WO2011052606A1 - ハイブリッドリレー - Google Patents

ハイブリッドリレー Download PDF

Info

Publication number
WO2011052606A1
WO2011052606A1 PCT/JP2010/068999 JP2010068999W WO2011052606A1 WO 2011052606 A1 WO2011052606 A1 WO 2011052606A1 JP 2010068999 W JP2010068999 W JP 2010068999W WO 2011052606 A1 WO2011052606 A1 WO 2011052606A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
hybrid relay
temperature
semiconductor switch
mechanical contact
Prior art date
Application number
PCT/JP2010/068999
Other languages
English (en)
French (fr)
Inventor
安弘 住野
究 柴田
弘治 大和
弘行 工藤
啓 三浦
進 中埜
桂 松宮
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to KR1020127010259A priority Critical patent/KR101369032B1/ko
Priority to CN201080047874.2A priority patent/CN102576625B/zh
Publication of WO2011052606A1 publication Critical patent/WO2011052606A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H2047/025Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay with taking into account of the thermal influences, e.g. change in resistivity of the coil or being adapted to high temperatures

Definitions

  • the present invention relates to a hybrid relay provided with a mechanical contact switch and a semiconductor switch.
  • a hybrid relay having a structure in which a mechanical contact switch and a semiconductor switch are connected in parallel is used to switch between power supply and interruption to a load having an inverter circuit that performs inverter control, such as a lighting fixture.
  • a load having an inverter circuit is provided with a large-capacity smoothing capacitor for converting an AC voltage into a DC voltage, and a large current flows into the smoothing capacitor when power is supplied from the AC power source to the load. .
  • an inrush current to the load occurs.
  • the power supply voltage is high and the load is high, the inrush current flowing into the load increases. Therefore, even in a hybrid relay connected between the load and the AC power supply, a large current based on the inrush current is large. It will flow.
  • the hybrid relay is structured to include the semiconductor switch in order to prevent contact welding in the mechanical contact switch.
  • the mechanical contact switch is turned on and the semiconductor switch is turned off (opened) to the load. Start supplying power.
  • the hybrid relay including the mechanical contact switch and the semiconductor switch like the hybrid relay disclosed in Patent Document 1, has a semiconductor switch in the case of power supply in order to prevent contact welding of the mechanical contact switch.
  • the semiconductor switch When the power is shut off first, the semiconductor switch is turned off later. For this reason, an inrush current flows through the semiconductor switch each time the hybrid relay is opened and closed, so that the life of the semiconductor switch is shortened as compared with the mechanical contact switch.
  • this semiconductor switch is at the end of its life and short-circuited, the semiconductor switch is always energized, so the semiconductor switch becomes hot and may cause ignition.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a hybrid relay capable of preventing a semiconductor switch from becoming hot.
  • a hybrid relay includes a mechanical contact switch whose contact is opened and closed by a drive unit, and a semiconductor switch connected in parallel with the mechanical contact switch, and is loaded from a power source to a load.
  • a hybrid relay in which a first power supply path by a mechanical contact switch and a second power supply path by a semiconductor switch are connected in parallel, and the power supply control is performed when the temperature of the semiconductor switch exceeds a predetermined temperature. It has a safety circuit section for performing
  • the present invention includes the hybrid relay described above, wherein the safety circuit unit is a thermal fuse that is disconnected when the temperature of the semiconductor switch becomes equal to or higher than a predetermined temperature.
  • the present invention includes the above hybrid relay, in which a thermal fuse is provided on the second power feeding path.
  • the present invention provides the above hybrid relay, wherein the safety circuit unit is a temperature switch that operates the driving unit to close the contact of the mechanical contact switch when the temperature of the semiconductor switch exceeds a predetermined temperature. Including.
  • the present invention is the hybrid relay, wherein the safety circuit unit includes a temperature sensor that detects a temperature of the semiconductor switch, and a drive unit when the temperature of the semiconductor switch detected by the temperature sensor is equal to or higher than a predetermined temperature. And a control unit that operates to close the contact of the mechanical contact switch.
  • the present invention is the above hybrid relay, wherein the mechanical contact switch includes first and second mechanical contact switches whose contacts are opened and closed by a drive unit, It includes a configuration in which a first power feed path by a first mechanical contact switch and a second power feed path in which a second mechanical contact switch and a semiconductor switch are connected in series are configured in parallel.
  • the present invention is the above hybrid relay, wherein when the temperature of the semiconductor switch becomes equal to or higher than a predetermined temperature, the drive unit of the first mechanical contact switch is operated to close the contact of the first mechanical contact switch. Includes one with a temperature switch.
  • the present invention includes the hybrid relay described above, wherein the safety circuit portion is installed on the upper surface of the convex portion of the package of the semiconductor switch.
  • the present invention includes the hybrid relay, wherein the safety circuit portion is a thermal fuse, and one of the lead terminals of the thermal fuse is disposed in close contact with the center of the package of the semiconductor switch.
  • the present invention includes the hybrid relay described above, further including a notification unit for notifying the outside of the abnormality when the semiconductor switch becomes a predetermined temperature or higher.
  • the semiconductor switch when the semiconductor switch reaches an abnormal temperature that is equal to or higher than a predetermined temperature, the power supply path is interrupted, so that the semiconductor switch is further heated and does not burn or ignite.
  • FIG. 1 Schematic circuit diagram showing the internal configuration of the hybrid relay according to the first embodiment of the present invention.
  • FIG. 2 Schematic circuit diagram showing the internal structure of the modification of the hybrid relay of Embodiment 1 of this invention, respectively.
  • Schematic circuit diagram showing the internal configuration of the hybrid relay of the second embodiment of the present invention Schematic circuit diagram showing the internal configuration of the hybrid relay of the third embodiment of the present invention (A), (b) is a schematic circuit diagram which shows the internal structure of the hybrid relay of Embodiment 4 of this invention, respectively.
  • (A), (b) is a schematic circuit diagram which shows the internal structure of the modification of the hybrid relay of Embodiment 4 of this invention, respectively.
  • (A), (b) is a schematic circuit diagram which shows the internal structure of the other modification of the hybrid relay of Embodiment 4 of this invention, respectively.
  • (A), (b) is a schematic circuit diagram which shows the internal structure of the hybrid relay of Embodiment 5 of this invention, respectively.
  • FIG. 1 is a schematic circuit diagram showing the internal configuration of the embodiment.
  • the hybrid relay 1 connects in parallel a first power feed path by a mechanical contact switch 12 and a second power feed path by a semiconductor switch 13, and the temperature of the semiconductor switch 13 becomes equal to or higher than a predetermined temperature.
  • the second power supply path is provided with a thermal fuse F1 as a safety circuit section that closes the power supply path when the power supply path is closed.
  • the hybrid relay 1 forms a closed circuit with the AC power supply 2 and the load 3 by being connected to terminals 10 and 11 which are one ends of the AC power supply 2 and the load 3 connected in series. That is, the turning on and off of the power from the AC power supply 2 to the load 3 is determined by ON (closed) / OFF (open) of the hybrid relay 1.
  • the AC power source 2 is, for example, a commercial power source of 100 V
  • the load 3 is, for example, a lighting fixture or a ventilating fan including a fluorescent lamp or an incandescent bulb.
  • the hybrid relay 1 includes a terminal 10 connected to the other end of the AC power source 2 having one end connected to one end of the load 3, a terminal 11 connected to the other end of the load 3, and terminals 10 and 11.
  • a mechanical contact switch 12 and a semiconductor switch 13 connected at both ends and connected in parallel to each other, and a signal processing circuit 15 are provided.
  • the mechanical contact switch 12 has a contact portion S1.
  • the semiconductor switch 13 has a triac S2, and is connected in parallel with the contact portion S1 by connecting both ends to the mechanical contact switch 12 and the terminals 10 and 11.
  • the signal processing circuit 15 performs ON (closed) / OFF (open) control of the mechanical contact switch 12 and the semiconductor switch 13.
  • the mechanical contact switch 12 includes a contact portion S1 and a magnetic coil L1 that generates an electromagnetic force for opening and closing the contact portion S1.
  • the magnetic coil L1 has a power supply potential applied to one end and the drain of the transistor Tr1 connected to the other end.
  • the control signal from the signal processing circuit 15 is input to the base electrode, and the emitter electrode is grounded. In this manner, the mechanical contact switch 12 is opened and closed as a drive unit by the signal processing circuit 15 and the transistor Tr1 connected thereto.
  • the semiconductor switch 13 includes a triac S2 and a phototriac coupler 14.
  • the triac S2 an electrode is connected to the terminal 10 via the thermal fuse F1, and the other electrode is connected to the terminal 11.
  • the phototriac coupler 14 includes a zero-cross type phototriac S3 and a light emitting diode LD that emits an optical signal to the phototriac S3.
  • the zero-cross type phototriac S3 is connected between the other electrode of the triac S2 and the gate electrode.
  • a power supply potential is applied to the anode electrode of the light emitting diode LD, and the drain electrode of an npn transistor Tr2 as a switching element is connected to the cathode electrode.
  • a control signal from the signal processing circuit 15 is input to the base electrode of the transistor Tr2, and the emitter electrode is grounded.
  • the hybrid relay 1 when the power is turned on and off from the AC power supply 2 to the load 3 will be briefly described below.
  • a control signal is supplied from the signal processing circuit 15 to the base electrode of the transistor Tr2, and the transistor Tr2 is turned on (ON).
  • the semiconductor switch 13 the optical signal from the light emitting diode LD enters the phototriac S3, and the phototriac S3 is turned on. Since the phototriac S3 has a zero cross function, the phototriac S3 is turned on when it is detected that the AC voltage from the AC power supply 2 has become the center voltage (reference voltage).
  • the phototriac S3 Since the phototriac S3 is turned on, an alternating current from the AC power source 2 flows through the phototriac S3, so that a current is supplied to the gate electrode of the triac S2 and the phototriac S3 is turned on. As a result, the load 3 is electrically connected to the AC power source 2 via the semiconductor switch 13 in the hybrid relay 1, and thus the load 3 is powered by the AC power source 2.
  • the signal processing circuit 15 gives a control signal to the base electrode of the transistor Tr1, Tr1 is turned on and a drive current is supplied to the magnetic coil L1. Therefore, the electromagnetic force of the magnetic coil L1 is generated, and the contact portion S1 is closed (ON).
  • the signal processing circuit 15 includes a transistor in order to cut off the power supply path in the semiconductor switch 13 Tr2 is turned off (OFF), and the current supply to the light emitting diode LD is stopped. For this reason, the light emitting operation of the light emitting diode LD is stopped, and the irradiation of the optical signal to the phototriac S3 is stopped. Therefore, the phototriac S3 is configured such that the AC voltage from the AC power supply 2 becomes the center voltage (reference voltage). The operation stops and turns off. When the phototriac S3 is turned off, no current is supplied to the gate electrode of the triac S2, so that the triac S2 is turned off and the semiconductor switch 13 is turned off.
