WO2011055446A1 - 太陽電池モジュール - Google Patents
太陽電池モジュール Download PDFInfo
- Publication number
- WO2011055446A1 WO2011055446A1 PCT/JP2009/068981 JP2009068981W WO2011055446A1 WO 2011055446 A1 WO2011055446 A1 WO 2011055446A1 JP 2009068981 W JP2009068981 W JP 2009068981W WO 2011055446 A1 WO2011055446 A1 WO 2011055446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- reflecting surface
- light reflecting
- inclination angle
- front plate
- Prior art date
Links
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 abstract description 5
- 229920005989 resin Polymers 0.000 description 25
- 239000011347 resin Substances 0.000 description 25
- 238000007789 sealing Methods 0.000 description 21
- 238000010248 power generation Methods 0.000 description 17
- 239000000758 substrate Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000001932 seasonal effect Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 5
- 206010052128 Glare Diseases 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000004313 glare Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 239000005341 toughened glass Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PQIJHIWFHSVPMH-UHFFFAOYSA-N [Cu].[Ag].[Sn] Chemical compound [Cu].[Ag].[Sn] PQIJHIWFHSVPMH-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910000969 tin-silver-copper Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/20—Optical components
- H02S40/22—Light-reflecting or light-concentrating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- the present invention relates to a solar cell module having a solar cell element.
- a conventional solar cell module for example, as described in Patent Document 1, a plurality of solar cell elements are provided between a cover glass (front plate) and a V sheet having a plurality of V-groove light reflecting surfaces. An array is known.
- An object of the present invention is to provide a solar cell module that can suppress light leakage from the front plate and improve light confinement.
- the inventors of the present invention appropriately set the incident sunlight in the solar cell module by setting the inclination angle of the light reflection surface of the back plate to an appropriate range. And the fact that sunlight can be efficiently concentrated on the solar cell element has been found, and the present invention has been completed.
- the present invention provides a plurality of solar cell elements, a front plate disposed on the front side of the solar cell element, and disposed on the back side of the solar cell element, and sunlight incident from the front plate is directed to the front plate side.
- the solar cell module provided with a back plate having a light reflecting surface to be reflected toward, the light reflecting surface is inclined with respect to the arrangement direction of the solar cell elements so as to be concave, and the refractive index of the front plate is set.
- the inclination angle ⁇ of the light reflection surface at the concave pole side portion of the light reflection surface is larger than 0.5 ⁇ sin ⁇ 1 (1 / n) rad.
- the inclination angle ⁇ of the light reflecting surface is 0.5 ⁇ sin ⁇ 1 (1 / n) rad at a position corresponding to the vicinity of the side edge of each solar cell element.
- the light reflecting surface is inclined with respect to the arrangement direction of the solar cell elements so as to be concave in the gap region of each solar cell element, and the solar cell element side in the gap region of each solar cell element Of the light reflecting surface is smaller than 0.5 ⁇ sin ⁇ 1 (1 / n) rad.
- the inclination angle ⁇ of the light reflection surface on the solar cell element side in the gap region of each solar cell element is smaller than the inclination angle ⁇ of the light reflection surface in the concave pole side portion of the light reflection surface.
- Sunlight incident from the direction is easily confined in the solar cell module. Thereby, the confinement property of sunlight in the solar cell module can be further improved.
- the condensing magnification with respect to the arrangement direction of the solar cell elements is a
- the distance from the solar cell element to the surface of the front plate is t
- the concave shape of the light reflecting surface The inclination angle ⁇ of the light reflecting surface at the pole side portion is It is.
- the sunlight totally reflected on the surface of the front plate is uniformly incident on the front surface of the solar cell element, the local heat generation phenomenon (hot spot phenomenon) of the solar cell element is prevented. be able to. Further, it is possible to prevent the back plate from being thickened and to prevent the solar cell module from being thickened accordingly.
- the present invention light leakage from the front plate can be suppressed and light confinement can be improved. Thereby, even if the width of the solar cell element is reduced, it is possible to efficiently collect sunlight in the solar cell element and improve the power generation efficiency. In addition, when the solar cell module is installed on the roof of a house or the roof of an automobile, glare is less likely to occur, so that the appearance can be improved.
