WO2011052593A1 - 銅合金継目無管 - Google Patents

銅合金継目無管 Download PDF

Info

Publication number
WO2011052593A1
WO2011052593A1 PCT/JP2010/068978 JP2010068978W WO2011052593A1 WO 2011052593 A1 WO2011052593 A1 WO 2011052593A1 JP 2010068978 W JP2010068978 W JP 2010068978W WO 2011052593 A1 WO2011052593 A1 WO 2011052593A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
seamless pipe
content
mass
present
Prior art date
Application number
PCT/JP2010/068978
Other languages
English (en)
French (fr)
Inventor
哲也 安藤
博一 玉川
Original Assignee
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友軽金属工業株式会社 filed Critical 住友軽金属工業株式会社
Priority to CN201080047337.8A priority Critical patent/CN102575319B/zh
Priority to MYPI2012001837A priority patent/MY182025A/en
Publication of WO2011052593A1 publication Critical patent/WO2011052593A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys

Definitions

  • the present invention relates to a seamless pipe made of a copper alloy used for heat transfer pipes or refrigerant pipes for air conditioner heat exchangers, refrigerators and the like.
  • heat pipes for air conditioners such as room air conditioners and packaged air conditioners, and heat transfer pipes or refrigerant pipes for refrigerators, etc.
  • heat pipes for air conditioners such as room air conditioners and packaged air conditioners
  • heat transfer pipes or refrigerant pipes for refrigerators etc.
  • various physical properties such as strength, workability, and heat transfer properties.
  • JIS C1220T phosphorus-deoxidized copper pipe
  • Patent Document 1 As a seamless pipe made of such a copper alloy, International Publication No. 2008/041777 (Patent Document 1) describes a joint made of a copper alloy having excellent workability, high strength, and low strength reduction due to brazing. No pipe is disclosed.
  • Patent Document 1 although a copper alloy seamless pipe is obtained that has excellent workability, high strength, and low strength reduction due to brazing, further improvement in performance is required.
  • the thickness is determined based on the material strength of the brazed heat-affected zone. In order to make it possible to reduce the thickness of the heat transfer tube and the refrigerant tube while maintaining good, there is a demand for a copper alloy seamless tube having higher strength and less strength reduction due to brazing.
  • an object of the present invention is to provide a copper alloy seamless pipe having high strength and less strength reduction due to brazing.
  • the present inventors have made a copper alloy contain a specific element in a specific content, and have a crystal grain size of the copper alloy and a Zr-based precipitate. By appropriately adjusting the size and the distribution density, it was found that a copper alloy seamless pipe having high strength and less strength reduction due to brazing can be obtained, and the present invention has been completed.
  • the present invention (1) is a copper alloy seamless pipe obtained by processing a copper alloy,
  • the copper alloy contains one or more elements of Sn, Zn, and Al, and 0.01 to 0.08 mass% of Zr, and the balance is Cu and inevitable impurities,
  • the content of Sn, Zn, Al and Zr in the copper alloy is represented by the following formula (1): (1) 0.4 ⁇ A + 2B ⁇ 0.85 (In the formula, A represents the total content (mass%) of Sn, Zn and Al, and B represents the content (mass%) of Zr.)
  • the copper alloy seamless pipe has an average grain size of 30 ⁇ m or less, Zr-based precipitates having a size of 0.5 to 80 nm are distributed at 10 to 600 / ⁇ m 2 ;
  • the copper alloy seamless pipe characterized by this is provided.
  • FIG. 1 It is a figure which shows the groove shape after the rolling process of Example 3.
  • the copper alloy seamless pipe of the present invention is a copper alloy seamless pipe obtained by processing a copper alloy,
  • the copper alloy contains one or more elements of Sn, Zn, and Al, and 0.01 to 0.08 mass% of Zr, and the balance is Cu and inevitable impurities,
  • the content of Sn, Zn, Al and Zr in the copper alloy is represented by the following formula (1): (1) 0.4 ⁇ A + 2B ⁇ 0.85 (In the formula, A represents the total content (mass%) of Sn, Zn and Al, and B represents the content (mass%) of Zr.)
  • the copper alloy seamless pipe has an average grain size of 30 ⁇ m or less, Zr-based precipitates having a size of 0.5 to 80 nm are distributed at 10 to 600 / ⁇ m 2 ; It is a copper alloy seamless pipe characterized by
  • the copper alloy according to the copper alloy seamless pipe of the present invention contains one or more of Sn, Zn, and Al and 0.01 to 0.08 mass% of Zr, with the balance being Cu and inevitable impurities.
  • a copper alloy consisting of The content of Sn, Zn, Al and Zr in the copper alloy is represented by the following formula (1): (1) 0.4 ⁇ A + 2B ⁇ 0.85 (In the formula, A represents the total content (mass%) of Sn, Zn and Al, and B represents the content (mass%) of Zr.) It is a copper alloy for seamless pipes that satisfies In addition, about Sn, Zn, and Al, this copper alloy may contain only 1 type in Sn, Zn, and Al, or contains 2 or more types in Sn, Zn, and Al.
  • the copper alloy contains “Sn and does not substantially contain Zn and Al, that is, the Sn content is 0.01% by mass or more, and the Zn content and the Al content are any. Even if the copper alloy is less than 0.01% by mass, “Zn is contained and Sn and Al are not substantially contained, that is, the Zn content is 0.01% by mass or more and Sn”.
  • a copper alloy having a Sn content and an Al content of 0.01% by mass or more and a Zn content of less than 0.01% by mass includes “Zn and Al”.
  • the copper alloy substantially does not contain Sn, that is, the Zn content and the Al content are both 0.01% by mass or more and the Sn content is less than 0.01% by mass.
  • a copper alloy having a Sn content, a Zn content, and an Al content of 0.01% by mass or more may be used.
  • the copper alloy according to the copper alloy seamless pipe of the present invention is preferably further represented by the following formula (2): (2) 0.40 ⁇ A (In the formula, A is as defined above.) And the Zr content is 0.06% by mass or less and is a copper alloy for seamless pipes.
  • the copper alloy according to the copper alloy seamless pipe of the present invention contains Zr and any one or more elements of Sn, Zn and Al as essential elements, and the remainder Cu and inevitable impurities
  • Sn, Zn and Al have the effect of improving the strength of the copper alloy by solid solution strengthening and the effect of improving the ductility at room temperature.
  • these elements are advantageous in production because they can be alloyed at a relatively low temperature.
  • Zr has the effect of improving the strength of the copper alloy by precipitation strengthening. Further, in Zr, on the premise that the brazing temperature does not become excessively high, Zr precipitates remain, and there is an effect of reducing the strength reduction by suppressing the coarsening of crystal grains.
  • the content of Zr is 0.01 to 0.08 mass%.
  • the content of Zr in the copper alloy is less than 0.01% by mass, the effect of suppressing the coarsening of the crystal grains is small, the strength decrease due to brazing becomes large, and the solid solution strengthening by Sn, Zn and Al Even if the precipitation strengthening by Zr is combined, the strengthening of the copper alloy becomes insufficient.
  • the content of Zr in the copper alloy exceeds 0.08% by mass, excessive precipitation hardening occurs, which causes a decrease in workability. For example, problems such as a hairpin bending process under severe bending conditions and a decrease in workability of the pipe end pipe expansion process occur.
  • a + 2B is 0.4 to 0.85, that is, the following formula (1): (1) 0.4 ⁇ A + 2B ⁇ 0.85 Meet. Even if the content of Zr in the copper alloy is 0.08% by mass or less, if the total content of Sn, Zn and Al is too large, work hardening becomes remarkable, and workability, in particular, cold drawing. Workability deteriorates, and it becomes necessary to add an intermediate annealing step, resulting in an increase in cost, and it becomes impossible to secure a sufficient workability by cold working for obtaining a fine and uniform precipitation state by aging precipitation. For this reason, A + 2B needs to be 0.85 or less.
  • A is 0.40 or more, that is, the following formula (2): (2) 0.40 ⁇ A And the Zr content is 0.06% by mass or less, particularly preferably A is 0.43 or more, that is, the following formula (2a): (2a) 0.43 ⁇ A And the Zr content is 0.06% by mass or less.
  • a copper alloy containing a precipitation strengthening element such as Zr like the copper alloy according to the copper alloy seamless pipe of the present invention, the strength is improved by aging precipitation, but the ductility is lowered.