  • the signal processing circuit 15 applies a control signal to the base electrode of the transistor Tr2, turns on the transistor Tr2, and outputs the optical signal from the light emitting diode LD to the phototriac.
  • the light is incident on S3.
  • the triac S2 is turned on, and in addition to the power supply path (first power supply path) via the mechanical contact switch 12, the power supply path (second power supply) via the semiconductor switch 13 Are formed in the hybrid relay 1.
  • the signal processing circuit 15 turns off the transistor Tr1, stops supply of the drive current to the electromagnetic coil L1, and opens the contact portion S1.
  • the power supply path (first power supply path) via the mechanical contact switch 12, which is the main power supply path, can be interrupted.
  • the signal processing circuit 15 turns off the transistor Tr2 and stops the current supply to the light emitting diode LD, thereby turning off the phototriac S3.
  • the triac S2 is turned off, the power supply path by the semiconductor switch 13 is cut off, and thus the power supply from the AC power supply 2 to the load 3 is cut off.
  • the temperature fuse F1 is fixed on or near the surface of the triac S2 in order to function as a temperature detection element that detects an abnormal temperature of the triac S2.
  • the thermal fuse F1 is disconnected when the temperature of the triac S2 becomes an abnormal temperature equal to or higher than the operating temperature, for example, when an inrush current flows through the triac S2, or when the triac S2 is short-circuited due to its life, the triac S2, The current supply to the phototriac S3 is cut off.
  • the arrangement of the thermal fuse F1 will be described later, but it is arranged in the vicinity of the semiconductor switch 13 so that no mechanical load is applied.
  • the thermal fuse F ⁇ b> 1 is arranged on the upper surface of the convex portion of the package of the semiconductor switch 13 so that one of the lead terminals of the thermal fuse is in close contact with the center of the package of the semiconductor switch 13.
  • the power supply path cut off by the thermal fuse F1 is only the power supply path (second power supply path) by the semiconductor switch 13, and the power supply path (first power supply path) by the mechanical contact switch 12 which is the main contact. Since the switch can be opened and closed, even after the thermal fuse is disconnected, the power supply to the load 3 can be supplied and cut off by controlling the opening and closing of the mechanical contact switch 12.
  • the thermal fuse F1 is connected between the connection node of the triac S2 and the phototriac S3 and the terminal 10
  • the thermal fuse F2 that detects the abnormal temperature of the triac S2 may be connected between one electrode of the triac S2 and the terminal 10.
  • a temperature fuse F3 for detecting an abnormal temperature of the triac S2 may be connected between one electrode of the phototriac S3 and one electrode of the triac S2.
  • FIG. 3 is a schematic circuit diagram showing the internal configuration of the hybrid relay of the second embodiment.
  • symbol is attached
  • this hybrid relay has a configuration in which a temperature switch S4 connected between the emitter and collector of the transistor Tr1 is provided except for the temperature fuse F1 from the configuration of the first embodiment shown in FIG. Therefore, the relay switch of the first embodiment shown in FIG. 1 differs from the relay switch of the first embodiment only in the operation based on the temperature switch S4, and the other configurations and operations are the same as those in the embodiment of FIG. Is omitted.
  • the operation based on the temperature switch S4 will be described.
  • the temperature switch S4 is configured by a switch that opens and closes in response to the detected temperature, such as a bimetal switch, and the temperature of the triac S2 in the semiconductor switch 13 is similar to the hybrid relay of the first embodiment of FIG. In order to detect, it is fixed on the surface of the triac S2 or in the vicinity thereof.
  • the temperature switch S4 is in an OFF (open) state, and supply / cutoff of the drive current of the magnetic coil L1 is controlled by ON / OFF of the transistor Tr1.
  • the temperature switch S4 is turned on (closed), and the drive current is forcibly supplied to the magnetic coil L1.
  • an electromagnetic force is generated by the magnetic coil L1, and the contact S1 of the mechanical contact switch 12 is forcibly turned on. Therefore, the power supply path by the mechanical contact switch 12 is formed as a main power supply path.
  • the amount of current flowing through the power supply path by the semiconductor switch 13 is suppressed. Accordingly, since the amount of current flowing through each of the triac S2 and the phototriac S3 constituting the semiconductor switch 13 is reduced, the generation of high heat by the semiconductor switch 13 can be prevented.
  • FIG. 4 is a schematic circuit diagram showing the internal configuration of another embodiment.
  • symbol is attached
  • Embodiment 3 Next, a hybrid relay according to Embodiment 3 of the present invention will be described.
  • the temperature fuse T1 for measuring the temperature of the semiconductor switch 13 is removed from the hybrid relay of the first embodiment shown in FIG. 1, and the temperature of the semiconductor switch 13 is abnormal.
  • a notification unit 16 that notifies the outside when the temperature is reached is provided. Therefore, about the structure which is common in the hybrid relay of embodiment of FIG. 1, the same referential mark is attached
  • the temperature sensor T1 is composed of a temperature sensitive element such as a thermistor, and the surface of the triac S2 is detected in order to detect the temperature of the triac S2 in the semiconductor switch 13 like the temperature fuse F1 in the hybrid relay of the embodiment of FIG. Or it is fixed in the vicinity.
  • the temperature sensor T1 notifies the signal processing unit 15 of the measured temperature of the semiconductor switch 13 at every predetermined measurement timing.
  • the signal processing unit 15 is connected to a sound generator such as a speaker or a buzzer, and a notification unit 16 constituted by a display device such as an LED (Light Emitting Diode) or a liquid crystal display. Will be notified.
  • a sound generator such as a speaker or a buzzer
  • a notification unit 16 constituted by a display device such as an LED (Light Emitting Diode) or a liquid crystal display. Will be notified.
  • the temperature of the semiconductor switch 13 is detected by the temperature sensor T1, and if the temperature is abnormal, the notification unit 16 is driven to notify the outside of the occurrence of the abnormality.
  • the signal processing unit 15 may apply a control signal to the base electrode of the transistor Tr1, turn on the transistor Tr1, and close the mechanical contact switch 12.
  • the power supply path by the mechanical contact switch 12 is forcibly formed as the main power supply path, and the amount of current flowing through the power supply path by the semiconductor switch 13 can be suppressed. Therefore, the amount of current flowing through each of the triac S2 and the phototriac S3 constituting the semiconductor switch 13 is reduced, and generation of high heat by the semiconductor switch 13 can be prevented.
  • by performing a notification operation by the notification unit 16 it can be notified to the outside that the semiconductor switch 13 is at an abnormal temperature, and the user can be immediately notified of the life of the semiconductor switch 13.
  • the thermal fuse F1 of the first embodiment may be used together. At this time, by setting the temperature at which the temperature fuse F1 is blown higher than the temperature at which the notification unit 16 is driven by the temperature sensor T1, it is possible to notify the occurrence of high heat earlier.
  • FIG. 5 is a schematic circuit diagram showing the internal configuration of the hybrid relay of the fourth embodiment.
  • symbol is attached
  • the hybrid relay according to the fourth embodiment of the present invention has a second mechanical contact switch 17 in addition to the basic configuration of the hybrid relay 1 according to the first embodiment shown in FIG. Is added. That is, in this embodiment, a terminal 10 connected to the other end of the AC power supply 2 having one end connected to one end of the load 3, a terminal 11 connected to the other end of the load 3, and the terminals 10, 11 A first mechanical contact switch 12 having a contact portion S1 to which both ends are connected, and a second mechanical contact switch having a contact portion S5 having one end connected to a connection node between the terminal 10 and one end of the contact portion S1.
  • a semiconductor switch 13 having a phototriac S3 having one electrode connected to the other end of the contact portion S5 and the other electrode connected to the terminal 11, and first and second mechanical contact switches 12, 17 And a signal processing circuit 15 for performing ON (close) / OFF (open) control of each of the semiconductor switches 13.
  • the first and second mechanical contact switches 12 and 17 are used.
  • the first mechanical contact switch 12 is the mechanical contact used in the above embodiment.
  • the switch 12 is the same as that of the switch 12 and is given the same reference numeral.
  • the configuration of the first mechanical contact switch 12 and the second mechanical contact switch 17 shown in FIG. 5A is the same as that of the mechanical contact switch 12 shown in FIG. Further, the configuration of the semiconductor switch 13 in FIG. 5 is the same as that of the semiconductor switch 13 in FIG. 1, but one electrode of the phototriac S3 is a contact of the second mechanical contact switch 17 via the temperature fuse F1. It is connected to the other end of the part S5.
  • the hybrid relay of this embodiment includes first and second mechanical contact switches 12 and 17 whose contacts are opened and closed by a drive unit, and a semiconductor switch connected in parallel with the second mechanical contact switch.
  • a power supply path for supplying power to the load 3 from the AC power supply 2 As a power supply path for supplying power to the load 3 from the AC power supply 2, a first power supply path by the first mechanical contact switch 12, a second mechanical contact switch 17 and the semiconductor switch 13 are configured in series.
  • the second power feed path is a hybrid relay provided in parallel, and a thermal fuse F1 that is disconnected when the temperature of the semiconductor switch 13 is equal to or higher than a predetermined temperature is provided on the second power feed path.
  • the action and effect of the thermal fuse F1 are the same as those of the hybrid relay according to the first embodiment of the present invention shown in FIG.
  • the hybrid relay shown in FIG. 5 (b) is a modification of the hybrid relay shown in FIG. 5 (a), and the configuration of the first mechanical contact switch 12, the second mechanical contact switch 17, and the semiconductor switch 13 is different. ing.
  • the first mechanical contact switch 12 is a latching type mechanical contact switch, and the magnetic coil L3 for generating electromagnetic force for switching the contact portion S1 to ON (closed) and the contact portion S1 OFF (open). And a magnetic coil L4 that generates an electromagnetic force for switching to (1).
  • One end of the magnetic coil L3 is connected to the signal processing circuit 15 via a backflow prevention diode D1, and the other end is grounded.
  • one end of the magnetic coil L4 is connected to the signal processing circuit 15 via a backflow preventing diode D3, and the other end is grounded.
  • the diode D2 connected in parallel to the magnetic coil L3 and the diode D4 connected in parallel to the magnetic coil L4 are bypass diodes.
  • the second mechanical contact switch 17 includes a magnetic coil L5.
  • One end of the magnetic coil L5 is connected to the signal processing circuit 16 via a backflow preventing diode D5, and the other end is grounded.
  • a diode D6 connected in parallel to the magnetic coil L5 is a bypass diode.
  • the semiconductor switch 13 includes a triac S2, a resistor R1 and a capacitor C1 connected in parallel between one electrode and the gate electrode of the triac S2, and a resistor R2 having one end connected to the other electrode of the triac S2.
