铸片方式得到厚片, 辊筒温度 15 °C。 将厚片 预热基础上双向拉伸, 预热温度 125°C , 拉伸比 3x3倍。 定型处理, 处理温度 125 °C , 处理时间 10s。 后采用丁酮萃取薄膜中的液体石蜡, 干燥后在 125°C进 行定型处理, 拉伸倍率 1.4倍, 制得聚烯烃微孔膜成品后收卷。
比较例 2:
将 30% (重量) 的聚丙烯(熔点 167°C )投入双螺杆挤出机(直径 78mm、 L/D=50、 强混炼型) 中, 用计量泵通过侧向喂料口加入 70% (重量)的液体石 蜡(运动黏度 90cst/40°C ), 在 200°C、 150转 /分的条件下熔融混炼调制成溶液, 将该溶液通过 T-型模头 (模唇开口度 0.8mm, 模头温度 200°C )和常规的冷辊 (直径 800mm )加气刀铸片方式得到厚片, 辊筒温度 30°C。 将厚片预热基础上 双向拉伸, 预热温度 125°C , 拉伸比 3x3倍。 定型处理, 处理温度 125°C , 处理 时间 10s。 后采用丁酮萃取薄膜中的液体石蜡, 干燥后在 125°C进行定型处理, 拉伸倍率 1.4倍, 制得聚烯烃微孔膜成品后收卷。
实施例与比较例比较结果见表 1。 表 1
Figure imgf000011_0001
将本发明实施例与比较例 1、 2相比可以看出, 采用了本发明的铸片方 式得到的微孔膜, 相比常规铸片方式得到的微孔膜结构更均匀, 透气性得到改 善。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种上下表面结构对称的聚烯烃微孔膜制备方法, 其特征在于, 包括下 述步骤:
1 )、 将聚烯烃树脂与稀释剂混合, 所述聚烯烃树脂与稀释剂重量比为 1-6:
4-9;
2 )、 采用挤出流延方式将上述混合物通过口模挤出冷辊铸片后得到厚片;
3 )、 将厚片预热后进行纵横向拉伸;
4 )、 定型处理;
5 )、 萃取稀释剂并干燥;
6 )、 横向拉伸定型处理;
7 )、 收卷。
2、 根据权利要求 1 所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述聚烯烃树脂为高密度聚乙烯、 中密度聚乙烯、 低密度聚 乙烯、 线性低密度聚乙烯、 超高分子量聚乙烯、 聚丙烯、 乙烯与丙烯或丁烯、 辛烯、 己烯共聚物中的一种, 或者是上述物质的混合物。
3、 根据权利要求 1 所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述的稀释剂为碳氢化合物: 壬烷、 奈烷、 液体石蜡、 固体 石蜡; 或为酯类化合物: 邻苯二曱酸二辛酯、 邻苯二曱酸二丁酯、 硬脂酸酯; 或者是上述化合物的混合物。
4、 根据权利要求 2 所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述步骤 1 ) 中, 采用多种聚烯烃树脂时需先通过高混机混 合, 或在密炼机或挤出机中进行, 之后进一步与稀释剂的混合在高温反应釜或 挤出机内进行, 所述聚烯烃树脂与稀释剂的混合温度为 180 ~ 240°C。
5、 根据权利要求 1 所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述步骤 2 ) 中, 将混合均匀的聚合物和稀释剂溶液通过挤 出机流延、 冷辊铸片获得厚片是在挤出铸片过程中, 在铸片上下表面分别安装 两直径相同的辊筒, 或者是在大辊筒冷却和气刀辅助贴片装置上, 在气刀一面 辅助加装一辊筒辅助冷却而得到厚片。
6、 根据权利要求 5 所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述挤出机口模选用 T-型或衣架式口模, 其口模温度 180 ~ 240 °C , 所述辊筒直径 200 ~ 1000mm, 辊筒温度 15 ~ 50°C。
7、 根据权利要求 1 所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述步骤 3 ) 中, 预热在烘箱中进行, 或通过辊筒预热, 其 中预热温度 100 ~ 150°C , 预热时间 l ~ 100s, 预热后进行双向拉伸, 其为先纵 后横的分步拉伸, 或是同步拉伸, 所述纵向拉伸比 3 ~ 7倍, 横向拉伸比 3 ~ 9 倍, 拉伸温度 100 ~ 150°C。
8、 根据权利要求 1 所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法,其特征在于,所述步骤 4 )中经过拉伸后的薄膜定型处理温度为 100 ~ 150°C , 处理时间 1 ~ lOOSo
9、 根据权利要求 1 所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述步骤 5 ) 中的萃取剂为烃类、 氯代烃、 氟化烃或酮类溶 剂中的一种,或采用非易燃易爆且不含 素的具有高度环保安全性的有机溶剂。
10、 根据权利要求 9所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述烃类溶剂为戊烷、 己烷、 庚烷、 癸烷, 氯代烃为三氯曱 烷或四氯化碳, 酮类溶剂为丙酮或丁酮, 所述有机溶剂为二乙二醇曱醚、 二羟 乙基丁醚、 二乙二醇单乙醚或二乙二醇二乙醚。
11、 根据权利要求 1所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述步骤 6 )之横向拉伸定型处理后还进行二次热定型处理, 其中热定型处理温度 100 ~ 150°C , 处理时间 1 ~ 100秒, 拉伸倍率 1 ~ 1.5倍。
12、 根据权利要求 1所述的一种上下表面结构对称的聚烯烃微孔膜制备方 法, 其特征在于, 所述步骤 1 ) 中, 还添加有 5 ~ 15%填料, 所述填料为二氧化 硅、 二氧化钛、 碳酸钙中的一种或它们的混合物。
13、根据权利要求 1或 12所述的一种上下表面结构对称的聚烯烃微孔膜制 备方法, 其特征在于, 所述步骤 1 ) 中, 还添加有 1 ~ 5%的成核剂或 /和 0.1 ~ 0.5%的抗氧剂, 所述成核剂选用脂肪羧酸金属化合物、 山梨醇苄叉衍生物、 芳 香族羧酸金属化合物、 有机磷酸盐和木质酸及其衍生物类、 苯曱酸钠和双羧基 铝等中的一种或它们的混合物, 所述抗氧剂选用聚烯烃中常用的 1010或 1076 与 168配合使用。
PCT/CN2010/078747 2009-11-16 2010-11-15 一种上下表面结构对称的聚烯烃微孔膜制备方法 WO2011057585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910109637.3 2009-11-16
CN2009101096373A CN101724170B (zh) 2009-11-16 2009-11-16 一种上下表面结构对称的聚烯烃微孔膜制备方法