- FIG. 2 is a conceptual diagram for deriving a preferable inclination angle range of the light reflecting surface shown in FIG. 1.
- FIG. 2 is a conceptual diagram for deriving a preferable inclination angle range of the light reflecting surface shown in FIG. 1.
- FIG. 2 is a conceptual diagram for deriving a preferable inclination angle range of the light reflecting surface shown in FIG. 1.
- It is a table
- FIG. 1 is a cross-sectional view showing an embodiment of a solar cell module according to the present invention.
- a solar cell module 1 of the present embodiment includes a plurality of solar cell elements 2, a sealing resin portion 3 made of a sealing resin for fixing each solar cell element 2, and the sealing resin portion 3.
- the solar cell element 2 has an n / p / p + junction structure in which an n layer and a p layer are formed on a p-type silicon wafer by phosphorus diffusion and boron diffusion, for example.
- the solar cell element 2 is preferably a double-sided light receiving type capable of generating power on both sides. At this time, it is preferable that the bifaciality (power generation performance ratio of both surfaces) of the solar cell element 2 is 0.5 or more.
- the solar cell elements 2 are arranged at a substantially equal pitch P.
- the sealing resin forming the sealing resin portion 3 for example, ethylene vinyl acetate copolymer resin (EVA resin), polyvinyl butyral resin, polyethylene resin, or the like is used.
- EVA resin ethylene vinyl acetate copolymer resin
- the front plate 4 is formed of, for example, a white plate tempered glass substrate.
- the back plate 5 is formed of a transparent substrate such as a heat-resistant glass substrate or a transparent resin.
- the light reflecting surface 5a of the back plate 5 is formed in a planar uneven shape.
- the light reflecting surface 5 a is a module in a line (cell interval center line) A passing through the center of the gap region of each solar cell element 2 and a line (cell center line) B passing through the center of the solar cell element 2. It is formed so as to be concave with respect to the back side. That is, the light reflecting surface 5a is formed to be a trough (concave pole) in the cell interval center line A and the cell center line B.
- the thickness of the back plate 5 at the cell interval center line A is preferably smaller than the thickness of the back plate 5 at the cell center line B.
- the inclination angle ⁇ (radian unit) of the light reflecting surface 5a is set as follows.
- the cell vicinity line D is a line passing through a position corresponding to 20% of the width S of the solar cell element 2 from the cell end line C toward the cell interval center line A side.
- the vicinity region Y of the cell edge line C ⁇ ⁇ 0.5 ⁇ sin ⁇ 1 (1 / n) It has a point.
- the vicinity region Y is a region that occupies a length corresponding to ⁇ 20% of the width S of the solar cell element 2 with respect to the cell edge line C.
- the inclination angle ⁇ of the light reflecting surface 5a in the region X between the cell interval center line A and the cell vicinity line D is: Using the angle ⁇ , which is the solution of the equation given by 0.5 ⁇ sin ⁇ 1 (1 / n) rad ⁇ ⁇ + 8 ° It is particularly preferred that
- the solar cell module 1 of this embodiment when sunlight enters the module from the front side of the module, the sunlight passes through the front plate 4 and the sealing resin portion 3 and is a light reflecting surface of the back plate 5. Reflected by 5a, the reflected light is directly incident on the back surface of the solar cell element 2, and the reflected light is totally reflected on the surface of the front plate 4 (contact interface between the front plate 4 and the atmosphere). Incident on the front of the.
- FIG. 2 is a cross-sectional view showing a modification of the solar cell module 1 shown in FIG.
- the solar cell module 1 shown in the figure is different from the solar cell module 1 described above only in the shape of the back plate 5.
- the light reflecting surface 5a of the back plate 5 is formed in a curved irregular shape.
- the light reflecting surface 5a is formed to be concave with respect to the module back side at the cell interval center line A and the cell center line B.
- the inclination angle ⁇ of the light reflecting surface 5a in the region X between the cell interval center line A and the cell vicinity line D and in the vicinity region Y of the cell end line C is the same as described above.