  • the phototriac coupler 14 includes a phototriac S3 having one electrode connected to the other end of the resistor R2.
  • the phototriac coupler 14 further includes a light emitting diode LD connected to the signal processing circuit 15 via a resistor R3, and has a structure in which an optical signal from the light emitting diode LD is incident on the phototriac S3.
  • the phototriac S3 is a semiconductor switching element having a zero-cross function.
  • the phototriac S3 When an optical signal from the light emitting diode LD is incident, the phototriac S3 is a center voltage (reference voltage) of an AC voltage by the AC power supply 2 on one electrode side. It becomes conductive (ON) for the first time after detecting.
  • the temperature fuse F1 is fixed on or near the surface of the phototriac S3 in order to function as a temperature detection element of the phototriac S3. As will be described later in the ninth embodiment, the main body portion of the thermal fuse F1 is installed more efficiently on the upper surface of the convex portion of the package of the phototriac S3.
  • the temperature fuse F1 that is disconnected when the temperature of the semiconductor switch 13 is equal to or higher than a predetermined temperature is on the second power supply path and is connected to the second machine.
  • the thermal fuse F1 may be provided on the second power feed path on the side close to the connection node between the second power feed path and the first power feed path.
  • the thermal fuse F1 may be provided between the AC power source 2 and the first mechanical contact switch 12, that is, on the first power supply path.
  • the first mechanical contact switch 12 is a latching mechanical contact switch
  • the second mechanical contact switch 17 is configured by adding a magnetic coil L5.
  • the position of the thermal fuse F1 can be changed.
  • the thermal fuse F1 may be provided on the second power feed path on the side close to the connection node between the second power feed path and the first power feed path.
  • the thermal fuse F1 may be provided between the AC power source 2 and the first mechanical contact switch 12, that is, on the first power supply path.
  • FIGS. 8A and 8B are a modification of the hybrid relay of the fourth embodiment shown in FIG. 5A.
  • a temperature fuse F ⁇ b> 2 that detects an abnormal temperature of the triac S ⁇ b> 2 is provided between one electrode of the triac S ⁇ b> 2 and the second mechanical contact switch 17.
  • the thermal fuse F ⁇ b> 3 is provided between one electrode of the phototriac S ⁇ b> 3 and the second mechanical contact switch 17. Even if it does in this way, the effect similar to the hybrid relay of embodiment shown to Fig.5 (a) will be acquired.
  • FIG. 9 is a diagram illustrating an internal configuration of the hybrid relay according to the sixth embodiment.
  • the temperature relay F1 is removed from the hybrid relay of the fourth embodiment shown in FIG. 5A, and a temperature switch S4 connected between the emitter and collector of the transistor Tr1 is provided.
  • the operation and effect of the temperature switch S4 are the same as those of the second embodiment shown in FIG.
  • FIG. 10 is a diagram illustrating an internal configuration of the hybrid relay according to the seventh embodiment.
  • the temperature sensor T1 that measures the temperature of the semiconductor switch 13, and the temperature of the semiconductor switch 13 becomes an abnormal temperature. It becomes the structure which provided the alerting
  • the operations and effects of the temperature sensor T1 and the notification unit 16 are the same as those of the relay switch of the third embodiment shown in FIG.
  • the safety circuit unit such as the thermal fuse is provided in the second power supply path using the semiconductor switch.
  • the safety circuit unit such as the thermal fuse may be provided in the first power supply path using the mechanical switch. Good.
  • An example is shown in FIG.
  • the thermal fuse F1 is provided in the first power feeding path, that is, the power feeding path using a mechanical switch. According to this configuration, even when the mechanical switch generates heat due to a malfunction, the power feeding path is interrupted and can be maintained safely. However, in this case, there is an inconvenience that the power feeding path is interrupted and the current supply to the load is stopped.
  • the thermal fuse F1 was provided in the 1st electric power feeding path, you may make it provide in both the 1st and 2nd electric power feeding path.
  • the fusing temperature of the thermal fuse may be higher on the first power supply path side. That is, by setting the safety control temperature higher on the mechanical switch side than on the semiconductor switch side, when the mechanical switch reaches a predetermined temperature, the first power supply path is closed in any case and the current supply to the load is cut off. You may do it.
  • the temperature fuses F1, F2, F3, temperature sensors, and temperature switches may be used in combination. In that case, more efficient safety control becomes possible by changing the set temperature and performing the safety control step by step.
  • FIG. 12 is a top view of the printed wiring board 100 in which the thermal fuse F1 is provided in each of the four hybrid relay semiconductor switches.
  • FIGS. 13A and 13B are a front view and a side view of the semiconductor switch and the thermal fuse.
  • the main body 301 of the thermal fuse F1 is installed on the upper surface of the convex portion 202 of the package 201 of the phototriac S3 constituting the semiconductor switch 13.
  • One of the lead terminals 302 and 303 of the thermal fuse F1 is disposed in close contact with the center of the package 201 of the phototriac S3.
  • the lead terminal 302 is bent so that W 2 > W 1 when the mounting width W 2 of the thermal fuse F 1 and the phototriac S 3 is the distance W 1 between the lead terminals of the thermal fuse F 1 .
  • the center height of the thermal fuse F1 is H 1
  • the height of the main body is H 2 .
  • the position of the thermal fuse F1 can be fixed by the main body 301 of the thermal fuse F1 coming into contact with the convex portion 202 of the package 201 of the phototriac S3 against the stress from above. Further, by securing this position, it is possible to secure an insulation distance between the lead terminals 302 and 303 and other components, and it is possible to provide a hybrid relay that is resistant to loads.
  • the phototriac S3 can prevent the thermal fuse F1 from falling down. Further, the phototriac S3 can be prevented from falling to the temperature fuse F1 side. In this way, the thermal fuse F1 and the phototriac S3 support each other, and the angle with respect to the substrate surface can be maintained. As a result, it is possible to secure an insulation distance between the thermal fuse F1 and the phototriac S3 and other components, and to further improve the reliability.
  • the hybrid relay of the present invention includes the one having the following configuration.
  • the hybrid relay according to the present invention includes a mechanical contact switch whose contact is opened and closed by a drive unit, and a semiconductor switch connected in parallel with the mechanical contact switch.
  • a hybrid relay in which a first power supply path by a contact switch and a second power supply path by a semiconductor switch are configured in parallel, and a second thermal fuse that is disconnected when the temperature of the semiconductor switch becomes equal to or higher than a predetermined temperature, It is provided on the power supply path.
  • the hybrid relay includes a mechanical contact switch whose contact is opened and closed by a drive unit, and a semiconductor switch connected in parallel with the mechanical contact switch, A hybrid relay in which a first power supply path by the mechanical contact switch and a second power supply path by a semiconductor switch are configured in parallel, and when the temperature of the semiconductor switch exceeds a predetermined temperature, the drive unit is operated. A temperature switch for closing the contact of the mechanical contact switch is provided.
  • the hybrid relay includes a mechanical contact switch whose contact is opened and closed by a drive unit, and a semiconductor switch connected in parallel with the mechanical contact switch.
  • a hybrid relay configured in parallel with a first power supply path by a mechanical contact switch and a second power supply path by the semiconductor switch, the temperature sensor detecting the temperature of the semiconductor switch, and detected by the temperature sensor And a control unit that operates the driving unit to close the contact of the mechanical contact switch when the temperature of the semiconductor switch becomes equal to or higher than a predetermined temperature.
  • the hybrid relay includes first and second mechanical contact switches whose contacts are opened and closed by a drive unit, and a semiconductor switch connected in parallel with the mechanical contact switch, and is supplied with a load from a power source.
  • a power feeding path to be supplied a first power feeding path by the first mechanical contact switch and a second power feeding path in which the second mechanical contact switch and the semiconductor switch are configured in series are provided in parallel.
  • the hybrid relay is characterized in that a temperature fuse that is disconnected when the temperature of the semiconductor switch exceeds a predetermined temperature is provided on the second power supply path.
  • the hybrid relay according to the present invention includes first and second mechanical contact switches whose contacts are opened and closed by a drive unit, and a semiconductor switch connected in parallel with the mechanical contact switch, and is supplied with a load from a power source.
  • a power feeding path to be supplied a first power feeding path by the first mechanical contact switch and a second power feeding path in which the second mechanical contact switch and the semiconductor switch are connected in series are configured in parallel.
  • the hybrid relay according to the present invention includes first and second mechanical contact switches whose contacts are opened and closed by a drive unit, and a semiconductor switch connected in parallel with the mechanical contact switch, and is supplied with a load from a power source.
  • a hybrid in which a first power feeding path by the first mechanical contact switch and a second power feeding path in which the second mechanical contact switch and the semiconductor switch are connected in series are configured in parallel.
  • a temperature sensor for detecting a temperature of the semiconductor switch; and a drive unit of the first mechanical contact switch when the temperature of the semiconductor switch detected by the temperature sensor exceeds a predetermined temperature.
  • a control unit that is operated to close a contact of the first mechanical contact switch.
  • the thermal fuse as the safety circuit unit, when the semiconductor switch becomes an abnormal temperature higher than a predetermined temperature, the thermal fuse is disconnected and the second power feeding path is interrupted, so that the semiconductor switch is further heated. It will not burn out or ignite.
  • the semiconductor switch when the semiconductor switch becomes an abnormal temperature higher than a predetermined temperature, the contact of the mechanical contact switch constituting the first feeding path is forcibly set by the temperature switch. Since it is closed, the amount of current flowing through the second feeding path is reduced. Therefore, the semiconductor switch is not further heated and burned out or ignited.
  • the safety circuit unit includes a temperature sensor, and a control unit that closes the contact of the mechanical contact switch that constitutes the first power supply path when the temperature of the semiconductor switch detected by the temperature sensor exceeds a predetermined temperature.
  • the control unit when the semiconductor switch reaches an abnormal temperature that is equal to or higher than a predetermined temperature, the control unit forcibly closes the contact of the mechanical contact switch that constitutes the first feeding path, so that the amount of current flowing through the second feeding path Decrease. Therefore, the semiconductor switch is not further heated and burned out or ignited.
  • the user can be notified of the life of the semiconductor switch.
  • the hybrid relay may further include a notifying unit for notifying the outside of the abnormality when the semiconductor switch becomes a predetermined temperature or higher.

