WO2011052763A1 - 耐肌荒れ性に優れた缶用鋼板およびその製造方法 - Google Patents

耐肌荒れ性に優れた缶用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2011052763A1
WO2011052763A1 PCT/JP2010/069393 JP2010069393W WO2011052763A1 WO 2011052763 A1 WO2011052763 A1 WO 2011052763A1 JP 2010069393 W JP2010069393 W JP 2010069393W WO 2011052763 A1 WO2011052763 A1 WO 2011052763A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
cans
rolling
crystal grain
Prior art date
Application number
PCT/JP2010/069393
Other languages
English (en)
French (fr)
Inventor
中川祐介
多田雅毅
小島克己
岩佐浩樹
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US13/504,844 priority Critical patent/US9005375B2/en
Priority to AU2010312372A priority patent/AU2010312372B2/en
Priority to KR1020127011654A priority patent/KR101423849B1/ko
Priority to EP10826893.9A priority patent/EP2479308B1/en
Priority to CN201080048927.2A priority patent/CN102597289B/zh
Publication of WO2011052763A1 publication Critical patent/WO2011052763A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively

Definitions

  • the present invention relates to a steel plate for cans suitable for can container materials used in food and beverage cans, and in particular, it is soft and has excellent workability while being used for deep drawn cans and deep drawn cans-ironing cans.
  • the present invention relates to a steel plate for cans that does not cause rough skin on the surface of the steel plate and a method for producing the same.
  • the two-piece can currently used in the world is formed of a can body and a lid that have been subjected to processing such as DRD (Draw and Redraw) processing and DI (Draw and wall Ironing) processing on a steel plate.
  • processing such as DRD (Draw and Redraw) processing and DI (Draw and wall Ironing) processing on a steel plate.
  • DI Draw and wall Ironing
  • a method of protecting the can contents and the inner surface of the can by applying an organic coating after the can is generally used.
  • the can-making method using laminated steel plates can make a significant contribution to global environmental conservation, and future demand growth can be considered.
  • this method may cause a new problem that the thickness of the coated film is locally reduced due to the rough surface of the underlying steel sheet after canning, and the corrosion resistance deteriorates due to damage or peeling of the film.
  • the base steel sheet has a high formability that can withstand a large degree of processing such as deep drawing and ironing, and a surface property that does not cause roughness on the steel sheet surface in order to maintain good adhesion to the film after canning. Is required as an important factor.
  • Patent Document 1 discloses a hot-rolled steel sheet that is used as a material for a well-formable cold-rolled steel sheet that is excellent in die squealing resistance during deep drawing, a method for manufacturing the hot-rolled steel sheet, and a method for manufacturing a cold-rolled steel sheet using the hot-rolled steel sheet as a material. Is disclosed. A hot-rolled steel sheet in which the ratio of the crystal grain size in the thickness direction and the ⁇ 111 ⁇ crystal orientation is appropriately adjusted is used as a material for the cold-rolled steel sheet, thereby improving both deep drawability and die-squeeze resistance.
  • hot rolling is performed below the Ar3 transformation point, higher temperature control technology and quality control than before are required, and an increase in rolling load due to a decrease in finish rolling temperature is a problem.
  • Patent Document 2 provides a steel plate for DI can and a method for producing the same, which has less cracking during flange molding, excellent workability, and high can strength after baking.
  • fine AlN is precipitated to refine crystal grains, and the grain boundary strength is increased to improve secondary workability such as necked-in processing and flange processing.
  • By making it a coarse-grained soft material a multilayer structure having good DI processability is formed.
  • Patent Document 3 provides a cold-rolled steel sheet having excellent mold galling resistance, chemical conversion treatment, and spot weldability by continuous annealing in a carburizing atmosphere. To maintain good workability, it is based on ultra low carbon steel. Moreover, the carbon-rich layer is formed on the surface of the steel sheet by annealing in a carburizing atmosphere, and the sliding property is improved, thereby solving the drawbacks of the ultra-low carbon steel that is likely to cause mold galling. However, continuous annealing in a carburizing atmosphere is essential, and it is necessary to introduce new equipment to conventional equipment.
  • Patent Document 4 discloses a method for manufacturing a steel plate for DI cans using Nb-added ultra-low carbon steel, having a plate thickness of 0.20 mm or less for reducing the weight of the DI can, and having an average crystal grain size of the original plate of 6 ⁇ m or less. Yes.
  • the average crystal grain size 6 ⁇ m or less while making the workability good with ultra-low carbon steel, the rough surface of the original sheet after ironing of the steel sheet laminated with the organic resin film is suppressed, and the corrosion resistance is ensured.
  • the ironing process of the laminated steel sheet is performed without using a lubricating oil and a coolant, the hardening of the steel sheet accompanying excessive grain refinement causes excessive processing heat generation, which is a problem from the viewpoint of industrial production.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel plate for cans excellent in deep drawing workability, ironing workability, and rough skin resistance after working, and a method for producing the same.
  • the present inventors have conducted intensive research to solve the above problems. As a result, the following knowledge was obtained.
  • the present invention has been made based on the above findings, and the gist thereof is as follows. [1] By mass%, C: 0.0040 to 0.01%, Si: 0.05% or less, Mn: more than 0.3 to 0.6%, P: 0.02% or less, S: 0.0.
  • Rolling direction cross-section ferrite average crystal grain size from the steel sheet surface layer to 1/4 of the plate thickness is 7 ⁇ m or more and 10 ⁇ m or less
  • rolling direction cross-sectional ferrite average crystal grain from the 1/4 thickness of the plate thickness to the center of the plate thickness The diameter is 15 ⁇ m or less
  • the cross-sectional ferrite average crystal grain size in the rolling direction from the steel sheet surface layer to 1 ⁇ 4 of the plate thickness is the rolling direction from the 1 ⁇ 4 thickness of the plate thickness to the center of the plate thickness.
  • a method for producing a steel plate for cans having excellent resistance to rough skin characterized by performing continuous annealing.
  • % which shows the component of steel is mass% altogether.
  • the steel plate for cans excellent in deep drawing workability, ironing workability, and the rough skin resistance after a process is obtained. Since the steel plate for cans according to the present invention is finer in the vicinity of the surface portion of the steel plate than conventional steel, secondary workability such as flange processing and neck-in processing is improved. In addition, it can be efficiently manufactured without requiring advanced control technology and quality control.
  • C 0.0040 to 0.01%
  • C is one of the important elements in the present invention that has a great influence on the moldability and grain refinement. If it is less than 0.0040%, it is very soft and excellent formability can be achieved. However, since ferrite grains are coarsened, it is difficult to refine the vicinity of the steel sheet surface layer. On the other hand, if it exceeds 0.01%, C dissolves in the ferrite, the matrix becomes hard, and the formability deteriorates. In order to achieve both formability and crystal grain refinement, the C content is 0.0040% or more and 0.01% or less.
  • the upper limit is made 0.05%.
  • it is 0.03% or less, More preferably, it is 0.02% or less.
  • Mn 0.3% to 0.6%