  • the upper limit of the Zr content is set to 0.08% by mass in order to suppress the obstruction of workability due to the decrease in ductility, but severe workability is required. If, for example, the hairpin bending process under severe bending conditions, the pipe end pipe expansion process, and the difficult-to-process inner groove shape due to the demand for high performance are produced by rolling, sufficient workability is achieved.
  • the Zr content is 0.01 to 0.06% by mass
  • the Zr content is 0.06% by mass.
  • the content of P in the copper alloy according to the copper alloy seamless pipe of the present invention is preferably 0.004 to 0.040% by mass, particularly 0.015 to 0.030% by mass. preferable. It is shown that the deoxidation in the material is sufficient when the copper alloy contains 0.004% by mass or more of the P element. And when there is too much content of P in a copper alloy, since the thermal conductivity of a copper alloy will become low, especially in the case of a heat exchanger tube, content of P in a copper alloy is 0.040 mass%. The following is preferred.
  • the average grain size of the copper alloy is 30 ⁇ m or less, and the distribution density of Zr-based precipitates having a size of 0.5 to 80 nm is 10 to 600 / ⁇ m 2 . is there.
  • the copper alloy seamless pipe of the present invention is a seamless pipe used for brazing in the manufacture of a heat exchanger or the like. This brazing method includes in-furnace brazing and hand brazing. However, in both cases, the seamless pipe used for brazing is at a temperature of 750 to 900 ° C. for a maximum of 900 seconds. Will be exposed. During this brazing, fine Zr-based precipitates are re-dissolved, so that the crystal grains of the copper alloy become coarse, and the strength of the seamless pipe is reduced by brazing.
  • the average crystal grain size before brazing and the size and distribution density of the Zr-based precipitates are within an appropriate range, that is, the average crystal grain size of the copper alloy is 30 ⁇ m or less.
  • the distribution density of the Zr-based precipitates having a size of 0.5 to 80 nm to 10 to 600 / ⁇ m 2 , it is possible to suppress a decrease in strength of the copper alloy seamless pipe due to brazing.
  • Dispersion of fine Zr-based precipitates has an effect of suppressing movement of crystal grain boundaries by a pinning effect and suppressing coarsening of crystal grains. Since the fine Zr-based precipitates partially dissolve during brazing heating, the pinning effect is reduced, leading to crystal grain growth.
  • brazing is performed.
  • the size and distribution density of the Zr-based precipitates before heating within an appropriate range, the reduction in the pinning effect due to brazing heating can be reduced. Therefore, in the copper alloy seamless pipe of the present invention, the crystal grains are kept fine even after being held at a high temperature by brazing, and the dispersion state of the Zr-based precipitates contributing to the strength is also maintained.
  • the average grain size of the copper alloy according to the copper alloy seamless pipe of the present invention is 30 ⁇ m or less. As described above, since the copper alloy seamless pipe of the present invention is subjected to brazing, the average grain size of the copper alloy after aging treatment and before brazing is 30 ⁇ m or less. If the average crystal grain size of the copper alloy exceeds the above range, no matter how much the distribution state of the Zr-based precipitates can be optimized and the coarsening of the crystal grains can be suppressed, the original crystal grains are large, so brazing The subsequent crystal grain size will deviate from the preferred range.
  • the Zr-based precipitate of the copper alloy according to the copper alloy seamless pipe of the present invention is a precipitate composed of Zr and Cu such as Cu 3 Zr and CuZr, or Zr, Cu and one or more other metal elements It is the deposit comprised by.
  • the size of the Zr-based precipitate that exhibits the pinning effect even after brazing heating is 0.5 to 80 nm. If the size of the Zr-based precipitate is less than the above range, it will be dissolved again and disappear during brazing heating, or it will be reduced to a size that does not contribute to strength improvement. Further, if the size of the Zr-based precipitate exceeds the above range, the crystal grain boundary pinning effect during brazing heating cannot be sufficiently obtained.
  • the distribution density of the Zr-based precipitates having a size of 0.5 to 80 nm is 10 to 600 / ⁇ m 2 .
  • the distribution density of the Zr-based precipitates of the above size is less than the above range, the number of precipitates for sufficiently obtaining the pinning effect of the crystal grain boundaries is insufficient, and the coarsening of the crystal grains occurs during brazing heating, The strength after brazing decreases.
  • the distribution density of the Zr-based precipitates of the above size exceeds the above range, not only the pinning effect can be expected to be further improved, but also the workability is lowered, and hairpin bending workability and tube End pipe workability will be reduced.
  • Particularly effective for the grain boundary pinning effect is that the distribution density of the Zr-based precipitates having a size of 0.5 to 10 nm is 100 to 600 / ⁇ m 2 .
  • a Zr-based precipitate having a size less than the above range or a Zr-based precipitate having a size exceeding the above range may exist. That is, even if a Zr-based precipitate having a size less than the above range or a Zr-based precipitate having a size exceeding the above range is present in the copper alloy, the distribution of the Zr-based precipitate having a size within the above range is present.
  • the density may be in the above range.
  • the copper alloy seamless pipe of the present invention has a small decrease in strength due to brazing because the size and dispersion state of Zr-based precipitates are appropriate.
  • the strength reduction rate represented by the following formula (3) is preferably 5% or less after heating at 800 ° C. for 30 seconds.
  • An intensity reduction rate of 5% or less after heating at 800 ° C. for 30 seconds is an index for enabling thinning compared to the conventional one.
  • Strength reduction rate (%) ((strength before brazing ⁇ strength after brazing) / strength before brazing) ⁇ 100 (3) (In formula (3), the strength is the tensile strength (unit: MPa).) Moreover, it is preferable that the tensile strength before brazing and after brazing is 245 MPa or more.
  • the copper alloy seamless pipe of the present invention has good workability because the contents of Sn, Zn, Al and Zr are appropriate.
  • Examples of the copper alloy seamless pipe according to the present invention include an inner surface smooth pipe (bearing pipe) in which no inner groove is formed and an inner grooved tube in which an inner groove is formed.
  • the method for producing the copper alloy seamless pipe of the present invention will be described.
  • the manufacturing method of the copper alloy seamless pipe according to the first aspect of the present invention is a manufacturing method in the case where the seamless pipe is an inner surface smooth pipe.
  • the manufacturing method of the copper alloy seamless pipe of the 2nd form of this invention is a manufacturing method in case a seamless pipe is an internal grooved pipe.
  • the method for producing a copper alloy seamless pipe according to the first aspect of the present invention includes a casting process, a hot extrusion process, a cold working process, and an aging treatment in order. No intermediate annealing treatment is performed between the hot extrusion step and the aging treatment, The total working degree of the cold working step is 90% or more, It is a manufacturing method of a copper alloy seamless pipe.
  • the casting step, the hot extrusion step, the cold working step, and the aging treatment are performed in this order.
  • the hot extrusion process is performed immediately after the casting process
  • the cold working process is performed immediately after the hot extrusion process
  • the aging treatment is performed immediately after the cold working process.
  • the hot extrusion process is performed after the casting process
  • the cold working process is performed after the hot extrusion process
  • the aging treatment is performed after the cold working process.
  • the manufacturing method of the copper alloy seamless pipe of the second aspect of the present invention includes a casting process, a hot extrusion process, a cold working process, an intermediate annealing process (A), a rolling process process, Aging treatment, in order, No intermediate annealing treatment is performed between the hot extrusion step and the intermediate annealing treatment (A),
  • the total degree of processing of the cold working step is 90% or more, It is a manufacturing method of a copper alloy seamless pipe.
  • a process and this aging treatment are performed in order. Note that performing these in order means that the hot extrusion process is performed immediately after the casting process, the cold working process is performed immediately after the hot extrusion process, and the intermediate annealing treatment ( A) does not mean that the rolling process is performed immediately after the intermediate annealing process (A), and the aging process is performed immediately after the rolling process, but the hot extrusion process is performed after the casting process.
  • the casting process according to the method for producing a copper alloy seamless pipe according to the first aspect of the present invention and the method for producing the copper alloy seamless pipe according to the second aspect of the present invention comprises melting, casting, and This is a step of obtaining a billet in which the above elements are blended in a predetermined content.
  • the ingot of the element contained in the copper alloy and the alloy of the copper alloy according to the copper alloy seamless pipe of the present invention or the alloy of the contained element and copper is used for the copper alloy seamless pipe of the present invention. It mix
  • the fluidity of the molten metal is increased, so that the castability is improved, the occurrence of casting defects such as gas holes is suppressed, and the deoxidation effect is obtained.
  • the oxidation loss during the dissolution of Zr can be reduced.
