WO2011054795A1 - Fluorurethane als additive in einer photopolymer-formulierung - Google Patents

Fluorurethane als additive in einer photopolymer-formulierung Download PDF

Info

Publication number
WO2011054795A1
WO2011054795A1 PCT/EP2010/066591 EP2010066591W WO2011054795A1 WO 2011054795 A1 WO2011054795 A1 WO 2011054795A1 EP 2010066591 W EP2010066591 W EP 2010066591W WO 2011054795 A1 WO2011054795 A1 WO 2011054795A1
Authority
WO
WIPO (PCT)
Prior art keywords
photopolymer formulation
formulation according
desmodur
groups
particularly preferably
Prior art date
Application number
PCT/EP2010/066591
Other languages
English (en)
French (fr)
Inventor
Thomas RÖLLE
Friedrich-Karl Bruder
Thomas Fäcke
Marc-Stephan Weiser
Dennis Hönel
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to IN3890DEN2012 priority Critical patent/IN2012DN03890A/en
Priority to KR1020127014264A priority patent/KR101727770B1/ko
Priority to PL10771479T priority patent/PL2497082T3/pl
Priority to JP2012537365A priority patent/JP2013510203A/ja
Priority to BR112012010471-3A priority patent/BR112012010471B1/pt
Priority to US13/504,357 priority patent/US8999608B2/en
Priority to EP10771479.2A priority patent/EP2497082B1/de
Priority to CN201080060483.4A priority patent/CN102667934B/zh
Priority to RU2012122590/05A priority patent/RU2570662C9/ru
Priority to ES10771479T priority patent/ES2433235T3/es
Publication of WO2011054795A1 publication Critical patent/WO2011054795A1/de

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/2885Compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4887Polyethers containing carboxylic ester groups derived from carboxylic acids other than acids of higher fatty oils or other than resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/715Monoisocyanates or monoisothiocyanates containing sulfur in addition to isothiocyanate sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/776Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/035Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyurethanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/12Photopolymer