Landscapes

  • Relay Circuits (AREA)

Abstract

 半導体スイッチが高熱となることを防止できるハイブリッドリレーを提供する。 本発明によるハイブリッドリレーは、駆動部により接点が開閉される機械式接点スイッチ12と、この機械式接点スイッチ12と並列に接続される半導体スイッチ13とを備え、電源より負荷に供給する給電路として、機械式接点スイッチ12による第1給電路と、半導体スイッチ13による第2給電路とを並列接続したハイブリッドリレーであって、半導体スイッチの温度が所定温度以上となったときに電路を閉じる安全回路部として例えば温度ヒューズF1を具備している。

Description

ハイブリッドリレー
 本発明は、機械式接点スイッチと半導体スイッチとを備えたハイブリッドリレーに関するものである。
 従来、照明器具など、インバータ制御を行うインバータ回路を備えた負荷への電力の供給と遮断とを切り換えるために、機械式接点スイッチと半導体スイッチとを並列に接続した構成のハイブリッドリレーが使用される。ところで、インバータ回路を備えた負荷には、交流電圧を直流電圧に変換するために大容量の平滑コンデンサが付設されており、交流電源から負荷への電源投入時には、この平滑コンデンサに大電流が流れ込む。このため、負荷への突入電流が発生する。特に、電源電圧が高く、高負荷とされる状況下では、負荷に流れ込む突入電流が大きくなるため、負荷と交流電源との間に接続されるハイブリッドリレーにおいても、この突入電流に基づく大電流が流れることとなる。
 そのため、このような負荷と接続されるハイブリッドリレーにおいては、ON時と、定常状態とで、半導体スイッチと機械式接点スイッチとの切り替えがなされる。まず、半導体スイッチのみをON(閉)として、突入電流を半導体スイッチに流した後、負荷に供給される電流が定常状態となったときに、機械式接点スイッチをON(閉)とする(特許文献1参照)。このように動作させることによって、ハイブリッドリレー内の機械式接点スイッチに大電流が流れるのを抑制できるため、接点対の接触直前におけるアークの発生による接点溶着を回避することができる。このように、ハイブリッドリレーは、機械式接点スイッチにおける接点溶着を防止するために半導体スイッチを備えた構造とされるが、機械式接点スイッチをONとし、半導体スイッチをOFF(開)として、負荷への電力供給を開始する。
日本国特開平11-238441号公報
 このように機械式接点スイッチと半導体スイッチとを備えたハイブリッドリレーは、特許文献1のハイブリッドリレーのように、機械式接点スイッチの接点溶着を防止するために、電源供給の場合は、半導体スイッチを先にONとし、電源遮断の場合は、半導体スイッチを後にOFFとする。そのため、ハイブリッドリレーの開閉動作のたびに、半導体スイッチに突入電流が流れるため、機械式接点スイッチに比べて、半導体スイッチの寿命が短くなってしまう。この半導体スイッチが寿命となり短絡した場合、半導体スイッチは常時通電状態となるため、半導体スイッチが高熱となり、発火の原因となる場合がある。
 本発明は、前記実情に鑑みてなされたもので、半導体スイッチが高熱となることを防止できるハイブリッドリレーを提供することを目的とする。
 上記目的を達成するために、本発明によるハイブリッドリレーは、駆動部により接点が開閉される機械式接点スイッチと、この機械式接点スイッチと並列に接続される半導体スイッチとを備え、電源より負荷に供給する給電路として、機械式接点スイッチによる第1給電路と、半導体スイッチによる第2給電路とを並列接続したハイブリッドリレーであって、半導体スイッチの温度が所定温度以上となったときに給電制御を行う安全回路部を具備したことを特徴とする。
 また本発明は、上記ハイブリッドリレーであって、安全回路部が、半導体スイッチの温度が所定温度以上となったときに断線する温度ヒューズであるものを含む。
 また本発明は、上記ハイブリッドリレーであって、温度ヒューズが、第2給電路上に設けられたものを含む。
 また本発明は、上記ハイブリッドリレーであって、安全回路部は、半導体スイッチの温度が所定温度以上となったときには、駆動部を動作させて機械式接点スイッチの接点を閉じる温度スイッチであるものを含む。
 また本発明は、上記ハイブリッドリレーであって、安全回路部は、半導体スイッチの温度を検出する温度センサと、温度センサで検出された半導体スイッチの温度が所定温度以上となったときには、駆動部を動作させて機械式接点スイッチの接点を閉じる制御部とを備えたものを含む。
 また本発明は、上記ハイブリッドリレーであって、前記機械式接点スイッチは、駆動部により接点が開閉される第1、第2の機械式接点スイッチを備え、電源より負荷に供給する給電路として、第1の機械式接点スイッチによる第1給電路と、第2の機械式接点スイッチと半導体スイッチとを直列に接続した第2給電路とを、並列に構成したものを含む。
 また本発明は、上記ハイブリッドリレーであって、半導体スイッチの温度が所定温度以上となったときに第1の機械式接点スイッチの駆動部を動作させて第1の機械式接点スイッチの接点を閉じる温度スイッチを設けたものを含む。
 また本発明は、上記ハイブリッドリレーであって、安全回路部は、半導体スイッチのパッケージの凸部の上面に設置されたものを含む。
 また本発明は、上記ハイブリッドリレーであって、安全回路部は温度ヒューズであり、温度ヒューズのリード端子の一方が半導体スイッチのパッケージの中心に密着して配置されたものを含む。
 また本発明は、上記ハイブリッドリレーであって、半導体スイッチが所定温度以上となったときに外部に異常を報知する報知部を、更に備えたものを含む。
 上記安全回路部を備えた構成では、半導体スイッチが所定温度以上の異常温度になったときには、給電路が遮断されるので、半導体スイッチが更に加熱されて焼損、発火することがない。
本発明の実施の形態1のハイブリッドリレーの内部構成を示す概略回路図 (a)、(b)は、夫々本発明の実施の形態1のハイブリッドリレーの変形例の内部構成を示す概略回路図 本発明の実施の形態2のハイブリッドリレーの内部構成を示す概略回路図 本発明の実施の形態3のハイブリッドリレーの内部構成を示す概略回路図 (a)、(b)は、夫々本発明の実施の形態4のハイブリッドリレーの内部構成を示す概略回路図 (a)、(b)は、夫々本発明の実施の形態4のハイブリッドリレーの変形例の内部構成を示す概略回路図 (a)、(b)は、夫々本発明の実施の形態4のハイブリッドリレーの他の変形例の内部構成を示す概略回路図 (a)、(b)は、夫々本発明の実施の形態5のハイブリッドリレーの内部構成を示す概略回路図 本発明の実施の形態6のハイブリッドリレーの内部構成を示す概略回路図 本発明の実施の形態7のハイブリッドリレーの内部構成を示す概略回路図 本発明の実施の形態8のハイブリッドリレーの内部構成を示す概略回路図 本発明の実施の形態9のハイブリッドリレーの半導体スイッチのそれぞれに温度ヒューズF1を設けたプリント配線基板の上面図 本発明の実施の形態9のハイブリッドリレーの要部を示す図であり、(a)は半導体スイッチと温度ヒューズの正面図、(b)は側面図
 本発明を実施したハイブリッドリレーについて、図面を参照して説明する。
(実施の形態1)
 図1は、実施の形態の内部構成を示す概略回路図である。
 このハイブリッドリレー1は、図1に示すように、機械式接点スイッチ12による第1給電路と、半導体スイッチ13による第2給電路とを並列接続し、半導体スイッチ13の温度が所定温度以上となったときに給電路を閉じる安全回路部として温度ヒューズF1を、この第2給電路に備えたことを特徴とするものである。
 このハイブリッドリレー1は、直列に接続された交流電源2及び負荷3のそれぞれの一端である端子10,11に接続されることで、交流電源2及び負荷3と閉回路を形成する。即ち、交流電源2から負荷3への電源の投入及び遮断が、ハイブリッドリレー1のON(閉)/OFF(開)によって決定される。ここに、交流電源2は、例えば、100Vの商用電源などとされ、負荷3は、例えば、蛍光灯や白熱球を含む照明器具または換気扇などである。
 すなわち、このハイブリッドリレー1は、負荷3の一端に一端が接続された交流電源2の他端と接続される端子10と、負荷3の他端に接続される端子11と、端子10,11に両端が接続され、互いに並列接続された機械式接点スイッチ12および半導体スイッチ13と、信号処理回路15とを備える。そしてこの機械式接点スイッチ12は接点部S1を有する。また、半導体スイッチ13は、トライアックS2を有し、機械式接点スイッチ12と、端子10,11に両端が接続されることで接点部S1と並列に接続される。そしてこの信号処理回路15は、機械式接点スイッチ12と半導体スイッチ13のそれぞれのON(閉)/OFF(開)制御を行う。機械式接点スイッチ12は、接点部S1と、接点部S1を開閉させる電磁力を発生する磁気コイルL1とによって構成される。磁気コイルL1は、一端に電源電位が印加されるとともに、他端にトランジスタTr1のドレインが接続される。トランジスタTr1は、そのベース電極に、信号処理回路15からの制御信号が入力されるとともに、エミッタ電極が接地される。このように、信号処理回路15と、これに接続されたトランジスタTr1とにより、駆動部として、機械式接点スイッチ12の開閉が行われる。