  • the compounding quantity of P increases too much, since content of P element in a copper alloy will increase too much, thermal conductivity will become low. Therefore, in the casting step, it is preferable to blend P so that the P content in the copper alloy is 0.004 to 0.040% by mass, and 0.015 to 0.030% by mass. It is particularly preferable to blend P.
  • the casting process is performed so that the chemical composition of the seamless pipe obtained by performing the aging treatment as the final process becomes the chemical composition of the copper alloy seamless pipe of the present invention.
  • the billet contains one or more elements of Sn, Zn, and Al and 0.01 to 0.08 mass% of Zr, and is composed of the balance Cu and inevitable impurities, Sn, Zn, Al, and
  • the content of Zr is the following formula (1): (1) 0.4 ⁇ A + 2B ⁇ 0.85 (In the formula, A represents the total content (mass%) of Sn, Zn and Al, and B represents the content (mass%) of Zr.) Meet.
  • the contents of Sn, Zn, Al and Zr in the billet are further represented by the following formula (2): (2) 0.40 ⁇ A (In the formula, A is as defined above.) And the Zr content is 0.06% by mass or less.
  • the billet can also contain P. In this case, the P content is 0.004 to 0.04 mass%.
  • the billet obtained by performing the casting step is then heated.
  • the hot extrusion step of performing an intermediate extrusion process is performed.
  • the billet is heated at a predetermined temperature before the hot extrusion, and then the hot extrusion is performed.
  • the hot extrusion process is performed by mandrel extrusion. That is, hot extruding is performed with a mandrel inserted into a billet that has been previously perforated cold before heating, or a billet that has been perforated hot before extrusion to obtain a seamless hot extruded element tube. .
  • Homogenization can be performed before the hot extrusion step. Further, the heating of the billet before the hot extrusion can be combined with a homogenization treatment.
  • the seamless hot extrusion tube obtained by performing the hot extrusion step is quickly cooled after the hot extrusion step.
  • the cooling is performed by extruding the seamless hot-extrusion element tube into water or by introducing the seamless hot-extrusion element tube after hot extrusion into water.
  • the time from the completion of extrusion in the hot extrusion process to the start of cooling that is, from when the billet passes through the extrusion die until the extruded seamless hot extrusion tube first comes into contact with the cooling water. If the time is too long, Zr deposition occurs during this time.
  • the precipitates at this time are larger and sparsely dispersed than the precipitates precipitated after the aging treatment, and have no effect of preventing the movement of the grain boundaries during the subsequent brazing heating.
  • the time from the completion of extrusion to the start of cooling is preferably 2 seconds or less.
  • cold working of the seamless extruded element pipe after cooling is then performed. And performing the cold working step of reducing the outer diameter and thickness of the tube.
  • the cold working is cold working such as rolling or drawing.
  • cold working such as rolling and drawing can be performed a plurality of times.
  • the cold working step is processing performed cold. Points to all.
  • the method for producing the copper alloy seamless pipe according to the first aspect of the present invention and the method for producing the copper alloy seamless pipe according to the second aspect of the present invention are different. explain.
  • the aging treatment of the seamless element pipe after the cold working obtained by performing the cold working process subsequent to the cold working process is 400 to 650 ° C.
  • the treatment temperature of the aging treatment is 400 to 650 ° C.
  • the total processing degree (cross-sectional reduction rate) is 90% or more.
  • the total degree of work in the cold working step is the seamless element after the last cold working performed in the cold working step with respect to the seamless pipe before the cold working first performed in the cold working step. It indicates the degree of processing of the tube, and is represented by the cross-sectional reduction rate shown in the following formula (4).
  • Cross-sectional reduction rate (%) ((cross-sectional area before processing of pipe ⁇ cross-sectional area after processing of pipe) / (cross-sectional area before processing of pipe)) ⁇ 100 (4)
  • the Zr-based precipitates having a size of 0.5 to 80 nm have a distribution density of 10 to 600 / ⁇ m 2 , and preferably a size of 0.8.
  • the Zr-based precipitates of 5 to 10 nm can be distributed at a distribution density of 100 to 600 / ⁇ m 2 , and the crystal grains after the aging treatment are made fine, that is, the average of the copper alloy
  • the crystal grain size can be 30 ⁇ m or less.
  • the processing strain introduced by cold working becomes the precipitation site of Zr-based precipitates in the aging treatment, so that the working strain introduced can be made uniform and fine by increasing the working degree of the cold working. Thus, a fine and uniform Zr-based precipitate is deposited.
  • the copper alloy seamless pipe of the present invention can be obtained by performing the method for producing the copper alloy seamless pipe of the first aspect of the present invention.
  • the cold-worked seamless pipe obtained by performing the cold-working process subsequent to the cold-working process is obtained by
  • the intermediate annealing treatment (A) is performed by heating to ⁇ 850 ° C.
  • the holding temperature and holding time in the intermediate annealing process (A) are the minimum conditions that allow the predetermined inner surface groove formation by the rolling process, that is, the temperature is as low as possible and the time is as short as possible. Is preferred.
  • the intermediate annealing process (A) is performed, no other heat treatment is performed until the rolling process step is performed. That is, the intermediate annealing process (A) is a heat treatment before the rolling process.
  • the rolling process step of rolling the seamless element pipe after the intermediate annealing treatment (A) is then performed.
  • the rolling process is a process of forming a groove on the inner surface of the pipe material, and a spiral groove is formed on the outer surface of the seamless pipe after the intermediate annealing (A).
  • the rolled plug is placed and pressed from the outside of the tube by a plurality of rolling balls rotating at high speed, and the groove of the rolled plug is transferred to the inner surface of the tube (Japanese Patent Laid-Open No. 2003-191006). See the official gazette).
  • this rolling process process is performed after performing this intermediate annealing process (A), after performing a diameter reduction process.
  • the inner grooved pipe after the rolling process obtained by performing the rolling process step is then subjected to an aging treatment.
  • the treatment temperature of the aging treatment is 400 to 650 ° C.
  • an appropriate size and distribution density of Zr-based precipitates, an appropriate copper alloy, etc. A copper alloy seamless pipe of the present invention having a crystal grain size of The treatment temperature and treatment time of the aging treatment are appropriately selected so as to obtain an appropriate size and distribution density of the Zr-based precipitates and an appropriate crystal grain size of the copper alloy.
  • the copper alloy joint according to the second aspect of the present invention is used.
  • heating before the hot extrusion step is combined with the solubilization treatment.
  • an intermediate annealing process is not performed between this hot extrusion process and this intermediate annealing process (A), but this cold between these
  • the total processing degree (section reduction rate) of the processing process is set to 90% or more.
  • the total degree of processing in the cold working step is the seamless element after the cold working performed last in the cold working step with respect to the seamless tube before the cold working performed first in the cold working step. Refers to the degree of processing of the pipe.
  • the intermediate annealing treatment is not performed after the hot extrusion step and before the intermediate annealing treatment (A).
  • the Zr-based precipitates having a size of 0.5 to 80 nm have a distribution density of 10 to 600 / ⁇ m 2 , preferably The Zr-based precipitates having a size of 0.5 to 10 nm can be distributed at a distribution density of 100 to 600 / ⁇ m 2 , and the crystal grains after the aging treatment can be made fine,
  • the average grain size of the copper alloy can be 30 ⁇ m or less.
  • the processing strain introduced by cold working becomes the precipitation site of Zr-based precipitates in the aging treatment, so that the working strain introduced can be made uniform and fine by increasing the working degree of the cold working.
  • a fine and uniform Zr-based precipitate is deposited.
  • the copper alloy is recrystallized by performing the intermediate annealing treatment (A), but in order to keep the recrystallized grains as fine as possible, such uniform and fine processing strain is possible as much as possible. In order to hold, after performing this hot extrusion process, it does not perform an intermediate annealing process before performing this intermediate annealing process (A).
  • the copper alloy seamless pipe of the present invention can be obtained by performing the method for producing the copper alloy seamless pipe of the second aspect of the present invention.
  • the copper alloy seamless pipe (inner surface smooth pipe) of the present invention produced by the method for producing a copper alloy seamless pipe of the first aspect of the present invention is wound in a coil shape and mainly used for refrigerant piping.
  • the copper alloy seamless pipe (inner grooved pipe) of the present invention produced by the method for producing a copper alloy seamless pipe of the second aspect of the present invention is wound into a coil shape and is used for heat exchanger transmission. It is used for production of a cross fin tube type heat exchanger as a heat tube.
  • the cross fin tube type heat exchanger is configured by integrally assembling an air side aluminum plate fin and a refrigerant side heat transfer tube.
  • a manufacturing process of the cross fin tube heat exchanger will be described.