Publications (1)

Publication Number Publication Date
WO2011057585A1 true WO2011057585A1 (zh) 2011-05-19

Family

ID=42445769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078747 WO2011057585A1 (zh) 2009-11-16 2010-11-15 一种上下表面结构对称的聚烯烃微孔膜制备方法

Country Status (2)

Country Link
CN (1) CN101724170B (zh)
WO (1) WO2011057585A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904271A (zh) * 2014-04-23 2014-07-02 深圳市星源材质科技股份有限公司 高性能复合隔膜的制备方法及复合隔膜

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724170B (zh) * 2009-11-16 2012-02-15 深圳市星源材质科技股份有限公司 一种上下表面结构对称的聚烯烃微孔膜制备方法
CN102153771B (zh) * 2010-11-12 2012-10-31 深圳市星源材质科技股份有限公司 聚烯烃微孔膜制备方法及其应用
CN102241832B (zh) * 2011-05-14 2013-08-28 中材科技股份有限公司 聚烯烃薄膜及其制备方法
CN102320133A (zh) * 2011-05-18 2012-01-18 新乡市中科科技有限公司 一种聚烯烃电池隔膜及其制备方法
CN102500248A (zh) * 2011-11-21 2012-06-20 上海交通大学 一种超高分子量聚乙烯微孔膜的制备方法
CN102580571B (zh) * 2012-03-15 2014-04-16 上海交通大学 一种超高分子量聚乙烯微滤膜的制备方法
KR102597627B1 (ko) * 2012-11-06 2023-11-02 셀가드 엘엘씨 공중합체 멤브레인, 섬유, 제품 및 방법
CN103030863B (zh) * 2012-12-28 2018-04-06 广东美联新材料股份有限公司 一种透气母粒及利用该母粒制造透气膜的方法
CN103087410B (zh) * 2013-01-16 2017-06-20 合肥杰事杰新材料股份有限公司 一种聚丙烯微孔电池膜及其制备方法
CN103143272B (zh) * 2013-03-08 2016-04-06 北京德源通环保科技有限公司 一种聚乙烯微孔膜的制备方法
CN103522550A (zh) * 2013-10-27 2014-01-22 中国乐凯集团有限公司 一种锂离子电池用聚烯烃微孔膜的制备方法及微孔膜
CN106103556B (zh) * 2014-03-24 2019-06-07 东丽株式会社 微多孔塑料膜的制造方法及微多孔塑料膜的制造装置
CN103921449B (zh) * 2014-04-23 2017-02-15 深圳市星源材质科技股份有限公司 超薄高强聚烯烃微孔膜的制备方法及聚烯烃微孔膜
CN104064706B (zh) * 2014-06-11 2017-01-11 青岛中科华联新材料股份有限公司 一种孔径和形貌均匀的锂离子电池隔膜的生产工艺
CN107599435A (zh) * 2017-09-28 2018-01-19 中国科学技术大学 一种聚烯烃微孔膜及其制备方法
CN108102189B (zh) * 2017-12-15 2021-03-26 广东昱升个人护理用品股份有限公司 一种高透明度的聚烯烃微孔透气膜及其制备方法和应用
EP3719061A4 (en) 2018-08-31 2021-05-05 Lg Chem, Ltd. CROSS-LINKED POLYOLEFIN SEPARATOR AND CORRESPONDING MANUFACTURING PROCESS
CN109499392A (zh) * 2018-10-16 2019-03-22 上海恩捷新材料科技有限公司 一种亲水性聚乙烯微孔膜及其制备方法
CN109200834A (zh) * 2018-10-16 2019-01-15 上海恩捷新材料科技有限公司 一种亲水性聚烯烃微孔膜及其制备方法
CN111416085B (zh) * 2019-01-08 2024-03-29 湖北江升新材料有限公司 超高分子量聚乙烯电池隔膜的制备方法
CN110165122B (zh) * 2019-05-15 2022-03-04 乐凯胶片股份有限公司 聚乙烯微孔膜及其制备方法和应用
CN111592717B (zh) * 2020-05-28 2022-05-13 四川大学 一种含聚四氟乙烯类改性剂的聚丙烯微孔膜及其制备方法
CN114347521A (zh) * 2020-10-14 2022-04-15 浙江省化工研究院有限公司 一种非定向pvf薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887581A (zh) * 2005-06-30 2007-01-03 佛山塑料集团股份有限公司 聚烯烃微多孔膜的制作方法
CN101208379A (zh) * 2005-06-24 2008-06-25 东燃化学株式会社 聚烯烃多微孔膜的制造方法
CN101516975A (zh) * 2006-09-20 2009-08-26 旭化成电子材料株式会社 聚烯烃微多孔膜及非水电解液电池用隔膜
CN101724170A (zh) * 2009-11-16 2010-06-09 深圳市星源材质科技股份有限公司 一种上下表面结构对称的聚烯烃微孔膜制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208379A (zh) * 2005-06-24 2008-06-25 东燃化学株式会社 聚烯烃多微孔膜的制造方法
CN1887581A (zh) * 2005-06-30 2007-01-03 佛山塑料集团股份有限公司 聚烯烃微多孔膜的制作方法
CN101516975A (zh) * 2006-09-20 2009-08-26 旭化成电子材料株式会社 聚烯烃微多孔膜及非水电解液电池用隔膜
CN101724170A (zh) * 2009-11-16 2010-06-09 深圳市星源材质科技股份有限公司 一种上下表面结构对称的聚烯烃微孔膜制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI TEIJUN: "Phase Separation Forming Technology for Polyolefin Microporous Membrane", CHINA PLASTICS, vol. 20, no. 8, August 2006 (2006-08-01), pages 9 *
WEN YAOXIAN: "Functional Plastic Film", CHINA MACHINE PRESS, September 2005 (2005-09-01), pages 94 - 96 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904271A (zh) * 2014-04-23 2014-07-02 深圳市星源材质科技股份有限公司 高性能复合隔膜的制备方法及复合隔膜