 半導体スイッチ13は、トライアックS2と、フォトトライアックカプラ14とを具備している。このトライアックS2は、端子10に温度ヒューズF1を介して電極が接続されるとともに端子11にもう一方の電極が接続される。フォトトライアックカプラ14は、ゼロクロス型のフォトトライアックS3と、このフォトトライアックS3に対して光信号を照射する発光ダイオードLDとを有する。ゼロクロス型のフォトトライアックS3は、トライアックS2のもう一方の電極とゲート電極との間に接続される。そしてこの発光ダイオードLDのアノード電極には、電源電位が印加されるとともに、カソード電極には、スイッチング素子であるnpn型のトランジスタTr2のドレイン電極が接続される。またこのトランジスタTr2のベース電極には、信号処理回路15からの制御信号が入力されるとともに、エミッタ電極は接地される。
 ハイブリッドリレー1における、交流電源2から負荷3への電源投入及び遮断それぞれを行うときの動作を、以下に簡単に説明する。まず、交流電源2から負荷3へ電源を投入する場合は、信号処理回路15から制御信号がトランジスタTr2のベース電極に与えられて、トランジスタTr2を導通状態(ON)とする。これにより、半導体スイッチ13において、発光ダイオードLDからの光信号が、フォトトライアックS3に入光し、フォトトライアックS3がONとなる。なお、フォトトライアックS3は、ゼロクロス機能を備えるため、交流電源2からの交流電圧が中心電圧(基準電圧)となったことを検出したときに、フォトトライアックS3がONとなる。
 このフォトトライアックS3の導通により、交流電源2からの交流電流が、フォトトライアックS3を介して流れるため、トライアックS2のゲート電極に電流を供給し、フォトトライアックS3がONとなる。これにより、負荷3が、ハイブリッドリレー1内の半導体スイッチ13を介して、交流電源2と電気的に接続されるため、負荷3には、交流電源2による電源が投入される。このようにして、半導体スイッチ13内のトライアックS2をONとし、交流電源2からの電源が負荷3へ投入された後、信号処理回路15は、トランジスタTr1のベース電極に制御信号を与えて、トランジスタTr1をONとし、磁気コイルL1に駆動電流を供給させる。よって、磁気コイルL1の電磁力が発生し、接点部S1が閉(ON)の状態となる。
 そして、この機械式接点スイッチ12の接点部S1を介した交流電源2による負荷3への電力供給が開始されると、半導体スイッチ13における給電路を遮断するために、信号処理回路15は、トランジスタTr2を非導通状態(OFF)として、発光ダイオードLDへの電流供給を停止する。そのため、発光ダイオードLDの発光動作が停止し、フォトトライアックS3への光信号の照射が停止されるため、フォトトライアックS3は、交流電源2からの交流電圧が中心電圧(基準電圧)となったときに動作を停止し、OFFとなる。そして、フォトトライアックS3がOFFとなると、トライアックS2のゲート電極へ電流供給がなくなるため、トライアックS2が非導通状態となり、半導体スイッチ13がOFFとなる。
 一方、交流電源2から負荷3へ電源供給を遮断する場合は、信号処理回路15が制御信号をトランジスタTr2のベース電極に与えて、トランジスタTr2をONとし、発光ダイオードLDからの光信号をフォトトライアックS3に入光させる。これにより、フォトトライアックS3をONとすることで、トライアックS2をONとし、機械式接点スイッチ12を介した給電路(第1の給電路)以外に、半導体スイッチ13を介した給電路(第2の給電路)を、ハイブリッドリレー1内に形成する。そして、信号処理回路15は、トランジスタTr1をOFFとして、電磁コイルL1への駆動電流の供給を停止し、接点部S1を開(OFF)の状態とする。これにより、主要な給電路となる、機械式接点スイッチ12を介した給電路(第1の給電路)を遮断することができる。その後、信号処理回路15は、トランジスタTr2をOFFとし、発光ダイオードLDへの電流供給を停止することで、フォトトライアックS3をOFFとする。これにより、トライアックS2がOFFとなるため、半導体スイッチ13による給電路が遮断されるため、交流電源2から負荷3へ電源供給が遮断される。
 温度ヒューズF1は、トライアックS2の異常温度を検出する温度検出素子として機能させるために、トライアックS2の表面または近傍に固定される。この温度ヒューズF1は、トライアックS2の温度が動作温度以上の異常温度となったとき、例えば、トライアックS2に突入電流などが流れる、または、トライアックS2が寿命によりショートしたときに断線し、トライアックS2、およびフォトトライアックS3への電流供給が遮断される。この温度ヒューズF1の配置については後述するが、機械的負荷がかからないようにかつ、半導体スイッチ13に近接して配置される。ここでは温度ヒューズF1は半導体スイッチ13のパッケージの凸部の上面に、温度ヒューズのリード端子の一方が半導体スイッチ13のパッケージの中心に密着するように配置される。
 これにより、トライアックS2およびフォトトライアックS3を熱破壊から保護することができ、火災の発生などを防ぐことができる。ここで、温度ヒューズF1で遮断される給電路は、半導体スイッチ13による給電路(第2の給電路)のみであり、主接点である機械式接点スイッチ12による給電路(第1の給電路)については、開閉可能であるため、温度ヒューズが断線した後でも、機械式接点スイッチ12の開閉を制御することで、負荷3への電源供給及び遮断を実行できる。
 なお、上記実施の形態では、トライアックS2とフォトトライアックS3との接続ノードと端子10との間に、温度ヒューズF1を接続した構成を説明したが、変形例として、図2(a)のように、トライアックS2の異常温度を検出する温度ヒューズF2を、トライアックS2の一方の電極と端子10との間に接続するものとしてもよい。また、図2(b)に示すように、フォトトライアックS3の一方の電極とトライアックS2の一方の電極との間に、トライアックS2の異常温度を検出する温度ヒューズF3を接続するものとしてもよい。更に、図1、図2(a)または、(b)のように構成するとき、温度ヒューズF1,F2によって、トライアックS2だけでなくフォトトライアックS3の異常温度をも検出できるように配置位置を調整してもよい。
(実施の形態2)
 次いで、本発明の実施の形態2について、図面を参照して説明する。図3は、実施の形態2のハイブリッドリレーの内部構成を示す概略回路図である。なお、図1に示した実施の形態1のハイブリッドリレーと同一の部分については同一の符号を付して、その詳細な説明は省略する。
 このハイブリッドリレーは、図3に示すように、図1に示した実施の形態1の構成から温度ヒューズF1を除き、トランジスタTr1のエミッタ・コレクタ間に接続した温度スイッチS4を設けた構成である。よって、図1に示した実施の形態1のリレースイッチとは、温度スイッチS4に基づく動作が異なるだけで、その他の構成や動作については、図1の実施の形態と同様であるため、その詳細については省略する。以下、温度スイッチS4に基づく動作について説明する。
 温度スイッチS4は、バイメタルスイッチなどのように、検出した温度に反応して開閉動作を行うスイッチで構成され、図1の実施の形態1のハイブリッドリレーと同様、半導体スイッチ13におけるトライアックS2の温度を検出するべく、トライアックS2の表面または近傍に固定される。
 トライアックS2が規定温度内であれば、温度スイッチS4はOFF(開)の状態であり、磁気コイルL1の駆動電流の供給/遮断は、トランジスタTr1のON/OFFによって制御される。一方、トライアックS2の温度が規定温度よりも高温になれば、温度スイッチS4はON(閉)の状態となり、磁気コイルL1に対して、強制的に駆動電流を供給する。これにより、磁気コイルL1による電磁力が発生して、機械式接点スイッチ12の接点S1が強制的にONとされるため、この機械式接点スイッチ12による給電路が主要な給電路として形成され、その結果、半導体スイッチ13による給電路に流れる電流量が抑制される。従って、半導体スイッチ13を構成するトライアックS2及びフォトトライアックS3それぞれに流れる電流量が低減されるため、半導体スイッチ13による高熱の発生を防止できる。
 更に、他の実施の形態について、図面を参照して説明する。図4は、他の実施の形態の内部構成を示す概略回路図である。なお、図1の実施の形態と同一の部分については同一の符号を付して、その詳細な説明は省略する。
(実施の形態3)
 次に本発明の実施の形態3のハイブリッドリレーについて説明する。この例では、図4に示すように、図1に示した実施の形態1のハイブリッドリレーから温度ヒューズF1を除き、半導体スイッチ13の温度を測定する温度センサT1と、半導体スイッチ13の温度が異常温度となったときに外部に報知する報知部16と、を設けた構成となる。よって、図1の実施の形態のハイブリッドリレーと共通する構成については同一の参照符号を付けて説明を省略し、以下では、温度センサについて説明する。
 温度センサT1は、サーミスタなどのような感温素子によって構成され、図1の実施の形態のハイブリッドリレーにおける温度ヒューズF1と同様、半導体スイッチ13におけるトライアックS2の温度を検出するべく、トライアックS2の表面または近傍に固定される。そして、温度センサT1は、所定の測定タイミング毎に、測定した半導体スイッチ13の温度を、信号処理部15に通知する。