  • an aluminum plate fin in which a plurality of predetermined assembly holes are formed is produced by pressing or the like.
  • a heat transfer tube is inserted into the assembly hole.
  • the heat transfer tube is produced by subjecting the copper alloy seamless tube of the present invention in which grooves are formed on the inner surface by the rolling process, to a regular cutting and hairpin bending.
  • the heat transfer tube is expanded and fixed to the aluminum plate fin, the end of the heat transfer tube opposite to the side subjected to the hairpin bending process is expanded, the U-bend tube is inserted, brazed, Make a heat exchanger.
  • the seamless tube is subjected to strong processing such as hairpin bending processing and tube end tube expansion processing, and therefore, it is necessary that the workability is good.
  • the strength is not too high.
  • strength fall by brazing is small.
  • a refrigerant pipe for example, in a water heater using a carbon dioxide refrigerant, it is used as a pipe connecting a compressor, an evaporator, an expansion valve, and a radiator that constitute a heat pump cycle.
  • a pipe connection part is produced by expanding one pipe end and inserting the other pipe end into the expanded pipe part, followed by brazing.
  • it is necessary to have good workability because it is subjected to strong processing called tube end tube expansion processing.
  • Example 1 No. 1 to 9, 17 to 26
  • Comparative Example 1 No. 10 to 16
  • the ingredients shown in Table 1 are blended, and an ingot having a diameter of 254 mm is formed using a high frequency melting furnace.
  • the ingot was heated to 930 ° C., and then hot extrusion was performed at this temperature to obtain a tube having an outer diameter of 81 mm ⁇ a wall thickness of 8 mm (extrusion element tube).
  • hot extrusion was performed by underwater extrusion.
  • an average film thickness was determined by a film thickness measurement method using equal thickness interference fringes under the assumption that the film thickness change was linear, and the volume ratio was converted into an area ratio. Note that some Zr-based precipitates have a disk shape, and may be photographed in an elongated shape in an electron micrograph. For this reason, the longest diameter (major axis) in one precipitate image is the size of the precipitate.
  • Rank 1 Less than 10 / ⁇ m 2
  • Rank 2 10-100 / ⁇ m 2
  • Rank 3 100-600 pieces / ⁇ m 2
  • Rank 4 Exceeding 600 / ⁇ m 2
  • Table 2 The results are shown in Table 2.
  • Example 2 (No. 27 to 29) and Comparative Example 2 (No. 30 to 32) Using the ingots of chemical components shown in Table 4, the ingot was then heated to an appropriate temperature of 930 ° C., and then hot extrusion was performed at this temperature to obtain an outer diameter 81 mm ⁇ wall thickness 8 mm tube (extruded element). Tube). In addition, hot extrusion was performed by underwater extrusion. Moreover, it also served as a solution treatment by heating before hot extrusion. Subsequently, cold rolling and cold drawing were performed to obtain a tube having an outer diameter of 9.52 mm and a wall thickness of 0.8 mm (cold drawing tube).
  • an aging treatment was performed in a batch furnace in a non-oxidizing atmosphere under the treatment conditions shown in Table 4 to obtain a seamless tube.
  • No. In Nos. 27 to 31 no intermediate annealing is performed between the hot extrusion and the aging treatment.
  • No. In No. 32 intermediate annealing was performed under the conditions shown in Table 4 between the hot extrusion and the aging treatment. Further, at this time, the total cold working degree of cold rolling and cold drawing, that is, the total working degree (cross section reduction rate) of the cold working step is shown in Table 4.
  • No. 32 is a total cold work degree after intermediate annealing to an aging treatment.
  • Example 3 (No. 33 to 38) Using ingots of the chemical composition shown in Table 6 using ingots or scraps of Cu, Sn, Zn and Al, and Cu—Zr master alloy and Cu—P master alloy, the ingot was then brought to 930 ° C. After heating, hot extrusion was performed at this temperature to obtain a tube having an outer diameter of 81 mm and a wall thickness of 8 mm (extrusion tube). In addition, hot extrusion was performed by underwater extrusion. Moreover, it also served as a solution treatment by heating before hot extrusion.
  • intermediate annealing (A) was performed under the following conditions. ⁇ Conditions for intermediate annealing (A)> Minimum heating rate from 500 ° C to 730 ° C: 10 ° C / second Maximum temperature reached: 800 ° C Holding time at 750 ° C. to 800 ° C .: 2 seconds Minimum cooling rate from 730 ° C. to 500 ° C .: 10 ° C./second Subsequently, rolling was performed to obtain an internally grooved tube having an outer diameter of 7 mm. Table 8 shows the dimensions of the obtained internally grooved tube.
  • an aging treatment was performed at 600 ° C. for 30 minutes in a non-oxidizing atmosphere in a batch furnace to obtain a seamless tube.
  • intermediate annealing is not performed between hot extrusion and intermediate annealing (A).
  • the total cold working degree of cold rolling and cold drawing that is, the total working degree (cross-sectional reduction rate) of the cold working step was 99.2%.
  • Example 1 to 9 and 17 to 26 are examples of the present invention. Since the crystal grain size before brazing and the density of precipitates having a size of 0.5 to 80 nm were appropriate, the workability, the strength before and after brazing, and the strength reduction rate after brazing were good. No. In 1 to 5, 7 to 9, and 17 to 26, the density of precipitates having a size of 0.5 to 10 nm was also good. No. No. 18 has a high P content. Compared with 2, the conductivity was slightly lower and the thermal conductivity was slightly inferior. No. No. 17 has a low P content. Compared with No. 2, deoxidation is not sufficient, and the possibility of occurrence of hydrogen embrittlement is No. 2. Since it becomes high compared with 2, it is not preferable in use.
  • Example 2 comparative example 2
  • No. 27 to 29 are examples of the present invention. Since the crystal grain size before brazing and the density of precipitates having a size of 0.5 to 80 nm were appropriate, the workability, the strength before and after brazing, and the strength reduction rate after brazing were good. No. In No. 30, since the density of precipitates having a size of 0.5 to 80 nm was too low, the crystal grains became coarse during brazing heating, and the strength was greatly reduced. No. No. 31 had low processability because the density of precipitates having a size of 0.5 to 80 nm was too high. No. In No. 32, since the crystal grain size before brazing was too large, the crystal grain size after brazing was large and the strength was low even if the density of the precipitates was appropriate.
  • Example 3 No. 33 to 38 are examples of the present invention. Since the crystal grain size before brazing and the density of precipitates having a size of 0.5 to 80 nm were appropriate, the workability, the strength before and after brazing, and the strength reduction rate after brazing were good.