- the inclination angle ⁇ at this time is an angle at a tangent to the light reflecting surface 5a.
- an inflection point F of the curved light reflecting surface 5a exists near the position corresponding to the vicinity region Y on the light reflecting surface 5a.
- the inclination angle ⁇ in the region X is defined by measuring the average inclination angle from the cell interval center line A to the inflection point F.
- the inclination angle ⁇ of the light reflecting surface 5a is given by the above formula.
- solar rays drawn back to the solar cell element 2 by Snell total reflection conditions due to the refractive index difference between the front plate 4 and the air layer. See).
- the inclination angle ⁇ of the light reflecting surface 5a is set to be larger than 0.5 ⁇ sin ⁇ 1 (1 / n) rad at the concave pole side portion of the light reflecting surface 5a in the gap region of each solar cell element 2.
- the solar cell module since the solar cell module is thickened on the light reflection surface 5a where the inclination angle ⁇ is too steep, the solar cell module may increase in weight and cause a problem of installation space. Furthermore, depending on the season, sunlight may not be sufficiently concentrated on the solar cell element 2, and power generation fluctuations are large, which is not practically preferable.
- the solar light flux incident on the gap region between the solar cell elements 2 is approximately equally divided, the sunlight is uniformly collected on the front surface of the solar cell element 2 and the conditions for suppressing the leak light are formulated.
- the gap t between the light receiving surface of the solar cell element 2 and the surface of the front plate 4 is used. It becomes. Converting this, It becomes.
- the inclination angle ⁇ of the light reflecting surface 5a is determined with the angle ⁇ calculated from the above conditions as a reference.
- the inclination angle ⁇ of the light reflecting surface 5a suitable for minimizing the performance variation due to seasonal variation and the deterioration of the appearance due to the glare of the solar cell module while satisfying the total reflection condition on the front plate 4
- the refractive index of the front plate 4 is n
- the inclination angle ⁇ of the light reflecting surface 5a is expressed in radians.
- the inclination angle ⁇ of the light reflecting surface 5a is expressed in radians, and ⁇ ⁇ 0.5 ⁇ sin ⁇ 1 (1 / n).
- the solar cell module 1 since the leakage of the light reflected by the light reflecting surface 5a to the outside of the solar cell module 1 is suppressed, the solar cell module 1 is glaring even when the solar cell module 1 is installed on the roof of a house or the roof of an automobile. Appearance can be prevented and excellent design can be achieved.
- the solar cell module 1 excellent in practicality and reliability can be provided.
- the thickening of the back plate 5 is prevented, the thickening of the solar cell module 1 can be prevented. Therefore, it is possible to avoid an increase in size and weight of the solar cell module 1.
- the present invention is not limited to the above embodiment.
- the back plate 5 having the light reflecting surface 5a is formed of a heat-resistant glass substrate or the like.
- the structure of the back plate 5 is not particularly limited, and for example, the back plate 5 is sealed with EVA resin or the like. It is also possible to form with the stop resin 3. In this case, the reflection loss at the interface is reduced and the power generation performance can be improved.
- the roughened surface may be processed on the bonding interface between the front plate 4 and the resin sealing portion 3.
- the arithmetic average roughness at the bonding interface between the front plate 4 and the resin sealing portion 3 is Ra
- the average interval Sm of the unevenness at the bonding interface between the front plate 4 and the resin sealing portion 3 Ra / It is preferable to perform rough surface roughening so that Sm is 0.8 or less.
- the light reflected by the light reflecting surface 5a is prevented from generating unnecessary light scattering at the bonding interface between the front plate 4 and the sealing resin portion 3, the light to the outside of the solar cell module 1 is suppressed. It is possible to further suppress the leakage.
- a double-sided light-receiving solar cell element having a junction structure of n / p / p + in which an n layer and a p layer are formed by phosphorus diffusion and boron diffusion using a p-type silicon wafer as a substrate is prepared.
- the solar cell element has a bi-faciality (ratio of power generation efficiency on both sides) of 0.85 and a surface conversion efficiency of 15%.
- the cell size of the solar cell element is 15 mm ⁇ 125 mm ⁇ thickness 200 ⁇ m.