  • Mn is added in an amount of at least 0.05% in order to prevent a decrease in hot ductility due to the impurity S contained in the steel.
  • the lower limit exceeds 0.3%. That is, Mn is one of the elements that lowers the Ar3 transformation point, and the finish rolling temperature during hot rolling can be further lowered.
  • the recrystallized grain growth of (gamma) grain can be suppressed at the time of hot rolling, and also alpha grain after transformation can be refined.
  • the amount of Mn is set to exceed 0.3%.
  • ASTM United States Material Testing Association standard
  • the upper limit is made 0.02%.
  • the lower limit is preferably 0.005%.
  • S 0.02% or less S combines with Mn in steel to form MnS, and precipitates in a large amount to lower the hot ductility of the steel. Therefore, the upper limit of S is 0.02%.
  • Al 0.01 to 0.10%
  • Al is an element added as a deoxidizer. Further, by forming N and AlN, there is an effect of reducing solid solution N in the steel. However, if the Al content is less than 0.01%, a sufficient deoxidation effect or a solid solution N reduction effect cannot be obtained. Therefore, the lower limit of the Al amount is 0.01%. On the other hand, if it exceeds 0.10%, not only is the above effect saturated, but also inclusions such as alumina increase, such being undesirable. Therefore, the upper limit of Al content is 0.10%.
  • N 0.0015 to 0.0050%
  • N is preferably as small as possible because it combines with Al, Nb, or the like to form nitrides or carbonitrides and impairs hot ductility.
  • N is one of the solidity strengthening elements, and if added in a large amount, it leads to hardening of the steel and the elongation is remarkably lowered to deteriorate the formability.
  • it is difficult to stably make N less than 0.0015%, and the manufacturing cost also increases. From the above, the N amount is set to 0.0015% or more and 0.0050% or less.
  • Nb 0.02 to 0.12%
  • Nb is an element that forms NbC or Nb (C, N), has an effect of reducing solid solution C in steel, and is added for the purpose of improving elongation and r value.
  • the grain boundaries can be refined by the pinning effect of grain boundaries by carbonitride formed by the addition of Nb and the drag effect of grain boundaries by solid solution Nb in steel.
  • the lower limit of the Nb amount is 0.02%.
  • the amount of Nb exceeds 0.12%, the effect of refining the crystal grains due to the solid solution Nb described above is saturated, and the recrystallization completion temperature is raised. Industrial production becomes difficult because the annealing temperature is raised in the process.
  • the upper limit of the Nb amount is set to 0.12%. Furthermore, when the solid solution C in steel increases, a strain pattern called a stretcher strain caused by YP-El generated after the strain that exceeds the upper yield point during molding appears. It is not preferable for application. For this reason, the balance between the Nb amount and the C amount is more preferably (Nb / C ⁇ 0.8) and the Nb amount is 0.04% or more and 0.12% or less for the above reason.
  • the balance is Fe and inevitable impurities.
  • the roughness of the rough surface on the steel sheet surface after deep drawing and ironing is proportional to the size of the ferrite crystal grain size.
  • the rough surface of a steel plate surface causes peeling of a film and a steel plate. Further, the stress is concentrated on the film, so that the film breaks, and as a result, the base steel sheet is exposed. And corrosion resistance deteriorates by peeling of such a film and a steel plate, exposure of a base steel plate, etc.
  • secondary processing such as flange processing and neck-in processing is performed on the can body after DI processing, the grain boundary strength is weak on the surface of the roughened steel sheet, and wrinkles and cracks are generated.
  • the crystal grain size is fine on the steel sheet surface from the viewpoint of preventing rough skin.
  • the surface layer is excessively fine, the workability is adversely affected because the steel sheet is cured.
  • DI processing is more advantageous in terms of productivity as it is a softer material.
  • it can be said that it is preferable to use a soft material in which the crystal grain size is fine in the surface layer part of the steel sheet and the grain is coarsened in the central part of the plate thickness.
  • the rough surface of the steel sheet surface after ironing depends mainly on the ferrite grain size from the steel sheet surface layer to 1/4 of the plate thickness. .
  • the average grain size of ferrite in the rolling direction from the steel sheet surface layer to 1 ⁇ 4 thickness is 7 ⁇ m or more and 10 ⁇ m or less, and from 1 ⁇ 4 thickness to the thickness center.
  • the rolling direction cross-sectional ferrite average crystal grain size is up to 15 ⁇ m or less, and the rolling direction cross-sectional ferrite average crystal grain size from the steel sheet surface layer to 1 ⁇ 4 thickness is 1 ⁇ 4 of the plate thickness.
  • the rolling direction sectional ferrite average crystal grain size from the thickness to the center of the plate thickness is smaller.
  • the ferrite grain size near the steel sheet surface layer Refine the grain.
  • the present invention has a rough skin resistance after processing with a fine layer having a thickness of 1/4 layer from the surface layer, and that the center portion of the plate thickness is coarser than the surface layer portion and has workability. Both excellent resistance to rough skin and excellent processability will be achieved.
  • the average crystal grain size in the rolling direction cross section from the steel sheet surface layer to 1/4 of the plate thickness is less than 7 ⁇ m, it hardens excessively, resulting in an increase in deformation resistance at the time of forming and problems such as fracture. On the other hand, if it exceeds 10 ⁇ m, the surface roughness of the steel sheet occurs depending on the size of the particle size after forming. If the average crystal grain size in the rolling direction cross section from the 1/4 thickness of the plate thickness to the central portion of the plate thickness exceeds 15 ⁇ m, it softens excessively, so that the pressure resistance after canning is insufficient.
  • the rolling direction cross-sectional ferrite average crystal grain size from the steel sheet surface layer to 1/4 of the plate thickness and the rolling direction cross-sectional ferrite average crystal grain size from 1/4 of the plate thickness to the center of the plate thickness are: It can be measured by the following method. Conforms to JIS G0551 steel-grain size microscopic test method using a 400x photograph taken with an optical microscope to reveal grain boundaries by etching the ferrite structure of the cross section in the rolling direction with a 3% nital solution. Then, the ferrite crystal grain size is measured by a cutting method.
  • the DI processing is preferably soft and low in processing energy from the viewpoint of productivity.
  • the upper limit of the Rockwell hardness test method (HR30T) is set at a tempering degree of T3CA or less. 60 points or less is preferable.
  • the bottom of the can is not hardened by ironing like the can body. Therefore, a certain level of steel plate strength is required from the viewpoint of the pressure strength of the bottom of the can regardless of whether it is a negative pressure can or a positive pressure can.
  • the minimum required steel sheet strength is equal to or higher than T2CA in the tempering degree, and the lower limit of HR30T is preferably 50 points or more.
  • the steel sheet for cans having excellent skin roughness resistance according to the present invention is manufactured by performing hot rolling, pickling, cold rolling, and annealing treatment using a steel slab having the above composition manufactured by continuous casting. At this time, cooling is performed at a cooling rate of 50 to 100 ° C./s within 1 second after the final finish rolling, and the winding temperature is set to 500 ° C. to 600 ° C. In addition, the cold rolling reduction after the pickling treatment is 90% or more, and the continuous annealing temperature is not less than the recrystallization temperature and not more than 800 ° C.