  • the tube thickness is determined based on the material strength of the brazed heat-affected zone. Since the copper alloy seamless pipe of the present invention has high strength and little strength reduction due to brazing, according to the present invention, it is possible to reduce the thickness of the heat transfer pipe and the refrigerant pipe, and to reduce the influence of brazing heat. It is possible to ensure good workability by preventing unnecessary improvement in strength at a portion where there is not, and suppressing deterioration of workability as the reverse.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Metal Extraction Processes (AREA)
  • Extrusion Of Metal (AREA)

Abstract

 本発明は、強度が高く且つロウ付けによる強度低下が少ない銅合金継目無管を提供するものである。 上記銅合金継目無管は銅合金を加工して得られるものであり、該銅合金は、Sn、Zn及びAlのうちの1種以上の元素と、0.01~0.08質量%のZrと、を含有し、残部Cu及び不可避不純物からなり、該銅合金中のSn、Zn、Al及びZrの含有量が、下記式(1):(1)0.4≦A+2B≦0.85(式中、AはSn、Zn及びAlの合計含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)を満たし、該銅合金継目無管の平均結晶粒度が30μm以下であり、0.5~80nmの大きさのZr系析出物が10~600個/μmで分布していること、を特徴とする。

Description

銅合金継目無管
 本発明は、空調機用熱交換器、冷凍機等の伝熱管又は冷媒配管に使用される銅合金製の継目無管に関する。
 従来より、ルームエアコン、パッケージエアコン等の空調機用熱交換器、冷凍機等の伝熱管又は冷媒配管には、継目無管が多く採用されており、強度や加工性、伝熱性等の諸物性、並びに材料及び加工コストにバランスの取れたりん脱酸銅管(JIS C1220T)が使用されてきた。
 近年、これらの熱交換器では、重量の低減又はコストダウンの要求により、継目無管の薄肉化が必要となってきており、従来のりん脱酸銅管では強度が低いため、薄肉化は難しく、これに替わる銅合金製の継目無管の開発が求められている。
 このような銅合金製の継目無管として、国際公開第2008/041777号公報(特許文献1)には、加工性に優れ、強度が高く、ロウ付けによる強度低下が少ない、銅合金製の継目無管が開示されている。
国際公開第2008/041777号公報(特許請求の範囲)
 特許文献1によれば、加工性に優れ、強度が高く、ロウ付けによる強度低下が少ない、銅合金製の継目無管が得られるものの、更なる性能向上が求められている。特に、熱交換器等の耐圧強度設計においては、ロウ付け熱影響部の材料強度を元に肉厚を決めるため、ロウ付けによる熱強度低下が少ないことが、熱交換器の作製時の加工性を良好に保ちつつ、伝熱管、冷媒管の薄肉化を可能とするため、更に強度が高く且つロウ付けによる強度低下が少ない銅合金継目無管が要求されている。
 従って、本発明は、強度が高く且つロウ付けによる強度低下が少ない銅合金継目無管を提供することにある。
 本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、銅合金に、特定の元素を特定の含有量で含有させ、且つ銅合金の結晶粒度、Zr系析出物の大きさ及び分布密度を適切にすることにより、強度が高く且つロウ付けによる強度低下が少ない銅合金継目無管が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明(1)は、銅合金を加工して得られる銅合金継目無管であり、
 該銅合金は、Sn、Zn及びAlのうちの1種以上の元素と、0.01~0.08質量%のZrと、を含有し、残部Cu及び不可避不純物からなり、
 該銅合金中のSn、Zn、Al及びZrの含有量が、下記式(1):
   (1)0.4≦A+2B≦0.85
(式中、AはSn、Zn及びAlの合計含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たし、
 該銅合金継目無管の平均結晶粒度が30μm以下であり、
 0.5~80nmの大きさのZr系析出物が10~600個/μmで分布していること、
を特徴とする銅合金継目無管を提供するものである。
 本発明によれば、強度が高く且つロウ付けによる強度低下が少ない銅合金継目無管を提供することができる。
実施例3の転造加工後の溝形状を示す図である。
 本発明の銅合金継目無管は、銅合金を加工して得られる銅合金継目無管であり、
 該銅合金は、Sn、Zn及びAlのうちの1種以上の元素と、0.01~0.08質量%のZrと、を含有し、残部Cu及び不可避不純物からなり、
 該銅合金中のSn、Zn、Al及びZrの含有量が、下記式(1):
   (1)0.4≦A+2B≦0.85
(式中、AはSn、Zn及びAlの合計含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たし、
 該銅合金継目無管の平均結晶粒度が30μm以下であり、
 0.5~80nmの大きさのZr系析出物が10~600個/μmで分布していること、
を特徴とする銅合金継目無管である。
 本発明の銅合金継目無管に係る該銅合金は、Sn、Zn及びAlのうちの1種以上と、0.01~0.08質量%のZrと、を含有し、残部Cu及び不可避不純物からなる銅合金であり、
 該銅合金中のSn、Zn、Al及びZrの含有量が、下記式(1):
  (1)0.4≦A+2B≦0.85
(式中、AはSn、Zn及びAlの合計含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たす継目無管用の銅合金である。
 なお、該銅合金が、Sn、Zn及びAlについては、Sn、Zn及びAlのうちの1種のみを含有してもよいし、あるいは、Sn、Zn及びAlのうちの2種以上を含有してもよい。そして、該銅合金が、Sn、Zn及びAlについて、Sn、Zn及びAlのうちの1種のみを含有する場合は、Aの値は、含有する1種の元素の含有量であり、Sn、Zn及びAlのうちの2種以上を含有する場合は、Aの値は、含有する2種以上の元素の合計含有量である。
 また、該銅合金は、「Snを含有し且つZn及びAlを実質的に含有しない、すなわち、Snの含有量が0.01質量%以上であり且つZnの含有量及びAlの含有量がいずれも0.01質量%未満である銅合金」であっても、「Znを含有し且つSn及びAlを実質的に含有しない、すなわち、Znの含有量が0.01質量%以上であり且つSnの含有量及びAlの含有量がいずれも0.01質量%未満である銅合金」であっても、「Alを含有し且つSn及びZnを実質的に含有しない、すなわち、Alの含有量が0.01質量%以上であり且つSnの含有量及びZnの含有量がいずれも0.01質量%未満である銅合金」であっても、「Sn及びZnを含有し且つAlを実質的に含有しない、すなわち、Snの含有量及びZnの含有量がいずれも0.01質量%以上であり且つAlの含有量が0.01質量%未満である銅合金」であっても、「Sn及びAlを含有し且つZnを実質的に含有しない、すなわち、Snの含有量及びAlの含有量がいずれも0.01質量%以上であり且つZnの含有量が0.01質量%未満である銅合金」であっても、「Zn及びAlを含有し且つSnを実質的に含有しない、すなわち、Znの含有量及びAlの含有量がいずれも0.01質量%以上であり且つSnの含有量が0.01質量%未満である銅合金」であっても、「Snの含有量、Znの含有量及びAlの含有量がいずれも0.01質量%以上である銅合金」であってもよい。
 そして、本発明の銅合金継目無管に係る該銅合金は、好ましくは、更に下記式(2):
  (2)0.40≦A
(式中、Aは、前記と同義である。)
を満たし、且つ、Zrの含有量が0.06質量%以下である継目無管用の銅合金である。
 本発明の銅合金継目無管に係る該銅合金は、Zrと、Sn、Zn及びAlのうちのいずれか1種又は2種以上の元素と、を必須元素として含有し、残部Cu及び不可避不純物からなる銅合金である。