- the surface of the solar cell element is subjected to antireflection processing and texturing processing using an optical thin film. That is, the solar cell element has a structure that reduces power generation loss due to surface reflection loss.
- a 2 mm wide nickel-plated copper interconnector is soldered to a solar cell element with a tin-silver-copper lead-free solder to form three series cell strings.
- a gap is formed between the solar cell elements, and the arrangement pitch P of the solar cell elements is set to 30 mm.
- a white plate tempered glass substrate having a refractive index of 1.49 and a thickness of 5 mm is used as the front plate. And the external dimension of a front plate is processed into 150 mm x 150 mm.
- the back plate As the back plate, a heat-resistant glass substrate having a size of 150 mm ⁇ 150 mm and a thickness of 10 mm is used. This heat-resistant glass substrate is cut out by end milling using a diamond tool, and further polished by buffing so that the surface roughness Rz is 0.5 ⁇ m or less to form an optical element-shaped back plate.
- the bottom of the back plate (thin wall portion) is subjected to R processing of 0.8 mm by milling using a diamond single crystal R bite. As a result, cracks are generated in the thin portion of the back plate and moisture is infiltrated into the module, thereby preventing deterioration in reliability and deterioration in appearance quality due to glare.
- the surface roughness Rz of the light reflecting surface forming the optical element shape is extremely important in obtaining high power generation efficiency, more preferably 0.4 ⁇ m or less, and further preferably 0.3 ⁇ m or less. . That is, the light reflection surface of the back plate has high smoothness, so that sunlight is diffusely reflected by the light reflection surface. For this reason, since the optical conditions determined by the total reflection conditions on the surface of the front plate are not satisfied, it is possible to prevent sunlight from leaking outside the solar cell module, thereby avoiding a phenomenon that causes power generation loss. .
- the shape of the back plate is determined as follows in order to enhance the sunlight condensing performance, suppress the performance degradation due to seasonal fluctuations, and prevent the design from deteriorating due to the flickering reflected reflected light. That is, the cell interval center line A and the cell center line B (see FIG. 1) substantially match the thin portion of the back plate. Further, the profile of the inclination angle ⁇ of the light reflecting surface in the region from the cell interval center line A to the cell end line C (see FIG. 1) follows the following changes.
- the inclination angle ⁇ of the light reflecting surface is determined as at least ⁇ > 21 °, preferably 21 ° ⁇ ⁇ 40 °.
- the inclination angle ⁇ of the light reflecting surface is within the above range.
- the inclination angle ⁇ decreases.
- the solar rays incident from all directions can be transmitted to the sun. Even if the installation orientation of the solar cell module is not oriented toward the south, the solar light can be efficiently converged on the cell.
- the cells are laminated by using a sealing resin film for sealing the cells to form a module.
- a sealing resin film for sealing the cell two sheets of an ethylene-vinyl acetate copolymer resin film (EVA film: manufactured by Mitsui Chemicals Fabro) having a thickness of 600 ⁇ m are prepared.
- EVA film ethylene-vinyl acetate copolymer resin film
- the front plate, the sealing resin film, the cell strings, and the back plate are laid up, and vacuum dry laminating is performed under a hot press condition at 140 ° C. for 17 minutes by a conventional diaphragm type vacuum dry laminator.
- a concentrating solar cell module is manufactured by performing aluminum vapor deposition processing on the back plate side by a vacuum vapor deposition method.
- the solar cell module thus obtained was placed at an angle of 60 °, and the power generation performance by the solar simulator was evaluated under irradiation conditions simulating winter morning and evening. Compared to the case where no gradual decrease is provided, an improvement of about 13% is seen as shown in FIG.
- the power generation performance ratio when the inclination angle ⁇ of the light reflecting surface is kept constant at 34 ° is 100% (reference value).
- the inclination angle ⁇ of the light reflecting surface in the region from the cell interval center line A to the cell end line C is constant at 20 ° ⁇ 0.5 ⁇ sin ⁇ 1 (1 / n). In other words, even on the side close to the cell interval center line A, the region where ⁇ > 0.5 ⁇ sin ⁇ 1 (1 / n) is not provided.