 信号処理部15には、スピーカまたはブザーなどの発音体や、LED(Light Emitting Diode)または液晶ディスプレイなどの表示装置によって構成される報知部16が接続されており、半導体スイッチ13の異常発生が外部に通知される。
 すなわち、温度センサT1によって半導体スイッチ13の温度を検出して、異常温度であれば、報知部16を駆動して、その異常発生を外部に通知する。
 信号処理部15は、このとき、トランジスタTr1のベース電極に制御信号を与えて、トランジスタTr1をONにして、機械式接点スイッチ12を閉にする構成としてもよい。このようにすれば、機械式接点スイッチ12による給電路が主要な給電路として強制的に形成されて、半導体スイッチ13による給電路に流れる電流量を抑制できる。よって、半導体スイッチ13を構成するトライアックS2及びフォトトライアックS3それぞれに流れる電流量が低減されて、半導体スイッチ13による高熱の発生を防止できる。また、報知部16による報知動作を実行することにより、外部に対して、半導体スイッチ13が異常温度である旨を通知でき、使用者に、半導体スイッチ13の寿命を早急に知らせることができる。
 なおこの場合、実施の形態1の温度ヒューズF1と併用してもよい。またこのとき、温度センサT1により報知部16を駆動する温度に比べて温度ヒューズF1の溶断する温度を高く設定しておくことで、早めに高熱発生を報知することができる。
(実施の形態4)
 次に本発明の実施の形態4のハイブリッドリレーについて、図面を参照して説明する。図5は、実施の形態4のハイブリッドリレーの内部構成を示す概略回路図である。なお、図1に示した実施の形態1のハイブリッドリレーと同一の部分については同一の符号を付して、その詳細な説明は省略する。
 本発明の実施の形態4のハイブリッドリレーは、図5(a)に示すように、図1に示した実施の形態1のハイブリッドリレー1の基本的な構成に、第2の機械式接点スイッチ17を加えたものである。
 すなわち、この実施の形態は、負荷3の一端に一端が接続された交流電源2の他端と接続される端子10と、負荷3の他端に接続される端子11と、端子10,11に両端が接続される接点部S1を有する第1の機械式接点スイッチ12と、端子10と接点部S1の一端との接続ノードに一端が接続された接点部S5を有する第2の機械式接点スイッチ17と、接点部S5の他端に一方の電極が接続され、端子11に他方の電極が接続されたフォトトライアックS3を有する半導体スイッチ13と、第1及び第2機械式接点スイッチ12,17と半導体スイッチ13のそれぞれのON(閉)/OFF(開)制御を行う信号処理回路15とを備える。以下、2つの機械式接点スイッチを有する回路においては、第1および第2の機械式接点スイッチ12,17とするが、第1の機械式接点スイッチ12は前記実施の形態で用いた機械式接点スイッチ12と同様であり、同一符号を付すものとする。
 図5(a)に示す第1の機械式接点スイッチ12、第2の機械式接点スイッチ17の構成は、図1に示した機械式接点スイッチ12と同様である。また、図5における半導体スイッチ13の構成は、図1における半導体スイッチ13と同様であるが、フォトトライアックS3の一方の電極は、温度ヒューズF1を介して、第2の機械式接点スイッチ17の接点部S5の他端に接続されている。
 すなわち、この実施の形態のハイブリッドリレーは、駆動部により接点が開閉される第1、第2の機械式接点スイッチ12、17と、該第2の機械式接点スイッチと並列に接続される半導体スイッチ13とを備え、交流電源2より負荷3に供給する給電路として、第1の機械式接点スイッチ12による第1給電路と、第2の機械式接点スイッチ17と半導体スイッチ13とを直列に構成した第2給電路とを、並列に備えたハイブリッドリレーであり、半導体スイッチ13の温度が所定温度以上となったときには断線する温度ヒューズF1が、第2給電路上に設けられている。温度ヒューズF1の作用、効果は、図1に示した本発明の実施の形態1のハイブリッドリレーと同様である。
 図5(b)に示すハイブリッドリレーは、図5(a)に示すハイブリッドリレーの変形例で、第1の機械式接点スイッチ12、第2の機械式接点スイッチ17、半導体スイッチ13の構成が異なっている。
 すなわち、第1の機械式接点スイッチ12は、ラッチング型の機械式接点スイッチで、接点部S1をON(閉)に切り換えるための電磁力を発生する磁気コイルL3と、接点部S1をOFF(開)に切り換えるための電磁力を発生する磁気コイルL4とを備える。磁気コイルL3の一端は、逆流防止用のダイオードD1を介して信号処理回路15に接続され、他端は接地されている。一方、磁気コイルL4の一端は、逆流防止用のダイオードD3を介して信号処理回路15に接続され、他端は接地されている。磁気コイルL3に並列に接続されたダイオードD2、磁気コイルL4に並列に接続されたダイオードD4は、バイパス用のダイオードである。
 一方、第2の機械式接点スイッチ17は、磁気コイルL5を備える。磁気コイルL5の一端は、逆流防止用のダイオードD5を介して信号処理回路16に接続され、他端は接地されている。磁気コイルL5に並列に接続されたダイオードD6は、バイパス用のダイオードである。
 半導体スイッチ13は、トライアックS2と、トライアックS2の一方の電極とゲート電極との間に並列に接続された抵抗R1及びコンデンサC1と、トライアックS2のもう一方の電極に一端が接続された抵抗R2と、抵抗R2の他端に一方の電極が接続されたフォトトライアックS3を備えたフォトトライアックカプラ14とによって構成される。フォトトライアックカプラ14は、抵抗R3を介して、信号処理回路15に接続された発光ダイオードLDを更に備え、フォトトライアックS3に、発光ダイオードLDからの光信号が入光される構造である。なお、フォトトライアックS3は、ゼロクロス機能を備えた半導体スイッチング素子であり、発光ダイオードLDからの光信号が入光されたとき、一方の電極側に交流電源2による交流電圧の中心電圧(基準電圧)を検出して初めて導通(ON)する。
 温度ヒューズF1は、フォトトライアックS3の温度検出素子として機能させるために、フォトトライアックS3の表面または近傍に固定されている。なお実施の形態9で後述するように、フォトトライアックS3のパッケージの凸部の上面に温度ヒューズF1の本体部が設置されるようにすることで、より効率よく機能する。
 なお、本実施の形態において、図5(a)に示したように、半導体スイッチ13の温度が所定温度以上となったときには断線する温度ヒューズF1が、第2給電路上であって第2の機械式接点スイッチ17と半導体スイッチ13の間に設けられているが、この位置に限定されるものではない。例えば、図6(a)に示すように、この温度ヒューズF1が、第2給電路と第1の給電路の接続ノードに近い側で、第2給電路上に設けられていても良い。また、図6(b)に示すように、この温度ヒューズF1が、交流電源2と第1の機械式接点スイッチ12との間すなわち、第1の給電路上に設けられていても良い。
 また、図5(b)に示したように、第1の機械式接点スイッチ12をラッチング型の機械式接点スイッチとし、第2の機械式接点スイッチ17を磁気コイルL5を加えたもので構成した場合にも同様に温度ヒューズF1の位置を変えることも可能である。例えば、図7(a)に示すように、この温度ヒューズF1が、第2給電路と第1の給電路の接続ノードに近い側で、第2給電路上に設けられていても良い。また、図7(b)に示すように、この温度ヒューズF1が、交流電源2と第1の機械式接点スイッチ12との間すなわち、第1の給電路上に設けられていても良い。
(実施の形態5)
 次に本発明の実施の形態5のハイブリッドリレーについて説明する。図8(a)、図8(b)示したハイブリッドリレーはいずれも、図5(a)に示した実施の形態4のハイブリッドリレーの変形例である。図8(a)では、トライアックS2の異常温度を検出する温度ヒューズF2を、トライアックS2の一方の電極と、第2の機械式接点スイッチ17との間に設けている。また、図8(b)では、温度ヒューズF3を、フォトトライアックS3の一方の電極と、第2の機械式接点スイッチ17との間に設けている。このようにしても、図5(a)に示す実施の形態のハイブリッドリレーと同様の効果が得られる。
(実施の形態6)
 次に本発明の実施の形態6のハイブリッドリレーについて説明する。図9は実施の形態6のハイブリッドリレーの内部構成を示す図である。この例では、図5(a)に示した実施の形態4のハイブリッドリレーから温度ヒューズF1を除き、トランジスタTr1のエミッタ・コレクタ間に接続した温度スイッチS4を設けた構成となる。温度スイッチS4の作用、効果は、図3に示した実施の形態2と同様である。
(実施の形態7)
 次に本発明の実施の形態7のハイブリッドリレーについて説明する。図10は実施の形態7のハイブリッドリレーの内部構成を示す図である。この例では、図5(a)の実施の形態4のハイブリッドリレーから温度ヒューズF1を除き、半導体スイッチ13の温度を測定する温度センサT1と、半導体スイッチ13の温度が異常温度となったときに外部に報知する報知部16とを設けた構成となる。温度センサT1、報知部16の作用、効果は、図4に示した実施の形態3のリレースイッチと同様である。
(実施の形態8)