 本発明の銅合金継目無管において、Sn、Zn及びAlには、固溶強化により銅合金の強度を向上させる効果及び常温での延性を向上させる効果がある。また、これらの元素の場合、比較的低温で合金化できるので、製造上有利である。
 本発明の銅合金継目無管において、Zrには、析出強化により銅合金の強度を向上させる効果がある。また、Zrには、ロウ付け温度が過剰に高くならない前提では、Zr析出物が残存し、結晶粒の粗大化を抑制することにより、強度低下を小さくする効果がある。
 本発明の銅合金継目無管に係る該銅合金中、Zrの含有量は、0.01~0.08質量%である。銅合金中のZrの含有量が、0.01質量%未満だと、結晶粒粗大化を抑制する効果が小さく、ロウ付けによる強度低下が大きくなり、また、Sn、Zn及びAlによる固溶強化とZrによる析出強化を合わせても銅合金の強化が不十分となる。一方、銅合金中のZrの含有量が、0.08質量%を超えると、過剰な析出硬化が起こり、加工性を低下させる原因となる。例えば、厳しい曲げ条件によるヘアピン曲げ加工や、管端の拡管加工の加工性が低下する、などの問題が生じる。
 本発明の銅合金継目無管に係る該銅合金では、A+2Bは0.4~0.85であること、すなわち、下記式(1):
  (1)0.4≦A+2B≦0.85
を満たす。
 銅合金中のZrの含有量が0.08質量%以下であっても、Sn、Zn及びAlの合計含有量が多過ぎると、加工硬化が著しくなり、加工性、特に、冷間での引き抜き加工性が悪くなり、中間焼鈍工程を追加する必要が生じ、コスト増大を招くとともに、時効析出によって微細で均一な析出状態を得るための、冷間加工による十分な加工度が確保できなくなる。このため、A+2Bを0.85以下とする必要がある。また、A+2Bを0.4以上とし、且つ、Zrの含有量を0.01質量%以上とすることにより、厳しい加工性が必要となる場合でも、銅合金継目無管の強度を最低限維持することができる。一方、A+2Bが0.4未満だと、銅合金継目無管の強度が不足する。
 本発明の銅合金継目無管に係る該銅合金では、好ましくはAが0.40以上であること、すなわち、下記式(2):
  (2)0.40≦A
を満たし、且つ、Zrの含有量が0.06質量%以下であり、特に好ましくはAが0.43以上であること、すなわち、下記式(2a):
  (2a)0.43≦A
を満たし、且つ、Zrの含有量が0.06質量%以下である。本発明の銅合金継目無管に係る該銅合金のように、Zr等の析出強化元素を含む銅合金の場合、時効析出によって強度が向上する一方、延性低下を引き起こす。本発明の銅合金継目無管に係る該銅合金では、延性の低下による加工性の阻害を抑えるべく、Zrの含有量の上限を0.08質量%としてはいるが、厳しい加工性が必要となる場合、例えば、厳しい曲げ条件によるヘアピン曲げ加工や、管端の拡管加工や、高性能化の要求により難加工の内面溝形状を転造加工によって作製する場合などにおいては、十分な加工性を維持するために、SnやZnやAlを積極的に添加することが望ましい。Sn、Zn及びAlは、前記のように、常温での延性を向上させる効果があり、Zrの含有量が0.01~0.06質量%の場合、Zrの含有量を0.06質量%以下とし、且つ、Sn、Zn及びAlの合計量を0.40質量%以上とすることにより、加工性改善効果を奏する。
 本発明の銅合金継目無管に係る該銅合金中のPの含有量は、0.004~0.040質量%であることが好ましく、0.015~0.030質量%であることが特に好ましい。銅合金が、P元素を0.004質量%以上含有することにより、材料中の脱酸が十分であることが示される。そして、銅合金中のPの含有量が、多すぎると、銅合金の熱伝導性が低くなるので、伝熱管用の場合は特に、銅合金中のPの含有量は、0.040質量%以下が好ましい。
 本発明の銅合金継目無管では、該銅合金の平均結晶粒度は30μm以下であり、且つ、大きさが0.5~80nmのZr系析出物の分布密度が10~600個/μmである。本発明の銅合金継目無管は、熱交換器等の製造において、ロウ付けに供される継目無管である。このロウ付けの方法としては、炉中ロウ付け、手ロウ付けが挙げられるが、いずれも、ロウ付けに供される継目無管は極部的に、750~900℃の温度に、最長900秒間曝されることになる。このロウ付けの間に、微細なZr系析出物の再固溶が起こるため、銅合金の結晶粒は粗大化し、ロウ付けにより継目無管の強度低下が起こる。
 そこで、本発明の銅合金継目無管では、ロウ付け前の平均結晶粒度と、Zr系析出物の大きさ及び分布密度とを、適切な範囲、すなわち、銅合金の平均結晶粒度は30μm以下とし、且つ、大きさが0.5~80nmのZr系析出物の分布密度を10~600個/μmにすることにより、ロウ付けによる銅合金継目無管の強度低下を抑制することができる。微細なZr系析出物が分散していることによって、結晶粒界の移動をピン止め効果で抑制し、結晶粒の粗大化を抑制する効果がある。微細なZr系析出物は、ロウ付け加熱中に部分的に固溶していくために、ピン止め効果は低減し、結晶粒成長を招くものの、本発明の銅合金継目無管では、ロウ付け加熱前のZr系析出物の大きさ及び分布密度を適切な範囲にすることにより、ロウ付け加熱によるピン止め効果の減少を少なくすることができる。そのため、本発明の銅合金継目無管では、ロウ付けにより高温で保持された後でも、結晶粒は微細なまま保持されるとともに、強度に寄与するZr系析出物の分散状態も維持される。
 本発明の銅合金継目無管に係る該銅合金の平均結晶粒度は、30μm以下である。前述したように、本発明の銅合金継目無管は、ロウ付けに供されるので、時効処理後且つロウ付け前の該銅合金の平均結晶粒度が、30μm以下である。銅合金の平均結晶粒度が上記範囲を超えると、いくらZr系析出物の分布状態を適正化し、結晶粒の粗大化を抑制することができても、元の結晶粒が大きいために、ロウ付け後の結晶粒径は好ましい範囲から外れることとなる。
 本発明の銅合金継目無管に係る該銅合金のZr系析出物は、CuZr、CuZr等のZrとCuとによって構成される析出物又はZrとCuと他の1種以上の金属元素によって構成される析出物である。
 本発明の銅合金継目無管において、ロウ付け加熱後もピン止め効果を発揮する該Zr系析出物の大きさは、0.5~80nmである。該Zr系析出物の大きさが上記範囲未満だと、ロウ付け加熱時に再固溶し消失してしまう、もしくは強度向上に寄与しない大きさまで小さくなってしまう。また、該Zr系析出物の大きさが上記範囲を超えると、ロウ付け加熱時の結晶粒界のピン止め効果が十分に得られない。
 本発明の銅合金継目無管に係る該銅合金では、大きさが0.5~80nmの該Zr系析出物の分布密度は、10~600個/μmである。上記大きさのZr系析出物の分布密度が上記範囲未満だと、結晶粒界のピン止め効果を十分に得るための析出物の数が不足し、ロウ付け加熱時に結晶粒の粗大化が起こって、ロウ付け後の強度が低下する。また、上記大きさのZr系析出物の分布密度が上記範囲を超えてもピン止め効果のそれ以上の向上は期待できないばかりでなく、加工性を低下させる原因ともなり、ヘアピン曲げ加工性や管端拡管加工性が低下してしまう。特に結晶粒界ピン止め効果に効果的なのは、大きさが0.5~10nmの該Zr系析出物の分布密度が100~600個/μmである。
 本発明の銅合金継目無管に係る該銅合金では、上記範囲未満の大きさのZr系析出物又は上記範囲を超える大きさのZr系析出物が存在していてもよい。つまり、銅合金中に、上記範囲未満の大きさのZr系析出物又は上記範囲を超える大きさのZr系析出物が存在していても、上記範囲内の大きさのZr系析出物の分布密度が上記範囲内であればよい。
 本発明の銅合金継目無管は、Zr系析出物の大きさ及び分散状態が適切化されているために、ロウ付けによる強度の低下が小さい。具体的には、下記式(3)に示す強度低下率が、800℃で30秒間の加熱後において、5%以下であることが好ましい。800℃で30秒間の加熱後において、強度低下率が5%以下であることが、従来のものに比べ薄肉化を可能とするための指標となる。
 強度低下率(%)=((ロウ付け前の強度-ロウ付け後の強度)/ロウ付け前の強度)×100   (3)
(式(3)中、強度は、引張強さ(単位:MPa)である。)
 また、ロウ付け前及びロウ付け後の引張強さは245MPa以上であることが好ましい。
 また、本発明の銅合金継目無管は、Sn、Zn、Al及びZrの含有量が適切化されているため、加工性が良好である。
 本発明の銅合金継目無管の形態例としては、内面溝が形成されていない内面平滑管(ベアー管)及び内面溝が形成されている内面溝付管がある。
 本発明の銅合金継目無管の製造方法について述べる。本発明の第一の形態の銅合金継目無管の製造方法は、継目無管が内面平滑管である場合の製造方法である。また、本発明の第二の形態の銅合金継目無管の製造方法は、継目無管が内面溝付管である場合の製造方法である。
 本発明の第一の形態の銅合金継目無管の製造方法は、鋳造工程と、熱間押出工程と、冷間加工工程と、時効処理と、を順に行い、