  • Slab reheating temperature 1050 to 1300 ° C (preferable range)
  • the slab reheating temperature before hot rolling is not particularly limited, but if the heating temperature is too high, problems such as product surface defects and increased energy costs occur. On the other hand, if it is too low, it will be difficult to ensure the final finish rolling temperature. Therefore, the slab reheating temperature is preferably in the range of 1050 to 1300 ° C.
  • Final finish rolling temperature during hot rolling Ar3 transformation point or higher and 930 ° C or lower (preferable range)
  • the final finish rolling temperature is preferably in the range of not less than Ar3 transformation point and not more than 930 ° C. from the viewpoint of grain refinement of the hot-rolled steel sheet and uniformity of precipitate distribution.
  • the final finish rolling temperature is higher than 930 ° C., ⁇ grain growth after rolling occurs, and the coarse ⁇ grains accompanying it may cause the coarsening of the ⁇ grains after transformation.
  • ⁇ grains are rolled and ⁇ grains are coarsened, and an increase in rolling load due to a decrease in temperature becomes a problem. More preferably, it is in the range of Ar3 transformation point to 900 ° C.
  • Cooling after hot rolling 50 to 100 ° C./s within 1 second after finishing rolling
  • the most important is hot This is the cooling condition after rolling.
  • Cooling after finishing rolling is performed within 1 second and at a cooling rate of 50 to 100 ° C./s.
  • the cooling is started within 0.5 seconds after finishing rolling. If the cooling after finishing rolling is performed for more than 1 second, the air cooling time until the rapid cooling after finishing rolling becomes long, and the ⁇ grains and the ⁇ grains after transformation grow and do not become fine grains.
  • the cooling rate is less than 50 ° C./s, the crystal grains stay for a long time in a high temperature range, so the hot rolled sheet crystal grains become coarse due to grain growth, and inherit the coarse grains after cold rolling and annealing. It does not become a grain.
  • the cooling rate exceeds 100 ° C./s, temperature unevenness occurs in the sheet width direction and the rolling direction, resulting in non-uniform materials and shape defects.
  • the cooling means is not particularly limited as long as it can be performed while satisfying the above conditions. For example, it can be performed by water cooling.
  • the cooling start temperature is almost the finish rolling temperature and needs to be cooled to at least 700 ° C. or less.
  • a more preferable cooling temperature range is a coiling temperature of 500 to 600 ° C.
  • Winding temperature during hot rolling 500-600 ° C
  • the amount of precipitation of Nb-based precipitates increases, but the precipitate particle size becomes coarse, the precipitate pinning effect decreases, and the ⁇ particle size is coarse.
  • the precipitation amount of Nb-based precipitates decreases, so that the ⁇ phase cannot be refined due to the pinning effect.
  • the pickling process is not particularly limited as long as the scale of the surface layer portion can be removed.
  • Cold rolling reduction 90% or more
  • the rolling reduction of cold rolling is 90% or more in order to achieve fine graining near the surface defined by the present invention.
  • the rolling reduction is less than 90%, the crystal grain refinement and the excellent formability which are the object of the present invention cannot be achieved at the same time.
  • the rolling reduction is preferably 91% or more.
  • Annealing temperature Recrystallization temperature or higher and 800 ° C. or lower
  • An annealing method is preferably a continuous annealing method from the viewpoint of material uniformity and high productivity. If the annealing temperature is lower than the recrystallization temperature, the rolling structure at the time of cold rolling remains, which causes an increase in the in-plane anisotropy of the r value that causes the occurrence of ears at the time of drawing. On the other hand, if the annealing temperature exceeds 800 ° C., the crystal grains become coarse and the rough surface after processing becomes large, and the risk of occurrence of in-furnace breakage and buckling increases in thin materials such as steel plates for cans. Therefore, the annealing temperature is set to the recrystallization temperature or higher and 800 ° C. or lower.
  • Temper rolling reduction ratio 0.5 to 5% (preferred conditions) Temper rolling can be performed as appropriate.
  • the reduction ratio in the case of temper rolling is appropriately determined depending on the degree of tempering of the steel sheet, but is preferably 0.5% or more in order to suppress the occurrence of stretcher strain.
  • the rolling reduction exceeds 5%, the workability and elongation may decrease due to the steel plate becoming hard, and the r value may decrease and the r value in-plane anisotropy may increase. Therefore, when performing temper rolling, the rolling reduction is 0.5% or more and 5% or less.
  • the ferrite structure of the cross section in the rolling direction was etched with a 3% nital solution to reveal the grain boundary, and a JIS photograph was taken using a 400 ⁇ photograph taken using an optical microscope.
  • the ferrite crystal grain size was measured by a cutting method in accordance with the steel-crystal grain size microscopic test method of G0551.
  • Evaluation Rough skin (average ferrite grain size after annealing) The evaluation of the rough surface of the steel sheet was first made by evaluating the sample in the example by making a DI can as described below.
  • a steel plate laminated with a PET film (film thickness: 16 ⁇ m) is used as a ⁇ 123 blank plate, and the drawing ratio is set to 1.74 and 1.35 for the 1 st and 2 nd cupping ratios.
  • a can with a diameter of 52.64 ⁇ height 107.6 mm was made with a plate thickness reduction rate of 49% at maximum (equivalent strain 1.4).
  • the sample after can-making peeled the laminated film with the NaOH solution measured the roughness of the surface of the can body steel plate at the portion where the degree of processing was the highest, and investigated the maximum height R max .
  • the maximum height R max is less than 7.4 ⁇ m and the skin roughness is small ())
  • the maximum height R max is 7.4 to less than 9.5 ⁇ m
  • the skin roughness is slightly small ( ⁇ )
  • the skin roughness is 9.5 ⁇ m or more ((). X).
  • the evaluation object of the present invention was an unrecrystallized area ratio in the range of 0.5 to 5%, and a level outside the range was excluded from the evaluation object.
  • Processing heat generation achieves productivity equivalent to the current can making speed of DI tin cans using a coolant with a DI steel can using laminated steel sheets. To do. Since the processing heat generation depends on the strength of the steel sheet, 57 or less in the HR30T after annealing is a small processing heat generation ( ⁇ ), and 57 to 60 or less is a level where the processing heat generation is not a problem at the time of can making. A value exceeding 60 was evaluated as a large processing exotherm ( ⁇ ).
  • Shape of hot-rolled steel sheet The shape of the hot-rolled steel sheet was confirmed visually. A shape that is extremely defective in shape such as warpage and affects the next process is defined as a defective shape (x). What was cooled at 120 ° C./s deteriorated in shape due to non-uniformity of materials resulting from non-uniform cooling.
  • the present invention is superior in DI processability and rough skin resistance after DI cans by having a fine-grained area in the surface layer part while the center part of the plate thickness is coarse and soft. It has properties suitable for the base plate of the processing steel plate.
  • the steel plate for cans of the present invention is highly workable and has excellent resistance to rough skin after processing, it can be suitably used as a can container material used in food and beverage cans, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