 次に本発明の実施の形態8のハイブリッドリレーについて説明する。以上説明してきた実施の形態では、温度ヒューズなどの安全回路部は半導体スイッチによる第2給電路に設けているが、温度ヒューズなどの安全回路部を機械式スイッチによる第1給電路に設けてもよい。その一例を図11に示す。この例では、実施の形態1のハイブリッドリレーの構成において、温度ヒューズF1を第1給電路すなわち、機械式スイッチによる給電路に設けている。この構成によれば、機械式スイッチが誤動作により、発熱したような場合にも、給電路が遮断され、安全に維持することができる。ただしこの場合は給電路が遮断され、負荷への電流供給が停止してしまうという不都合がある。
 このように、温度ヒューズF1を第1給電路に設けたが、第1及び第2の給電路の両方に設けるようにしてもよい。この場合、温度ヒューズの溶断温度を第1の給電路側の方が高くなるようにしてもよい。すなわち、安全制御温度を機械式スイッチ側で半導体スイッチ側よりも高くすることで、機械式スイッチが所定温度となったら、いかなる場合も第1の給電路を閉じ、負荷への電流供給を遮断するようにしてもよい。
 なお、以上の、実施の形態1乃至3または実施の形態4乃至8において、温度ヒューズF1,F2,F3,あるいは温度センサ、温度スイッチを併用してもよい。その場合、設定温度を変え、段階的に安全制御を行うことができるように構成することで、より効率的な安全制御が可能となる。
(実施の形態9)
 次に、本発明の実施の形態9として、このハイブリッドリレーの回路配置について説明する。
 図12は4個のハイブリッドリレーの半導体スイッチのそれぞれに温度ヒューズF1を設けたプリント配線基板100の上面図である。図13(a)および(b)は半導体スイッチと温度ヒューズの正面図および側面図である。この例では、半導体スイッチ13を構成するフォトトライアックS3のパッケージ201の凸部202の上面に温度ヒューズF1の本体部301が設置されている。そして、温度ヒューズF1のリード端子302,303の一方のリード端子302がフォトトライアックS3のパッケージ201の中心に密着して配置されている。温度ヒューズF1とフォトトライアックS3の実装幅Wは温度ヒューズF1のリード端子間距離Wとしたとき、W>Wとなるようにリード端子302は折り曲げられている。温度ヒューズF1の中心の高さをH,本体部の高さをHとした。
 この構成によれば、上方からの応力に対してフォトトライアックS3のパッケージ201の凸部202に温度ヒューズF1の本体部301が当接することで、温度ヒューズF1の位置を固定することができる。また、この位置を確保していることで、リード端子302,303と他の部品との絶縁距離を確保することができ、負荷に強いハイブリッドリレーを提供することが可能となる。
 また温度ヒューズF1のリード端子302,303のうち一方をフォトトライアックS3のパッケージ201の中心に密着して配置することで、フォトトライアックS3により、温度ヒューズF1が倒れるのを防ぐことができる。また、フォトトライアックS3も温度ヒューズF1側に倒れるのを防ぐことができる。このようにして、温度ヒューズF1とフォトトライアックS3とが相互に支え合うことになり、基板面に対する角度を維持することができる。この結果、温度ヒューズF1とフォトトライアックS3はいうまでもなくこれらと、他の部品との絶縁距離を確保し、さらに信頼性を高めることが可能となる。
 以上説明してきたように、本発明のハイブリッドリレーは以下の構成を備えるものを含む。
 本発明のハイブリッドリレーは、駆動部により接点が開閉される機械式接点スイッチと、該機械式接点スイッチと並列に接続される半導体スイッチとを備え、電源より負荷に供給する給電路として、この機械式接点スイッチによる第1給電路と、半導体スイッチによる第2給電路とを並列に構成したハイブリッドリレーであって、半導体スイッチの温度が所定温度以上となったときに断線する温度ヒューズを、第2給電路上に設けたことを特徴とする。
 また、本発明によるハイブリッドリレーは、駆動部により接点が開閉される機械式接点スイッチと、該機械式接点スイッチと並列に接続される半導体スイッチとを備え、電源より負荷に供給する給電路として、前記機械式接点スイッチによる第1給電路と、半導体スイッチによる第2給電路とを並列に構成したハイブリッドリレーであって、半導体スイッチの温度が所定温度以上となったときには、駆動部を動作させて機械式接点スイッチの接点を閉じる温度スイッチを設けたことを特徴とする。
 また本発明によるハイブリッドリレーは、駆動部により接点が開閉される機械式接点スイッチと、該機械式接点スイッチと並列に接続される半導体スイッチとを備え、電源より負荷に供給する給電路として、前記機械式接点スイッチによる第1給電路と、前記半導体スイッチによる第2給電路とを並列に構成したハイブリッドリレーであって、前記半導体スイッチの温度を検出する温度センサと、前記温度センサで検出された前記半導体スイッチの温度が所定温度以上となったときには、前記駆動部を動作させて前記機械式接点スイッチの接点を閉じる制御部とを備えたことを特徴とする。
 また、本発明によるハイブリッドリレーは、駆動部により接点が開閉される第1、第2の機械式接点スイッチと、該機械式接点スイッチと並列に接続される半導体スイッチとを備え、電源より負荷に供給する給電路として、前記第1の機械式接点スイッチによる第1給電路と、前記第2の機械式接点スイッチと前記半導体スイッチとを直列に構成した第2給電路とを、並列に備えたハイブリッドリレーであって、前記半導体スイッチの温度が所定温度以上となったときには断線する温度ヒューズを、前記第2給電路上に設けたことを特徴とする。
 また、本発明によるハイブリッドリレーは、駆動部により接点が開閉される第1、第2の機械式接点スイッチと、該機械式接点スイッチと並列に接続される半導体スイッチとを備え、電源より負荷に供給する給電路として、前記第1の機械式接点スイッチによる第1給電路と、前記第2の機械式接点スイッチと前記半導体スイッチとを直列に接続した第2給電路とを、並列に構成したハイブリッドリレーであって、前記半導体スイッチの温度が所定温度以上となったときに前記第1の機械式接点スイッチの駆動部を動作させて前記第1の機械式接点スイッチの接点を閉じる温度スイッチを設けたことを特徴とする。
 また、本発明によるハイブリッドリレーは、駆動部により接点が開閉される第1、第2の機械式接点スイッチと、該機械式接点スイッチと並列に接続される半導体スイッチとを備え、電源より負荷に供給する給電路として、前記第1の機械式接点スイッチによる第1給電路と、前記第2の機械式接点スイッチと前記半導体スイッチとを直列に接続した第2給電路とを並列に構成したハイブリッドリレーであって、前記半導体スイッチの温度を検出する温度センサと、前記温度センサで検出された前記半導体スイッチの温度が所定温度以上となったときには、前記第1の機械式接点スイッチの駆動部を動作させて前記第1の機械式接点スイッチの接点を閉じる制御部とを備えたことを特徴とする。
 上記安全回路部として温度ヒューズを備えた構成では、半導体スイッチが所定温度以上の異常温度になったときには、温度ヒューズが断線して第2給電路が遮断されるので、半導体スイッチが更に加熱されて焼損、発火することがない。
 また、上記安全回路部として温度スイッチを備えた構成では、半導体スイッチが所定温度以上の異常温度になったときには、温度スイッチによって、第1給電路を構成する機械式接点スイッチの接点を強制的に閉じられるので、第2給電路に流れる電流量が減少する。そのため、半導体スイッチが更に加熱されて焼損、発火することがない。
 また、上記安全回路部として温度センサと、この温度センサで検出された半導体スイッチの温度が所定温度以上となったときには、第1給電路を構成する機械式接点スイッチの接点を閉じる制御部とを備えた構成では、半導体スイッチが所定温度以上の異常温度になったときには、制御部が第1給電路を構成する機械式接点スイッチの接点を強制的に閉じるので、第2給電路に流れる電流量が減少する。そのため、半導体スイッチが更に加熱されて焼損、発火することがない。
 また、報知部を備えた構成では、使用者に、半導体スイッチの寿命を通知できる。
 なお、上記ハイブリッドリレーは、前記半導体スイッチが所定温度以上となったときに外部に異常を報知する報知部を、更に備えてもよい。
 本出願は、2009年10月27日出願の日本特許出願(特願2009-246239)および2010年9月13日出願の日本特許出願(特願2010-204786)に基づくものであり、その内容はここに参照として取り込まれる。
   1       ハイブリッドリレー
   2       交流電源
   3       負荷
   10,11   端子
   12      機械式接点スイッチ(第1の機械式接点スイッチ)
   13      半導体スイッチ
   14      フォトトライアックカプラ
   15      信号処理回路
   16      報知部
   F1~F3   温度ヒューズ
   S2      トライアック
   S3      フォトトライアック
   S4      温度スイッチ
   S5      接点部
   T1      温度センサ
  201      パッケージ
  202      凸部
  301      本体部
  302,303  リード端子