 該熱間押出工程と該時効処理との間には中間焼鈍処理を行わず、
 該冷間加工工程の総加工度が90%以上である、
銅合金継目無管の製造方法である。
 本発明の第一の形態の銅合金継目無管の製造方法では、該鋳造工程と、該熱間押出工程と、該冷間加工工程と、該時効処理と、を順に行う。なお、これらを順に行うとは、該鋳造工程の直後に該熱間押出工程を、該熱間押出工程の直後に該冷間加工工程を、該冷間加工工程の直後に該時効処理を行うということではなく、該鋳造工程より後に該熱間押出工程を、該熱間押出工程より後に該冷間加工工程を、該冷間加工工程より後に該時効処理を行うということを指す。
 また、本発明の第二の形態の銅合金継目無管の製造方法は、鋳造工程と、熱間押出工程と、冷間加工工程と、中間焼鈍処理(A)と、転造加工工程と、時効処理と、を順に行い、
 該熱間押出工程と該中間焼鈍処理(A)との間には中間焼鈍処理を行わず、
 該冷間加工工程の総加工度が、90%以上である、
銅合金継目無管の製造方法である。
 本発明の第二の形態の銅合金継目無管の製造方法では、該鋳造工程と、該熱間押出工程と、該冷間加工工程と、該中間焼鈍処理(A)と、該転造加工工程と、該時効処理と、を順に行う。なお、これらを順に行うとは、該鋳造工程の直後に該熱間押出工程を、該熱間押出工程の直後に該冷間加工工程を、該冷間加工工程の直後に該中間焼鈍処理(A)を、該中間焼鈍処理(A)の直後に該転造加工工程を、該転造加工工程の直後に該時効処理を行うということではなく、該鋳造工程より後に該熱間押出工程を、該熱間押出工程より後に該冷間加工工程を、該冷間加工工程より後に該中間焼鈍処理(A)を、該中間焼鈍処理(A)より後に該転造加工工程を、該転造加工工程より後に該時効処理を行うということを指す。
 本発明の第一の形態の銅合金継目無管の製造方法の該鋳造工程から該冷間加工工程までと、本発明の第二の形態の銅合金継目無管の製造方法の該鋳造工程から該冷間加工工程までとは、同様である。
 本発明の第一の形態の銅合金継目無管の製造方法及び本発明の第二の形態の銅合金継目無管の製造方法に係る該鋳造工程は、常法に従って、溶解、鋳造し、所定の元素が所定の含有量で配合されているビレットを得る工程である。該鋳造工程では、例えば、銅の地金及び本発明の銅合金継目無管に係る該銅合金の含有元素の地金又は該含有元素と銅の合金を、本発明の銅合金継目無管の銅合金中の含有量が、所定の含有量となるように配合して、成分調整を行い、次いで、高周波溶解炉等を用いて、ビレットを鋳造する。
 Zrは活性な金属なので、溶解時の酸化ロスが多くなるため、成分調整においては、Zrの溶解時の酸化ロスを考慮した配合が必要である。
 また、該鋳造工程では、Pを配合することにより、溶湯の流動性が高くなるので、鋳造性が高くなり、ガス孔等の鋳造欠陥の発生が抑制され、また、脱酸効果が得られるので、上記Zrの溶解時の酸化ロスを少なくすることができる。そして、Pの配合量が多くなりすぎると、銅合金中のP元素の含有量が多くなりすぎるため、熱伝導性が低くなる。そのため、該鋳造工程では、銅合金中のP含有量が、0.004~0.040質量%となるようにPを配合することが好ましく、0.015~0.030質量%となるようにPを配合することが特に好ましい。
 詳細には、該鋳造工程では、最終の工程である該時効処理を行うことにより得られる継目無管の化学組成が、本発明の銅合金継目無管の化学組成となるように、該鋳造工程を行うことにより得られる該ビレットの化学組成を調節する。該ビレットは、Sn、Zn及びAlのうちの1種以上の元素と、0.01~0.08質量%のZrと、を含有し、残部Cu及び不可避不純物からなり、Sn、Zn、Al及びZrの含有量が、下記式(1):
  (1)0.4≦A+2B≦0.85
(式中、AはSn、Zn及びAlの合計含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たす。好ましくは、該ビレット中のSn、Zn、Al及びZrの含有量が、更に、下記式(2):
  (2)0.40≦A
(式中、Aは、前記と同義である。)
を満たし、且つ、Zrの含有量が0.06質量%以下である。また、該ビレットは、Pを含有することもでき、その場合のPの含有量は0.004~0.04質量%である。
 本発明の第一の形態の銅合金継目無管の製造方法及び本発明の第二の形態の銅合金継目無管の製造方法では、次いで、該鋳造工程を行うことにより得られたビレットを熱間押出加工する該熱間押出工程を行う。該熱間押出工程では、該熱間押出加工前に該ビレットを所定の温度で加熱した後、該熱間押出加工を行う。該熱間押出加工は、マンドレル押出によって行われる。すなわち、加熱前に、冷間で予め穿孔したビレット、あるいは、押出前に熱間で穿孔したビレットに、マンドレルを挿入した状態で、熱間押出を行なって、継目無熱間押出素管を得る。
 該熱間押出工程の前に、均質化処理を行うことができる。また、該熱間押出加工前のビレットの加熱に、均質化処理を兼ねさせることもできる。
 該熱間押出工程を行うことにより得られた該継目無熱間押出素管を、該熱間押出工程後、速やかに冷却する。該冷却は、該継目無熱間押出素管を水中へ押し出すこと又は熱間押出後の該継目無熱間押出素管を水中へ投入することによって、行われる。該熱間押出工程での押出完了時から冷却開始までの時間、すなわち、該ビレットが押出ダイスを通過してから、押し出された該継目無熱間押出素管が最初に冷却水に接触するまでの時間が長過ぎると、この間にZrの析出が起こる。そして、このときの析出物は、該時効処理後に析出する析出物に比べ、大きく且つ分散状態もまばらであって、あとのロウ付け加熱時の結晶粒界の移動を阻止する効果はなく、また、あとの時効処理によって微細に析出するためのZrを消費してしまうことになり、このような析出を極力避けるべきである。そのため、押出完了時から冷却開始まで時間を極力短くすることが好ましい。具体的には、押出完了時から冷却開始まで時間は、2秒以下が好ましい。
 本発明の第一の形態の銅合金継目無管の製造方法及び本発明の第二の形態の銅合金継目無管の製造方法では、次いで、冷却後の継目無押出素管の冷間加工を行い、管の外径及び肉厚を減じていく該冷間加工工程を行う。該冷間加工は、圧延加工や抽伸加工等の冷間加工である。また、該冷間加工工程では、該圧延加工や該抽伸加工等の冷間加工を、複数回行うことができる。なお、本発明の第一の形態の銅合金継目無管の製造方法及び本発明の第二の形態の銅合金継目無管の製造方法では、該冷間加工工程とは、冷間で行う加工の全てを指す。
 該冷間加工工程より後は、本発明の第一の形態の銅合金継目無管の製造方法と、本発明の第二の形態の銅合金継目無管の製造方法とでは、異なるので、それぞれ説明する。
 本発明の第一の形態の銅合金継目無管の製造方法では、該冷間加工工程に次いで、該冷間加工工程を行うことにより得られた冷間加工後の継目無素管の時効処理を行う。該時効処理の処理温度は、400~650℃の温度であり、400~650℃の処理温度で時効処理を行うことにより、適切なZr系析出物の大きさ及び分布密度や、適切な銅合金の結晶粒度を有する本発明の銅合金継目無管を得る。なお、該時効処理の処理温度及び処理時間は、適切なZr系析出物の大きさ及び分布密度や、適切な銅合金の結晶粒度となるように、適宜選択される。
 なお、該時効処理を行うためには、該時効処理を行う前に、Zrを銅マトリックスに固溶させるための溶体化処理を行う必要があるが、本発明の第一の形態の銅合金継目無管の製造方法では、該熱間押出工程前の加熱に、該溶解化処理を兼ねさせる。
 そして、本発明の第一の形態の銅合金継目無管の製造方法では、該熱間押出工程と該時効処理との間には、中間焼鈍処理を行わず、この間の該冷間加工工程の総加工度(断面減少率)を90%以上とする。なお、該冷間加工工程の総加工度とは、該冷間加工工程で最初に行う冷間加工前の継目無素管に対する該冷間加工工程で行う最後の冷間加工後の継目無素管の加工度を指し、下記式(4)に示す断面減少率で表す。
   断面減少率(%)=((管の加工前の断面積-管の加工後の断面積)/(管の加工前の断面積))×100   (4)
 本発明の第一の銅合金継目無管の製造方法では、該熱間押出工程を行った後、該時効処理を行う前までの間には、中間焼鈍処理を行わず、且つ、該冷間加工工程の総加工度を上記範囲とすることにより、大きさが0.5~80nmの該Zr系析出物を、分布密度が10~600個/μmで、好ましくは、大きさが0.5~10nmの該Zr系析出物を、分布密度が100~600個/μmで分布させることができ、また、該時効処理後の結晶粒を微細にすること、つまり、該銅合金の平均結晶粒度を30μm以下にすることができる。冷間加工により導入される加工歪は、該時効処理でのZr系析出物の析出場所となるので、該冷間加工の加工度を大きくすることにより、導入される加工歪が均一且つ微細になり、微細で均一なZr系析出物が析出する。
 このように、本発明の第一の形態の銅合金継目無管の製造方法を行うことにより、本発明の銅合金継目無管を得ることができる。