Definitions

  • Fluorourethanes as additives in a photopolymer formulation
  • the invention relates to a photopolymer formulation comprising matrix polymers, Schreibmomomere and photoinitiators, the use of the photopolymer formulation for the production of optical elements, in particular for the production of holographic elements and images, a method for exposure of holographic media from the photopolymer formulation and specific fluorourethanes ,
  • AI photopolymer formulations of the type mentioned are described. These include polyurethane-based matrix polymers, acrylic-based writing monomers, and photoinitiators. In the cured state, the writing monomers and the photoinitiators are spatially distributed in the polyurethane matrix. From the WO document is also known to add dibutyl phthalate, a classic plasticizer for engineering plastics, the photopolymer formulation.
  • the refractive index modulation ⁇ produced by the holographic exposure in the photopolymer plays the decisive role.
  • the interference field of signal and reference light beam in the simplest case that of two plane waves
  • the refractive index grating in the photopolymer contains all the information of the signal light beam.
  • diffraction Efficiency Relative to the intensity of the incident reference light is called diffraction efficiency, hereinafter DE as Diffraction Efficiency.
  • DE Relative to the intensity of the incident reference light
  • the DE results from the quotient of the intensity of the light diffracted during the reconstruction and the sum of the intensities of the radiated reference light and the diffracted light.
  • High refractive index acrylates are capable of producing high amplitude refractive index gratings between the lowest refractive index regions and the highest refractive index regions, thereby permitting high DE and high ⁇ holograms in photopolymer formulations.
  • DE depends on the product of ⁇ and the photopolymer layer thickness d. The larger the product, the larger the potential DE (for reflection holograms).
  • the width of the angular range at which the hologram is visible (reconstructed), for example, in monochromatic illumination depends only on the layer thickness d.
  • the width of the Spectral range which contribute to the reconstruction of the hologram can also only from the layer thickness d from.
  • the object of the present invention was to provide a photopolymer formulation which, compared with the known formulations, makes it possible to produce holograms with higher brightness.
  • the fluorourethanes are preferably compounds which have a structural element of the general formula (I)
  • R 1 , R 2 , R 3 are hydrogen and / or independently of one another linear, branched, cyclic or heterocyclic unsubstituted or optionally also with heteroatom-substituted organic radicals, wherein at least one the radicals R 1 , R 2 , R 3 with at least a fluorine atom is substituted.
  • R 1 is particularly preferably an organic radical having at least one fluorine atom.
  • R 1 1 -20 CF 2 groups and / or one or more CF 3 groups particularly preferably 1-15 CF 2 groups and / or one or more CF 3 groups, in particular preferably 1-10 CF 2 Groups and / or one or more CF 3 groups, most preferably 1-8 CF 2 groups and / or one or more CF 3 groups
  • R 2 is a C1-C20 alkyl radical, preferably a C1-C15 alkyl radical particularly preferred a C1-C10 alkyl radical or hydrogen
  • / or R 3 is a C1-C20 alkyl radical, preferably a C1-C15 alkyl group particularly preferably includes a Cl-ClO alkyl radical or hydrogen.
  • the fluorourethanes have uretdione, isocyanurate, biuret, allophanate, polyurea, oxadiazadione and / or iminooxadiazinedione structural elements and / or mixtures of these structural elements.
  • the fluorourethanes may in particular have a refractive index of ⁇ 1.4600, preferably of ⁇ 1.4500, particularly preferably of ⁇ 1.4400 and particularly preferably of ⁇ 1.4300.
  • the fluorourethanes can have a fluorine content of 10-80% by weight of fluorine, preferably of 12.5-75% by weight.
  • Fluorine more preferably from 15-70 wt .-% fluorine and particularly preferably 17.5-65 wt .-% fluorine.
  • the fluorourethanes of the formula (III) are obtainable by reacting isocyanates of the formula R [NCO] n with fluorinated alcohols in a stoichiometric ratio to one another with urethane formation.
  • Preferred isocyanates of the formula R [NCO] n are methyl isocyanate, ethyl isocyanate, the isomeric propyl isocyanates, the isomeric butyl isocyanates, the isomeric pentyl isocyanates, the isomeric hexyl isocyanates, the isomeric heptyl isocyanates, the isomeric octyl isocyanates, the isomeric nonyl isocyanates, the isomeric decyl isocyanates, Stearyl isocyanate, cyclopropyl isocyanate, cyclobutyl isocyanate, cyclopentyl isocyanate, cyclohexyl isocyan
  • isomeric propyl isocyanates are isomeric butyl isocyanates, the isomeric pentyl isocyanates, the isomeric hexyl isocyanates, the isomeric heptyl isocyanates, the isomeric octyl isocyanates, the isomeric nonyl isocyanates, the isomeric decyl isocyanates, stearyl isocyanate, l, 8- Diisocyanato-4- (isocyanatomethyl) octane (TIN), 6-diisocyanatohexane (HDI, Desmodur H), 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (IPDI, Desmodur I), 2,4, 4-trimethylhexane-1,6-diisocyanate (TMDI), dicyclohexylmethane diis
  • isocyanates of the formula R [NCO] n are iso-propyl isocyanate, n-butyl isocyanate, n-hexyl isocyanate, n-octyl isocyanate, n-decyl isocyanate, cyclohexyl isocyanate, stearyl isocyanate, 1,8-diisocyanato-4- (isocyanatomethyl) octane (TIN), 6-diisocyanatohexane (HDI, Desmodur
  • fluorinated alcohols are widely possible, it is preferred, primary or secondary, mono-, di- or trifunctional alcohols having a fluorine content of 30% to 82% fluorine, more preferably having a fluorine content of 40% to 80% fluorine and particularly preferably with a fluorine content of 49% to 75% to use fluorine.
  • the reaction of isocyanates with alcohols of the abovementioned type for the preparation of the fluorourethanes is a urethanization.
  • the reaction can be carried out with the aid of catalysts known for accelerating isocyanate addition reactions, for example tertiary amines, tin, zinc, iron or bismuth compounds, in particular triethylamine, 1,4-diazabicyclic [2,2,2] octane, bismuth octoate, zinc octoate or dibutyltin dilaurate take place, which can be submitted with or added later.
  • catalysts known for accelerating isocyanate addition reactions for example tertiary amines, tin, zinc, iron or bismuth compounds, in particular triethylamine, 1,4-diazabicyclic [2,2,2] octane, bismuth octoate, zinc octoate or dibutyltin dilaurate take
  • the fluorourethanes can have unreacted hydroxy-functional compounds contents of less than 1% by weight, preferably less than 0.5% by weight and more preferably less than 0.2% by weight.
  • the fluorourethanes may have a fluorine content of 10-80 wt.% Fluorine, preferably 12.5-75 wt.% Fluorine, more preferably 15-70 wt.% Fluorine, and most preferably 17.5-65 wt.% Fluorine ,
  • the fluorourethanes have a refractive index of ⁇ 1.4600, preferably of ⁇ 1.4500, particularly preferably of ⁇ 1.4400 and particularly preferably of ⁇ 1.4300.
  • the isocyanates and the alcohols may each be in a non-reactive solvent, for example an aromatic or aliphatic hydrocarbon or an aromatic or aliphatic halogenated hydrocarbon or a paint solvent such as e.g. Ethyl acetate or butyl acetate or acetone or butanone or an ether such as tetrahydrofuran or tert-butyl methyl ether or a dipolar aprotic solvent such as dimethylsulfoxide or N-methylpyrrolidone or N-ethylpyrrolidone are dissolved and are introduced or metered in the skilled worker.
  • a non-reactive solvent for example an aromatic or aliphatic hydrocarbon or an aromatic or aliphatic halogenated hydrocarbon or a paint solvent such as e.g. Ethyl acetate or butyl acetate or acetone or butanone or an ether such as tetrahydrofuran or tert-butyl methyl ether or
  • the non-reactive solvents can be removed from the mixture under normal pressure or under reduced pressure and the end point determined by means of solid content determination.
  • the solids are typically in a range of 99.999 to 95.0 wt .-%, preferably from 99.998 to 98.0 wt .-% based on the fluorourethane.
  • the matrix polymers may in particular be polyurethanes.
  • the matrix polymers may in particular be polyurethanes.
  • Polyurethanes by reacting an isocyanate component a) with an isocyanate-reactive component b) available.
  • the isocyanate component a) preferably comprises polyisocyanates.
  • polyisocyanates it is possible to use all compounds which are well known to the person skilled in the art or mixtures thereof which on average have two or more NCO functions per molecule. These can be based on aromatic, araliphatic shear, aliphatic or cycloaliphatic base. In minor amounts, it is also possible to use monoisocyanates and / or polyisocyanates containing unsaturated groups.
  • butylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 1,8-diisocyanato-4- (isocyanatomethyl) octane, 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate, which are isomers, are suitable Bis (4,4'-isocyanatocyclohexyl) methanes and mixtures thereof any
  • Isomer content isocyanatomethyl-l, 8-octane diisocyanate, 1,4-cyclohexylene diisocyanate, the isomeric cyclohexanedimethylene diisocyanates, 1,4-phenylene diisocyanate, 2,4- and / or 2,6-toluene diisocyanate, 1,5-naphthylene diisocyanate, 2,4'- or 4,4'-diphenylmethane diisocyanate and / or triphenylmethane-4,4 ', 4 "-triisocyanate.
  • polyisocyanates based on aliphatic and / or cycloaliphatic diisocyanates triisocyanates Preference is given to the use of polyisocyanates based on aliphatic and / or cycloaliphatic diisocyanates triisocyanates.
  • the polyisocyanates of component a) are particularly preferably di- or oligomerized aliphatic and / or cycloaliphatic di- or triisocyanates.
  • NCO-functional prepolymers with urethane, allophanate, biuret and / or amide groups are obtained in a manner well-known to the person skilled in the art by reacting monomeric, oligomeric or polyisocyanates a1) with isocyanate-reactive compounds a2) in suitable stoichiometry with the optional use of catalysts and solvents.
  • Suitable polyisocyanates a1) are all aliphatic, cycloaliphatic, aromatic or araliphatic di- and triisocyanates known to the person skilled in the art, it being immaterial whether these were obtained by phosgenation or by phosgene-free processes.
  • the relatively high molecular weight secondary products of monomeric di- and / or triisocyanates with urethane, urea, carbodiimide, acylurea, isocyanurate, allophanate, biuret, oxadiazinetrione, uretdione, iminooxadiazinedione structure which are well known to the person skilled in the art, can each be used individually or be used in any mixtures with each other.
  • Suitable monomeric di- or tnisocyanates which can be used as component al) are butylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), trimethylhexamethylene diisocyanate (TMDI), 1,8-diisocyanato-4 (isocyanatomethyl) octane, isocyanato-methyl-l, 8-octane diisocyanate (TIN), 2,4- and / or 2,6-toluene diisocyanate.
  • isocyanate-reactive compounds a2) for the construction of the prepolymers OH-functional compounds are preferably used. These are analogous to the OH-functional compounds as described below for component b).
  • amines for prepolymer production.
  • suitable ethylene diamine, diethylene triamine, triethylene tetramine, propylene diamine, diaminocyclohexane, diamino benzene are, Diaminobisphenyl, difunctional polyamines such as Jeffamine ®, amine-terminated polymers having number average molecular weights up to 10,000 g / mol or any desired mixtures thereof with one another.
  • Isocyanate is reacted in excess with amine to produce prepolymers containing biuret phenomenon, resulting in a biuret.
  • Suitable amines in this case for the reaction with the di-, tri- and polyisocyanates mentioned are all oligomeric or polymeric, primary or secondary, difunctional amines of the abovementioned type.
  • Preferred prepolymers are urethanes, allophanates or biurets of aliphatic isocyanate-functional compounds and oligomeric or polymeric isocyanate-reactive compounds having number average molecular weights of 200 to 10,000 g / mol, particularly preferred are urethanes, allophanates or biurets of aliphatic isocyanate-functional compounds and oligomers or polymeric polyols or polyamines having number average molecular weights of 500 to 8500 g / mol and very particularly preferred are allophanates of HDI or TMDI and difunctional polyether polyols having number average molecular weights of 1000 to 8200 g / mol.
  • the prepolymers described above have residual contents of free monomeric isocyanate of less than 1 wt .-%, more preferably less than 0.5 wt .-%, most preferably less than 0.2 wt .-% to.
  • the isocyanate component may contain proportionate addition to the described prepolymers further isocyanate components.
  • Suitable for this purpose are aromatic, araliphatic, aliphatic and cycloaliphatic di-, tri- or polyisocyanates. It is also possible to use mixtures of such di-, tri- or polyisocyanates.
  • suitable di-, tri- or polyisocyanates are butylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 1,8-diisocyanato-4-
  • TMDI 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate
  • TMDI 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate
  • TMDI 2,4,4-trimethylhexamethylene diisocyanate
  • the isocyanate component a) contains proportionate isocyanates which are partially reacted with isocyanate-reactive ethylenically unsaturated compounds.
  • isocyanate-reactive ethylenically unsaturated compounds ⁇ , ⁇ -unsaturated carboxylic acid derivatives such as acrylates, methacrylates, maleate, fumarates, maleimides, acrylamides, as well as vinyl ethers, propenyl ethers, allyl ethers and dicyclopentadienyl units containing compounds having at least one isocyanate-reactive group , are particularly preferably acrylates and methacrylates having at least one isocyanate-reactive group.
  • hydroxy-functional acrylates or methacrylates are compounds such as 2-hydroxyethyl (meth) acrylate, polyethylene oxide mono (meth) acrylates, polypropylene oxide mono (meth) acrylates, polyalkylene oxide mono (meth) acrylates, poly (s-caprolactone) mono (meth) acrylates, such as Tone® M100 (Dow, USA), 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-hydroxy-2,2-dimethylpropyl (meth) acrylate, the hydroxy-functional mono- , Di- or tetra (meth) acrylates of polyhydric alcohols such as trimethylolpropane, glycerol, pentaerythritol, dipentaerythritol, ethoxylated, propoxylated or alkoxylated trimethylolpropane, glycerol, pentaerythritol, dip
  • the proportion of isocyanates which are partially reacted with isocyanate-reactive ethylenically unsaturated compounds at the isocyanate component a) is 0 to 99%, preferably 0 to 50%, more preferably 0 to 25% and most preferably 0 to 15%.
  • isocyanate component a) comprises, completely or proportionally, isocyanates which have been reacted wholly or partly with blocking agents known to the person skilled in the art of coating technology.
  • blocking agents alcohols, lactams, oximes, malonic esters, alkylacetoacetates, triazoles, phenols, imidazoles, pyrazoles and amines, such as butanone oxime, diisopropylamine, 1, 2,4-triazole, dimethyl-1, 2,4-triazole, imidazole, dazol, diethyl malonate, acetoacetic ester, acetone oxime, 3,5-dimethylpyrazole, ⁇ -caprolactam, N-tert-butylbenzylamine, cyclopentanonecarboxyethyl ester or any mixtures of these blocking agents.
  • all polyfunctional, isocyanate-reactive compounds can be used per se, which have on average at least 1.5 isocyanate-reactive groups per molecule.
  • Isocyanate-reactive groups in the context of the present invention are preferably hydroxy, amino or thio groups, particularly preferred are hydroxy compounds.
  • Suitable polyfunctional, isocyanate-reactive compounds are, for example, polyester, polyether, polycarbonate, poly (meth) acrylate and / or polyurethane polyols.
  • Suitable polyester polyols are, for example, linear polyester diols or branched polyester polyols, as can be obtained in a known manner from aliphatic, cycloaliphatic or aromatic di- or polycarboxylic acids or their anhydrides with polyhydric alcohols having an OH functionality> 2.
  • di- or polycarboxylic acids or anhydrides examples include succinic, glutaric, adipic, propinic, cork, azelaic, sebacic, nonanedicarboxylic, decanedicarboxylic, terephthalic, isophthalic, o-phthalic -, tetrahydrophthalic, hexahydrophthalic or trimellitic acid and acid anhydrides such as o-phthalic, trimellitic or succinic anhydride or any mixtures thereof.
  • suitable alcohols are ethanediol, di-, tri-, tetraethylene glycol, 1, 2-propanediol,
  • Di-, tri-, tetra-propylene glycol 1,3-propanediol, 1,4-butanediol, 1,9-butanediol, 2,3-butanediol, pentanediol-1, 5, ex-1,6-diol , 2,2-Dimethyl-l, 3-propanediol, 1, 4-dihydroxycyclohexane, 1,4-dimethylolcyclohexane, octanediol-1,8, decanediol-1,10, dodecanediol-1,12, trimethylolpropane, glycerol or any mixtures thereof among themselves.
  • the polyester polyols can also be based on natural raw materials such as castor oil. It is also possible that the polyester polyols are based on homopolymers or copolymers of lactones, as preferred by addition of lactones or lactone mixtures such as butyrolactone, ⁇ -caprolactone and / or methyl-s-caprolactone to hydroxy-functional compounds such as polyhydric alcohols of an OH functionality > 2, for example, the above-mentioned type can be obtained.
  • Such polyester polyols preferably have number-average molar masses of from 400 to 4000 g / mol, particularly preferably from 500 to 2000 g / mol. Their OH functionality is preferably 1.5 to 3.5, more preferably 1.8 to 3.0.
  • Suitable polycarbonate polyols are obtainable in a manner known per se by reacting organic carbonates or phosgene with diols or diol mixtures.
  • Suitable organic carbonates are dimethyl, diethyl and diphenyl carbonate.
  • Suitable diols or mixtures include the polyhydric alcohols of an OH functionality> 2, preferably 1,4-butanediol, 1,6-hexanediol and / or 3-methylpentanediol, which are known per se within the polyester segments, or else polyester polyols can be worked into polycarbonate polyols , Such polycarbonate polyols preferably have number-average molar masses of from 400 to 4000 g / mol, particularly preferably from 500 to 2000 g / mol.
  • the OH functionality of these polyols is preferably 1.8 to 3.2, particularly preferably 1.9 to 3.0.
  • Suitable polyether polyols are optionally block-formed polyaddition of cyclic ethers to OH or NH-functional starter molecules.
  • Suitable cyclic ethers are, for example, styrene oxides, ethylene oxide, propylene oxide, tetrahydrofuran, butylene oxide, epichlorohydrin, and also any desired mixtures thereof.
  • the starter used may be the polyhydric alcohols of OH functionality> 2 mentioned in the context of the polyesterpolyols and also primary or secondary amines and amino alcohols.
  • Preferred polyether polyols are those of the aforementioned type exclusively based on propylene oxide or random or block copolymers based on propylene oxide with further 1-alkylene oxides, wherein the 1-alkenoxide is not higher than 80 wt .-%.
  • poly (trimethylene oxide) s and mixtures of the preferred polyols are preferred.
  • propylene oxide homopolymers and random or block copolymers which contain oxyethylene, oxypropylene and / or oxybutylene units, the proportion of oxypropylene units, based on the total amount of all oxyethylene, oxypropylene and oxybutylene units, being at least 20% by weight.
  • Oxypropylene and oxybutylene herein include all respective linear and branched C3 and C4 isomers.
  • Such polyether polyols preferably have number-average molar masses of from 250 to 10,000 g / mol, more preferably from 500 to 8,500 g / mol and very particularly preferably from 600 to 4500 g / mol.
  • the OH functionality is preferably 1.5 to 4.0, particularly preferably 1.8 to 3.1.
  • component b) as polyfunctional, isocyanate-reactive compounds and low molecular weight, i. with molecular weights less than 500 g / mol, short chain, i. 2 to 20 carbon atoms containing aliphatic, araliphatic or cycloaliphatic di, tri or polyfunctional alcohols suitable.
  • These may, for example, be ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 2-ethyl-2-butylpropanediol, trimethylpentanediol, positionally isomeric diethyloctanediols, 1 , 3-butylene glycol,
  • suitable triols are trimethylolethane, trimethylolpropane or glycerol.
  • Suitable higher-functional alcohols are ditrimethylolpropane, pentaerythritol, dipentaeythritol or sorbitol.
  • one or more photoinitiators are used as component c). These are usually initiators which can be activated by actinic radiation and trigger a polymerization of the corresponding polymerizable groups. Photoinitiators are known per se, commercially sold compounds, wherein a distinction is made between unimolecular (type I) and bimolecular (type II) initiators. Furthermore, these initiators, depending on the chemical nature of the radical, the anionic
  • Type I systems for radical photopolymerization are, for example, aromatic ketone compounds, for.
  • (type II) initiators such as benzoin and its derivatives, benzil ketals, acylphosphine oxides, for example.
  • 2,4,6-trimethyl-benzoyl-diphenylphosphine oxide 2,4,6-trimethyl-benzoyl-diphenylphosphine oxide, bis-acyl phosphine oxides, phenylglyoxylic acid esters, camphorquinone, alpha-aminoalkylphenones, alpha-, alpha-dialkoxyacetophenones, 1 - [4- (phenylthio) phenyl] octane-1,2-dione-2 - (0-benzoyloxime), and differently substituted Hexarylbisimidazole (HABI) with suitable coinitiators such as mercaptobenzoxazole and alpha-hydroxyalkylphenones.
  • HABI Hexarylbisimidazole
  • Suitable ammonium ammonium borate are, for example, tetra- butylammonium triphenylhexylborate, tetrabutylammonium triphenylbutylborate, tetrabutylammonium trinaphthylbutylborate, tetramethylammonium triphenylbenzylborate, tetra (n-hexyl) ammonium (sec-butyl) triphenylborate, l-methyl-3-octylimidazolium dipentyldiphenylborate, tetrabutylammonium tris (4-tert-butyl) -phenylbutylborate, tetrabutylammonium Tris (3-fluorophen
  • the photoinitiators used for anionic polymerization are typically (Type I) systems and are derived from transition metal complexes of the first series. Chromium salts, such as, for example, trans-Cr (NH 3 ) 2 (NCS) 4- (Kutal et al, Macromolecules 1991, 24, 6872) or ferrocenyl compounds (Yamaguchi et al., Macromolecules 2000, 33, 1152) call.
  • a further possibility of anionic polymerization is the use of dyes, such as crystal violet leuconitrile or malachite green leuconitrile, which can polymerize cyanoacrylates by photolytic decomposition (Neckers et al., Macromolecules 2000, 33, 7761). However, the chromophore is incorporated into the polymer, so that the resulting polymers are colored through.
  • the photoinitiators used for the cationic polymerization consist essentially of three classes: aryldiazonium salts, onium salts (in particular: iodonium, sulfonium and selenonium).
  • Phenyl diazonium salts can produce a cation upon irradiation, both in the presence and absence of a hydrogen donor, which initiates polymerization.
  • the efficiency of the overall system is determined by the nature of the counterion used for the diazonium compound. Preference is given here to the less reactive but rather expensive SbF 6 -, AsF 6 - or PF 6 -.
  • these compounds are generally less suitable, since the surface quality is reduced by the nitrogen released after the exposure (pinholes) (Li et al., Polymerie Materials Science and Engineering, 2001, 84, 139).
  • onium salts especially sulfonium and iodonium salts.
  • the photochemistry of these compounds has been extensively studied.
  • the iodonium salts first decompose homo lyric after excitation and thus generate a radical and a radical anion which stabilizes by H abstraction and releases a proton and then initiates cationic polymerization (Dektar et al., J. Org. Chem. 1990, 55, 639; J. Org. Chem., 1991, 56, 1838). This mechanism also allows the use of iodonium salts for radical photopolymerization.
  • iodonium and sulfonium salts Since the intrinsic absorption of iodonium and sulfonium salts is ⁇ 300 nm, these compounds must be sensitized accordingly for photopolymerization with near UV or short wavelength visible light. This is achieved by the use of higher-absorbing aromatics such as, for example, anthracene and derivatives (Gu et al., Am. Chem. Soc. Polymer Preprints, 2000, 41 (2), 1266) or phenothiazine or its derivatives (Hua et al, Macromolecules 2001, 34, 2488-2494).
  • aromatics such as, for example, anthracene and derivatives (Gu et al., Am. Chem. Soc. Polymer Preprints, 2000, 41 (2), 1266) or phenothiazine or its derivatives (Hua et al, Macromolecules 2001, 34, 2488-2494).
  • Preferred photoinitiators c) are mixtures of tetrabutylammonium triphenylhexylborate, tetrabutylammonium triphenylbutylborate, tetrabutylammonium trinapthylbutylborate, tetrabutylammonium tris- (4-tert-butyl) -phenylbutylborate, tetrabutylammonium tris- (3-fluorophenyl) -hexylborate and tetrabutylammonium tris (3-chloro 4-methylphenyl) -hexylborate with dyes such as
  • Astrazon Orange G Methylene Blue, New Methylene Blue, Azure A, Pyrillium I, Safranine O, Cyanine, Gallocyanine, Brilliant Green, Crystal Violet, Ethyl Violet and Thionin.
  • the Schreibmomome- are acrylates, particularly preferably those having a refractive index> 1.50.
  • acrylates particularly preferably those having a refractive index> 1.50.
  • urethane acrylates particular preference being given to aromatic urethane acrylates having a refractive index of> 1.50 at 589 nm, as described, for example, in WO2008 / 125199.
  • Further objects of the present invention are visual hologram recording media obtainable using fluorourethanes of the formula (I), the use of such media as optimum See elements, images or for image display or projection and a method for recording a hologram, are used in such media.
  • the photopolymer formulation of the invention may in particular 15 to 79, preferably 30 to 60 wt .-% matrix polymer, 5 to 50, preferably 10 to 40 wt .-% writing monomer, 1 to 10, preferably 1 to 3 wt .-% of photoinitiator and 5 to 50, preferably 10 to 40 wt .-% fluorourethanes and 0 to 10
  • Wt .-% contain further additives, wherein the sum of the components is 100 wt .-%.
  • a second aspect of the invention relates to a process for the preparation of a photopolymer formulation according to the invention in which matrix polymers, writing monomers, photoinitiators and fluorourethanes as plasticizers are mixed to form the photopolymer formulation.
  • a third aspect of the invention relates to a photopolymer obtained by the process.
  • a fourth aspect of the invention relates to a film, a film, a layer, a layer structure or a shaped article of the photopolymer formulation.
  • Layers, layer constructions and shaped bodies from the photopolymer formulations according to the invention typically have ⁇ values, measured according to the method described in the section "Measurement of the holographic properties DE and ⁇ of the holographic media by means of two-beam interference in reflection arrangement", of ⁇ > 0.0120, preferably> 0.0130, particularly preferably> 0.0140, very particularly preferably> 0.0150.
  • a fifth aspect of the invention relates to the use of the photopolymer formulation for the production of optical elements, in particular for the production of holographic elements and images.
  • the invention likewise relates to a method for exposing holographic media from a photopolymer formulation according to the invention, in which the writing monomers are selectively polymerized by electromagnetic radiation in a spatially resolved manner.
  • holographic media are suitable after the holographic exposure for the production of holographic optical elements, for example, the function of an optical lens, a mirror, a deflection mirror, a filter, a diffuser, a diffraction element, a light guide, a light guide, a projection screen and / or have a mask.
  • holographic images or representations may also be produced therewith, for example for personal portraits, biometric representations in security documents, or in general of images or image structures for Advertising, security labels, brand protection, branding, labels, design elements, decorations, illustrations, trading cards, images and the like, and images representing digital data, including in combination with the aforesaid products.
  • fluorourethanes are known in the art.
  • US 2003/105263 A1 describes fluorourethanes which contain, by reacting a biuret, isocyanurate, uretdione, polyurea
  • Fluororethane is known from WO 03/023519 A, which is obtainable by reacting a biuret-containing polyisocyanate with a fluorinated alcohol.
  • a further aspect of the invention relates to a fluorourethane obtainable by reacting iminooxadiazinedione or oxadiazadione-containing polyisocyanate which has at least one free isocyanate group with an alcohol, the polyisocyanate and / or the alcohol being substituted by at least one fluorine atom.
  • R 4 , R 5 , R 6 are hydrogen and / or independently of one another linear, branched, cyclic or heterocyclic unsubstituted or optionally also substituted by hetero atoms organic radicals and Iminooxadiazindion- and / or Oxadiazadion Having structural elements, wherein at least two of the radicals R 4 , R 5 , R 6 are substituted with at least one fluorine atom simultaneously, the invention.
  • the refractive index was measured according to the nature of the example compound by one of the following three methods:
  • the refractive index n as a function of the wavelength of the samples was obtained from the transmission and reflection spectra. For this purpose, approximately 100-300 nm thick films of the samples were spun on silica glass carrier from dilute solution in butyl acetate. The transmission and reflection spectrum of this layer package was measured with a spectrometer from STEAG ETA-Optik, CD-Measurement System ETA-RT and then the layer thickness and the spectral curve of n were adapted to the measured transmission and reflection spectra. This is done with the internal software of the spectrometer and additionally requires the n data of the quartz glass substrate, which were determined in advance in a blank measurement.
  • Method B Measurement of the refractive index at a wavelength of 589 nm
  • Method C Measurement of refractive index at a wavelength of 589 nm from semiconcentrate solution
  • Method C A sample of the example compound was diluted 50:50 (wt%) with N-ethylpyrrolidone and placed in an Abbe refractometer and then measured. From this, the approximate refractive index of the analyte was calculated, that of N-ethylpyrrolidone was 1.4658.
  • the media produced were then tested for their holographic properties by means of a measuring arrangement according to FIG. 1 as follows:
  • the beam of a He-Ne laser (emission wavelength 633 nm) was converted into a parallel homogeneous beam by means of the spatial filter (SF) and together with the collimation lens (CL).
  • the final cross sections of the signal and reference beam are defined by the iris diaphragms (I).
  • the diameter of the iris aperture is 0.4 cm.
  • the polarization-dependent beam splitters (PBS) divide the laser beam into two coherent identically polarized beams. About the ⁇ / 2 platelets were the
  • the power of the reference beam is set to 0.5 mW and the power of the signal beam is set to 0.65 mW.
  • the performances were determined with the semiconductor detectors (D) with the sample removed.
  • the angle of incidence (oo) of the reference beam is -21.8 °, the angle of incidence ( ⁇ o) of the signal beam is 41.8 °.
  • the angles are measured from the sample standard to the beam direction. According to Figure 1 therefore has ao a negative sign and ßo a positive sign.
  • the interference field of the two overlapping beams produced a grid of bright and dark stripes perpendicular to the bisector of the two beams incident on the sample (reflection hologram).
  • HMT holography media tester
  • the written holograms have now been read out in the following way.
  • the shutter of the signal beam remained closed.
  • the shutter of the reference beam was open.
  • the iris diaphragm of the reference beam was closed to a diameter ⁇ 1 mm. It was thus achieved that for all rotation angles ( ⁇ ) of the medium, the beam was always located completely in the previously written hologram.
  • the turntable computer-controlled now swept over the angular range from Q min to Q max with an angle increment of 0.05 °. ⁇ is measured from the sample standard to the reference direction of the turntable.
  • ° - 0 ⁇ ⁇ + ⁇ recording ⁇ ⁇ is the half-angle in the laboratory system outside the medium and the following applies when writing the hologram: ⁇ 0 - ⁇ 0
  • -31.8 °.
  • the powers of the beam transmitted in the zeroth order were measured by means of the corresponding detector D and the powers of the beam deflected to the first order by means of the detector D.
  • the diffraction efficiency was found at each approached angle ⁇ as the quotient of:
  • P D is the power in the detector of the diffracted beam and P T is the power in the detector of the transmitted beam.
  • the Bragg curve was measured, it describes the diffraction efficiency ⁇ as a function of the angle of rotation ⁇ of the written hologram and stored in a computer.
  • the intensity transmitted in the zeroth order was also recorded against the angle of rotation ⁇ and stored in a computer.
  • the maximum diffraction efficiency (DE T1 max) of the hologram, ie its peak value, was determined for ⁇ ⁇ _ construction. It may be necessary to change the position of the detector of the diffracted beam to determine this maximum value.
  • the refractive index contrast ⁇ and the thickness d of the photopolymer layer has now been measured by the Coupled Wave Theory (see H. Kogelnik, The Bell System Technical Journal, Volume 48, November 1969, Number 9 page 2909 - page 2947) to the measured Bragg curve and the angle profile the transmitted intensity determined.
  • the strip spacing ⁇ 'of the hologram and the orientation of the strip slant can deviate from the strip spacing ⁇ of the interference pattern and its orientation. Accordingly, the angle ⁇ 0 'or the corresponding angle of the turntable O reconstruction , in which maximum diffraction efficiency is achieved, will deviate from 0 or from the corresponding O record ing. This changes the Bragg condition. This change is taken into account in the evaluation process. The evaluation procedure is described below:
  • the still unknown angle ⁇ ' can be determined from the comparison of the Bragg condition of the interference field during writing of the hologram and the Bragg condition during reading of the hologram under the assumption that only thickness shrinkage takes place. Then: sin [sin (a 0 ) + sin ( ⁇ 0 ) - sin (9 0 + ⁇ reconstruction v is the lattice strength, ⁇ is the detuning parameter and ⁇ 'is the orientation (slant) of the refractive index lattice written a' and ⁇ 'correspond to the angles o and ⁇ o of the interference field in writing the hologram, but measured in the medium and valid for the lattice of the hologram (after thickness shrinkage), n is the average refractive index of the photopolymer and set to 1504, ⁇ is the wavelength of the Laser light in a vacuum.
  • FIG. 2 shows the measured transmitted power P T (right-hand axis) plotted as a solid line against the angle tuning ⁇ , the measured diffraction efficiency ⁇ (left y-axis) plotted as filled circles against the angle tuning ⁇ (as far as the finite size of the detector permits ) and the adaptation of Kogelnik theory as a dashed line (left-axis).
  • the Bragg curve is not completely detected by wide fuzes (small cf) in an ⁇ scan, but only the central area, with suitable detector positioning. Therefore, the form of the transmitted intensity complementary to the Bragg curve is additionally used to adjust the layer thickness cf.
  • FIG. 2 shows the representation of the Bragg curve ⁇ according to the Coupled Wave Theory (dashed line), the measured diffraction efficiency (filled circles) and the transmitted power (black solid line) against the angle tuning ⁇ .
  • this procedure may be repeated several times for different exposure times t on different media to determine at which average absorbed dose of the incident laser beam is going to saturate upon writing the hologram DE.
  • the power of the partial beams has been adjusted so that the same power density is achieved in the medium at the angles o and ßo used.
  • Fluorlink E 10 / H is a reactive additive based on a fluorinated alcohol having an average molecular weight of 750 g / mol, manufactured by Solvay Solexis.
  • CGI-909 tetrabutylammonium tris (3-chloro-4-methylphenyl) (hexyl) borate, [1147315-1 1 -4]
  • l 8-diisocyanato-4- (isocyanatomethyl) octane (TIN) was prepared as described in EP749958.
  • the fluorinated alcohols and monofunctional isocyanates used were purchased from the chemicals trade, the polyisocyanates used (Desmodur H (HDI), Desmodur I (IPDI), Desmodur W, Desmodur LD, Desmodur N3400, Desmodur N3600, Desmodur N3900, Baymicron OXA) are commercial products Bayer MaterialScience AG, Leverkusen, Germany. 2,4,4-trimethylhexane-1,6-diisocyanate, Vestanat TMDI, is a product of Evonik Degussa GmbH,
  • Example 1 Bis (2,2,2-trifluoroethyl) hexane-1,6-diylbiscarbamate 0.07 g of Desmorapid Z and 64.4 g of 6-diisocyanatohexane (HDI) were placed in a 500 mL round-bottomed flask and heated to 60.degree. Subsequently, 81.5 g of trifluoroethanol were added dropwise and the mixture was kept at 60 ° C until the isocyanate content had dropped below 0.1%. It was then cooled. The product was obtained as a colorless solid.
  • HDI 6-diisocyanatohexane
  • Example 225 9,9,10,10,11,11,12,12,13,13,14,14,29,29,30,30,31,31,32,32,
  • Example 226 23- (8,8,9,9,10,10, 11,11,12,12,13,13-dodecafluoro-5,16-dioxo-6,15-dioxa-4,17-diazahenicos- l-yl) -9,9,10,10, ll, ll, 12,12,13,13,14,14,29,29,30,30,31,
  • urethane acrylate 2 2 - ( ⁇ [3- (methylsulfanyl) phenyl] carbamoyl ⁇ oxy) propylprop-2-enoate
  • 21.1 g of 2-hydroxypropyl acrylate were added dropwise and the mixture was kept at 60 ° C until the isocyanate content had dropped below 0.1%.
  • the ethyl acetate was distilled off at 5 mbar and cooled. The product was obtained as a pale yellow liquid.
  • Desmodur ® N3900 commercial product of Bayer MaterialScience AG, Leverkusen, DE, hexane diisocyanate-based polyisocyanate, proportion of iminooxadiazinedione at least 30%, NCO content: 23.5%
  • Fomrez UL 28 urethanization catalyst, commercial product of the Fa. Momentive Performance Chemicals, Wilton, CT, USA
  • Comparative Medium VI 4.66 g of the polyol component prepared as described above were (-diylcarbamoyl oxybenzene-4, 1 ⁇ Oxyethan-2, 1 -diyl) with 2.00g Phosphorothioyltris trisacrylate (urethane acrylate 1), 2.00 g 2 - ( ⁇ [ 3- (methylsulfanyl) phenyl] - , carbamoyl ⁇ oxy) _, propylprop-2-enoate (urethane acrylate 2), 0.10 g of CGI 909 (test product from Ciba Inc, Basel, Switzerland), 0.010 g Neu methylene blue and 0.35 g of N-ethyl pyrrolidone at 60 ° C so that a clear solution was obtained.
  • CGI 909 test product from Ciba Inc, Basel, Switzerland
  • Table 2 Holographic evaluation of selected examples in the formulation with 25% urethane acrylate 1 and 25% additive (fluorinated urethane).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polymerisation Methods In General (AREA)
  • Holo Graphy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Graft Or Block Polymers (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Die Erfindung betrifft eine Photopolymer-Formulierung umfassend Matrixpolymere, Schreibmomomere und Photoinitiatoren, die Verwendung der Photopolymer-Formulierang zur Herstellung von optischen Elementen, insbesondere zur Herstellung von holographischen Elementen und Bildern, ein Verfahren zur Belichtung von holographischen Medien aus der Photopolymer-Formulierung sowie spezielle Fluorurethane.