耐肌荒れ性に優れた缶用鋼板およびその製造方法を提供する。C:0.0040~0.01%、Nb:0.02%~0.12%を含有する。鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径が7μm以上10μm以下であり、板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径が15μm以下である。さらに、前記鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径<前記板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径である。以上の缶用鋼板は、最終仕上圧延後に1秒以内に50~100℃/sで冷却し、500℃~600℃で巻取り、酸洗処理を施した後、圧延率90%以上で冷間圧延し、再結晶温度以上800℃以下で連続焼鈍を施すことで得られる。

Description

耐肌荒れ性に優れた缶用鋼板およびその製造方法
 本発明は、食品や飲料缶に用いられる缶容器材料に適した缶用鋼板に関し、特に深絞り缶および深絞り−しごき缶に用いて、軟質であり優れた加工性を有しつつ、かつ加工後に鋼板表面に肌荒れが生じない缶用鋼板およびその製造方法に関するものである。
 現在、世界で使用されている2ピース缶は、鋼板にDRD(Draw and Redraw)加工やDI(Draw and wall Ironing)加工などの加工を施した缶胴と蓋で形成されている。飲料缶については、耐食性が求められるため製缶後に有機塗装を施すことによって缶内容物と缶内部表面を保護する方法が一般的である。
 一方、近年では、成形前の金属板に有機樹脂フィルムをあらかじめ被覆したラミネート鋼板が地球環境保全の面で注目されている。ラミネート鋼板は、フィルム自身が潤滑性を持つために、深絞り加工やしごき加工の時に従来必要であった潤滑油が必要でなくなる。その結果、潤滑油の洗浄工程が省略され、洗浄排水が出ないという利点がある。さらに、内容物と鋼板表面の保護のために必要であった缶内面の塗装工程とその焼付け工程が不要であるため、焼付け工程時に排出されていた温室効果ガスである二酸化炭素が発生しないという利点がある。
 このように、ラミネート鋼板を用いた製缶方法は地球環境保全に大きく貢献することが可能であり、今後の需要拡大が考えられる。ただし、この方法では、製缶後に下地の鋼板の肌荒れにより被覆したフィルムの厚さが局所的に低下し、フィルムの破損および剥離などにより耐食性が劣化するという新たな問題が発生する場合がある。このため、下地となる鋼板には、深絞り加工やしごき加工といった大きな加工度に耐え得る高い成形性と、製缶後にフィルムとの密着性を良好に保つため鋼板表面に肌荒れが発生しない表面性状が重要な要素として求められる。製缶後の下地鋼板の表面に発生する肌荒れは、製缶前の鋼板の平均結晶粒径が微細であるほど抑制できることが知られており、粒径を微細化する方法は、過去に多数の技術が開示されている。さらに、これを応用して、加工ダイが接触する鋼板表層域のみを細粒化し、鋼板中央部は加工エネルギーを小さくするため結晶粒を粗大化させて軟質化するという技術も開示されている。
 特許文献1には、深絞り時の耐型かじり性に優れる良成形性冷延鋼板の素材として用いる熱延鋼板およびその製造方法と、その熱延鋼板を素材として使用した冷延鋼板の製造方法が開示されている。板厚方向の結晶粒度と{111}結晶方位の割合を適正に調整した熱延鋼板を冷延鋼板の素材として用い、深絞り性と耐型かじり性をともに向上させている。しかし、熱間圧延をAr3変態点以下で行うため、従来よりも高度な温度制御技術と品質管理が必要とされ、また、仕上圧延温度の低下による圧延荷重の増大などが課題として挙げられる。
 特許文献2では、フランジ成形時の割れが少なく、加工性に優れ、塗装焼付け後の缶体強度の高いDI缶用鋼板とその製造方法が提供されている。板厚表層部では微細AlNを析出させて結晶粒を微細化させ、かつ、粒界強度を高めてネックドイン加工、フランジ加工等の2次加工性を向上させ、板厚中央層では過時効処理を経て粗粒軟質材とすることで、良好なDI加工性を有する複層組織を構成している。しかしながら、固溶Cを残存させることで塗装焼付け後の缶体強度を高めているため、製鋼工程での総C量の調整やその総C量に対しての熱延工程での巻取り温度管理や焼鈍工程の過時効処理での固溶C量の調整が必要となり、生産性を低下させる要因となっている。
 特許文献3では、浸炭雰囲気中で連続焼鈍することで、耐型かじり性と化成処理性およびスポット溶接性に優れた冷延鋼板を提供している。良好な加工性を維持するために極低炭素鋼をベースにしている。また、浸炭雰囲気中による焼鈍で鋼板表面に炭素の濃化層を構成し、摺動性を良好とすることで、型かじりが発生しやすい極低炭素鋼の欠点を解決している。しかしながら、浸炭雰囲気中で連続焼鈍することが必須であり、従来の設備に新たな設備を導入する必要がある。
 特許文献4では、Nb添加極低炭素鋼を使用し、DI缶軽量化のため板厚0.20mm以下とし、原板平均結晶粒径を6μm以下としたDI缶用鋼板の製造方法が開示されている。極低炭素鋼で加工性を良好にしつつ、平均結晶粒径6μm以下とすることで、有機樹脂フィルムをラミネートした鋼板のしごき加工後の原板肌荒れを抑制し、耐食性を確保している。しかし、ラミネート鋼板のしごき加工は潤滑油およびクーラントを使用せずに行うため、過度な細粒化に伴う鋼板の硬化は加工発熱を過大にし、工業的生産の観点から問題となる。
特開平11−80888号公報 特開平10−17993号公報 特開平1−339752号公報 特開平11−209845号公報
 上記したように、従来技術では、中央部を粗粒化し表層部を細粒化してDI加工性とフランジ加工やネックイン加工などの2次加工性を両立する、結晶粒が異なる複層組織を持つ缶用鋼板を製造することは非常に困難であった。
また、前述の特性を達成できたとしても製造コストの上昇や設備上および操業上の困難な問題が新たに発生していた。
 本発明は、かかる事情に鑑みなされたもので、深絞り加工性、しごき加工性および加工後の耐肌荒れ性に優れた缶用鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。
 厳しい深絞り加工やしごき加工に耐え得る高い加工性を獲得するため、0.0040~0.01%C鋼をベースに化学成分を設計することが有効である。
熱間圧延条件、冷間圧延条件および連続焼鈍条件を適正化することで、鋼板表層付近の結晶粒を微細化し、中央部の結晶粒は表層部と比較して粗大とする必要がある。
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.0040~0.01%、Si:0.05%以下、Mn:0.3超え~0.6%、P:0.02%以下、S:0.02%以下、Al:0.01~0.10%、N:0.0015~0.0050%、Nb:0.02~0.12%を含有し、残部はFeおよび不可避的不純物からなり、鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径が7μm以上10μm以下であり、板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径が15μm以下であり、さらに、前記鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径は、前記板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径よりも小さいことを特徴とする耐肌荒れ性に優れた缶用鋼板。
[2]前記[1]に記載の耐肌荒れ性に優れた缶用鋼板を製造する方法であって、質量%で、C:0.0040~0.01%、Si:0.05%以下、Mn:0.3超え~0.6%、P:0.02%以下、S:0.02%以下、Al:0.01~0.10%、N:0.0015~0.0050%、Nb:0.02~0.12%を含有し、残部はFeおよび不可避的不純物からなる成分を有する鋼スラブを熱間圧延し、最終仕上圧延後1秒以内に50~100℃/sの冷却速度で冷却し、500℃~600℃の巻取り温度で巻取り、次いで、酸洗処理を施した後、90%以上の圧下率で冷間圧延し、再結晶温度以上800℃以下の温度で連続焼鈍を施すことを特徴とする耐肌荒れ性に優れた缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
 本発明によれば、深絞り加工性、しごき加工性、および、加工後の耐肌荒れ性に優れた缶用鋼板が得られる。
本発明の缶用鋼板は従来鋼に比べ鋼板表層部付近は細粒化されていることから、フランジ加工やネックイン加工などの2次加工性が向上する。
また、高度な制御技術や品質管理を必要とせず、効率よく製造することができる。
 以下、本発明を詳細に説明する。