- the power generation capacity was reduced by 30% at the installation angle simulating the winter season. Further, it has been found that the efficiency decreases by 47% or more under the condition where the solar cell module is irradiated with straight light from substantially the front. Therefore, the back plate here leaks most of the sunlight, does not contribute to the concentration of light on the cell, and can be said to have poor practicality.
- the present invention provides a solar cell module capable of suppressing light leakage from the front plate and improving light confinement.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Φ>0.5×sin-1(1/n)
である。ここで、セル近傍線Dは、セル端線Cからセル間隔中心線A側に向けて太陽電池素子2の幅Sの20%に相当する長さの位置を通る線である。
Φ<0.5×sin-1(1/n)
となる点を有する。ここで、近傍領域Yは、セル端線Cに対して太陽電池素子2の幅Sの±20%に相当する長さを占める領域である。
0.5×sin-1(1/n)rad<Φ<θ+8°
であることが特に好ましい。
であるのが極めて適切である。
まず、p型シリコンウェハーを基板とし、リン拡散及びボロン拡散によりn層及びp層を形成したn/p/p+なる接合構造を有する両面受光型の太陽電池素子(セル)を用意する。この太陽電池素子のバイフェイシャリティー(両面の発電効率の比率)は0.85であり、表面変換効率は15%である。太陽電池素子のセルサイズは、15mm×125mm×厚み200μmである。太陽電池素子の表面には、光学薄膜による反射防止加工及びテクスチャーリング加工が施されている。つまり、太陽電池素子は、表面反射ロスによる発電量損失を減らす構造とされている。
Φ>0.5×sin-1(1/n)=21°
であり、好ましくは、
0.5×sin-1(1/n)<Φ<θ
とされる。ここで、θは、上述したように、太陽電池素子の配列方向に対する集光倍率をa、太陽電池素子から前面板の表面までのギャップをtとしたときに、
0.5×sin-1(1/n)rad<Φ<θ+8°
から定められる。具体的には、本実施例ではθ=28°であり、特に好ましくは21°<Φ<36°、更に好ましくは25°<Φ<34°、極めて好ましくは27°<Φ<32°とされる。
とされる。このようにセル間隔中心線Aからセル端線Cに至る領域において、Φ=0.5×sin-1(1/n)を跨ぐ変化点を設けることにより、あらゆる方向から入射する太陽光線を太陽電池モジュール内部に閉じ込め、太陽電池モジュールの設置方位がたとえ真南向きでなくとも、太陽光を効率良くセルに収束させることが可能となる。
上記実施例に記載の背面板について、セル間隔中心線Aからセル端線Cに至る領域における光反射面の傾斜角度Φが20°<0.5×sin-1(1/n)で一定であり、セル間隔中心線Aに近い側であっても、Φ>0.5×sin-1(1/n)なる領域を設けない形状とした。
Claims (4)
- 複数の太陽電池素子と、前記太陽電池素子の前面側に配置された前面板と、前記太陽電池素子の背面側に配置され、前記前面板から入射された太陽光を前記前面板側に向けて反射させる光反射面を有する背面板とを備えた太陽電池モジュールにおいて、
前記光反射面は、凹状となるように前記太陽電池素子の配列方向に対して傾斜しており、
前記前面板の屈折率をnとしたときに、前記光反射面の凹状極点側の部分における前記光反射面の傾斜角度Φは、0.5×sin-1(1/n)radよりも大きいことを特徴とする太陽電池モジュール。 - 前記各太陽電池素子の側端近傍に対応する位置には、前記光反射面の傾斜角度Φが0.5×sin-1(1/n)radとなる点が存在していることを特徴とする請求項1記載の太陽電池モジュール。
- 前記光反射面は、前記各太陽電池素子の間隙領域において凹状となるように、前記太陽電池素子の配列方向に対して傾斜しており、
前記各太陽電池素子の間隙領域における前記太陽電池素子側の前記光反射面の傾斜角度Φは、0.5×sin-1(1/n)radよりも小さいことを特徴とする請求項1または2記載の太陽電池モジュール。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/505,302 US20120211054A1 (en) | 2009-11-06 | 2009-11-06 | Solar cell module |
PCT/JP2009/068981 WO2011055446A1 (ja) | 2009-11-06 | 2009-11-06 | 太陽電池モジュール |
JP2011539231A JP5218670B2 (ja) | 2009-11-06 | 2009-11-06 | 太陽電池モジュール |
DE112009005346T DE112009005346T5 (de) | 2009-11-06 | 2009-11-06 | Solarzellenmodul |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/068981 WO2011055446A1 (ja) | 2009-11-06 | 2009-11-06 | 太陽電池モジュール |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011055446A1 true WO2011055446A1 (ja) | 2011-05-12 |
Family
ID=43969689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068981 WO2011055446A1 (ja) | 2009-11-06 | 2009-11-06 | 太陽電池モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120211054A1 (ja) |