Description

Fluorurethane als Additive in einer Photopolymer-Formulierung
Die Erfindung betrifft eine Photopolymer-Formulierung umfassend Matrixpolymere, Schreibmomomere und Photoinitiatoren, die Verwendung der Photopolymer-Formulierung zur Herstellung von optischen Elementen, insbesondere zur Herstellung von holographischen Elementen und Bildern, ein Verfahren zur Belichtung von holographischen Medien aus der Photopolymer-Formulierung sowie spezielle Fluorurethane.
In der WO 2008/125229 AI sind Photopolymer-Formulierungen der eingangs genannten Art beschrieben. Diese umfassen Polyurethan-basierte Matrixpolymere, Schreibmomomere auf Acrylbasis sowie Photoinitiatoren. Im ausgehärtetem Zustand sind in der Polyurethanmatrix die Schreibmonomere und die Photoinitiatoren räumlich verteilt eingebettet. Aus der WO-Schrift ist ebenfalls bekannt Dibutylphthalat, einen klassischen Weichmacher für technische Kunststoffe, der Photopolymer-Formulierung hinzuzufügen.
Für die Verwendungen von Photopolymer-Formulierungen in den unten beschriebenen Anwendungsfeldern spielt die durch die holographische Belichtung im Photopolymer erzeugte Brechungsindexmodula- tion Δη die entscheidende Rolle. Bei der holographischen Belichtung wird das Interferenzfeld aus Signal- und Referenzlichtstrahl (im einfachsten Fall das zweier ebenen Wellen) durch die lokale Photopolymerisation von z.B. hochbrechenden Acrylate an Orten hoher Intensität im Interferenzfeld in ein Brechungsindexgitter abgebildet. Das Brechungsindexgitter im Photopolymeren (das Hologramm) enthält alle Information des Signallichtstrahls. Durch Beleuchtung des Hologramms nur mit dem Referenzlicht- strahl kann dann das Signal wieder rekonstruiert werden. Die Stärke des so rekonstruierten Signals im
Verhältnis zur Stärke des eingestrahlten Referenzlichts wird Beugungseffizienz genannt, im folgenden DE wie Diffraction Efficiency. Im einfachsten Fall eines Hologramms, das aus der Überlagerung zweier ebener Wellen entsteht ergibt sich die DE aus dem Quotienten der Intensität des bei der Rekonstruktion abgebeugten Lichtes und der Summe der Intensitäten aus eingestrahltem Referenzlicht und abgebeugtem Licht. Je höher die DE desto effizienter ist ein Hologramm in Bezug auf die notwendige Lichtmenge des
Referenzlichtes die notwendig ist um das Signal mit einer festen Helligkeit sichtbar zu machen. Hochbrechende Acrylate sind in der Lage, Brechungsindexgitter mit hoher Amplitude zwischen Bereichen mit niedrigstem Brechungsindex und Bereichen mit höchstem Brechungsindex zu erzeugen und damit in Photopolymer-Formulierungen Hologramme mit hohem DE und hohem Δη zu ermöglichen. Dabei ist zu beachten das DE vom Produkt aus Δη und der Photopolymerschichtdicke d abhängt. Je größer das Produkt desto größer die mögliche DE (für Reflexionshologramme). Der Breite des Winkelbereiches bei dem das Hologramm z.B. bei monochromatischer Beleuchtung sichtbar wird (rekonstruiert) hängt nur von der Schichtdicke d ab. Bei Beleuchtung der Hologramms mit z.B. weißem Licht hängt die Breite des spektralen Bereiches der zur Rekonstruktion des Hologramms beitragen kann ebenfalls nur von der Schichtdicke d ab. Dabei gilt je kleiner d desto größer die jeweiligen Akzeptanzbreiten. Will man daher helle und leicht sichtbare Hologramme herstellen ist ein hohes Δη-d und eine geringe Dicke d anzustreben und zwar so das DE möglichst groß wird. Das heißt je höher Δη wird, desto mehr Freiraum zur Gestaltung heller Hologramme durch Anpassen von d und ohne Verlust an DE erreicht man. Daher kommt der Optimierung von Δη bei der Optimierung von Photopolymerformulierungen eine herausragenden Bedeutung zu (P. Hariharan, Optical Holography, 2nd Edition, Cambridge University Press, 1996.).
Aufgabe der vorliegenden Erfindung war es eine Photopolymer-Formulierung bereit zu stellen, die im Vergleich mit den bekannten Formulierungen die Herstellung von Hologrammen mit höherer Helligkeit ermöglicht.
Diese Aufgabe wird bei der erfindungsgemäßen Photopolymer-Formulierung dadurch gelöst, dass sie als Weichmacher Fluorurethane enthält. So wurde gefunden, dass das Hinzufügen von Fluorurethanen zu den bekannten Photopolymer-Formulierungen bei den hieraus hergestellten Hologrammen zu hohen Δη- Werten führt. Im Ergebnis bedeutet dies, dass die aus der erfindungsgemäßen Formulierung hergestellten Hologramme eine im Vergleich zu den bekannten Hologrammen höhere Helligkeit aufweisen.
Bei den Fluorurethanen handelt es sich vorzugsweise um Verbindungen, die ein Strukturelement der allgemeinen Formel (I) aufweisen
Figure imgf000003_0001
und mit wenigstens einem Fluoratom substituiert sind.
Weiter bevorzugt ist, wenn die Fluorurethane die allgemeine Formel (II)
Figure imgf000003_0002
aufweisen, in der n>l und n<8 ist und R1, R2, R3 Wasserstoff und / oder unabhängig voneinander lineare, verzweigte, cyclische oder heterocyclische unsubstituierte oder gegebenenfalls auch mit Heteroato- men substituierte organische Reste sind, wobei mindestens einer der Reste R1, R2, R3 mit wenigstens einem Fluoratom substituiert ist. Besonders bevorzugt ist hierbei R1 ein organischer Rest mit mindestens einem Fluoratom.
Gemäß einer weiteren Ausführungsform kann R1 1 -20 CF2 Gruppen und / oder eine oder mehrere CF3 Gruppen, besonders bevorzugt 1-15 CF2 Gruppen und / oder eine oder mehrere CF3 Gruppen, insbeson- dere bevorzugt 1-10 CF2 Gruppen und / oder eine oder mehrere CF3 Gruppen, ganz besonders bevorzugt 1-8 CF2 Gruppen und / oder eine oder mehrere CF3 Gruppen, R2 einen C1-C20 Alkyl-Rest, bevorzugt einen C1-C15 Alkyl-Rest besonders bevorzugt einen C1-C10 Alkyl-Rest oder Wasserstoff, und / oder R3 einen C1-C20 Alkyl-Rest, bevorzugt einen C1-C15 Alkyl-Rest besonders bevorzugt einen Cl- ClO Alkyl-Rest oder Wasserstoff umfassen. Besonders bevorzugt ist, wenn die Fluorurethane Uretdion-, Isocyanurat-, Biuret-, Allophanat-, Poly- harnstoff-, Oxadiazadion- und / oder Iminooxadiazindion-Strukturelemente und / oder Mischungen dieser Strukturelemenete aufweisen.
Die Fluorurethane können insbesondere einen Brechungsindex von < 1.4600, bevorzugt von < 1.4500, besonders bevorzugt von < 1.4400 und insbesondere bevorzugt von < 1.4300 aufweisen. Die Fluorurethane können einen Fluorgehalt von 10-80 Gew.-% Fluor, bevorzugt von 12.5-75 Gew.-%
Fluor, besonders bevorzugt von 15-70 Gew.-% Fluor und insbesondere bevorzugt 17.5-65 Gew.-% Fluor aufweisen.
Die Fluorurethane der Formel (III) sind durch Umsetzung von Isocyanaten der Formel R[NCO]n mit fluorierten Alkoholen in stöchiometrischem Verhältnis zueinander unter Urethanbildung erhältlich. Bevorzugte Isocyanate der Formel R[NCO]n sind Methylisocyanat, Ethylisocyanat, die isomeren Propy- lisocyanate, die isomeren Butylisocyanate, die isomeren Pentylisocyanate, die isomeren Hexylisocyana- te, die isomeren Heptylisocyanate, die isomeren Octylisocyanate, die isomeren Nonylisocyanate, die isomeren Decylisocyanate, Stearylisocyanat, Cyclopropylisocyanat, Cyclobutylisocyanat, Cyclopentyli- socyanat, Cyclohexylisocyanat, Cycloheptylisocyanat, 2-Methylpentan-l,5-diisocyanat (MPDI), Dode- camethylene-diisocyanat, l,8-Diisocyanato-4-(isocyanatomethyl)octan (TIN), 6-Diisocyanatohexan
(HDI, Desmodur H), l-Isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (IPDI, Desmodur I), 2,4,4-Trimethylhexane-l,6-diisocyanat (TMDI), Dicyclohexylmethan-diisocyanat (Desmodur W), He- xahydrotoluylendiisocyanat (H6TDI), Bis(4-isocyanatocyclohexyl)-methan (H12-MDI), l,3-Bis-(iso- cyanatomethyl)-cyclohexan, Desmodur LD, Desmodur N 100, Desmodur N3200, Desmodur N3300, Desmodur N3350, Desmodur N3368, Desmodur N3375, Desmodur N3390, Desmodur N3400, Desmodur N3600, Desmodur N3790, Desmodur N3800, Desmodur N3900, Desmodur N50, Desmodur N75, Desmodur NZ1, Desmodur PL340, Desmodur PL350, Desmodur PM76, Desmodur BL3175, Desmodur BL3272, Desmodur BL3370, Desmodur BL3475, Desmodur BL4265, Desmodur BL5375, Desmodur BLXP2677, Desmodur DA-L, Desmodur DN, Desmodur E 305, Desmodur E3265, Desmodur E3370, Baymicron OXA, Desmodur VP LS 2078/2, Desmodur VP LS 2114/1, Desmodur VP LS 2257, Desmodur VP LS 2352/1 , Desmodur VP LS 2371 , Desmodur VP LS 2376/1 , Desmodur XP 2406, Desmodur XP 2489, Desmodur XP 2565, Desmodur XP 2580, Desmodur XP 2599, Desmodur XP 2617, Desmodur XP 2626, Desmodur XP 2675, Desmodur XP 2679, Desmodur XP 2714, Desmodur XP 2730, Desmodur XP 2731, Desmodur XP 2742, Desmodur XP 2748, Desmodur Z 4470 oder deren Mischungen. Besonders bevorzugte Isocyanate der Formel R[NCO] n sind isomeren Propylisocyanate, die isomeren Butylisocyanate, die isomeren Pentylisocyanate, die isomeren Hexylisocyanate, die isomeren Heptyliso- cyanate, die isomeren Octylisocyanate, die isomeren Nonylisocyanate, die isomeren Decylisocyanate, Stearylisocyanat, l ,8-Diisocyanato-4-(isocyanatomethyl)octan (TIN), 6-Diisocyanatohexan (HDI, Desmodur H), l-Isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (IPDI, Desmodur I), 2,4,4- Trimethylhexane-l,6-diisocyanat (TMDI), Dicyclohexylmethan-diisocyanat (Desmodur W), Hexa- hydrotoluylendiisocyanat (H6TDI), l,3-Bis-(isocyanatomethyl)-cyclohexan, Desmodur LD, Desmodur N3400, Desmodur N3600, Baymicron OXA oder deren Mischungen.
Ganz besonders bevorzugte Isocyanate der Formel R[NCO]n sind iso-Propylisocyanat, n- Butylisocyanat, n-Hexylisocyanat, n-Octylisocyanat, n-Decylisocyanat, Cyclohexylisocyanat, Stearyli- socyanat, l,8-Diisocyanato-4-(isocyanatomethyl)octan (TIN), 6-Diisocyanatohexan (HDI, Desmodur
H) , l-Isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (IPDI, D e s m o dur I), 2,4,4- Trimethylhexan-l,6-diisocyanat (TMDI), Dicyclohexylmethan-diisocyanat (Desmodur W), Hexahydro- toluylendiisocyanat (H6TDI), l,3-Bis-(isocyanatomethyl)-cyclohexan, Desmodur LD, Desmodur N3400, Desmodur N3600, Desmodur N3900, Baymicron OXA oder deren Mischungen. Die Auswahl der fluorierten Alkohole ist dabei breit möglich, es ist bevorzugt, primäre oder sekundäre, mono-, di-, oder trifunktionelle Alkohole mit einem Fluorgehalt von 30 % bis 82 % Fluor, besonders bevorzugt mit einem Fluorgehalt von 40 % bis 80 % Fluor und insbesondere bevorzugt mit einem Fluorgehalt von 49 % bis 75 % Fluor zu verwenden .
Bei der Umsetzung von Isocyanaten mit Alkoholen der jeweils vorstehend genannten Art zur Herstellung der Fluorurethane handelt es sich um eine Urethanisierung. Die Umsetzung kann unter zu Hilfenahme der zur Beschleunigung von Isocyanatadditionsreaktionen bekannten Katalysatoren, wie z.B. tertiärer Amine, Zinn-, Zink-, Eisen- oder Bismuthverbindungen, insbesondere Triethylamin, 1 ,4-Diazabicycl- [2,2,2]-octan, Bismuthoctoat, Zinkoctoat oder Dibutylzinndilaurat erfolgen, die mit vorgelegt oder später zudosiert werden können.
Die Fluorurethane können einen Gehalt an Isocyanatgruppen (M = 42 g/mol) oder freien Isocya- natrestmonomeren von unter 0.5 Gew.-%, bevorzugt von unter 0.2 Gew.-%, besonders bevorzugt von unter 0.1 Gew.-% aufweisen.
Weiterhin können die Fluorurethane Gehalte an nicht umgesetzten hydroxyfunktionellen Verbindungen von unter 1 Gew.-%, bevorzugt von unter 0.5 Gew.-% und besonders bevorzugt von unter 0.2 Gew.-% aufweisen.
Die Fluorurethane können einen Fluorgehalt von 10-80 Gew.-% Fluor, bevorzugt von 12.5-75 Gew.-% Fluor, besonders bevorzugt von 15-70 Gew.-% Fluor und insbesondere bevorzugt von 17.5-65 Gew.-% Fluor aufweisen.
Die Fluorurethane weisen einen Brechungsindex von < 1.4600, bevorzugt von < 1.4500, besonders bevorzugt von < 1.4400 und insbesondere bevorzugt von < 1.4300 aufweisen auf.
Bei der Herstellung der Fluorurethane können die Isocyanate und die Alkohole jeweils in einem nicht- reaktiven Lösungsmittel, beispielsweise einem aromatischen oder aliphatischen Kohlenwasserstoff oder einem aromatischen oder aliphatischen halogenierten Kohlenwasserstoff oder einem Lacklösungsmittel wie z.B. Ethylacetat oder Butylacetat oder Aceton oder Butanon oder einem Ether wie Tetrahydrofuran oder tert.-Butylmethy lether oder einem dipolar-aprotischen Lösungsmittel wie Dimethylsufoxid oder N- Methylpyrrolidon oder N-Ethylpyrrolidon gelöst werden und in dem Fachmann geläufiger Weise vorge- legt oder zudosiert werden.
Nach Reaktionsende können die nicht-reaktiven Lösungsmittel unter Normaldruck oder unter reduziertem Druck aus dem Gemisch entfernt und der Endpunkt mittel Festgehaltbestimmung ermittelt werden. Die Festgehalte liegen typischerweise in einem Bereich von 99.999 bis 95.0 Gew.-%, bevorzugt von 99.998 bis 98.0 Gew.-% bezogen auf das Fluorurethan. Bei den Matrixpolymeren kann es sich insbesondere um Polyurethane handeln. Vorzugsweise sind die
Polyurethane durch Umsetzung einer Isocyanatkomponente a) mit einer Isocyanat-reaktiven Komponente b) erhältlich.
Die Isocyanatkomponente a) umfasst bevorzugt Polyisocyanate. Als Polyisocyanate können alle dem Fachmann an sich gut bekannten Verbindungen oder deren Mischungen eingesetzt werden, die im Mittel zwei oder mehr NCO-Funktionen pro Molekül aufweisen. Diese können auf aromatischer, araliphati- scher, aliphatischer oder cycloaliphatischer Basis sein. In untergeordneten Mengen können auch Monoi- socyanate und/oder ungesättigte Gruppen enthaltende Polyisocyanate mitverwendet werden.
Beispielsweise geeignet sind Butylendiisocyanat, Hexamethylendiisocyanat (HDI), Isophorondiisocyanat (IPDI), l ,8-Diisocyanato-4-(isocyanatomethyl)-octan, 2,2,4- und/oder 2,4,4-Trimethylhexamethylen- diisocyanat, die isomeren Bis-(4,4'-isocyanatocyclohexyl)methane und deren Mischungen beliebigen
Isomerengehalts, Isocyanatomethyl-l,8-octandiisocyanat, 1 ,4-Cyclohexylendiisocyanat, die isomeren Cyclohexandimethylendiisocyanate, 1 ,4-Phenylendiisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanat, 1,5-Naphthylendiisocyanat, 2,4'- oder 4,4 ' -Diphenylmethandiisocyanat und/oder Triphenylmethan- 4,4',4"-triisocyanat. Ebenfalls möglich ist der Einsatz von Derivaten monomerer Di- oder Triisocyanate mit Urethan-, Harnstoff-, Carbodiimid-, Acylharnstoff-, Isocyanurat-, Allophanat-, Biuret-, Oxadiazintrion-, Uretdion- und/oder Iminooxadiazindionstrukturen.
Bevorzugt ist der Einsatz von Polyisocyanaten auf Basis aliphatischer und/oder cycloaliphatischer Dioder Triisocyanate. Besonders bevorzugt handelt es sich bei den Polyisocyanaten der Komponente a) um di- oder oligomeri- sierte aliphatische und/oder cycloaliphatische Di- oder Triisocyanate.
Ganz besonders bevorzugt sind Isocyanurate, Uretdione und/oder Iminooxadiazindione basierend auf HDI, l,8-Diisocyanato-4-(isocyanatomethyl)-oktan oder deren Mischungen.
Ebenfalls können als Komponente a) NCO-funktionelle Prepolymere mit Urethan-, Allophanat-, Biuret- und/oder Amidgruppen eingesetzt werden. Prepolymere der Komponente a) werden in dem Fachmann an sich gut bekannter Art und Weise durch Umsetzung von monomeren, oligomeren oder Polyisocyanaten al) mit isocyanatreaktiven Verbindungen a2) in geeigneter Stöchiometrie unter optionalem Einsatz von Katalysatoren und Lösemitteln erhalten.
Als Polyisocyanate al) eignen sich alle dem Fachmann an sich bekannten aliphatischen, cycloaliphati- sehen, aromatischen oder araliphatischen Di- und Triisocyanate, wobei es unerheblich ist, ob diese mittels Phosgenierung oder nach phosgenfreien Verfahren erhalten wurden. Daneben können auch die dem Fachmann an sich gut bekannten höhermolekularen Folgeprodukte monomerer Di- und/oder Triisocyanate mit Urethan-, Harnstoff-, Carbodiimid-, Acylharnstoff-, Isocyanurat-, Allophanat-, Biuret-, Oxadiazintrion-, Uretdion-, Iminooxadiazindionstruktur jeweils einzeln oder in beliebigen Mischungen unter- einander eingesetzt werden. Beispiele für geeignete monomere Di- oder Tnisocyanate, die als Komponente al) eingesetzt werden können, sind Butylendiisocyanat, Hexamethylendiisocyanat (HDI), Isophorondiisocyanat (IPDI), Tri- methyl-hexamethylen-diisocyanat (TMDI), 1 ,8-Diisocyanato-4-(isocyanatomethyl)-octan, Isocyanato- methyl-l,8-octandiisocyanat (TIN), 2,4- und/oder 2,6-Toluen-diisocyanat. Als isocyanatreaktive Verbindungen a2) zum Aufbau der Prepolymere werden bevorzugt OH- funktionelle Verbindungen eingesetzt. Diese sind analog den OH-funktionellen Verbindungen wie sie nachfolgend für die Komponente b) beschrieben sind.
Ebenfalls möglich ist der Einsatz von Aminen zur Prepolymerherstellung. Beispielsweise geeignet sind Ethylendiamin, Diethylentriamin, Triethylentetramin, Propylendiamin, Diaminocyclohexan, Diamino- benzol, Diaminobisphenyl, difunktionelle Polyamine wie z.B. die Jeffamine®, aminterminierte Polymere mit zahlenmittleren Molmassen bis 10000 g/Mol oder deren beliebige Gemische untereinander.