まず、本発明の耐肌荒れ性に優れた缶用鋼板の成分組成について説明する。
C:0.0040~0.01%
Cは、成形性と結晶粒微細化に大きな影響を及ぼす、本発明の中で重要な元素の一つである。0.0040%未満では、非常に軟質であり優れた成形性を達成できるものの、フェライト粒の粗大化を招くため鋼板表層付近を細粒化することが困難である。一方、0.01%超えでは、フェライト中にCが固溶しマトリックスが硬質化して成形性が悪化する。成形性と結晶粒微細化を両立するために、C量は0.0040%以上0.01%以下とする。
 Si:0.05%以下
Siは多量に添加すると鋼板の表面処理性が劣化する。また、耐食性が低下する。そのため、上限を0.05%とする。好ましくは0.03%以下、より好ましくは0.02%以下である。
 Mn:0.3%超え~0.6%
Mnは、一般的には、鋼中に含まれる不純物のSに起因する熱間延性の低下を防止するため少なくとも0.05%以上添加する。しかし、本発明では細粒化のためさらに添加し下限は0.3%超えとする。すなわち、MnはAr3変態点を低下させる元素の一つであり、熱間圧延時の仕上圧延温度をより低下させることができる。そして、熱間圧延時にγ粒の再結晶粒成長を抑制し、さらに変態後のα粒を微細化できる。本発明では、0.0040~0.01%CをベースとするNb添加鋼にMnを添加することで、表層付近の細粒化を達成し、製缶後の耐圧強度を確保する。以上の効果を得るために、Mn量は0.3%超えとする。一方、JIS G 3303に規定される[とりべ分析値」やアメリカ合衆国材料試験協会規格(以降、ASTMと称することもある)における[とりべ分析値」において、通常の食品容器に用いられるぶりき原板のMn量は0.6%以下と規定されている。このため、本発明のMn量の上限は0.6%とする。
 P:0.02%以下
Pは、多量に添加すると、鋼の硬質化、耐食性の低下を引き起こすため、上限は0.02%とする。一方で、過度に低減してもその効果が飽和することに加え、製造コストの上昇につながるため望ましくない。よって、下限は0.005%が好ましい。
 S:0.02%以下
Sは、鋼中でMnと結合してMnSを形成し、多量に析出することで鋼の熱間延性を低下させる。よって、Sの上限は0.02%とする。
 Al:0.01~0.10%
Alは、脱酸剤として添加される元素である。また、NとAlNを形成することにより、鋼中の固溶Nを減少させる効果を有する。しかし、Alの含有量が0.01%未満では、十分な脱酸効果や固溶N低減効果が得られない。よって、Al量の下限は0.01%とする。一方、0.10%を超えると、上記効果が飽和するだけでなく、アルミナなどの介在物が増加するため好ましくない。よってAl量の上限は0.10%とする。
 N:0.0015~0.0050%
Nは、AlやNb等と結合し窒化物や炭窒化物を形成し、熱間延性を害するため少ないほど好ましい。また、Nは固容強化元素の一つであり、多量に添加すると鋼の硬質化につながり伸びが著しく低下して成形性を悪化させる。しかし、Nを安定して0.0015%未満とするのは難しく、製造コストも上昇する。以上から、N量は0.0015%以上0.0050%以下とする。
 Nb:0.02~0.12%
Nbは、NbCまたはNb(C、N)を形成する元素であり、鋼中の固溶Cを減少させる効果があり、伸びやr値の向上を目的として添加される。また、Nbの添加により形成された炭窒化物による粒界のピン止め効果や、鋼中の固溶Nbによる粒界のドラッグ効果により結晶粒の微細化が可能となる。以上の効果を得るため、Nb量の下限は0.02%とする。一方、Nb量が0.12%を超えると、前述した固溶Nbによる結晶粒微細化効果が飽和することに加え、再結晶完了温度を上昇させ、特に薄物材が多い缶用鋼板では連続焼鈍工程で焼鈍温度を上昇させるために工業的生産が困難となる。よって、Nb量の上限は0.12%とする。さらに、鋼中固溶Cが増加すると、成形時に上降伏点を越えたひずみ後に発生するYP−Elに起因するストレッチャーストレインと言われるひずみ模様が現れるため、外観を重視する飲料缶・食缶用途に適用するには好ましくない。このためNb量とC量のバランスは、上記理由により、より好ましくは、(Nb/C<0.8)であり、かつNb量0.04%以上0.12%以下とする。
 残部はFeおよび不可避不純物とする。
 圧延方向断面フェライト結晶粒径について
深絞り加工およびしごき加工後の鋼板表面における肌荒れの大きさは、フェライト結晶粒径の大きさに比例する。そして、ラミネート鋼板のDI加工では、鋼板表面の肌荒れが、フィルムと鋼板の剥離を引き起こす。また、フィルムへ応力が集中することでフィルム破断が発生し、その結果、下地鋼板が露出する。そして、このようなフィルムと鋼板の剥離や下地鋼板の露出などにより、耐食性が悪化する。また、DI加工後の缶体をフランジ加工、ネックイン加工などの2次加工を行う際には、粗粒化した鋼板表面では粒界強度が弱く、シワや割れなどが発生する。このため、肌荒れ防止の点から、鋼板表面では結晶粒径は微細であることが好ましい。しかしながら、過度に表層が微細であっても、鋼板が硬化するため加工性に悪影響を及ぼす。
一方でDI加工は、成形エネルギーの観点から、軟質材であるほど生産性の面で有利である。これらを鑑みると、鋼板の表層部では結晶粒径を微細とし、板厚中央部では粗粒化した軟質材であることが好ましいといえる。
さらに、鋭意研究を行った結果、しごき加工後の鋼板表面の肌荒れは、主に鋼板表層から板厚の1/4厚さまでのフェライト粒径の大きさに依存していることが明らかとなった。
以上の検討の結果、本発明では、鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径が7μm以上10μm以下であり、板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径が15μm以下であり、さらに、前記鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径は、前記板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径よりも小さいこととする。析出したNb炭窒化物による粒界ピン止め効果、固溶Nbによる粒界のDrag効果、そして、熱間圧延時の仕上げ圧延後の冷却条件を最適化することで、鋼板表層付近のフェライト粒径を細粒化する。また、さらに、成分と製造条件の最適化により表層から板厚1/4層を板厚1/4層から板厚中央層よりも細粒化することを可能とする。その結果、本発明では表層から板厚1/4層の細粒層で加工後の耐肌荒れ性を有し、なおかつ板厚中央部が表層部より粗大粒となることで加工性を有するという、優れた耐肌荒れ性と優れた加工性を両立することになる。
鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径が7μm未満では過度に硬化するため、成形時の変形抵抗が大きくなり破断などの問題が発生する。一方、10μm超えでは、成形後に粒径の大きさに依存して鋼板表面の肌荒れが発生する。
板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径が15μm超えでは過度に軟化するため、製缶後の耐圧強度が不足する。
なお、上記前記鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径および前記板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径は、以下の方法にて測定することができる。圧延方向断面のフェライト組織を3%ナイタール溶液でエッチングして粒界を現出させ、光学顕微鏡を用いて撮影した400倍の写真を用いて、JIS G0551の鋼−結晶粒度の顕微鏡試験方法に準拠して、切断法によりフェライト結晶粒径を測定する。
 鋼板強度(加工性)について
ロックウェル硬さ試験方法(HR30T):50以上60以下(好適範囲)
前述の通り、DI加工は、軟質で加工エネルギーが小さいことが生産性の面で好ましい。本発明では、加工性の悪化や製缶時の加工発熱が過大となる等、生産性を損なうことを防ぐため、調質度でT3CA以下として、ロックウェル硬さ試験方法(HR30T)の上限を60ポイント以下とするのが好ましい。また、DI加工では缶底部は缶胴部のようにしごき加工による硬化がない。そのため、陰圧缶や陽圧缶に関わらず缶底部の耐圧強度の観点から、ある程度の鋼板強度が必要である。調質度でT2CA相当以上が最低限必要な鋼板強度であり、HR30Tの下限を50ポイント以上とするのが好ましい。
 次に、本発明の耐肌荒れ性に優れた缶用鋼板の製造方法について説明する。
 本発明の耐肌荒れ性に優れた缶用鋼板は、連続鋳造によって製造された上記組成からなる鋼スラブを用い、熱間圧延、酸洗、冷間圧延、焼鈍処理を施し製造する。この時、最終仕上圧延後1秒以内に50~100℃/sの冷却速度で冷却し、巻取り温度は500℃~600℃とする。また、酸洗処理後の冷間圧延圧下率は90%以上、連続焼鈍温度は再結晶温度以上800℃以下とする。