JP (1) | JP5218670B2 (ja) |
DE (1) | DE112009005346T5 (ja) |
WO (1) | WO2011055446A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013513938A (ja) * | 2009-12-14 | 2013-04-22 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | 両面性のセルを有する光起電性モジュール用の反射素子 |
US8853523B2 (en) | 2012-05-15 | 2014-10-07 | Panasonic Corporation | Solar cell module and manufacturing method of the same |
KR20150044699A (ko) * | 2013-10-17 | 2015-04-27 | 엘지전자 주식회사 | 태양 전지 모듈 |
JP2015230938A (ja) * | 2014-06-04 | 2015-12-21 | 信越化学工業株式会社 | 太陽電池モジュールおよびその製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9714756B2 (en) * | 2013-03-15 | 2017-07-25 | Morgan Solar Inc. | Illumination device |
DE202015102238U1 (de) * | 2015-05-04 | 2015-06-01 | Solarworld Innovations Gmbh | Photovoltaik-Zelle und Photovoltaik-Modul |
US20220181509A1 (en) * | 2015-05-04 | 2022-06-09 | Meyer Burger (Germany) Gmbh | Photovoltaic cell and photovoltaic module |
FR3042344B1 (fr) * | 2015-10-08 | 2018-02-16 | Athelios | Dispositif optique photovoltaique a filtration plasmonique frontale et multirefringence variable arriere et concave local |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712567A (en) * | 1980-06-02 | 1982-01-22 | Exxon Research Engineering Co | Solar battery module and method of increasing power of same |
JPH02213173A (ja) * | 1989-02-13 | 1990-08-24 | Mitsubishi Electric Corp | 集光型太陽電池 |
JPH0661519A (ja) * | 1992-06-25 | 1994-03-04 | Siemens Solar Ind Internatl Inc | 反射鏡付き光電池モジュール |
JPH11243225A (ja) * | 1998-02-26 | 1999-09-07 | Hitachi Ltd | 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法 |
JP2001119054A (ja) * | 1999-10-15 | 2001-04-27 | Hitachi Ltd | 集光型太陽光発電装置 |
JP2006344964A (ja) * | 2005-06-06 | 2006-12-21 | General Electric Co <Ge> | 太陽エネルギーシステムの光起電力集中装置 |
WO2009075195A1 (ja) * | 2007-12-10 | 2009-06-18 | Toyota Jidosha Kabushiki Kaisha | 太陽電池モジュール |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3670835B2 (ja) * | 1998-04-22 | 2005-07-13 | 三洋電機株式会社 | 太陽電池モジュール |
JP3404365B2 (ja) | 2000-07-03 | 2003-05-06 | 株式会社日立製作所 | 集光型太陽光発電装置 |
US20090250093A1 (en) * | 2008-04-08 | 2009-10-08 | Zupei Chen | Enhanced concentrator PV pannel |
WO2014199575A1 (ja) * | 2013-06-13 | 2014-12-18 | パナソニックIpマネジメント株式会社 | 集光型光電変換装置及びシステム |
-
2009
- 2009-11-06 US US13/505,302 patent/US20120211054A1/en not_active Abandoned
- 2009-11-06 DE DE112009005346T patent/DE112009005346T5/de not_active Withdrawn
- 2009-11-06 JP JP2011539231A patent/JP5218670B2/ja active Active
- 2009-11-06 WO PCT/JP2009/068981 patent/WO2011055446A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712567A (en) * | 1980-06-02 | 1982-01-22 | Exxon Research Engineering Co | Solar battery module and method of increasing power of same |
JPH02213173A (ja) * | 1989-02-13 | 1990-08-24 | Mitsubishi Electric Corp | 集光型太陽電池 |