Zur Herstellung von biuretgruppenhaltigen Prepolymeren wird Isocyanat im Überschuss mit Amin umgesetzt, wobei eine Biuretgruppe entsteht. Als Amine eignen sich in diesem Falle für die Umsetzung mit den erwähnten Di-, Tri- und Polyisocyanaten alle oligomeren oder polymeren, primären oder sekundä- ren, difunktionellen Amine der vorstehend genannten Art.
Bevorzugte Prepolymere sind Urethane, Allophanate oder Biurete aus aliphatischen Isocyanat- funktionellen Verbindungen und oligomeren oder polymeren Isocyanat-reaktiven Verbindungen mit zahlenmittleren Molmassen von 200 bis 10000 g/Mol, besonders bevorzugt sind Urethane, Allophanate oder Biurete aus aliphatischen Isocyanat-funktionellen Verbindungen und oligomeren oder polymeren Polyolen oder Polyaminen mit zahlenmittleren Molmassen von 500 bis 8500 g/Mol und ganz besonders bevorzugt sind Allophanate aus HDI oder TMDI und difunktionellen Polyetherpolyolen mit zahlenmittleren Molmassen von 1000 bis 8200 g/Mol.
Bevorzugt weisen die vorstehend beschriebenen Prepolymere Restgehalte an freiem monomeren Isocyanat von weniger als 1 Gew.-%, besonders bevorzugt weniger als 0.5 Gew.-%, ganz besonders bevorzugt weniger als 0.2 Gew.-% auf.
Selbstverständlich kann die Isocyanatkomponente anteilsmäßig neben den beschriebenen Prepolymeren weitere Isocyanatkomponenten enthalten. Hierfür kommen in Betracht aromatische, araliphatische, aliphatische und cycloaliphatische Di-, Tri- oder Polyisocyanate. Es können auch Mischungen solcher Di-, Tri- oder Polyisocyanate eingesetzt werden. Beispiele geeigneter Di-, Tri- oder Polyisocyanate sind Butylendiisocyanat, Hexamethylendiisocyanat (HDI), Isophorondiisocyanat (IPDI), l,8-Diisocyanato-4-
(isocyanatomethyl)octan, 2,2,4- und/oder 2,4,4-Trimethylhexamethylendiisocyanat (TMDI), die isome- ren Bis(4,4'-isocyanatocyclohexyl)methane und deren Mischungen beliebigen Isomerengehalts, Isocya- natomethyl-l,8-octandiisocyanat, 1,4-Cyclohexylendiisocyanat, die isomeren Cyclohexandimethylendi- isocyanate, 1 ,4-Phenylendiisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanat, 1,5-Naphthylen- diisocyanat, 2,4'- oder 4,4'-Diphenylmethandiisocyanat, Triphenylmethan-4,4',4"-triisocyanat oder deren Derivate mit Urethan-, Harnstoff-, Carbodiimid-, Acylharnstoff-, Isocyanurat-, Allophanat-, Biu- ret-, Oxadiazintrion-, Uretdion-, Iminooxadiazindionstruktur und Mischungen derselben. Bevorzugt sind Polyisocyanate auf Basis oligomerisierter und/oder derivatisierter Diisocyanate, die durch geeignete Verfahren von überschüssigem Diisocyanat befreit wurden, insbesondere die des Hexamethylendiiso- cyanat. Besonders bevorzugt sind die oligomeren Isocyanurate, Uretdione und Iminooxadiazindione des HDI sowie deren Mischungen.
Es ist gegebenenfalls auch möglich, dass die Isocyanatkomponente a) anteilsmäßig Isocyanate enthält, die teilweise mit isocyanat-reaktiven ethylenisch ungesättigten Verbindungen umgesetzt sind. Bevorzugt werden hierbei als isocyanat-reaktives ethylenisch ungesättigten Verbindungen α,β-ungesättigte Carbonsäurederivate wie Acrylate, Methacrylate, Maleinate, Fumarate, Maleimide, Acrylamide, sowie Vinylether, Propenylether, Allylether und Dicyclopentadienyl-Einheiten enthaltende Verbindungen, die mindestens eine gegenüber Isocyanaten reaktive Gruppe aufweisen, eingesetzt, besonders bevorzugt sind dies Acrylate und Methacrylate mit mindestens einer isocyanatreaktiven Gruppe. Als hydroxyfunktio- nelle Acrylate oder Methacrylate kommen beispielsweise Verbindungen wie 2-Hydroxy- ethyl(meth)acrylat, Polyethylenoxid-mono(meth)acrylate, Polypropylenoxidmono(meth)acrylate, Polyal- kylenoxidmono(meth)acrylate, Poly(s-caprolacton)mono(meth)acrylate, wie z.B. Tone® M100 (Dow, U S A ) , 2-Hydroxypropyl(meth)acrylat, 4-Hydroxybutyl(meth)acrylat, 3-Hydroxy-2,2- dimethylpropyl(meth)acrylat, die hydroxyfunktionellen Mono-, Di- oder Tetra(meth) acrylate mehrwertiger Alkohole wie Trimethylolpropan, Glycerin, Pentaerythrit, Dipentaerythrit, ethoxyliertes, propoxy- liertes oder alkoxyliertes Trimethylolpropan, Glycerin, Pentaerythrit, Dipentaerythrit oder deren techni- sehe Gemische in Betracht. Darüberhinaus sind isoeyanat-reaktive oligomere oder polymere ungesättigte
Acrylat- und/oder Methacrylatgruppen enthaltende Verbindungen alleine oder in Kombination mit den vorgenannten monomeren Verbindungen geeignet. Der Anteil an Isocyanaten die teilweise mit isocyanatreaktiven ethylenisch ungesättigten Verbindungen umgesetzt sind an der Isocyanatkomponente a) beträgt 0 bis 99 %, bevorzugt 0 bis 50 %, besonders bevorzugt 0 bis 25 % und ganz besonders bevorzugt 0 bis 15 %.
Es ist gegebenenfalls auch möglich, dass die vorgenannten Isocyanatkomponente a) vollständig oder anteilsmäßig Isocyanate enthält, die ganz oder teilweise mit dem Fachmann aus der Beschichtungstech- nologie bekannten Blockierungsmitteln umgesetzt sind. Als Beispiel für Blockierungsmittel seien ge- nannt: Alkohole, Lactame, Oxime, Malonester, Alkylacetoacetate, Triazole, Phenole, Imidazole, Pyra- zole sowie Amine, wie z.B. Butanonoxim, Diisopropylamin, 1 ,2,4-Triazol, Dimethyl-l,2,4-triazol, Imi- dazol, Malonsäurediethylester, Acetessigester, Acetonoxim, 3,5-Dimethylpyrazol, ε-Caprolactam, N- tert.-Butyl-benzylamin, Cyclopentanoncarboxyethylester oder beliebige Gemische dieser Blockierungs- mittel.
Als Komponente b) können an sich alle polyfunktionellen, isocyanatreaktiven Verbindungen eingesetzt werden, die im Mittel wenigstens 1.5 isocyanatreaktive-Gruppen pro Molekül aufweisen.
Isocyanatreaktive Gruppen im Rahmen der vorliegenden Erfindung sind bevorzugt Hydroxy-, Amino- oder Thiogruppen, besonders bevorzugt sind Hydroxyverbindungen. Geeignete polyfunktionelle, isocyanatreaktive Verbindungen sind beispielsweise Polyester-, Polyether-, Polycarbonat-, Poly(meth)acrylat- und/oder Polyurethanpolyole.
Als Polyesterpolyole sind beispielsweise lineare Polyesterdiole oder verzweigte Polyesterpolyole geeignet, wie sie in bekannter Weise aus aliphatischen, cycloaliphatischen oder aromatischen Di- bzw. Poly- carbonsäuren bzw. ihren Anhydriden mit mehrwertigen Alkoholen einer OH-Funktionalität > 2 erhalten werden können.
Beispiele für solche Di- bzw. Polycarbonsäuren bzw. Anhydride sind Bernstein-, Glutar-, Adipin-, Pi- melin-, Kork-, Azelain-, Sebacin-, Nonandicarbon-, Decandicarbon-, Terephthal-, Isophthal-, o-Phthal-, Tetrahydrophthal-, Hexahydrophthal- oder Trimellitsäure sowie Säureanhydride wie o-Phthal-, Trimel- lit- oder Bernsteinsäureanhydrid oder deren beliebige Gemische untereinander. Beispiele für solche geeigneten Alkohole sind Ethandiol, Di-, Tri-, Tetraethylenglykol, 1 ,2-Propandiol,
Di-, Tri-, Tetrapropylenglykol, 1,3-Propandiol, Butandiol-1,4, Butandiol-1 ,3, Butandiol-2,3, Pentandi- ol-l , 5 , H e x an di o l-1,6, 2,2-Dimethyl-l,3-propandiol, 1 ,4-Dihydroxycyclohexan, 1,4- Dimethylolcyclohexan, Octandiol-1,8, Decandiol-1,10, Dodecandiol-1,12, Trimethylolpropan, Glycerin oder deren beliebige Gemische untereinander. Die Polyesterpolyole können auch auf natürlichen Rohstoffen wie Rizinusöl basieren. Ebenfalls möglich ist, dass die Polyesterpolyole auf Homo- oder Mischpolymerisaten von Lactonen basieren, wie sie bevorzugt durch Anlagerung von Lactonen bzw. Lactongemischen wie Butyrolacton, ε-Caprolacton und/oder Methyl-s-caprolacton an hydroxyfunktionelle Verbindungen wie mehrwertige Alkohole einer OH-Funktionalität > 2 beispielsweise der vorstehend genannten Art erhalten werden können. Solche Polyesterpolyole haben bevorzugt zahlenmittlere Molmassen von 400 bis 4000 g/Mol, besonders bevorzugt von 500 bis 2000 g/Mol. Ihre OH-Funktionalität beträgt bevorzugt 1.5 bis 3.5, besonders bevorzugt 1.8 bis 3.0.
Geeignete Polycarbonatpolyole sind in an sich bekannter Weise durch Umsetzung von organischen Car- bonaten oder Phosgen mit Diolen oder Diol-Mischungen zugänglich.
Geeignete organische Carbonate sind Dimethyl-, Diethyl- und Diphenylcarbonat.
Geeignete Diole bzw. Mischungen umfassen die an sich im Rahmen der Polyestersegmente genannten mehrwertigen Alkoholen einer OH-Funktionalität > 2, bevorzugt 1 ,4-Butandiol, 1 ,6-Hexandiol und/oder 3-Methylpentandiol, oder auch Polyesterpolyole können zu Polycarbonatpolyolen umgearbeitet werden. Solche Polycarbonatpolyole haben bevorzugt zahlenmittlere Molmassen von 400 bis 4000 g/Mol, besonders bevorzugt von 500 bis 2000 g/Mol. Die OH-Funktionalität dieser Polyole beträgt bevorzugt 1.8 bis 3.2, besonders bevorzugt 1.9 bis 3.0.
Geeignete Polyetherpolyole sind gegebenenfalls blockweise aufgebaute Polyadditionsprodukte cyclischer Ether an OH- oder NH-funktionelle Startermoleküle. Geeignete cyclische Ether sind beispielsweise Styroloxide, Ethylenoxid, Propylenoxid, Tetrahydrofuran, Butylenoxid, Epichlorhydrin, sowie ihre beliebigen Mischungen.
Als Starter können die an sich im Rahmen der Polyesterpolyole genannten mehrwertigen Alkohole einer OH-Funktionalität > 2 sowie primäre oder sekundäre Amine und Aminoalkohole verwendet werden.
Bevorzugte Polyetherpolyole sind solche der vorgenannten Art ausschließlich basierend auf Propyleno- xid oder statistische oder Block-Copolymere basierend auf Propylenoxid mit weiteren 1 -Alkylenoxiden, wobei der 1 -Alykenoxidanteil nicht höher als 80 Gew.-% ist. Daneben sind Poly(trimethylenoxid)e sowie Mischungen der als bevorzugt genannten Polyole bevorzugt. Besonders bevorzugt sind Propyleno- xid-homopolymere sowie statistische oder Block-Copolymere, die Oxyethylen-, Oxypropylen- und/oder Oxybutyleneinheiten aufweisen, wobei der Anteil der Oxypropyleneinheiten bezogen auf die Gesamt- menge aller Oxyethylen-, Oxypropylen- und Oxybutyleneinheiten mindestens 20 Gew.-%, bevorzugt mindestens 45 Gew.-% ausmacht. Oxypropylen- und Oxybutylen- umfasst hierbei alle jeweiligen linearen und verzweigten C3- und C4-Isomere. Solche Polyetherpolyole haben bevorzugt zahlenmittlere Molmassen von 250 bis 10000 g/Mol, besonders bevorzugt von 500 bis 8500 g/Mol und ganz besonders bevorzugt von 600 bis 4500 g/Mol. Die OH-Funktionalität beträgt bevorzugt 1.5 bis 4.0, besonders bevorzugt 1.8 bis 3.1.
Daneben sind als Bestandteile der Komponente b) als polyfunktionelle, isocyanatreaktive Verbindungen auch niedermolekulare, d.h. mit Molekulargewichten kleiner 500 g/mol, kurzkettige, d.h. 2 bis 20 Kohlenstoffatome enthaltende aliphatische, araliphatische oder cycloaliphatische di, tri oder polyfunktionelle Alkohole geeignet.
Dies können beispielsweise sein Ethylenglykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylenglykol, Tripropylenglykol, 1 ,2-Propandiol, 1,3-Propandiol, 1 ,4-Butandiol, Neopentylglykol, 2-Ethyl-2-butylpropandiol, Trimethylpentandiol, stellungsisomere Diethyloctandiole, 1,3-Butylenglykol,
Cyclohexandiol, 1 ,4-Cyclohexandimethanol, 1,6-Hexandiol, 1 ,2- und 1 ,4-Cyclohexandiol, hydriertes Bispheno l A (2 ,2-Bis(4-hydroxycyclohexyl)propan), 2,2-Dimethyl-3-hydroxypropionsäure (2,2- dimethyl-3-hydroxypropylester). Beispiele geeigneter Triole sind Trimethylolethan, Trimethylolpropan oder Glycerin. Geeignete höherfunktionelle Alkohole sind Ditrimethylolpropan, Pentaerythrit, Dipentae- rythrit oder Sorbit.
Als Komponente c) werden ein oder mehrere Photoinitiatoren eingesetzt. Dies sind üblicherweise durch aktinische Strahlung aktivierbare Initiatoren, die eine Polymerisation der entsprechenden polymerisier- baren Gruppen auslösen. Photoinitiatoren sind an sich bekannte, kommerziell vertriebene Verbindungen, wobei zwischen unimolekularen (Typ I) und bimolekularen (Typ II) Initiatoren unterschieden wird. Desweiteren werden diese Initiatoren je nach chemischer Natur für die radikalische, die anionische
(oder), die kationische (oder gemischte) Formen der vorgenannten Polymerisationen eingesetzt.
(Typ I)-Systeme für die radikalische Photopolymerisation sind z.B. aromatische Ketonverbindungen, z . B . B enzophenone in Komb ination mit tertiären Aminen, Alkylbenzophenone, 4,4 '- Bis(dimethylamino)benzophenon (Michlers Keton), Anthron und halogenierte Benzophenone oder Mi- schungen der genannten Typen. Weiter geeignet sind (Typ II)-Initiatoren wie Benzoin und seine Derivate, Benzilketale, Acylphosphinoxide z.B . 2,4,6-Trimethyl-benzoyl-diphenylphosphinoxid, Bisacy- lophosphinoxide, Phenylglyoxylsäureester, Campherchinon, alpha-Aminoalkylphenone, alpha-,alpha- Dialkoxyacetophenone, 1 -[4-(Phenylthio)phenyl]octan-l ,2-dion-2-(0-benzoyloxim), u n t erschiedlich substituierte Hexarylbisimidazole (HABI) mit geeigneten Coinitiatoren wie z.B. Mercaptobenzoxazol sowie alpha-Hydroxyalkylphenone. Auch die in EP-A 0223587 beschriebenen Photoinitiatorsysteme bestehend aus einer Mischung aus einem Ammoniumarylborat und einem oder mehreren Farbstoffen können als Photoinitiator eingesetzt werden. Als Ammoniumarylborat eignen sich beispielsweise Tetra- butylammonium Triphenylhexylborat, Tetrabutylammonium Triphenylbutylborat, Tetrabutylammonium Trinaphthylbutylborat, Tetramethylammonium Triphenylbenzylborat, Tetra(n-hexyl)ammonium (sec- Butyl)triphenylborat, l-Methyl-3-octylimidazolium Dipentyldiphenylborat, Tetrabutylammonium Tris- (4-tert.-butyl)-phenylbutylborat, Tetrabutylammonium Tris-(3-fluoφhenyl)-hexylborat und Tetrabuty- lammonium Tris-(3-Chlor-4-methylphenyl)-hexylborat. Als Farbstoffe eignen sich beispielsweise Neu-
Methylenblau, Thionin, Basic Yellow, Pinacynol Chlorid, Rhodamin 6G, Gallocyanin, Ethylviolett, Victoria Blue R, Celestine Blue, Chinaldinrot, Kristallviolett, Brilliant Grün, Astrazon Orange G, Dar- row Red, Pyronin Y, Basic Red 29, Pyrillium I, Safranin O, Cyanin und Methylenblau, Azur A (Cun- ningham et al., RadTech'98 North America UV/EB Conference Proceedings, Chicago, Apr. 19-22, 1998).
Die für die anionische Polymerisation verwendeten Photoinitiatoren sind in der Regel (Typ I)-Systeme und leiten sich von Übergangsmetall-Komplexen der ersten Reihe ab. Hier sind Chrom-Salze, wie z.B. trans-Cr(NH3)2(NCS)4- (Kutal et al, Macromolecules 1991, 24, 6872) oder Ferrocenyl- Verbindungen (Yamaguchi et al. Macromolecules 2000, 33, 1152) zu nennen. Eine weitere Möglichkeit der anioni- sehen Polymerisation besteht in der Verwendung von Farbstoffen, wie Kristallviolett Leukonitril oder Malachit Grün Leukonitril, die durch photolytischen Zerfall Cyanoacrylate polymerisieren können (Neckers et al. Macromolecules 2000, 33, 7761). Allerdings wird dabei das Chromophor in das Polymer eingebaut, so dass die resultierenden Polymere durchgefärbt sind.
Die für die kationische Polymerisation verwendeten Photoinitiatoren bestehen im wesentlichen aus drei Klassen: Aryldiazonium-Salze, Onium-Salze (hier speziell: Iodonium-, Sulfonium- und Selenonium-
Salze) sowie Organometall-Verbindungen. Phenyldiazonium-Salze können unter Bestrahlung sowohl in Gegenwart als auch in Abwesenheit eines Wasserstoff-Donors ein Kation erzeugen, das die Polymerisation initiiert. Die Effizienz des Gesamtsystems wird durch die Natur des verwendeten Gegenions zur Diazonium- Verbindung bestimmt. Bevorzugt sind hier die wenig reaktiven aber recht teuren SbF6-, AsF6- oder PF6-. Für den Einsatz in Beschichtung dünner Filme sind diese Verbindungen i.d.R wenig geeignet, da durch den nach der Belichtung freigesetzten Stickstoff die Oberflächegüte herabgesetzt wird (pinholes) (Li et al., Polymerie Materials Science and Engineering, 2001, 84, 139). Sehr weit verbreitet und auch in vielerlei Form kommerziell erhältlich sind Onium-Salze, speziell Sulfonium- und Iodonium- Salze. Die Photochemie dieser Verbindungen ist nachhaltig untersucht worden. Die Iodonium-Salze zerfallen nach der Anregung zunächst homo lyrisch und erzeugen somit ein Radikal und ein Radikalani- on, welches sich durch H-Abstraktion stabilisiert und ein Proton freisetzt und dann die kationische Polymerisation startet (Dektar et al. J. Org. Chem. 1990, 55, 639; J. Org. Chem., 1991, 56. 1838). Dieser Mechanimus ermöglicht den Einsatz von Iodonium-Salzen ebenfalls für die radikalische Photopolymerisation. Hierbei kommt erneut der Wahl des Gegenions eine große Bedeutung zu, bevorzugt werden ebenfalls SbF6 ", AsF6 " oder PF6\ Ansonsten in dieser Strukturklasse die Wahl der Substitution des Aro- maten recht frei und im wesentlichen durch die Verfügbarkeit geeigneter Startbausteine für die Synthese bestimmt. Bei den Sulfonium-Salzen handelt es sich um Verbindungen, die nach Norrish(II) zerfallen (Crivello et al., Macromolecules, 2000, 33, 825). Auch bei den Sulfonium-Salzen kommt der Wahl des Gegenions eine kritische Bedeutung zu, die sich im Wesentlichen in der Härtungsgeschwindigkeit der Polymere äußert. Die besten Ergebnisse werden i.d.R. mit SbF6 Salzen erzielt. Da die Eigenabsorption von Iodonium- und Sulfonium-Salze bei <300nm liegt, müssen diese Verbindungen für die Photopolymerisation mit nahem UV oder kurzwelligem sichtbarem Licht entsprechend sensibilisiert werden. Dies gelingt durch die Verwendung von höher absorbierenden Aromaten wie z.B. Anthracen und Derivaten (Gu et al., Am. Chem. Soc. Polymer Preprints, 2000, 41 (2), 1266) oder Phenothiazin bzw. dessen Derivate (Hua et al, Macromolecules 2001, 34, 2488-2494).