 スラブ再加熱温度:1050~1300℃(好適範囲)
熱間圧延前のスラブ再加熱温度は、特に条件は規定しないが、加熱温度が高すぎると製品表面の欠陥やエネルギーコストが上昇するなどの問題が発生する。一方、低すぎると、最終仕上圧延温度の確保が難しくなる。よって、スラブ再加熱温度は1050~1300℃の範囲が好ましい。
 熱間圧延時の最終仕上圧延温度:Ar3変態点以上930℃以下(好適範囲)
最終仕上圧延温度は、熱延鋼板の結晶粒微細化や析出物分布の均一性の観点から、Ar3変態点以上930℃以下の範囲が好ましい。最終仕上圧延温度が930℃よりも高くなると、圧延後のγ粒粒成長が起こり、それに伴う粗大γ粒により変態後のα粒の粗大化を招く場合がある。また、Ar3変態点未満の圧延では、α粒の圧延となってα粒が粗大化するほか、温度低下による圧延荷重の増大などが問題となる。より好ましくは、Ar3変態点以上900℃以下の範囲である。
 熱間圧延後の冷却:仕上圧延終了後1秒以内に50~100℃/s本発明の特徴である鋼板表層部の結晶粒径微細化を達成するために、最も重要であるのは熱間圧延後の冷却条件である。仕上圧延終了後に急冷することで、特に表層の圧延後未再結晶γ相と相変態後のα相を微細化することが可能になる。仕上圧延終了後の冷却は1秒以内かつ50~100℃/sの冷却速度で行うこととする。好ましくは、仕上圧延終了後0.5秒以内に冷却を開始することが好ましい。仕上圧延終了後の冷却が1秒を越えて行うと、仕上圧延後の急冷までの空冷時間が長くなることになり、γ粒および変態後のα粒が粒成長するため微細粒にならない。冷却速度が50℃/s未満の場合、結晶粒が高温度域で長時間滞留するため、粒成長により熱延板結晶粒は粗大化し、冷間圧延・焼鈍後も粗大粒を継承して微細粒にならない。一方、冷却速度が100℃/sを超える場合、板幅方向および圧延方向の温度ムラが発生し、材質の不均一や形状不良が発生する。なお、冷却手段は上記条件を満足して行えるものであれば特に限定しない。例えば、水冷にて行うことができる。冷却開始温度は、ほぼ仕上げ圧延温度であり、少なくとも700℃以下まで冷却する必要がある。より好ましい冷却温度範囲は、巻取り温度500~600℃までである。
 熱間圧延時の巻取り温度:500~600℃
熱間圧延時の巻取り温度が600℃よりも高くなると、Nb系析出物の析出量は多くなるが、析出物粒径が粗大化し、析出物のピン止め効果が減少しα粒径が粗大化する。一方、500℃より低い温度域ではNb系析出物の析出量が減るために、ピン止め効果でα相を微細化できない。
 引き続き、酸洗処理を行う。酸洗工程は、表層部のスケールが除去できればよく、特に条件は規定しない。
 冷間圧延圧下率:90%以上
冷間圧延の圧下率は、本発明が規定する表面付近の微細粒化を達成するために90%以上とする。圧下率90%未満では、結晶粒が粗大化して材質が劣化するなど、本発明が目的とする結晶粒微細化と優れた成形性が両立できない。熱間圧延時に析出せずに固溶して残存しているNbの析出サイトを設ける点から、圧下率を90%以上としてひずみエネルギーを鋼板に多く蓄えることで、次工程の焼鈍時に多数のサイトに微細なNb系析出物を析出させピン止め効果による結晶粒微細化が実現できる。微細化の観点からは、圧下率は91%以上が好ましい。
 焼鈍温度:再結晶温度以上800℃以下
焼鈍方法は、材質の均一性と高い生産性の観点から連続焼鈍法が好ましい。焼鈍温度が再結晶温度未満であると冷間圧延時の圧延組織が残存し、絞り成形時に耳発生の原因となるr値の面内異方性の増大を引き起こす。一方、焼鈍温度800℃超えでは結晶粒が粗大化し、加工後の肌荒れが大きくなるほか、缶用鋼板などの薄物材では炉内破断やバックリングの発生の危険が大きくなる。よって、焼鈍温度は再結晶温度以上800℃以下とする。
 調質圧延圧下率:0.5~5%(好適条件)
調質圧延は適宜行うことができる。調質圧延を行う場合の圧下率は、鋼板の調質度により適宜決定されるが、ストレッチャーストレインの発生を抑えるためには、0.5%以上が好ましい。一方、圧下率が5%超えでは、鋼板が硬質化することによる加工性の低下と伸びの低下、さらにr値の低下およびr値の面内異方性の増大を引き起こす場合がある。よって、調質圧延を行う場合、圧下率は0.5%以上5%以下とする。
 以降のめっき等の工程は常法通り行い、缶用鋼板として仕上げる。
 表1に示す各種成分組成を有する鋼を溶製し鋼スラブとし、得られた鋼スラブに対して表2に示す条件で熱間圧延、酸洗、冷間圧延、直接通電加熱装置による連続焼鈍のシミュレート、調質圧延を行い、最終板厚:0.24mmの缶用鋼板を製造した。なお、熱間圧延後の冷却は水冷により行い、冷却速度は、水冷設備入側と出側の放射温度計測定と通板速度より計算した。このようにして得られた缶用鋼板の試験片について、以下の試験に供した。
Figure JPOXMLDOC01-appb-T000001
 未再結晶組織率の測定上記試験片について、圧延方向断面のフェライト組織をエッチングして出現させ、光学顕微鏡を用いて撮影した200倍の写真で、未再結晶組織部と再結晶完了部を区別し、再結晶していない結晶粒の面積率を算出した。
 平均フェライト結晶粒径の測定
上記試験片について、圧延方向断面のフェライト組織を3%ナイタール溶液でエッチングして粒界を現出させ、光学顕微鏡を用いて撮影した400倍の写真を用いて、JIS G0551の鋼−結晶粒度の顕微鏡試験方法に準拠して、切断法によりフェライト結晶粒径を測定した。
 硬さ測定
JIS Z2245のロックウェル硬さ試験方法に準拠して、JIS G3315に規定された位置におけるロックウェル30T硬さ(HR30T)を測定した。測定点は1試料あたり5点測定し、それらの平均値を計算した。
 評価
 肌荒れ(焼鈍後の平均フェライト結晶粒径)
鋼板表面の肌荒れの評価は、まず、実施例にあるサンプルを次に述べるとおりにDI製缶し評価した。
PETフィルム(膜厚16μm)がラミネートされた鋼板をφ123のブランク板とし、1stおよび2ndカッピングの絞り比を1.74、1.35として絞り成形を行い、さらに3段のアイアニングによって缶胴部の板厚減少率を最大49%(相当ひずみ1.4)としてφ52.64×高さ107.6mmの缶を製缶した。製缶後のサンプルは、ラミネートされたフィルムをNaOH溶液によって剥離し、加工度が最高となる部分で缶胴部鋼板表面の粗さを測定し、最大高さRmaxを調査した。本発明では、最大高さRmax7.4μm未満で肌荒れ少(◎)、最大高さRmax7.4以上~9.5μm未満で肌荒れやや少(○)、9.5μm以上で肌荒れ多(×)として評価した。本発明の評価対象は、未再結晶面積率が0.5~5%の範囲であり、範囲から外れる水準は評価対象外とした。
 耐圧強度測定
DI缶用バックリングテスターを使用し、耐圧強度を測定した。缶の内側からエアを加圧し、バックリング時に急減する圧力を読み取り、耐圧強度とした。加圧速度を0.7kgf/(cm・s)とし、7.3kgf/cm以上を優(◎)、7.3未満~6.7kgf/cm以上を良(○)、6.7kgf/cm未満を劣(×)とした。
 加工発熱
本発明は、現行のクーラント使用ぶりきDI缶の製缶速度と同等の生産性をラミネート鋼板使用DI缶で達成するため、好適には調質度T3CA以下(HR30Tで60ポイント以下)とする。
加工発熱は鋼板強度に依存することから、焼鈍後のHR30Tで57以下を加工発熱小(◎)、57超え60以下を加工発熱が製缶時に問題にならないレベルとして加工発熱やや小(○)、60超えを加工発熱大(×)として評価した。
 熱延鋼板の形状
熱延鋼板の形状は目視で確認した。反りなど形状が著しく不良で次工程に影響を及ぼすものに関しては、形状不良(×)とした。120℃/sで冷却したものは、冷却の不均一から起因する材質の不均一により形状が悪化した。
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明は、板厚中央部が粗粒で軟質でありながら、表層部分に細粒域を有することで、DI加工性とDI製缶後の耐肌荒れ性に優れており、DI加工用鋼板の母板に適した性質を有している。
 一方、No.1~3は、表層部が粗大粒であるがゆえに最大高さRmaxが9.5μm以上となっており、DI缶用鋼板に適さない。
 また、No.19の鋼は、Mn量が0.99%となっており、本発明の請求項である0.6%を超えている。Mnを添加させることで鋼は細粒化するものの、ASTMの成分範囲(Mn≦0.6%)を超えた元素の添加は耐食性を著しく損なう。このため、耐食性の観点からこれらの鋼の缶用材料への適用は好ましくない。
 本発明の缶用鋼板は高加工性であり加工後の耐肌荒れ性に優れているため、例えば、食品や飲料缶に用いられる缶容器材料として好適に用いられる。