Also Published As

Publication number Publication date
CN101724170A (zh) 2010-06-09
CN101724170B (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2011057585A1 (zh) 一种上下表面结构对称的聚烯烃微孔膜制备方法
WO2011057587A1 (zh) 一种聚烯烃微孔膜制备方法
US7887727B2 (en) Preparing method of microporous polyolefin film through effective extrusion
US11603443B2 (en) Composite porous membrane and preparation method therefor and use thereof
CN102986059B (zh) 具有提高的生产率以及易于控制的物理性能的微孔聚烯烃膜的制备方法
US20070092705A1 (en) Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof
EP1882005A1 (en) Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof
WO2011057584A1 (zh) 一种结构均匀的聚烯烃微孔膜制备方法
KR101410279B1 (ko) 폴리올레핀 미다공막의 제조 방법
CN102580571B (zh) 一种超高分子量聚乙烯微滤膜的制备方法
WO2016194962A1 (ja) 微多孔膜製造方法、微多孔膜、電池用セパレータ及び二次電池
US20120168976A1 (en) Microporous polyolefin and method of producing the same
CN108819279B (zh) 一种高孔隙率聚丙烯微孔膜及其制备方法
KR101354708B1 (ko) 초고분자량 폴리에틸렌을 포함하는 리튬이차전지용다성분계 분리막의 제조방법 및 이로부터 제조된리튬이차전지용 다성분계 분리막
EP1963408A1 (en) Microporous film of semicrystalline polymer and method for preparing the same
JP2016121354A5 (zh)
CN110350131B (zh) 一种相转化法制备复合聚丙烯微孔膜的方法及其制品和用途
JP4600970B2 (ja) ポリオレフィン微多孔膜の製造方法
KR100506159B1 (ko) 전지격리막용 다공성 폴리에틸렌 필름 및 이의 제조방법
KR100536341B1 (ko) 전지격리막용 다공성 폴리프로필렌 필름 및 이의 제조방법
KR101474728B1 (ko) 고강도 폴리비닐리덴플루오라이드 중공사 분리막의 제조방법
JP2006056929A (ja) ポリオレフィン製微多孔膜の製造方法
JP2007308522A (ja) ポリエチレン微多孔膜およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829549

Country of ref document: EP

Kind code of ref document: A1