Es kann vorteilhaft sein auch Gemische dieser Verbindungen einzusetzen. Je nach zur Härtung verwendeter Strahlungsquelle muss Typ und Konzentration an Photoinitiator in dem Fachmann bekannter Weise angepasst werden. Näheres ist zum Beispiel in P. K. T. Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 3, 1991, SITA Technology, London, S. 61 -
328 beschrieben.
Bevorzugte Photoinitiatoren c) sind Mischungen aus Tetrabutylammonium Triphenylhexylborat, Tetra- butylammonium Triphenylbutylborat, Tetrabutylammonium Trinapthylbutylborat, Tetrabutylammonium Tris-(4-tert.-butyl)-phenylbutylborat, Tetrabutylammonium Tris-(3-fluorphenyl)-hexylborat und Tetrabutylammonium Tris-(3-Chlor-4-methylphenyl)-hexylborat mit Farbstoffen wie beispielsweise
Astrazon Orange G, Methylenblau, Neu Methylenblau, Azur A, Pyrillium I, Safranin O, Cyanin, Gallo- cyanin, Brilliant Grün, Kristallviolett, Ethylviolett und Thionin.
Als Komponente d) sind mit hochbrechenden Acrylaten als kontrastgebenden Komponenten in Photopolymer-Formulierungen sehr gute Ergebnisse erzielbar, wie dies bespielsweise in der US 6,780,546 be- schrieben ist.
Es ist daher erfindungsgemäß bevorzugt, wenn in der Photopolymer-Formulierung die Schreibmomome- re Acrylate sind, besonders bevorzugt solche mit einem Brechungsindex > 1.50. Ganz besonders bevorzugt sind Urethanacrylate, insbesondere bevorzugt sind aromatische Urethanacrylate mit einem Brechungsindex von >1.50 bei 589 nm, wie sie beispielsweise in WO2008/125199 beschrieben sind. Weitere Gegenstände der vorliegenden Erfindung sind Medien zur Aufzeichnung visueller Hologramme erhältlich unter Verwendung von Fluorurethanen der Formel (I), die Verwendung solcher Medien als opti- sehe Elemente, Bilder oder zur Bilddarstellung oder -projektion sowie ein Verfahren zur Aufzeichnung eines Hologramms, bei solche Medien eingesetzt werden.
Die erfindungsgemäße Photopolymer-Formulierung kann insbesondere 15 bis 79, bevorzugt 30 bis 60 Gew.-% Matrixpolymer, 5 bis 50, bevorzugt 10 bis 40 Gew.-% Schreibmonomer, 1 bis 10, bevorzugt 1 bis 3 Gew.-% Photoinitiator und 5 bis 50, bevorzugt 10 bis 40 Gew.-% Fluorurethane und 0 bis 10
Gew.-% weitere Additive enthalten, wobei die Summe der Bestandteile 100 Gew.-% beträgt.
Ein zweiter Aspekt der Erfindung betrifft ein Verfahren zur Herstellung einer erfindungsgemäßen Photopolymer-Formulierung bei dem Matrixpolymere, Schreibmomomere, Photoinitiatoren und Fluorurethane als Weichmacher zu der Photopolymer-Formulierung vermischt werden. Ein dritter Aspekt der Erfindung betrifft eine nach dem Verfahren erhältliche Photopolymer-
Formulierung.
Ein vierter Aspekt der Erfindung betrifft eine Folie, einen Film, eine Schicht, einen Schichtaufbau oder einen Formkörper aus der Photopolymer-Formulierung.
Schichten, Schichtaufbauten und Formkörper aus den erfindungsgemäßen Photopolymer- Formulierungen weisen typischerweise Δη- Werte, gemessen nach dem im Abschnitt„Messung der holographischen Eigenschaften DE und Δη der holographischen Medien mittels Zweistrahlinterferenz in Reflexionsanordnung" beschriebenen Verfahren, von Δη > 0.0120 , bevorzugt > 0.0130, besonders bevorzugt > 0.0140, ganz besonders bevorzugt > 0.0150 auf.
Ein fünfter Aspekt der Erfindung betrifft die Verwendung der Photopolymer-Formulierung zur Herstel- lung von optischen Elementen, insbesondere zur Herstellung von holographischen Elementen und Bildern.
Ebenfalls Gegenstand der Erfindung ist ein Verfahren zur Belichtung von holographischen Medien aus einer erfindungemäßen Photopolymer-Formulierung, bei dem die Schreibmonomere durch elektromagnetische Strahlung ortsaufgelöst selektiv polymerisiert werden. Derartige holographische Medien eignen sich nach der holographischen Belichtung zur Herstellung von holographischen optischen Elementen, die z.B. die Funktion einer optischen Linse, eines Spiegels, eines Umlenkspiegels, eines Filters, einer Streuscheibe, eines Beugungselements, eines Lichtleiters, eines Lichtlenkers, einer Projektionsscheibe und/oder einer Maske haben. Zudem können damit auch holographische Bilder oder Darstellungen hergestellt werden, wie zum Beispiel für persönliche Portraits, biometrische Darstellungen in Sicherheitsdokumenten, oder allgemein von Bilder oder Bildstrukturen für Werbung, Sicherheitslabels, Markenschutz, Markenbranding, Etiketten, Designelementen, Dekorationen, Illustrationen, Sammelkarten, Bilder und dergleichen sowie Bilder, die digitale Daten repräsentieren können, u.a auch in Kombination mit den zuvor dargestellten Produkten.
Im Stand der Technik sind bestimmte Fluorurethane bekannt. So beschreibt die US 2003/105263 AI Fluorurethane, die durch Umsetzung eines Biuret, Isocyanurat, Uretdion, Polyharnstoff enthalten den
Polyisocyanates mit einem fluoriertem Alkohol erhältlich sind. Aus der WO 03/023519 A ist Fluoru- rethan bekannt, dass durch Umsetzung eines Biuret enthaltenden Polyisocynates mit einem fluoriertem Alkohol erhältlich ist.
Ein weiterer Aspekt der Erfindung betrifft ein Fluorurethan, erhältlich durch Umsetzung Iminooxadia- zindione oder Oxadiazadion enthaltenden Polyisocyanates, das wenigstens eine freie Isocyanat Gruppe aufweist, mit einem Alkohol, wobei das Polyisocyanat und/oder der Alkohol mit wenigstens einem Fluoratom substituiert ist.
Schließlich ist auch ein Fluorurethan gemäß der allgemeinen Formel (III)
Figure imgf000016_0001
in der m>l und m<8 ist und R4, R5, R6 Wasserstoff und / oder unabhängig voneinander lineare, verzweigte, cyclische oder heterocyclische unsubstituierte oder gegebenenfalls auch mit mit Heteroatomen substituierte organische Reste sind und Iminooxadiazindion- und / oder Oxadiazadion-Strukturelemente aufweisen, wobei gleichzeitig wenigstens zwei der Reste R4, R5, R6 mit wenigstens einem Fluoratom substituiert sind, Gegenstand der Erfindung.
Beispiele:
Die Erfindung wird im Folgenden anhand von Beispielen näher erläutert.
Sofern nicht abweichend vermerkt beziehen sich alle Prozentangaben auf Gewichtsprozent.
Messmethoden: Die angegebenen NCO-Werte (Isocyanat-Gehalte) wurden gemäß DIN EN ISO 1 1909 bestimmt.
Die Messung des Brechungsindex erfolgte je nach Beschaffenheit der Beispiel-Verbindung nach einer der drei folgenden Methoden:
Messung des Brechungsindex n bei einer Wellenlänge von 405 nm (Methode A): Der Brechungsindex n in Abhängigkeit von der Wellenlänge der Proben wurden aus den Transmissions- und Reflexionsspektren erhalten. Dazu wurden ca. 100 - 300 nm dicke Filme der Proben auf Quarzglasträger aus verdünnter Lösung in Butylacetat aufgeschleudert. Das Transmissions- und Reflexionsspektrum dieses Schichtpaketes wurde mit einem Spektrometer der Firma STEAG ETA-Optik, CD-Measurement System ETA- RT gemessen und danach die Schichtdicke und der spektrale Verlauf von n an die gemessenen Trans- missions- und Reflexionsspektren angepasst. Dies geschieht mit der internen Software des Spektrome- ters und erfordert zusätzlich die n Daten des Quarzglassubstrates, die in einer Blindmessung vorab bestimmt wurden.
Messung des Brechungsindex bei einer Wellenlänge von 589 nm (Methode B): Eine Probe der Beispiel-Verbindung wurde in ein Abbe-Refraktometer gegeben und dann der h0° gemessen. Messung des Brechungsindex bei einer Wellenlänge von 589 nm aus halbkonzentrieter Lösung (Methode C): Eine Probe der Beispiel-Verbindung wurde 50:50 (Gew.-%) mit N-Ethylpyrrolidon verdünnt und in ein Abbe-Refraktometer gegeben und dann der gemessen. Daraus wurde der genäherte Brechungsindex des Analyten berechnet, der von N-Ethylpyrrolidon war dabei 1.4658.
Messung der holographischen Eigenschaften DE und An der holographischen Medien mittels Zweistrahlinterferenz in Reflexionsanordnung
Die hergestellten Medien wurden anschließend mittels einer Messanordnung gemäß Figur 1 wie folgt auf ihre holographischen Eigenschaften geprüft: Der Strahl eines He-Ne Lasers (Emissionswellenlänge 633 nm) wurde mit Hilfe des Raumfilter (SF) und zusammen mit der Kollimationslinse (CL) in einen parallelen homogenen Strahl umgewandelt. Die finalen Querschnitte des Signal und Referenzstrahls werden durch die Irisblenden (I) festgelegt. Der Durchmesser der Irisblendenöffnung beträgt 0.4 cm. Die polarisationsabhängigen Strahlteiler (PBS) teilen den Laserstrahl in zwei kohärente gleich polarisierte Strahlen. Über die λ/2 Plättchen wurden die
Leistung des Referenzstrahls auf 0.5 mW und die Leistung des Signalstrahls auf 0.65 mW eingestellt. Die Leistungen wurden mit den Halbleiterdetektoren (D) bei ausgebauter Probe bestimmt. Der Einfallswinkel (oo) des Referenzstrahls beträgt -21.8°, der Einfallswinkel (ßo) des Signalstrahls beträgt 41.8°. Die Winkel werden ausgehend von der Probennormale zur Strahlrichtung gemessen. Gemäß Figur 1 hat daher ao ein negatives Vorzeichen und ßo ein positives Vorzeichen. Am Ort der Probe (Medium) erzeugte das Interferenzfeld der zwei überlappenden Strahlen ein Gitter heller und dunkler Streifen die senkrecht zur Winkelhalbierenden der zwei auf die Probe einfallenden Strahlen liegen (Reflexionshologramm). Der Streifenabstand Λ, auch Gitterperiode genannt, im Medium beträgt ~ 225 nm (der Brechungsindex des Mediums zu -1.504 angenommen). Figur 1 zeigt die Geometrie eines Holographie Media Testers (HMT) bei λ = 633 nm (He-Ne Laser): M = Spiegel, S = Verschluss, SF = Raumfilter, CL = Kollimatorlinse, λ/2 = λ/2 Platte, PBS = polarisationsempfindlicher Strahlteiler, D = Detektor, I = Irisblende, o = -21.8°, ßo = 41.8° sind die Einfallswinkel der kohärenten Strahlen außerhalb der Probe (des Mediums) gemessen. RD = Referenzrichtung des Drehtisches. Mit einem holographischen Versuchsaufbau wie in Figur 1 dargestellt wurde die Beugungseffizienz (DE) der Medien gemessen.
Es wurden auf folgende Weise Hologramme in das Medium geschrieben:
• Beide Shutter (S) sind für die Belichtungszeit t geöffnet.
• Danach wurde bei geschlossenen Shuttern (S) dem Medium 5 Minuten Zeit für die Diffusion der noch nicht polymerisierten Schreibmonomere gelassen.
Die geschriebenen Hologramme wurden nun auf folgende Weise ausgelesen. Der Shutter des Signalstrahls blieb geschlossen. Der Shutter des Referenzstrahls war geöffnet. Die Irisblende des Referenzstrahls wurde auf einen Durchmesser < 1 mm geschlossen. Damit erreichte man, dass für alle Drehwinkel (Ω) des Mediums der Strahl immer vollständig im zuvor geschriebenen Hologramm lag. Der Dreh- tisch überstrich nun computergesteuert den Winkelbereich von Qmin bis Qmax mit einer Winkelschrittweite von 0.05°. Ω wird von der Probennormale zur Referenzrichtung des Drehtisches gemessen. Die Refe- renzrichtung des Drehtisches ergibt sich dann wenn beim Schreiben des Hologramms der Einfallswinkel des Referenz- und des Signalstrahls betragsmäßig gleich sind also ao = -31.8° und ßo = 31.8° gilt. Dann beträgt Q.iea}lding = 0°. Für o = -21.8° und ßo = 41.8° beträgt Q.iea}lding daher 10°. Allgemein gilt für das Interferenzfeld beim Schreiben („recording") des Hologramms:
°- 0 = ^ο + Ω recording · θο ist der Halbwinkel im Laborsystem außerhalb des Mediums und es gilt beim Schreiben des Hologramms: α0 - β0
θ0
In diesem Fall gilt also θο = -31.8°. An jedem angefahrenen Drehwinkel Ω wurden die Leistungen des in der nullten Ordnung transmittierten Strahls mittels des entsprechenden Detektors D und die Leistungen des in die erste Ordnung abgebeugten Strahls mittels des Detektors D gemessen. Die Beugungseffizienz ergab sich bei jedem angefahrenen Winkel Ω als der Quotient aus:
P D + P T
PD ist die Leistung im Detektor des abgebeugten Strahls und PT ist die Leistung im Detektor des trans- mittierten Strahls.
Mittels des oben beschriebenen Verfahrens wurde die Braggkurve, sie beschreibt den Beugungswirkungsgrad η in Abhängigkeit des Drehwinkels Ω des geschriebenen Hologramms gemessen und in einem Computer gespeichert. Zusätzlich wurde auch die in die nullte Ordnung transmittierte Intensität gegen den Drehwinkel Ω aufgezeichnet und in einem Computer gespeichert. Die maximale Beugungseffizienz (DE = T1max) des Hologramms, also sein Spitzenwert, wurde bei Ωκ_ construction ermittelt. Eventuell musste dazu die Position des Detektors des abgebeugten Strahls verändert werden, um diesen maximalen Wert zu bestimmen.
Der Brechungsindexkontrast Δη und die Dicke d der Photopolymerschicht wurde nun mittels der Coupled Wave Theorie (siehe; H. Kogelnik, The Bell System Technical Journal, Volume 48, November 1969, Number 9 Seite 2909 - Seite 2947) an die gemessene Braggkurve und den Winkelverlauf der transmittierten Intensität ermittelt. Dabei ist zu beachten, dass wegen der durch die Photopolymerisation auftretenden Dickenschwindung der Streifenabstand Λ' des Hologramms und die Orientierung der Strei- fen (slant) vom Streifenabstand Λ des Interferenzmusters und dessen Orientierung abweichen kann. Demnach wird auch der Winkel Λ0' bzw. der entsprechende Winkel des Drehtisches Oreconstruction, bei dem maximale Beugungseffizienz erreicht wird von 0 bzw. vom entsprechenden Orecording abweichen. Dadurch verändert sich die Bragg-Bedingung. Diese Veränderung wird im Auswerteverfahren berücksichtigt. Das Auswerteverfahren wird im Folgenden beschrieben:
Alle geometrischen Größen, die sich auf das geschriebene Hologramm beziehen und nicht auf das Interferenzmuster werden als gestrichene Größen dargestellt.
Für die Braggkurve η(Ω) eines Reflexionshologramms gilt nach Kogelnik:
Figure imgf000020_0001
mit:
Figure imgf000020_0002
ξ DP λ
cs - cos($')- cos(\|/')- n - A'
')
Figure imgf000020_0003
λ
Λ'=
2 · n cos ;l(ψ·-α')
Beim Auslesen des Hologramms („reconstruction") gilt wie analog oben dargestellt: θ*0 - θ0 + Ω
sin(0*0 ) = « - sin(0*)
An der Bragg-Bedingung ist das„Dephasing" DP = 0. Und es folgt entsprechend:
^ 0 ö0 + Ω reconstruction
sin(a'0 ) = fl - sin(a')
Der noch unbekannte Winkel ß' kann aus dem Vergleich der Bragg-Bedingung des Interferenzfeldes beim Schreiben des Hologramms und der Bragg-Bedingung beim Auslesen des Hologramms ermittelt werden unter der Annahme, dass nur Dickenschwindung stattfindet. Dann folgt: sin [sin(a0 ) + sin(ß0 )- sin(90 + Ω reconstruction v ist die Gitterstärke, ξ ist der Detuning Parameter und ψ' die Orientierung (Slant) des Brechungsindexgitters das geschrieben wurde, a' und ß' entsprechen den Winkeln o und ßo des Interferenzfeldes beim Schreiben des Hologramms, aber im Medium gemessen und für das Gitter des Hologramms gültig (nach Dickenschwindung), n ist der mittlere Brechungsindex des Photopolymers und wurde zu 1.504 gesetzt, λ ist die Wellenlänge des Laserlichts im Vakuum.
Die maximale Beugungseffizienz (DE = nmax) ergibt sich dann für ξ = 0 zu:
Figure imgf000021_0001
Figur 2 zeigt die gemessene transmittierte Leistung PT (rechte -Achse) als durchgezogene Linie gegen das Winkeidetuning ΔΩ aufgetragen, die gemessene Beugungseffizienz η (linke y- Achse) als ausgefüllte Kreise gegen das Winkeidetuning ΔΩ aufgetragen (soweit die endliche Größe des Detektors es erlaubte) und die Anpassung der Kogelnik Theorie als gestrichelte Linie (linke -Achse).
Die Messdaten der Beugungseffizienz, die theoretische Braggkurve und die transmittierte Intensität werden wie in Figur 2 gezeigt gegen den zentrierten Drehwinkel ΔΩ = Clrecomtmction - Ω = α'0 -θ'0 , auch Winkeidetuning genannt, aufgetragen.
Da DE bekannt ist wird die Form der theoretischen Braggkurve nach Kogelnik nur noch durch die Dicke d der Photopolymerschicht bestimmt. Δη wird über DE für gegebene Dicke d so nachkorrigiert, dass Messung und Theorie von DE immer übereinstimmen, cf wird nun solange angepasst bis die Winkelpositionen der ersten Nebenminima der theoretischen Braggkurve mit den Winkelpositionen der ersten Nebenmaxima der transmittierten Intensität übereinstimmen und zudem die volle Breite bei halber Höhe (FWHM) für die theoretische Braggkurve und für die transmittierte Intensität übereinstimmen. Da die Richtung in der ein Reflexionshologramm bei der Rekonstruktion mittels eines Ω-Scans mitrotiert, der Detektor für das abgebeugte Licht aber nur einen endlichen Winkelbereich erfassen kann, wird die Braggkurve von breiten Holgrammen (kleines cf) bei einem Ω-Scan nicht vollständig erfasst, sondern nur der zentrale Bereich, bei geeigneter Detektorpositionierung. Daher wird die zur Braggkurve komplementäre Form der transmittierten Intensität zur Anpassung der Schichtdicke cf zusätzlich heran- gezogen.