Claims (2)

  1.  質量%で、C:0.0040~0.01%、Si:0.05%以下、Mn:0.3超え~0.6%、P:0.02%以下、S:0.02%以下、Al:0.01~0.10%、N:0.0015~0.0050%、Nb:0.02~0.12%を含有し、残部はFeおよび不可避的不純物からなり、鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径が7μm以上10μm以下であり、板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径が15μm以下であり、さらに、前記鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径は、前記板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径よりも小さいことを特徴とする耐肌荒れ性に優れた缶用鋼板。
  2.  請求項1に記載の耐肌荒れ性に優れた缶用鋼板を製造する方法であって、質量%で、C:0.0040~0.01%、Si:0.05%以下、Mn:0.3超え~0.6%、P:0.02%以下、S:0.02%以下、Al:0.01~0.10%、N:0.0015~0.0050%、Nb:0.02~0.12%を含有し、残部はFeおよび不可避的不純物からなる成分を有する鋼スラブを熱間圧延し、最終仕上圧延後1秒以内に50~100℃/sの冷却速度で冷却し、500℃~600℃の巻取り温度で巻取り、次いで、酸洗処理を施した後、90%以上の圧下率で冷間圧延し、再結晶温度以上800℃以下の温度で連続焼鈍を施すことを特徴とする耐肌荒れ性に優れた缶用鋼板の製造方法。
PCT/JP2010/069393 2009-10-29 2010-10-26 耐肌荒れ性に優れた缶用鋼板およびその製造方法 WO2011052763A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/504,844 US9005375B2 (en) 2009-10-29 2010-10-26 Steel sheet for can having excellent surface roughening resistance and manufacturing method thereof
AU2010312372A AU2010312372B2 (en) 2009-10-29 2010-10-26 Steel sheet for can having excellent surface roughening resistance and manufacturing method thereof
KR1020127011654A KR101423849B1 (ko) 2009-10-29 2010-10-26 내표면거침성이 우수한 캔용 강판 및 그 제조방법
EP10826893.9A EP2479308B1 (en) 2009-10-29 2010-10-26 Steel sheet for cans having excellent surface roughening resistance, and method for producing same
CN201080048927.2A CN102597289B (zh) 2009-10-29 2010-10-26 抗表面粗糙性优异的罐用钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009248347A JP5712479B2 (ja) 2009-10-29 2009-10-29 耐肌荒れ性に優れた缶用鋼板およびその製造方法
JP2009-248347 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052763A1 true WO2011052763A1 (ja) 2011-05-05