JPH0661519A (ja) * | 1992-06-25 | 1994-03-04 | Siemens Solar Ind Internatl Inc | 反射鏡付き光電池モジュール |
JPH11243225A (ja) * | 1998-02-26 | 1999-09-07 | Hitachi Ltd | 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法 |
JP2001119054A (ja) * | 1999-10-15 | 2001-04-27 | Hitachi Ltd | 集光型太陽光発電装置 |
JP2006344964A (ja) * | 2005-06-06 | 2006-12-21 | General Electric Co <Ge> | 太陽エネルギーシステムの光起電力集中装置 |
WO2009075195A1 (ja) * | 2007-12-10 | 2009-06-18 | Toyota Jidosha Kabushiki Kaisha | 太陽電池モジュール |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013513938A (ja) * | 2009-12-14 | 2013-04-22 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | 両面性のセルを有する光起電性モジュール用の反射素子 |
US8853523B2 (en) | 2012-05-15 | 2014-10-07 | Panasonic Corporation | Solar cell module and manufacturing method of the same |
KR20150044699A (ko) * | 2013-10-17 | 2015-04-27 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR102044465B1 (ko) | 2013-10-17 | 2019-11-13 | 엘지전자 주식회사 | 태양 전지 모듈 |
JP2015230938A (ja) * | 2014-06-04 | 2015-12-21 | 信越化学工業株式会社 | 太陽電池モジュールおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011055446A1 (ja) | 2013-03-21 |
JP5218670B2 (ja) | 2013-06-26 |
US20120211054A1 (en) | 2012-08-23 |
DE112009005346T5 (de) | 2012-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5218670B2 (ja) | 太陽電池モジュール | |
US8039731B2 (en) | Photovoltaic concentrator for solar energy system | |
JP3174549B2 (ja) | 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法 | |
JP4706759B2 (ja) | 太陽電池 | |
US10461206B2 (en) | Solar photovoltaic-thermal system | |
US10594256B2 (en) | Photovoltaic thermal collector | |
JP2008141143A (ja) | 太陽電池モジュール | |
JP5212307B2 (ja) | 太陽電池モジュール | |
JP2011003834A (ja) | 太陽電池モジュール | |
CN114678437B (zh) | 光伏组件 | |
CN102157593A (zh) | 一种聚光发电系统 | |
KR102319732B1 (ko) | 집광 효율이 향상된 건물 일체형 태양광 모듈 | |
KR102586342B1 (ko) | 태양광 모듈 및 이의 제조 방법 | |
JP2016025119A (ja) | 太陽電池モジュールおよび太陽電池モジュールの製造方法 | |
CN105097968A (zh) | 太阳能电池组件 | |
KR101685350B1 (ko) | 태양 전지 모듈 | |
TWI556463B (zh) | Solar cell panel and manufacturing method thereof | |
WO2011091681A1 (zh) | 一种曲面聚光光伏接收器 | |
JP2011124510A (ja) | 太陽電池モジュール | |
CN108231938A (zh) | 一种具有人工石墨高导膜的太阳能电池板及其制造方法 | |
CN213242571U (zh) | 一种具有tir透镜微元结构的聚光面板 | |
US20230420591A1 (en) | Photovoltaic module | |
JP2011096919A (ja) | 太陽電池モジュール | |
KR20090076329A (ko) | 광 흡수를 극대화한 태양광 수광 패널, 그 제조 방법 및이를 포함한 태양 에너지 이용 시스템 | |
WO2019223595A1 (zh) | 发电光伏组件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09851098 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011539231 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13505302 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120090053467 Country of ref document: DE Ref document number: 112009005346 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09851098 Country of ref document: EP Kind code of ref document: A1 |