Figur 2 zeigt die Darstellung der Braggkurve η nach der Coupled Wave Theorie (gestrichelte Linie), des gemessenen Beugungswirkungsgrades (ausgefüllte Kreise) und der transmittierten Leistung (schwarz durchgezogene Linie) gegen das Winkeidetuning ΔΩ.
Für eine Formulierung wurde diese Prozedur eventuell mehrfach für verschiedene Belichtungszeiten t an verschiedenen Medien wiederholt, um festzustellen bei welcher mittleren Energiedosis des einfallenden Laserstrahls beim Schreiben des Hologramms DE in den Sättigungswert übergeht. Die mittlere Energiedosis E ergibt sich wie folgt aus den Leistungen der zwei den Winkeln ao und ßo zugeordneten Teilstrahlen (Referenzstrahl mit Pr = 0.50 mW und Signalstrahl mit Ps = 0.63 mW), der Belichtungszeit t und dem Durchmesser der Irisblende (0.4 cm):
Figure imgf000022_0001
Die Leistungen der Teilstrahlen wurden so angepasst, dass in dem Medium bei den verwendeten Winkeln o und ßo, die gleiche Leistungsdichte erreicht wird.
Verwendete Substanzen:
Fluorlink E 10/H ist ein von Solvay Solexis hergestelltes Reaktiv-Additiv auf Basis einer fluorierten Alkohols mit dem mittleren Molgewicht von 750 g/Mol.
CGI-909 (Tetrabutylammonium-tris(3-chlor-4-methylphenyl)(hexyl)borat, [1147315-1 1 -4]) ist ein von der Fa. CIBA Inc., Basel, Schweiz, hergestelltes Versuchsprodukt. l ,8-Diisocyanato-4-(isocyanatomethyl)octan (TIN) wurde wie in EP749958 beschrieben hergestellt. Die eingesetzten fluorierten Alkohole und monofunktionellen Isocyanate wurden im Chemikalienhandel bezogen, die verwendeten Polyisocyanate (Desmodur H (HDI), Desmodur I (IPDI), Desmodur W, Des- modur LD, Desmodur N3400, Desmodur N3600, Desmodur N3900, Baymicron OXA) sind Handelsprodukte der Bayer MaterialScience AG, Leverkusen, Deutschland. 2,4,4-Trimethylhexane-l,6-diisocyanat, Vestanat TMDI, ist ein Produkt der Evonik Degussa GmbH,
Marl, Deutschland.
Herstellung von 2,2,2-Trifluorethyl-(6-isocyanatohexyl)carbamat
In einem 1 L Rundkolben wurden 684 g Hexamethylendiisocyanat (HDI) bei 80 °C vorgelegt und 0.002 g Isophthalsäuredichlorid zugesetzt. Es wurden 54.4 g Trifluorethanol langsam zugetropft und nachge- rührt, bis der NCO Wert bei 43.2 Gew.-% lag. Das Gemisch wurde destillativ an einem Dünnschichtverdampfer aufgetrennt und man erhielt 47 g (=47 % der Theorie) der Titelverbindung mit einem NCO- Gehalt von 22.7 Gew.-%.
Herstellung von 2,2,3,3,4,4,5,5-Octafluoropentyl-(6-isocyanatohexyl)carbamat
In einem 1 L Rundkolben wurden 399 g Hexamethylendiisocyanat (HDI) bei 80 °C vorgelegt und 0.002 g Isophthalsäuredichlorid zugesetzt. Es wurden 73.4 g 2,2,3, 3,4,4,5, 5-Octafluoropentanol langsam zugetropft und nachgerührt, bis der NCO Wert bei 39.4 Gew.-% lag. Das Gemisch wurde destillativ an einem Dünnschichtverdampfer aufgetrennt und man erhielt 40 g (=40 % der Theorie) der Titelverbindung mit einem NCO-Gehalt von 12.4 Gew.-%.
Beispiel 1: Bis(2,2,2-trifluoroethyl)hexan-l,6-diylbiscarbamat In einem 500 mL Rundkolben wurden 0.07 g Desmorapid Z und 64.4 g 6-Diisocyanatohexan (HDI) vorgelegt und auf 60 °C erwärmt. Anschließend wurden 81.5 g Trifluorethanol zugetropft und die Mischung weiter auf 60 °C gehalten, bis der Isocyanatgehalt unter 0.1 % gesunken war. Danach wurde abgekühlt. Das Produkt wurde als farbloser Feststoff erhalten.
Die nachfolgend in Tabelle 1 beschriebenen Beispiele wurden auf die in Beispiel 1 beschriebene Art und Weise in den angegebenen Zusammensetzungen hergestellt. Tabelle 1: Herstellung und Charakterisierung der Beispiele 2-224
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Beispiel 225: 9,9,10,10,11,11,12,12,13,13,14,14,29,29,30,30,31,31,32,32,
33,33,34,34-Tetracosafluor-20,20,22-trimethyl-6,17,26-trioxo-7,16,27-trioxa-5,18,25- triazapentatriacontan-35-yl-butylcarbamat
In einem 250 mL Rundkolben wurde 2,2,3,3,4,4,5, 5,6,6,7,7-Dodecafluor-l ,8-octandiol vorge- legt und 0.05 g Dibutylzinndilaurat (Desmorapid Z, Bayer MaterialScience AG, Leverkusen,
Deutschland) zugegeben und auf 60 °C erwärmt. Es wurden 18.7 g n-Butylisocyanat portionsweise hinzugegeben und für 3 h bei 60 °C nachgerührt. Anschließend wurden 19.9 g 2,4,4- Trimethylhexane-l,6-diisocyanat (TMDI) zugetropft und die Mischung weiter auf 60 °C gehalten, bis der Isocyanatgehalt unter 0.1 % gesunken war. Danach wurde abgekühlt und das Produkt wurde als farbloses Öl erhalten, der nach Methode B bestimmte Brechungsindex ist -in = 1.4131.
Beispiel 226: 23-(8,8,9,9,10,10,ll,ll,12,12,13,13-Dodecafluor-5,16-dioxo-6,15-dioxa- 4,17-diazahenicos-l-yl)-9,9,10,10,ll,ll,12,12,13,13,14,14,29,29,30,30,31,
31,32,32,33,33,34,34-tetracosafluor-6,17,26-trioxo-7,16,27-trioxa-5,18,25-triaza- pentatriacontan-35-yl-butylcarbamat
In einem 100 mL Rundkolben wurde 2,2,3, 3,4,4,5, 5,6,6,7,7-Dodecafluor-l ,8-octandiol vorgelegt und 0.01 g Dibutylzinndilaurat (Desmorapid Z, Bayer MaterialScience AG, Leverkusen, Deutschland) zugegeben und auf 60 °C erwärmt. Es wurden 3.63 g n-Butylisocyanat portionsweise hinzugegeben und für 3 h bei 60 °C nachgerührt. Anschließend wurden 3.08 g 1,8- Diisocyanato-4-(isocyanatomethyl)octan (TIN) zugetropft und die Mischung weiter auf 60 °C gehalten, bis der Isocyanatgehalt unter 0.1 % gesunken war. Danach wurde abgekühlt und das Produkt wurde als farbloses Öl erhalten, der nach Methode A bestimmte Brechungsindex ist n = 1.4200.
Herstellung der Medien Zur Prüfung der optischen Eigenschaften wurden wie im Folgenden beschrieben Medien hergestellt und optisch vermessen:
Herstellung der Polyol-Komponente:
In einem 1 L Kolben wurden 0.18 g Zinnoctoat, 374.8 g ε-Caprolacton und 374.8 g eines difunktionellen Polytetrahydrofuranpolyetherpolyols (Equivalentgewicht 500 g/Mol OH) vor- gelegt und auf 120 °C aufgeheizt und so lange auf dieser Temperatur gehalten, bis der Festge- halt (Anteil der nicht-flüchtigen Bestandteile) bei 99.5 Gew.-% oder darüber lag. Anschließend wurde abgekühlt und das Produkt als wachsiger Feststoff erhalten.
Herstellung des Urethanacrylats 1: Phosphorothioyltris(oxybenzol-4,l-diylcarbamoyl- oxyethan-2,l-diyl)trisacrylat In einem 500 mL Rundkolben wurden 0.1 g 2,6-Di-tert.-butyl-4-methylphenol, 0.05 g Dibu- tylzinndilaurat (Desmorapid Z, Bayer MaterialScience AG, Leverkusen, Deutschland) sowie und 213.07 g einer 27 %-igen Lösung von Tris(p-isocyanatophenyl)thiophosphat in Ethylace- tat (Desmodur® RFE, Produkt der Bayer MaterialScience AG, Leverkusen, Deutschland) vorgelegt und auf 60 °C erwärmt. Anschließend wurden 42.37 g 2-Hydroxyethylacrylat zuge- tropft und die Mischung weiter auf 60 °C gehalten, bis der Isocyanatgehalt unter 0.1 % gesunken war. Danach wurde abgekühlt und im Vakuum das Ethylacetat vollständig entfernt. Das Produkt wurde als teilkristalliner Feststoff erhalten.
Herstellung des Urethanacrylats 2: 2-({[3-(Methylsulfanyl)phenyl]carbamoyl}oxy)- propylprop-2-enoat In einem 250 mL Rundkolben wurden 0.05 g 2,6-Di-tert.-butyl-4-methylphenol, 0.02 g Desmorapid Z, 26.8 g 3-(Methylthio)phenylisocyanat in 50 g Ethylacetat vorgelegt und auf 60 °C erwärmt. Anschließend wurden 21.1 g 2-Hydroxypropylacrylat zugetropft und die Mischung weiter auf 60 °C gehalten, bis der Isocyanatgehalt unter 0.1 % gesunken war. Danach wurde das Ethylacetat bei 5 mbar abdestilliert und abgekühlt. Das Produkt wurde als hellgelbe Flüs- sigkeit erhalten.
Medium 1:
3.82 g der wie oben beschrieben hergestellten Polyol-Komponente wurden mit 2.50 g Phosphorothioyltris(oxybenzol-4, 1 -diylcarbamoyl~Oxyethan-2, 1 -diyl)trisacrylat (Urethan- acrylat 1), 2.50 g 2,2,2-Trifluorethyl-hexylcarbamat (Beispiel 4), 0.10 g CGI 909 (Versuchs- produkt der Fa. Ciba Inc, Basel, Schweiz), 0.01 g Neu Methylenblau und 0.35 g N- Ethylpyrrolidon bei 60 °C gemischt, so dass eine klare Lösung erhalten wurde. Anschließend wurde auf 30 °C abgekühlt, 0.71 g Desmodur® N3900 (Handelsprodukt der Bayer MaterialScience AG, Leverkusen, DE, Hexandiisocyanat-basiertes Polyisocyanat, Anteil an Iminooxa- diazindion mindestens 30 %, NCO-Gehalt: 23,5 %) zugegeben und erneut gemischt. Schließ- lieh wurden 0.006 g Fomrez UL 28 (Urethanisierungskatalysator, Handelsprodukt der Fa. Momentive Performance Chemicals, Wilton, CT, USA) zugegeben und erneut kurz gemischt. Die erhaltene, flüssige Masse wurde dann auf eine Glasplatte gegeben und dort mit einer zweiten Glasplatte abgedeckt, die durch Abstandshalter auf einen Abstand von 20 μηι gehalten wurde. Dieser Probenkörper wurde 12 Stunden bei Raumtemperatur liegen gelassen und ge- härtet.
Die Medien 2-13 wurden in analoger Art und Weise aus den in Tabelle 1 aufgeführten Beispielen hergestellt. Dabei ist jeweils in der Tabelle 2 angegeben, welche Beispielverbindung mit welchem Gehalt in der Photopolymer-Pormulierung enthalten war. Die für die hergestellten Photopolymer-Formulierungen ermittelten Δη Werte sind ebenfalls in Tabelle 2 zusam- mengefasst.
Medium 14:
3.40 g der wie oben beschrieben hergestellten Polyol-Komponente wurden mit 2.00 g Phosphorothioyltris(oxybenzol-4, 1 -diylcarbamoyl~Oxyethan-2, 1 -diyl)trisacrylat (Urethan- acrylat 1), 2.00 g 2-({[3-(Methylsulfanyl)phenyl]_,carbamoyl}oxy)_,propylprop-2-enoat (Urethanacrylat 2), 1.50 g 2,2,2-Trifluorethyl-hexylcarbamat (Beispiel 4), 0.10 g CGI 909
(Versuchsprodukt der Fa. Ciba Inc, Basel, Schweiz), 0.01 g Neu Methylenblau und 0.35 g N- Ethylpyrrolidon bei 60 °C gemischt, so dass eine klare Lösung erhalten wurde. Anschließend wurde auf 30 °C abgekühlt, 0.64 g N3900 (Handelsprodukt der Bayer MaterialScience AG, Leverkusen, DE, Hexandiisocyanat-basiertes Polyisocyanat, Anteil an Iminooxadiazindion mindestens 30 %, NCO-Gehalt: 23,5 %) zugegeben und erneut gemischt. Schließlich wurden 0.006 g Fomrez UL 28 (Urethanisierungskatalysator, Handelsprodukt der Fa. Momentive Performance Chemicals, Wilton, CT, USA) zugegeben und erneut kurz gemischt. Die erhaltene, flüssige Masse wurde dann auf eine Glasplatte gegeben und dort mit einer zweiten Glasplatte abgedeckt, die durch Abstandshalter auf einen Abstand von 20 μηι gehalten wurde. Dieser Probenkörper wurde 12 Stunden bei Raumtemperatur liegen gelassen und gehärtet.
Die Medien 14-70 wurden in analoger Art und Weise aus den in Tabelle 1 aufgeführten Beispielen hergestellt. Dabei ist jeweils in der Tabelle 3 angegeben, welche Beispielverbindung mit welchem Gehalt in der Photopolymer-Pormulierung enthalten war. Die für die hergestellten Photopolymer-Formulierungen ermittelten Δη Werte sind ebenfalls in Tabelle 3 zusam- mengefasst. Vergleichsmedium I:
8.89 g der wie oben beschrieben hergestellten Polyol-Komponente wurden mit 3.75 g Phosphorothioyltris(oxybenzol-4, 1 -diylcarbamoyl~Oxyethan-2, 1 -diyl)trisacrylat (Urethan- acrylat 1), 0.15 g CGI 909 (Versuchsprodukt der Fa. Ciba Inc., Basel, Schweiz), 0.015 g Neu Methylenblau und 0.53 g N-Ethylpyrrolidon bei 60 °C so gemischt, dass eine klare Lösung erhalten wurde. Anschließend wurde auf 30 °C abgekühlt, 1.647 g Desmodur® N 3900 (Handelsprodukt der Bayer Materials cience AG, Leverkusen, Deutschland, Hexandiisocyanat- basiertes Polyisocyanat, Anteil an Iminooxadiazindion mindestens 30 %, NCO-Gehalt: 23.5 %) zugegeben und erneut gemischt. Schließlich wurden 0.009 g Fomrez UL 28 (Urethanisie- rungskatalysator, Handelsprodukt der Fa. Momentive Performance Chemicals, Wilton, CT, USA) zugegeben und erneut kurz gemischt. Die erhaltene, flüssige Masse wurde dann auf eine Glasplatte gegeben und dort mit einer zweiten Glasplatte abgedeckt, die durch Abstandshalter auf einen Abstand von 20 μηι gehalten wurde. Dieser Probenkörper wurde 12 Stunden bei
Raumtemperatur liegen gelassen und gehärtet.
Vergleichsmedium II:
3.82 g der wie oben beschrieben hergestellten Polyol-Komponente wurden mit 2.50 g Phosphorothioyltris(oxybenzol-4, 1 -diylcarbamoyl~Oxyethan-2, 1 -diyl)trisacrylat (Urethan- acrylat 1), 2.50 g Propylencarbonat (Vergleichsbeispiel II), 0.10 g CGI 909 (Versuchsprodukt der Fa. Ciba Inc, Basel, Schweiz), 0.010 g Neu Methylenblau und 0.35 g N-Ethylpyrrolidon bei 60 °C so gemischt, dass eine klare Lösung erhalten wurde. Anschließend wurde auf 30 °C abgekühlt, 0.702 g Desmodur® N 3900 (Handelsprodukt der Bayer MaterialScience AG, Leverkusen, Deutschland, Hexandiisocyanat-basiertes Polyisocyanat, Anteil an Iminooxadiazin- dion mindestens 30 %, NCO-Gehalt: 23.5 %) zugegeben und erneut gemischt. Schließlich wurden 0.022 g Fomrez UL 28 (Urethanisierungskatalysator, Handelsprodukt der Fa. Momentive Performance Chemicals, Wilton, CT, USA) zugegeben und erneut kurz gemischt. Die erhaltene, flüssige Masse wurde dann auf eine Glasplatte gegeben und dort mit einer zweiten Glasplatte abgedeckt, die durch Abstandshalter auf einen Abstand von 20 μηι gehalten wurde. Dieser Probenkörper wurde 12 Stunden bei Raumtemperatur liegen gelassen und gehärtet. Die Vergleichsmedien III-V wurden in analoger Art und Weise aus den in Tabelle 2 aufgeführten Vergleichsbeispielen hergestellt.
Vergleichsmedium VI: 4.66 g der wie oben beschrieben hergestellten Polyol-Komponente wurden mit 2.00 g Phosphorothioyltris(oxybenzol-4, 1 -diylcarbamoyl~Oxyethan-2, 1 -diyl)trisacrylat (Urethan- acrylat 1), 2.00 g 2-({[3-(Methylsulfanyl)phenyl]-,carbamoyl}oxy)_,propylprop-2-enoat (U- rethanacrylat 2), 0.10 g CGI 909 (Versuchsprodukt der Fa. Ciba Inc, Basel, Schweiz), 0.010 g Neu Methylenblau und 0.35 g N-Ethylpyrrolidon bei 60 °C so gemischt, dass eine klare Lösung erhalten wurde. Anschließend wurde auf 30 °C abgekühlt, 0.87 g Desmodur® N 3900 (Handelsprodukt der Bayer MaterialScience AG, Leverkusen, Deutschland, Hexandiisocya- nat-basiertes Polyisocyanat, Anteil an Iminooxadiazindion mindestens 30 %, NCO-Gehalt: 23.5 %) zugegeben und erneut gemischt. Schließlich wurden 0.006 g Fomrez UL 28 (Uretha- nisierungskatalysator, Handelsprodukt der Fa. Momentive Performance Chemicals, Wilton, CT, USA) zugegeben und erneut kurz gemischt. Die erhaltene, flüssige Masse wurde dann auf eine Glasplatte gegeben und dort mit einer zweiten Glasplatte abgedeckt, die durch Abstandshalter auf einen Abstand von 20 μηι gehalten wurde. Dieser Probenkörper wurde 12 Stunden bei Raumtemperatur liegen gelassen und gehärtet.
Tabelle 2: Holographische Bewertung ausgewählter Beispiele in der Formulierung mit 25% Urethanacrylat 1 und 25 % Additiv (fluoriertes Urethan).
Medium Beispiel, [Gew-%] Δη
1 4, 25 0.0198
2 2, 25 0.0187
3 5, 25 0.0235
4 6, 25 0.0183
5 9, 25 0.0220
6 11, 25 0.0210
7 12, 25 0.0194
8 14, 25 0.0223
9 15, 25 0.0150
10 19, 25 0.0173
11 20, 25 0.0249
12 21, 25 0.0257
13 214, 25 0.0152
Medium Vergleichsbeispiele, Δη
[Gew.-%]
I Kein Additiv 0.0115
II Propylencarbonat, 25 0.0136
Adipinsäuredi-
III 0.0146
methylester, 25
Diethylenglycoldiacetat,
IV 0.0146
25
Zitronensäuretriethy-
V 0.0115
lester, 25
Die beschriebenen Werte für Δη wurden bei Dosen von 4-32 mJ/cm2 erzielt. Die gefundenen Werte für die holographischen Eigenschaft Δη der holographischen Medien zeigen, dass die in den Vergleichsmedium verwendete kommerziellen Additive für die Verwendung in holographischen Medien weniger geeignet ist, wohingegen die erfindungsgemäßen Urethane in den Medien 1 bis 13 für die Herstellung holographischer Medien aufgrund der höheren Wertes für Δη sehr gut geeignet sind. Tabelle 3: Holographische Bewertung ausgewählter Beispiele in der Formulierung mit 20 Gew.-% Urethanacrylat 1 , 20 Gew.-% Urethanacrylat 2 und 15 Gew.-% Additiv (fluoriertes Urethan).
Medium Beispiel, [Gew.-%] Δη
14 2, 15 0.0253
15 4, 15 0.0238
16 5, 15 0.0302
17 7, 15 0.0305
18 8, 15 0.0220
19 14, 15 0.0284
20 15, 15 0.0205
21 19, 15 0.0235
22 20, 15 0.0310
23 21, 15 0.0330
24 26, 15 0.0365
25 32, 15 0.0348
26 35, 15 0.0295
27 36, 15 0.0217
28 46, 15 0.0261
29 48, 15 0.0261
30 51, 15 0.0230
31 52, 15 0.0310
32 54, 15 0.0310
33 55, 15 0.0245
34 66, 15 0.0250
35 67, 15 0.0260
36 68, 15 0.0250
37 71, 15 0.0230
38 72, 15 0.0234
39 73, 15 0.0240
40 74, 15 0.0260
41 75, 15 0.0225
42 76, 15 0.0204
43 82, 15 0.0239
44 84, 15 0.0203
45 132, 15 0.0286
46 133, 15 0.0283
47 141, 15 0.0239
48 146, 15 0.0210
49 147, 15 0.0272
50 164, 15 0.0220 Medium Beispiel, [Gew.-%] Δη
51 165, 15 0.0229
52 166, 15 0.0209
53 170, 15 0.0235
54 172, 15 0.0245
55 174, 15 0.0202
56 175, 15 0.0201
57 180, 15 0.0230
58 181, 15 0.0235
59 182, 15 0.0255
60 183, 15 0.0248
61 184, 15 0.0233
62 192, 15 0.0261
63 198, 15 0.0269
64 201, 15 0.0210
65 202, 15 0.0262
66 203, 15 0.0305
67 220, 15 0.0229
68 221, 15 0.0279
69 222, 15 0.0221
70 223, 15 0.0303
Vergleichsbeispiel
VI Kein Additiv 0.0140
Die beschriebenen Werte für Δη wurden bei Dosen von 4-32 mJ/cm2 erzielt.
Die gefundenen Werte für die holographischen Eigenschaft Δη der holographischen Medien zeigen, dass erfindungsgemäßen fluorierten Urethane in den Medien 14 bis 70 aufgrund der hohen Werte für Δη sehr gut für die Herstellung holographischer Medien geeignet sind.