Family

ID=43922185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069393 WO2011052763A1 (ja) 2009-10-29 2010-10-26 耐肌荒れ性に優れた缶用鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US9005375B2 (ja)
EP (1) EP2479308B1 (ja)
JP (1) JP5712479B2 (ja)
KR (1) KR101423849B1 (ja)
CN (1) CN102597289B (ja)
AU (1) AU2010312372B2 (ja)
MY (1) MY155618A (ja)
WO (1) WO2011052763A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412838A4 (en) * 2009-03-27 2017-05-24 JFE Steel Corporation Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
US10144985B2 (en) 2013-07-17 2018-12-04 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313003B2 (en) * 2010-02-04 2012-11-20 Crown Packaging Technology, Inc. Can manufacture
JP2013523459A (ja) 2010-04-12 2013-06-17 クラウン パッケイジング テクノロジー インコーポレイテッド 缶の製造
JP6145994B2 (ja) * 2011-12-09 2017-06-14 Jfeスチール株式会社 缶用鋼板およびその製造方法
MX2017010907A (es) * 2015-02-26 2017-11-24 Jfe Steel Corp Lamina de acero para tapa corona, metodo para fabricar lamina de acero para tapa corona y tapa corona.
JP6503578B2 (ja) * 2015-02-26 2019-04-24 Jfeスチール株式会社 缶用鋼板およびその製造方法
CN107406944B (zh) * 2015-03-27 2019-05-10 杰富意钢铁株式会社 罐用钢板及其制造方法
WO2018194135A1 (ja) * 2017-04-19 2018-10-25 新日鐵住金株式会社 絞り缶用冷延鋼板、及びその製造方法
JP7212311B2 (ja) 2019-03-26 2023-01-25 Toto株式会社 ベッセル式ボウルの製造方法、接合方法、及びベッセル式ボウル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093547A (ja) * 1995-06-23 1997-01-07 Kawasaki Steel Corp 高強度缶用鋼板の製造方法
JPH1017993A (ja) 1996-07-03 1998-01-20 Nippon Steel Corp フランジ割れのない複層組織di缶用鋼板およびその製造方法
JPH1180888A (ja) 1997-09-03 1999-03-26 Kawasaki Steel Corp 良成形性冷延鋼板用の熱延母板およびその製造方法、ならびに良成形性冷延鋼板の製造方法
JPH11209845A (ja) 1998-01-28 1999-08-03 Kawasaki Steel Corp 加工性と耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
JP2009091640A (ja) * 2007-10-11 2009-04-30 Jfe Steel Kk 缶用鋼板原板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814019B2 (ja) 1989-12-28 1996-02-14 川崎製鉄株式会社 プレス加工用冷延鋼板の製造方法
JP2000054070A (ja) * 1998-08-05 2000-02-22 Kawasaki Steel Corp 耐肌荒れ性および耐時効性に優れる缶用鋼板およびその製造方法
JP5135868B2 (ja) * 2007-04-26 2013-02-06 Jfeスチール株式会社 缶用鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093547A (ja) * 1995-06-23 1997-01-07 Kawasaki Steel Corp 高強度缶用鋼板の製造方法
JPH1017993A (ja) 1996-07-03 1998-01-20 Nippon Steel Corp フランジ割れのない複層組織di缶用鋼板およびその製造方法
JPH1180888A (ja) 1997-09-03 1999-03-26 Kawasaki Steel Corp 良成形性冷延鋼板用の熱延母板およびその製造方法、ならびに良成形性冷延鋼板の製造方法
JPH11209845A (ja) 1998-01-28 1999-08-03 Kawasaki Steel Corp 加工性と耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
JP2009091640A (ja) * 2007-10-11 2009-04-30 Jfe Steel Kk 缶用鋼板原板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412838A4 (en) * 2009-03-27 2017-05-24 JFE Steel Corporation Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
US10144985B2 (en) 2013-07-17 2018-12-04 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same

Also Published As

Publication number Publication date
KR101423849B1 (ko) 2014-07-25
US9005375B2 (en) 2015-04-14
CN102597289A (zh) 2012-07-18
EP2479308A4 (en) 2017-07-19
JP5712479B2 (ja) 2015-05-07
EP2479308A1 (en) 2012-07-25
AU2010312372B2 (en) 2013-08-29
AU2010312372A1 (en) 2012-04-19
US20120255656A1 (en) 2012-10-11
CN102597289B (zh) 2014-06-04
JP2011094178A (ja) 2011-05-12
KR20120062930A (ko) 2012-06-14
MY155618A (en) 2015-11-13
EP2479308B1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP5712479B2 (ja) 耐肌荒れ性に優れた缶用鋼板およびその製造方法
JP5423092B2 (ja) 絞りおよびしごき加工後の表面性状に優れた缶用鋼板およびその製造方法
JP5453884B2 (ja) 高強度容器用鋼板およびその製造方法
JP5958038B2 (ja) 外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法
WO2011162135A1 (ja) 形状凍結性に優れた冷延薄鋼板およびその製造方法
JP2008274332A (ja) 缶用鋼板およびその製造方法
JP6028884B1 (ja) 缶用鋼板及び缶用鋼板の製造方法
WO2020129482A1 (ja) 缶用鋼板およびその製造方法
JPH11209845A (ja) 加工性と耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
TWI729852B (zh) 罐用鋼板及其製造方法
JP2007239035A (ja) 耐ひずみ時効性および耐肌荒れ性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
JP7585896B2 (ja) 缶用鋼板およびその製造方法
JP3680004B2 (ja) 加工性に優れた薄肉化深絞りしごき缶用鋼板
JP2021155849A (ja) 缶用鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048927.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12012500593

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2010826893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010312372

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 780/MUMNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010312372

Country of ref document: AU

Date of ref document: 20101026

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201001936

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127011654

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13504844

Country of ref document: US