Claims (10)

  1.  駆動部により接点が開閉される機械式接点スイッチと、
     前記機械式接点スイッチと並列に接続される半導体スイッチとを備え、
     電源より負荷に供給する給電路として、前記機械式接点スイッチによる第1給電路と、前記半導体スイッチによる第2給電路とを並列接続したハイブリッドリレーであって、
     前記半導体スイッチの温度が所定温度以上となったときに給電制御を行う安全回路部を具備したハイブリッドリレー。
  2.  請求項1に記載のハイブリッドリレーであって、
     前記安全回路部は、
     前記半導体スイッチの温度が所定温度以上となったときに断線する温度ヒューズであるハイブリッドリレー。
  3.  請求項2に記載のハイブリッドリレーであって、
     前記温度ヒューズが、前記第2給電路上に設けられたハイブリッドリレー。
  4.  請求項1に記載のハイブリッドリレーであって、
     前記安全回路部は、
     前記半導体スイッチの温度が所定温度以上となったときには、前記駆動部を動作させて前記機械式接点スイッチの接点を閉じる温度スイッチであるハイブリッドリレー。
  5.  請求項1に記載のハイブリッドリレーであって、
     前記安全回路部は、
     前記半導体スイッチの温度を検出する温度センサと、
     前記温度センサで検出された前記半導体スイッチの温度が所定温度以上となったときには、前記駆動部を動作させて前記機械式接点スイッチの接点を閉じる制御部とを備えたハイブリッドリレー。
  6.  請求項1乃至5のいずれか1項に記載のハイブリッドリレーであって、
     前記機械式接点スイッチは、駆動部により接点が開閉される第1、第2の機械式接点スイッチを備え、
     前記電源より負荷に供給する給電路として、前記第1の機械式接点スイッチによる第1給電路と、前記第2の機械式接点スイッチと前記半導体スイッチとを直列に接続した第2給電路とを、並列に構成したハイブリッドリレー。
  7.  請求項6に記載のハイブリッドリレーであって、
     前記半導体スイッチの温度が所定温度以上となったときに前記第1の機械式接点スイッチの駆動部を動作させて前記第1の機械式接点スイッチの接点を閉じる温度スイッチを設けたことを特徴とするハイブリッドリレー。
  8.  請求項1に記載のハイブリッドリレーであって、
     前記安全回路部は、前記半導体スイッチのパッケージの凸部の上面に設置されたハイブリッドリレー。
  9.  請求項8に記載のハイブリッドリレーであって、
     前記安全回路部は温度ヒューズであり、前記温度ヒューズのリード端子の一方が前記半導体スイッチのパッケージの中心に密着して配置されたハイブリッドリレー。
  10.  請求項1乃至9のいずれか1項において、
     前記半導体スイッチが所定温度以上となったときに外部に異常を報知する報知部を、更に備えたことを特徴とするハイブリッドリレー。
PCT/JP2010/068999 2009-10-27 2010-10-26 ハイブリッドリレー WO2011052606A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127010259A KR101369032B1 (ko) 2009-10-27 2010-10-26 하이브리드 릴레이
CN201080047874.2A CN102576625B (zh) 2009-10-27 2010-10-26 混合继电器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-246239 2009-10-27
JP2009246239 2009-10-27
JP2010204786A JP5669086B2 (ja) 2009-10-27 2010-09-13 ハイブリッドリレー
JP2010-204786 2010-09-13

Publications (1)

Publication Number Publication Date
WO2011052606A1 true WO2011052606A1 (ja) 2011-05-05

Family

ID=43922031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068999 WO2011052606A1 (ja) 2009-10-27 2010-10-26 ハイブリッドリレー

Country Status (5)

Country Link
JP (1) JP5669086B2 (ja)
KR (1) KR101369032B1 (ja)
CN (1) CN102576625B (ja)
TW (1) TWI598921B (ja)
WO (1) WO2011052606A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204038A1 (ja) * 2016-05-26 2017-11-30 株式会社オートネットワーク技術研究所 給電制御装置、給電制御方法及びコンピュータプログラム
WO2018150840A1 (ja) * 2017-02-14 2018-08-23 株式会社オートネットワーク技術研究所 給電制御装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930724B2 (en) * 2011-08-17 2015-01-06 Broadcom Corporation Semiconductor device predictive dynamic thermal management
JP5895171B2 (ja) * 2011-10-31 2016-03-30 パナソニックIpマネジメント株式会社 有極型電磁リレー
KR101348154B1 (ko) 2011-12-09 2014-01-14 주식회사 유라코퍼레이션 차량의 암 전류 차단 장치
KR101206386B1 (ko) * 2012-06-14 2012-11-29 김정호 대용량 부하에 대한 폐회로 전력선 통신 시스템
JP6206788B2 (ja) 2012-12-21 2017-10-04 パナソニックIpマネジメント株式会社 点滅器
JP6206796B2 (ja) * 2013-07-31 2017-10-04 パナソニックIpマネジメント株式会社 リレーユニット及び負荷制御システム
JP5876613B1 (ja) * 2015-01-16 2016-03-02 崇 中尾 コントロール装置、これを用いたスイッチ装置、アダプタ装置、ソケット装置および負荷装置
KR20170116472A (ko) * 2016-04-11 2017-10-19 주식회사 엘지화학 검전기 및 시그널 퓨즈를 이용한 모스펫 릴레이 보호 장치 및 보호 방법
KR102039576B1 (ko) 2018-05-29 2019-11-01 한밭대학교 산학협력단 배터리 시스템의 하이브리드 릴레이
TWI676198B (zh) * 2018-07-03 2019-11-01 易湘雲 翹板開關及其滑動壓抵件
JP7132020B2 (ja) * 2018-08-06 2022-09-06 東芝インフラシステムズ株式会社 航空灯火制御装置
KR102187348B1 (ko) 2020-03-09 2020-12-07 (주)에너담 직류 고전압용 하이브리드 개폐기
CN112290925A (zh) * 2020-09-30 2021-01-29 惠州莫思特智照科技有限公司 一种多功能电器控制系统及控制方法
KR20230150554A (ko) 2022-04-22 2023-10-31 삼어스코 주식회사 하이브리드 릴레이 오프시 또는 접점 전환 시 영점전류 동기화를 통한 트라이액 전류변동 제한 회로 및 방법
KR20230174561A (ko) 2022-06-21 2023-12-28 삼어스코 주식회사 전류비 증감제어 기능을 갖는 직입 기동용 하이브리드 스타터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117844A (en) * 1979-02-28 1980-09-10 Matsushita Electric Works Ltd Switching circuit
JPS6030048B2 (ja) * 1979-04-27 1985-07-13 松下電工株式会社 スイッチング回路
JPH11219645A (ja) * 1998-01-30 1999-08-10 Matsushita Electric Works Ltd ハイブリッドリレー
JP2005347186A (ja) * 2004-06-07 2005-12-15 Jamco Corp ハイブリッドリレー
JP2008210638A (ja) * 2007-02-26 2008-09-11 Matsushita Electric Works Ltd 開閉器及び光電式自動点滅器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897585B1 (de) * 1996-05-07 1999-10-06 Siemens Aktiengesellschaft Hybridrelais

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117844A (en) * 1979-02-28 1980-09-10 Matsushita Electric Works Ltd Switching circuit
JPS6030048B2 (ja) * 1979-04-27 1985-07-13 松下電工株式会社 スイッチング回路
JPH11219645A (ja) * 1998-01-30 1999-08-10 Matsushita Electric Works Ltd ハイブリッドリレー
JP2005347186A (ja) * 2004-06-07 2005-12-15 Jamco Corp ハイブリッドリレー
JP2008210638A (ja) * 2007-02-26 2008-09-11 Matsushita Electric Works Ltd 開閉器及び光電式自動点滅器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204038A1 (ja) * 2016-05-26 2017-11-30 株式会社オートネットワーク技術研究所 給電制御装置、給電制御方法及びコンピュータプログラム
JP2017212146A (ja) * 2016-05-26 2017-11-30 株式会社オートネットワーク技術研究所 給電制御装置、給電制御方法及びコンピュータプログラム
US11004626B2 (en) 2016-05-26 2021-05-11 Autonetworks Technologies, Ltd. Power supply control device, power supply control method, and computer program
WO2018150840A1 (ja) * 2017-02-14 2018-08-23 株式会社オートネットワーク技術研究所 給電制御装置
JP2018133891A (ja) * 2017-02-14 2018-08-23 株式会社オートネットワーク技術研究所 給電制御装置
CN110235332A (zh) * 2017-02-14 2019-09-13 株式会社自动网络技术研究所 供电控制装置
US11038371B2 (en) 2017-02-14 2021-06-15 Autonetworks Technologies, Ltd. Power supply control device

Also Published As

Publication number Publication date
TWI598921B (zh) 2017-09-11
CN102576625B (zh) 2015-10-14
KR101369032B1 (ko) 2014-02-28
CN102576625A (zh) 2012-07-11
JP2011119228A (ja) 2011-06-16
TW201140636A (en) 2011-11-16
KR20120081163A (ko) 2012-07-18
JP5669086B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5669086B2 (ja) ハイブリッドリレー
JP6293729B2 (ja) ランプ装置、及びランプ装置を動作させる方法
JP2007267473A (ja) 突入電流防止回路
JP2009168404A (ja) 床暖房用制御装置
KR101945589B1 (ko) 제어장치 및 전력의 공급을 제어하는 방법
JP4482797B2 (ja) Led点灯装置および照明器具
KR100773865B1 (ko) 바이메탈
TWM450893U (zh) 供電保護裝置及供電系統
JP5745494B2 (ja) 蛍光灯型ledランプ
JP6098209B2 (ja) Led点灯装置、led電球及びledモジュール基板
JP2013069482A (ja) Led点灯装置および、これを用いた照明器具,照明システム
JP2010010004A (ja) 点灯装置及び照明器具
JP2014049386A (ja) 点灯装置および照明装置
JP2007288978A (ja) 電源装置並びに無電極放電灯点灯装置、照明器具
JP2007236103A (ja) 給電装置
JP2766106B2 (ja) 電気カーペット等の安全装置
JP2009174441A (ja) 内燃機関用点火コイルのイグナイタ
JP2007115466A (ja) 面状採暖具
JP2016177879A (ja) 標識灯および標識灯システム
JPH10302985A (ja) 放電灯点灯装置
JP4257359B2 (ja) 温度検知用複号線を備える光源
JPH05184142A (ja) スイッチング電源装置及びそれに用いる複合素子
JPH08129945A (ja) ヒータ制御回路の接点溶着保護装置
JP2008151445A (ja) 加熱装置
JPS62299623A (ja) 調理器の安全装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047874.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010259

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12012500792

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826738

Country of ref document: EP

Kind code of ref document: A1