Claims

Patentansprüche
1. Photopolymer-Formulierang umfassend Matrixpolymere, Schreibmonomere und Photoinitiatoren, dadurch gekennzeichnet, dass sie als Weichmacher Fluorarethane enthält.
2. Photopolymer-Formulierung nach Ansprach 1, dadurch gekennzeichnet, dass die Fluorarethane wenigstens ein Strukturelement der allgemeinen Formel (I) aufweisen
und mit wenigstens einem Fluoratom substituiert sind.
3. Photopolymer-Formulierung nach einem der Ansprüche 1 oder 2, dadurch gekenn- zeichnet, dass die Fluorarethane die allgemeine Formel (II)
Figure imgf000082_0002
aufweisen, in der n>l und n<8 ist und R1, R2, R3 Wasserstoff und / oder unabhängig voneinander lineare, verzweigte, cyclische oder heterocyclische unsubstituierte oder gegebenenfalls auch mit Heteroatomen substituierte organische Reste sind, wobei mindestens einer der Reste R1, R2, R3 mit wenigstens einem Fluoratom substituiert ist.
4. Photopolymer-Formulierung nach Anspruch 3, dadurch gekennzeichnet, dass R1 ein organischer Rest mit mindestens einem Fluoratom ist.
5. Photopolymer-Formulierung nach Anspruch 3, dadurch gekennzeichnet, dass R1 1-20 CF2 Gruppen und / oder eine oder mehrere CF3 Gruppen, besonders bevorzugt 1-15 CF2 Gruppen und / oder eine oder mehrere CF3 Gruppen, insbesondere bevorzugt 1 -
10 CF2 Gruppen und / oder eine oder mehrere CF3 Gruppen, ganz besonders bevorzugt 1-8 CF2 Gruppen und / oder eine oder mehrere CF3 Gruppen, R2 einen C1-C20 Alkyl-Rest, bevorzugt einen C1-C15 Alkyl-Rest besonders bevorzugt einen C1 -C10 Alkyl-Rest oder Wasserstoff, und / oder R3 einen C1-C20 Alkyl-Rest, bevorzugt einen C1-C15 Alkyl-Rest, besonders bevorzugt einen C1-C10 Alkyl-Rest oder Wasserstoff umfassen.
6. Photopolymer-Formulierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Fluorurethane Uretdion-, Isocyanurat-, Biuret-, Allophanat-, Poly- harnstoff-, Oxadiazadion- und / oder Iminooxadiazindion-Strukturelemente und / oder
Mischungen dieser Strukturelemente aufweisen.
7. Photopolymer-Formulierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Fluorurethane einen Brechungsindex h0° von < 1.4600, bevorzugt von < 1.4500, besonders bevorzugt von < 1.4400 und insbesondere bevorzugt von < 1.4300 aufweisen.
8. Photopolymer-Formulierung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Fluorurethane einen Fluorgehalt von 10-80 Gew.%, bevorzugt von 12.5-75 Gew.%, besonders bevorzugt 15-70 Gew.% und insbesondere bevorzugt von 17.5-65 Gew.% aufweisen.
9. Photopolymer-Formulierung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Matrixpolymere Polyurethane sind.
10. Photopolymer-Formulierung nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, dass die Schreibmonomere Acrylate vorzugsweise mit einem Brechungsindex von ϊΐο > 1.50, weiter bevorzugt Urethanacrylate, insbesondere bevorzugt aromatische Urethanacrylate vorzugsweise mit einem Brechungsindex von > 1.50 sind.
11. Photopolymer-Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie 15 bis 79, bevorzugt 30 bis 60 Gew.-% Matrixpolymere, 5 bis 50, bevorzugt 10 bis 40 Gew.-% Schreibmonomere, 1 bis 10, bevorzugt 1 bis 3 Gew.-% Photoinitiatoren und 5 bis 50, bevorzugt 10 bis 40 Gew.-% Fluorurethane und 0 bis 10 Gew.-% weitere Additive enthalten, wobei die Summe der Bestandteile 100 Gew.-
% beträgt.
12. Verwendung einer Photopolymer-Formulierung nach einem der Ansprüche 1 bis 11 zur Herstellung von optischen Elementen, insbesondere zur Herstellung von holographischen Elementen und Bildern.
13. Verfahren zur Belichtung von holographischen Medien aus einer Photopolymer- Formulierung gemäß einem der Ansprüche 1 bis 11 , bei dem die Schreibmonomere durch elektromagnetische Strahlung ortsaufgelöst selektiv polymerisiert werden.
14. Fluorurethan, erhältlich durch Umsetzung eines Iminooxadiazindione oder Oxadiaza- dion enthaltenden Polyisocyanates, das wenigstens eine freie Isocyanat Gruppe aufweist, mit einem Alkohol, wobei das Polyisocyanat und/oder der Alkohol mit wenigstens einem Fluoratom substituiert ist.
15. Fluorurethane gemäß der allgemeinen Formel (III)
Figure imgf000084_0001
in der m>l und m<8 ist und R4, R5, R6 Wasserstoff und / oder unabhängig voneinander lineare, verzweigte, cyclische oder heterocyclische unsubstituierte oder gegebenenfalls auch mit Heteroatomen substituierte organische Reste sind und Iminooxadiazin- dion- und / oder Oxadiazadion-Strukturelemente aufweisen, wobei gleichzeitig wenigstens zwei der Reste R4, R5, R6 mit wenigstens einem Fluoratom substituiert sind.
PCT/EP2010/066591 2009-11-03 2010-11-02 Fluorurethane als additive in einer photopolymer-formulierung WO2011054795A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
IN3890DEN2012 IN2012DN03890A (de) 2009-11-03 2010-11-02
KR1020127014264A KR101727770B1 (ko) 2009-11-03 2010-11-02 광중합체 제제 중의 첨가제로서의 플루오로우레탄
PL10771479T PL2497082T3 (pl) 2009-11-03 2010-11-02 Fluorouretany jako dodatek w formulacji fotopolimerowej
JP2012537365A JP2013510203A (ja) 2009-11-03 2010-11-02 感光性ポリマー組成物における添加剤としてのフルオロウレタン
BR112012010471-3A BR112012010471B1 (pt) 2009-11-03 2010-11-02 formulação de fotopolímero compreendendo fluorouretanos e processo para exposição de mídia holográfica
US13/504,357 US8999608B2 (en) 2009-11-03 2010-11-02 Fluorourethane as an additive in a photopolymer formulation
EP10771479.2A EP2497082B1 (de) 2009-11-03 2010-11-02 Fluorurethane als additive in einer photopolymer-formulierung
CN201080060483.4A CN102667934B (zh) 2009-11-03 2010-11-02 作为光聚合物制剂中的添加剂的氟代氨基甲酸酯
RU2012122590/05A RU2570662C9 (ru) 2009-11-03 2010-11-02 Фторуретаны в качестве добавки в фотополимерной композиции
ES10771479T ES2433235T3 (es) 2009-11-03 2010-11-02 Fluorouretanos como aditivos en una formulación de fotopolímero

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09013770 2009-11-03
EP09013770.4 2009-11-03

Publications (1)

Publication Number Publication Date
WO2011054795A1 true WO2011054795A1 (de) 2011-05-12

Family

ID=41664968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/066591 WO2011054795A1 (de) 2009-11-03 2010-11-02 Fluorurethane als additive in einer photopolymer-formulierung

Country Status (12)

Country Link
US (1) US8999608B2 (de)
EP (1) EP2497082B1 (de)
JP (4) JP2013510203A (de)
KR (1) KR101727770B1 (de)
CN (1) CN102667934B (de)
BR (1) BR112012010471B1 (de)
ES (1) ES2433235T3 (de)
IN (1) IN2012DN03890A (de)
PL (1) PL2497082T3 (de)
RU (1) RU2570662C9 (de)
TW (1) TWI506011B (de)
WO (1) WO2011054795A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053771A1 (de) * 2011-10-12 2013-04-18 Bayer Intellectual Property Gmbh Schwefelhaltige kettenübertragungsreagenzien in polyurethan-basierten photopolymer-formulierungen
WO2013053792A1 (de) * 2011-10-12 2013-04-18 Bayer Intellectual Property Gmbh Kettenübertragungsreagenzien in polyurethan-basierten photopolymer-formulierungen
WO2013164317A1 (de) * 2012-05-03 2013-11-07 Bayer Materialscience Ag Neue photoinitiatoren für photopolymere
CN104040629A (zh) * 2012-01-05 2014-09-10 拜耳知识产权有限责任公司 由光聚合物薄膜和粘合剂层构成的层复合材料
JP2015508407A (ja) * 2012-01-06 2015-03-19 アビデ セラピューティクス,インク. カルバメート化合物およびその製造および使用
EP2554537A4 (de) * 2010-04-02 2015-08-05 Asahi Glass Co Ltd Verfahren zur herstellung einer carbamatverbindung, carbamatverbindung und verfahren zur herstellung einer isocyanatverbindung damit
JP2015533673A (ja) * 2012-08-23 2015-11-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG カード本体にホログラムを有するポリカーボネート系の秘密文書および/または重要文書
US9771341B2 (en) 2015-03-18 2017-09-26 Abide Therapeutics, Inc. Piperazine carbamates and methods of making and using same
US9981930B1 (en) 2016-11-16 2018-05-29 Abide Therapeutics, Inc. MAGL inhibitors
US10093635B2 (en) 2016-11-16 2018-10-09 Abide Therapeutics, Inc. MAGL inhibitors
US10450302B2 (en) 2015-05-11 2019-10-22 Lundbeck La Jolla Research Center, Inc. Methods of treating inflammation or neuropathic pain
US10463753B2 (en) 2016-02-19 2019-11-05 Lundbeck La Jolla Research Center, Inc. Radiolabeled monoacylglycerol lipase occupancy probe
US10570106B2 (en) 2018-05-15 2020-02-25 Lundbeck La Jolla Research Center, Inc. MAGL inhibitors
US10899737B2 (en) 2016-09-19 2021-01-26 Lundbeck La Jolla Research Center, Inc. Piperazine carbamates and methods of making and using same
US11702393B2 (en) 2020-04-21 2023-07-18 H. Lundbeck A/S Synthesis of a monoacylglycerol lipase inhibitor

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852829B2 (en) * 2008-10-01 2014-10-07 Bayer Materialscience Ag Prepolymer-based polyurethane formulations for producing holographic media
EP2218742A1 (de) * 2009-02-12 2010-08-18 Bayer MaterialScience AG Photopolymerzusammensetzungen als verdruckbare Formulierungen
EP2317511B1 (de) * 2009-11-03 2012-03-07 Bayer MaterialScience AG Photopolymerformulierungen mit einstellbarem mechanischem Modul Guv
WO2011054792A1 (de) * 2009-11-03 2011-05-12 Bayer Materialscience Ag Urethanacrylate mit hohem brechungsindex und reduzierter doppelbindungsdichte
KR101746883B1 (ko) * 2009-11-03 2017-06-27 코베스트로 도이칠란드 아게 홀로그래피 필름의 제조 방법
CN102667936B (zh) * 2009-11-03 2016-03-30 拜尔材料科学股份公司 生产全息介质的方法
PL2497085T3 (pl) * 2009-11-03 2014-07-31 Bayer Ip Gmbh Sposób wytwarzania błony holograficznej
TWI489205B (zh) * 2009-11-03 2015-06-21 Bayer Materialscience Ag 包含不同寫入共聚單體之光聚合物調配物
ES2535950T3 (es) * 2009-11-03 2015-05-19 Bayer Intellectual Property Gmbh Uretanos como aditivos en una formulación de fotopolímeros
EP2372454A1 (de) * 2010-03-29 2011-10-05 Bayer MaterialScience AG Photopolymer-Formulierung zur Herstellung sichtbarer Hologramme
WO2015161969A1 (de) * 2014-04-25 2015-10-29 Bayer Material Science Ag Aromatische glykolether als schreibmonomere in holographischen photopolymer-formulierungen
EP3233791B8 (de) * 2014-12-19 2020-12-30 Covestro Intellectual Property GmbH & Co. KG Feuchtigkeitsstabile holographische medien
TWI698326B (zh) * 2015-01-14 2020-07-11 德商科思創德意志股份有限公司 以全相光學元件製備光學鑄件之方法及光學鑄件
KR101976116B1 (ko) 2017-07-17 2019-05-07 주식회사 엘지화학 포토폴리머 조성물
KR102268129B1 (ko) 2017-10-16 2021-06-22 주식회사 엘지화학 비반응성 불소계 화합물 및 이를 포함하는 광중합성 조성물
KR102244648B1 (ko) 2017-12-08 2021-04-26 주식회사 엘지화학 포토폴리머 조성물
KR102239212B1 (ko) * 2018-12-14 2021-04-12 주식회사 엘지화학 포토폴리머 조성물
KR102426756B1 (ko) 2019-01-25 2022-07-27 주식회사 엘지화학 포토폴리머 조성물
EP4003730A1 (de) 2019-07-26 2022-06-01 Solutia Inc. Polymerüberzugsschichten zur verwendung mit holografischen optischen elementen
WO2021021583A1 (en) 2019-07-26 2021-02-04 Solutia Inc. Interlayers and encapsulation layers for use with holographic optical elements
CN112759698B (zh) * 2019-10-21 2023-01-10 杭州光粒科技有限公司 光致聚合物组合物、透射式衍射光栅及其制备方法
JP7371699B2 (ja) 2019-11-19 2023-10-31 三菱ケミカル株式会社 化合物、重合性組成物、重合体、ホログラム記録媒体、光学材料、及び光学部品
WO2022202538A1 (ja) 2021-03-23 2022-09-29 三菱ケミカル株式会社 化合物、及びその製造方法、重合性組成物、重合物、ホログラム記録媒体、光学材料、並びに光学部品
CN114605613B (zh) * 2022-02-21 2024-05-10 宁德师范学院 一种有机氟改性水性聚氨酯皮革涂饰剂及其制备方法
WO2024005141A1 (ja) * 2022-06-30 2024-01-04 三菱ケミカル株式会社 ホログラム記録媒体用組成物
WO2024052256A1 (de) 2022-09-07 2024-03-14 Covestro Deutschland Ag Spezielle benzopyryliumsalze als farbstoffe für photopolymerzusammensetzungen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223587A1 (de) 1985-11-20 1987-05-27 The Mead Corporation Ionische Farbstoffe als Initiatoren enthaltende fotosensitive Materialien
EP0749958A1 (de) 1995-06-23 1996-12-27 Bayer Ag Verfahren zur Herstellung von Triisocyanaten
WO2003023519A1 (en) 2001-09-13 2003-03-20 Inphase Technologies, Inc. Environmentally durable, self-sealing optical articles
US20030105263A1 (en) 2000-08-16 2003-06-05 Fan Wayne W. Urethane-based stain-release coatings
US6780546B2 (en) 2001-08-30 2004-08-24 Inphase Technologies, Inc. Blue-sensitized holographic media
KR100850022B1 (ko) * 2007-11-28 2008-08-04 부산대학교 산학협력단 폴리우레탄을 매트릭스로 하는 반투과 홀로그램 표시소자
WO2008125199A1 (en) 2007-04-11 2008-10-23 Bayer Materialscience Ag Aromatic urethane acrylates having a high refractive index
WO2008125229A1 (en) 2007-04-11 2008-10-23 Bayer Materialscience Ag Advantageous recording media for holographic applications

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376266A (en) * 1964-03-02 1968-04-02 Du Pont Polyurethanes produced from 1, 2-divinyl ethylene glycol
BE789363A (fr) * 1971-09-27 1973-03-27 Fmc Corp Composes fluores utilisables comme agents antitaches pour textiles
CA1027129A (en) * 1972-08-25 1978-02-28 Sameeh S. Toukan Fluorine and sulfur-containing compositions
US4085092A (en) * 1974-05-30 1978-04-18 Ppg Industries, Inc. Transparent, optically clear poly(lactone-urethane) interlayers for laminated safety glass
US4046944A (en) * 1976-04-06 1977-09-06 Ciba-Geigy Corporation Fluorinated condensation polymers and their use as soil release agents
SU732785A1 (ru) * 1977-08-23 1980-05-05 Предприятие П/Я А-7850 Фотополимеризующа с композици
US4684728A (en) * 1979-01-12 1987-08-04 Bayer Aktiengesellschaft Solubilizing biologically active compounds with reactive hydrogen atoms
JPS57131753A (en) * 1981-02-10 1982-08-14 Asahi Glass Co Ltd Fluorine-containing diisocyanate with oxyalkylene chain
US4621149A (en) * 1981-12-25 1986-11-04 Asahi Kasei Kogyo Kabushiki Kaisha Production of urethane compounds
US4534770A (en) * 1983-06-24 1985-08-13 American Hoechst Corporation Multi-ring fluorinated carbamates with textiles soil repellent activity
US4816597A (en) * 1983-10-02 1989-03-28 New Jersey Institute Of Technology Dental restorative materials based upon blocked isocyanates
DE3744423A1 (de) * 1987-12-29 1989-07-13 Hoechst Ag Urethane aus aliphatischen fluoralkoholen, isocyanaten und substituierten aromatischen verbindungen, verfahren zu ihrer herstellung und ihre verwendung
US4942112A (en) * 1988-01-15 1990-07-17 E. I. Du Pont De Nemours And Company Photopolymerizable compositions and elements for refractive index imaging
US5204441A (en) * 1990-03-12 1993-04-20 Fluorochem Inc. Polyfluorinated, branched-chain diols and diisocyanantes and fluorinated polyurethanes prepared therefrom
JP3339873B2 (ja) * 1992-03-23 2002-10-28 大日本印刷株式会社 ホログラム形成材料
US5672651A (en) * 1995-10-20 1997-09-30 Minnesota Mining And Manufacturing Company Durable repellent fluorochemical compositions
US5747629A (en) * 1996-12-16 1998-05-05 Bayer Corporation Low surface energy polyisocyanates and their use in one-or two-component coating compositions
FR2777894B1 (fr) * 1998-04-24 2001-06-22 Rhodia Chimie Sa Procede de preparation d'isocyanates polyfonctionnels tricondensats de faible viscosite
JP4071525B2 (ja) * 2002-04-08 2008-04-02 メモリーテック株式会社 光情報記録媒体
US20030212217A1 (en) * 2002-05-08 2003-11-13 Suresh Sawant Fluorinated activator
DE10256614A1 (de) * 2002-12-03 2004-06-17 Basf Ag Vorrichtung und Verfahren zur Herstellung von Flexodruckplatten für den Zeitungsdruck mittels digitaler Bebilderung
JPWO2006018986A1 (ja) * 2004-08-18 2008-05-08 コニカミノルタエムジー株式会社 ホログラフィック記録メディア、ホログラフィック記録方法およびホログラフィック情報メディア
DE102004041379A1 (de) * 2004-08-26 2006-03-02 Wacker-Chemie Gmbh Vernetzbare Siloxan-Harnstoff-Copolymere
US7736818B2 (en) * 2004-12-27 2010-06-15 Inphase Technologies, Inc. Holographic recording medium and method of making it
US20060223970A1 (en) * 2005-03-31 2006-10-05 Bayer Materialscience Llc Low surface energy polyisocyanates and their use in one- or two-component coating compositions
DE102006046368A1 (de) * 2006-09-29 2008-04-03 Construction Research & Technology Gmbh Funktionalisiertes Polyurethanharz, Verfahren zu seiner Herstellung sowie dessen Verwendung
CA2683901A1 (en) * 2007-04-11 2008-10-23 Bayer Materialscience Ag Radiation-crosslinking and thermally crosslinking pu systems comprising iminooxadiazinedione
JP2010523776A (ja) * 2007-04-11 2010-07-15 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 放射線硬化性および熱架橋性のポリ(ε−カプロラクトン)ポリエステルポリオールをベースとするPU系
WO2011054792A1 (de) * 2009-11-03 2011-05-12 Bayer Materialscience Ag Urethanacrylate mit hohem brechungsindex und reduzierter doppelbindungsdichte
TWI489205B (zh) * 2009-11-03 2015-06-21 Bayer Materialscience Ag 包含不同寫入共聚單體之光聚合物調配物
EP2317511B1 (de) * 2009-11-03 2012-03-07 Bayer MaterialScience AG Photopolymerformulierungen mit einstellbarem mechanischem Modul Guv
KR101746883B1 (ko) * 2009-11-03 2017-06-27 코베스트로 도이칠란드 아게 홀로그래피 필름의 제조 방법
EP2497084B1 (de) * 2009-11-03 2013-12-25 Bayer Intellectual Property GmbH Auswahlverfahren für additive in photopolymeren
CN102667936B (zh) * 2009-11-03 2016-03-30 拜尔材料科学股份公司 生产全息介质的方法
PL2497085T3 (pl) * 2009-11-03 2014-07-31 Bayer Ip Gmbh Sposób wytwarzania błony holograficznej
TWI506018B (zh) * 2009-11-03 2015-11-01 Bayer Materialscience Ag 新穎的非結晶甲基丙烯酸酯及其製備和用途
EP2531889B1 (de) * 2010-02-02 2020-06-03 Covestro Deutschland AG Verwendung einer photopolymer-formulierung mit ester-basierten schreibmonomeren zur herstellung holographischer medien
KR20120125270A (ko) * 2010-02-02 2012-11-14 바이엘 인텔렉쳐 프로퍼티 게엠베하 트리아진-기재 기록 단량체를 갖는 광중합체 배합물
EP2372454A1 (de) * 2010-03-29 2011-10-05 Bayer MaterialScience AG Photopolymer-Formulierung zur Herstellung sichtbarer Hologramme
CN103153948B (zh) * 2010-08-11 2014-12-03 拜耳知识产权有限责任公司 双官能(甲基)丙烯酸酯书写单体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223587A1 (de) 1985-11-20 1987-05-27 The Mead Corporation Ionische Farbstoffe als Initiatoren enthaltende fotosensitive Materialien
EP0749958A1 (de) 1995-06-23 1996-12-27 Bayer Ag Verfahren zur Herstellung von Triisocyanaten
US20030105263A1 (en) 2000-08-16 2003-06-05 Fan Wayne W. Urethane-based stain-release coatings
US6780546B2 (en) 2001-08-30 2004-08-24 Inphase Technologies, Inc. Blue-sensitized holographic media
WO2003023519A1 (en) 2001-09-13 2003-03-20 Inphase Technologies, Inc. Environmentally durable, self-sealing optical articles
WO2008125199A1 (en) 2007-04-11 2008-10-23 Bayer Materialscience Ag Aromatic urethane acrylates having a high refractive index
WO2008125229A1 (en) 2007-04-11 2008-10-23 Bayer Materialscience Ag Advantageous recording media for holographic applications
KR100850022B1 (ko) * 2007-11-28 2008-08-04 부산대학교 산학협력단 폴리우레탄을 매트릭스로 하는 반투과 홀로그램 표시소자

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Inks & Paints", vol. 3, 1991, SITA TECHNOLOGY, article "Chemistry & Technology of UV & EB Formulations For Coatings", pages: 61 - 328
CUNNINGHAM ET AL., RADTECH'98 NORTH AMERICA UV/EB CONFERENCE PROCEEDINGS, CHICAGO, APR. 19-22, 1998, 19 April 1998 (1998-04-19)
DEKTAR ET AL., J. ORG. CHEM., vol. 55, 1990, pages 639
GU ET AL., AM. CHEM. SOC. POLYMER PREPRINTS, vol. 41, no. 2, 2000, pages 1266
H. KOGELNIK, THE BELL SYSTEM TECHNICAL JOURNAL, vol. 48, no. 9, November 1969 (1969-11-01), pages 2909,2947
HUA ET AL., MACROMOLECULES, vol. 34, 2001, pages 2488 - 2494
J. ORG. CHEM., vol. 56, 1991, pages 1838
KUTAL ET AL., MACROMOLECULES, vol. 24, 1991, pages 6872
LI ET AL., POLYMERIC MATERIALS SCIENCE AND ENGINEERING, vol. 84, 2001, pages 139
NECKERS ET AL., MACROMOLECULES, vol. 33, 2000, pages 7761
P. HARIHARAN: "Optical Holography", 1996, CAMBRIDGE UNIVERSITY PRESS
YAMAGUCHI ET AL., MACROMOLECULES, vol. 33, 2000, pages 1152

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260383B2 (en) 2010-04-02 2016-02-16 Asahi Glass Company, Limited Method for producing carbamate compound, carbamate compound, and method for producing isocyanate compound using same
EP2554537A4 (de) * 2010-04-02 2015-08-05 Asahi Glass Co Ltd Verfahren zur herstellung einer carbamatverbindung, carbamatverbindung und verfahren zur herstellung einer isocyanatverbindung damit
WO2013053792A1 (de) * 2011-10-12 2013-04-18 Bayer Intellectual Property Gmbh Kettenübertragungsreagenzien in polyurethan-basierten photopolymer-formulierungen
WO2013053771A1 (de) * 2011-10-12 2013-04-18 Bayer Intellectual Property Gmbh Schwefelhaltige kettenübertragungsreagenzien in polyurethan-basierten photopolymer-formulierungen
JP2015510526A (ja) * 2012-01-05 2015-04-09 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 感光性ポリマーフィルムおよび接着剤層を含んでなる層状複合材料
CN104040629B (zh) * 2012-01-05 2018-06-29 科思创德国股份有限公司 由光聚合物薄膜和粘合剂层构成的层复合材料
CN104040629A (zh) * 2012-01-05 2014-09-10 拜耳知识产权有限责任公司 由光聚合物薄膜和粘合剂层构成的层复合材料
JP2015508407A (ja) * 2012-01-06 2015-03-19 アビデ セラピューティクス,インク. カルバメート化合物およびその製造および使用
JP2017125039A (ja) * 2012-01-06 2017-07-20 アビデ セラピューティクス,インク. カルバメート化合物およびその製造および使用
US11530189B2 (en) 2012-01-06 2022-12-20 H. Lundbecka/S Carbamate compounds and methods of making and using same
US11021453B2 (en) 2012-01-06 2021-06-01 Lundbeck La Jolla Research Center, Inc. Carbamate compounds and methods of making and using same
US9957242B2 (en) 2012-01-06 2018-05-01 The Scripps Research Institute Carbamate compounds and methods of making and using same
US9487495B2 (en) 2012-01-06 2016-11-08 The Scripts Research Institute Carbamate compounds and of making and using same
KR20150006428A (ko) * 2012-05-03 2015-01-16 바이엘 머티리얼사이언스 아게 광중합체를 위한 신규 광개시제
US9317012B2 (en) 2012-05-03 2016-04-19 Covestro Deutschland Ag Photoinitiators for photopolymers
CN104395960A (zh) * 2012-05-03 2015-03-04 拜耳材料科技股份有限公司 用于光聚合物的新型光引发剂
WO2013164317A1 (de) * 2012-05-03 2013-11-07 Bayer Materialscience Ag Neue photoinitiatoren für photopolymere
CN104395960B (zh) * 2012-05-03 2019-01-08 科思创德国股份有限公司 用于光聚合物的新型光引发剂
KR102068857B1 (ko) 2012-05-03 2020-01-21 코베스트로 도이칠란드 아게 광중합체를 위한 신규 광개시제
JP2015533673A (ja) * 2012-08-23 2015-11-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG カード本体にホログラムを有するポリカーボネート系の秘密文書および/または重要文書
US9771341B2 (en) 2015-03-18 2017-09-26 Abide Therapeutics, Inc. Piperazine carbamates and methods of making and using same
US9994537B2 (en) 2015-03-18 2018-06-12 Abide Therapeutics, Inc. Piperazine carbamates and methods of making and using same
US10450302B2 (en) 2015-05-11 2019-10-22 Lundbeck La Jolla Research Center, Inc. Methods of treating inflammation or neuropathic pain
US11034674B2 (en) 2015-05-11 2021-06-15 H. Lundbeck A/S Methods of treating inflammation or neuropathic pain
US10463753B2 (en) 2016-02-19 2019-11-05 Lundbeck La Jolla Research Center, Inc. Radiolabeled monoacylglycerol lipase occupancy probe
US10899737B2 (en) 2016-09-19 2021-01-26 Lundbeck La Jolla Research Center, Inc. Piperazine carbamates and methods of making and using same
US9981930B1 (en) 2016-11-16 2018-05-29 Abide Therapeutics, Inc. MAGL inhibitors
US10093635B2 (en) 2016-11-16 2018-10-09 Abide Therapeutics, Inc. MAGL inhibitors
US10570106B2 (en) 2018-05-15 2020-02-25 Lundbeck La Jolla Research Center, Inc. MAGL inhibitors
US11214557B2 (en) 2018-05-15 2022-01-04 H. Lundbeck A/S MAGL inhibitors
US11332453B2 (en) 2018-05-15 2022-05-17 H. Lundbeck A/S MAGL inhibitors
US11702393B2 (en) 2020-04-21 2023-07-18 H. Lundbeck A/S Synthesis of a monoacylglycerol lipase inhibitor

Also Published As

Publication number Publication date
CN102667934B (zh) 2015-09-09
JP2013510203A (ja) 2013-03-21
JP2016145352A (ja) 2016-08-12
BR112012010471B1 (pt) 2020-10-20
PL2497082T3 (pl) 2013-12-31
TWI506011B (zh) 2015-11-01
JP2015108148A (ja) 2015-06-11
US8999608B2 (en) 2015-04-07
RU2570662C9 (ru) 2016-07-20
BR112012010471A2 (pt) 2016-03-08
CN102667934A (zh) 2012-09-12
US20120231376A1 (en) 2012-09-13
JP2017071790A (ja) 2017-04-13
JP6069294B2 (ja) 2017-02-01
ES2433235T3 (es) 2013-12-10
IN2012DN03890A (de) 2015-09-04
TW201129529A (en) 2011-09-01
RU2012122590A (ru) 2013-12-10
KR101727770B1 (ko) 2017-04-17
EP2497082A1 (de) 2012-09-12
KR20120107086A (ko) 2012-09-28
RU2570662C2 (ru) 2015-12-10
JP6581559B2 (ja) 2019-09-25
EP2497082B1 (de) 2013-09-04

Similar Documents

Publication Publication Date Title
EP2497082B1 (de) Fluorurethane als additive in einer photopolymer-formulierung
EP2496588B1 (de) Urethanacrylate mit hohem brechungsindex und reduzierter doppelbindungsdichte
EP2317511B1 (de) Photopolymerformulierungen mit einstellbarem mechanischem Modul Guv
EP2497083B1 (de) Photopolymer-formulierung mit verschiedenen schreibcomonomeren
EP2342249B1 (de) Prepolymerbasierte polyurethanformulierungen zur herstellung holografischer medien
EP2172504B1 (de) Photopolymerformulierungen mit niedriger Vernetzungsdichte
EP2497085B1 (de) Verfahren zur herstellung eines holographischen films
EP2531889B1 (de) Verwendung einer photopolymer-formulierung mit ester-basierten schreibmonomeren zur herstellung holographischer medien
EP2172505B1 (de) Photopolymerzusammensetzungen für optische Elemente und visuelle Darstellungen
EP2531892B1 (de) Verwendung einer photopolymer-formulierung mit triazin-basierten schreibmonomeren
EP2172503B1 (de) Spezielle Polyetherbasierte Polyurethanformulierungen zur Herstellung holografischer Medien
EP2497084B1 (de) Auswahlverfahren für additive in photopolymeren
EP2354845B1 (de) Photopolymer-Formulierung zur Herstellung holographischer Medien
EP2496617B1 (de) Urethane als additive in einer photopolymer-formulierung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010771479

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3890/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012537365

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13504357

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127014264

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012122590

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010471

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010471

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120503