 本発明の第二の形態の銅合金継目無管の製造方法では、該冷間加工工程に次いで、該冷間加工工程を行うことにより得られた冷間加工後の継目無素管を、500~850℃に加熱する該中間焼鈍処理(A)を行う。該中間焼鈍処理(A)を行うことにより、該転造加工工程での転造加工をし易くする。該中間焼鈍処理(A)における保持温度及び保持時間は、該転造加工工程によって所定の内面溝形成の加工が可能となる最低限の条件、すなわち、できるだけ温度を低く、できるだけ時間を短くすることが好ましい。本発明の第二の形態の銅合金継目無管の製造方法では、該中間焼鈍処理(A)を行った後、該転造加工工程を行うまでは、他の熱処理を行わない。つまり、該中間焼鈍処理(A)は、該転造加工工程の前の熱処理である。
 本発明の第二の形態の銅合金継目無管の製造方法では、次いで、該中間焼鈍処理(A)後の継目無素管を転造加工する該転造加工工程を行う。該転造加工は、管材料の内面に、内面溝を形成させる転造加工を行う工程であり、該中間焼鈍処理(A)後の継目無素管内に、外面にらせん状の溝加工を施した転造プラグを配置して、高速回転する複数の転造ボールによって、管の外側から押圧して、管の内面に転造プラグの溝を転写することにより行われる(特開2003-191006号公報参照)。また、通常、該中間焼鈍処理(A)を行った後、縮径加工を行ってから、該転造加工工程を行う。
 本発明の第二の形態の銅合金継目無管の製造方法では、次いで、該転造加工工程を行うことにより得られた転造加工後の内面溝付管の時効処理を行う。該時効処理の処理温度は、400~650℃の温度であり、400~650℃の処理温度で時効処理を行うことにより、適切なZr系析出物の大きさ及び分布密度や、適切な銅合金の結晶粒度を有する本発明の銅合金継目無管を得る。なお、該時効処理の処理温度及び処理時間は、適切なZr系析出物の大きさ及び分布密度や、適切な銅合金の結晶粒度となるように、適宜選択される。
 なお、該時効処理を行うためには、該時効処理を行う前に、Zrを銅マトリックスに固溶させるための溶体化処理を行う必要があるが、本発明の第二の形態の銅合金継目無管の製造方法では、該熱間押出工程前の加熱に、該溶解化処理を兼ねさせる。
 そして、本発明の第二の形態の銅合金継目無管の製造方法では、該熱間押出工程と該中間焼鈍処理(A)との間には中間焼鈍処理を行わず、この間の該冷間加工工程の総加工度(断面減少率)を90%以上とする。なお、該冷間加工工程の総加工度とは、該冷間加工工程で最初に行う冷間加工前の継目無素管に対する該冷間加工工程で最後に行う冷間加工後の継目無素管の加工度を指す。
 本発明の第二の形態の銅合金継目無管の製造方法では、該熱間押出工程を行った後、該中間焼鈍処理(A)を行う前までの間には、中間焼鈍処理を行わず、且つ、該冷間加工工程の総加工度を上記範囲とすることにより、大きさが0.5~80nmの該Zr系析出物を、分布密度が10~600個/μmで、好ましくは、大きさが0.5~10nmの該Zr系析出物を、分布密度が100~600個/μmで分布させることができ、また、該時効処理後の結晶粒を微細にすること、つまり、該銅合金の平均結晶粒度を30μm以下にすることができる。冷間加工により導入される加工歪は、該時効処理でのZr系析出物の析出場所となるので、該冷間加工の加工度を大きくすることにより、導入される加工歪が均一且つ微細になり、微細で均一なZr系析出物が析出する。また、該中間焼鈍処理(A)を行うことにより、銅合金は再結晶するが、その再結晶粒をできるだけ微細な状態にしておくためには、このような均一且つ微細な加工歪をできる限り保持させるために、該熱間押出工程を行った後、該中間焼鈍処理(A)を行う前までの間には中間焼鈍処理を行わない。
 このように、本発明の第二の形態の銅合金継目無管の製造方法に行うことにより、本発明の銅合金継目無管を得ることができる。
 本発明の第一の形態の銅合金継目無管の製造方法により作製された本発明の銅合金継目無管(内面平滑管)は、コイル状に巻き取られ、主として、冷媒配管用に供される。また、本発明の第二の形態の銅合金継目無管の製造方法により作製された本発明の銅合金継目無管(内面溝付管)は、コイル形状に巻き取られ、熱交換器用の伝熱管としてクロスフィンチューブ型熱交換器の作製に供される。
<本発明の銅合金継目無管が、クロスフィンチューブ型熱交換器用の伝熱管に供される場合>
 該クロスフィンチューブ型熱交換器は、空気側のアルミニウムプレートフィンと冷媒側の伝熱管が、一体に組付けられて構成されている。
 該クロスフィンチューブ型熱交換器の製造工程について説明する。該クロスフィンチューブ型熱交換器の製造工程では、先ず、プレス加工等により、所定の組付け孔が複数形成されたアルミニウムプレートフィンを作製する。
 次いで、得られたアルミニウムプレートフィンを積層した後、該組付け孔の内部に、伝熱管を挿通する。該伝熱管は、該転造加工工程によって内面に溝が形成された本発明の銅合金継目無管を、定尺切断及びヘアピン曲げを加工して作製される。
 次いで、該伝熱管を、該アルミニウムプレートフィンに拡管固着し、ヘアピン曲げ加工を施した側とは反対側の伝熱管端部を拡管加工して、Uベンド管を挿通後、ロウ付けして、熱交換器を作製する。
 このような製造工程中で、継目無管は、ヘアピン曲げ加工や管端拡管加工という強加工が施されるため、加工性が良好であることが必要である。加工性が良好であることの裏返しとして、強度が高過ぎないことが望まれる。このためには、継目無管には、ロウ付けによる強度低下が極力小さいことが必要である。そして、本発明の銅合金継目無管は、上述したように、Zr系析出物の大きさ及び分散密度が適切化されているために、ロウ付けによる強度低下が小さい。
<本発明の銅合金継目無管が、冷媒配管用に供される場合>
 冷媒配管としては、例えば、二酸化炭素冷媒を用いた給湯機においては、ヒートポンプサイクルを構成する圧縮機、蒸発器、膨張弁、放熱器を接続する配管に用いられる。このような配管接続部においては、一方の管端を拡管し、もう一方の管端をこの拡管部に挿入した後、ロウ付けを行うことによって作製される。この場合も、伝熱管として使用される場合と同様に、管端拡管加工という強加工が施されるため、加工性が良好であることが必要である。
 次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
 本発明の銅合金継目無管のうち、内面平滑管の例について説明する。
実施例1(No.1~9、17~26)及び比較例1(No.10~16)
 Cu、Sn、Zn及びAlの地金又はスクラップ、並びにCu-Zr母合金及びCu-P母合金を用いて、表1に示す成分に配合し、高周波溶解炉を用いて径254mmの鋳塊を製造した。
 次いで、該鋳塊を930℃に加熱した後、この温度で、熱間押出を行い、外径81mm×肉厚8mm管(押出素管)とした。なお、熱間押出を、水中押出にて行った。また、熱間押出前の加熱にて溶体化処理を兼ねた。
 次いで、冷間圧延及び冷間抽伸を行い、外径9.52mm×肉厚0.8mm管(冷間抽伸管)を得た。
 次いで、バッチ炉内にて、非酸化性雰囲気中で、600℃で30分間の時効処理を行い、継目無管を得た。
 なお、熱間押出と時効処理との間には、中間焼鈍を行っていない。また、このとき、冷間圧延及び冷間抽伸の合計の冷間加工度、すなわち、冷間加工工程の総加工度(断面減少率)は98.8%であった。
(評価)
1.ロウ付け前の継目無管の組織
<平均結晶粒度>
 実施例1及び比較例1の継目無管について、管の円周方向断面において、JIS H0501に定められた比較法を用いて結晶粒度を測定し、任意の10ヶ所の平均した値を平均結晶粒度とした。その結果を表2に示す。
<Zr系析出物の分布密度>
 透過型電子顕微鏡観察により、Zr系析出物の分布密度の評価を行った。
 電子顕微鏡観察用の試料の調整は、前記実施例1及び比較例1の継目無管より切り出した試料を、まずエメリー紙を用いた湿式研磨により厚さ0.2mmとし、その後、リン酸とメタノールを体積比1:3の割合で混合した溶液を用いて電解研磨を行って薄膜とした。
 そして、得られた薄膜を、加速電圧200kVにて透過型電子顕微鏡観察を行った。
 透過型電子顕微鏡観察では、倍率20000倍で撮影した電子顕微鏡写真の、0.5μm×0.4μmの視野から、大きさ0.5~80nmの析出物の数及び大きさ0.5~10nmの析出物の数をカウントした。析出物のカウントの際には、等厚干渉縞を用いた膜厚測定法により、膜厚変化が線形との仮定のもと、平均膜厚を求め、体積率を面積率に換算した。
 なお、Zr系析出物は円盤状の形態を示すものがあり、電子顕微鏡写真では、細長い形状に撮影されることがある。このため、1個の析出物像にて一番長い径(長径)をその析出物の大きさとした。
 また、析出物の数をカウントするに際し、数が200個を超えるようなものについては、0.5μm×0.4μmの視野の中から、倍率10万倍で撮影した、さらに狭い視野0.1μm×0.08μmを3箇所、任意に選んで、その視野にて析出物のカウントを行い、その平均値にて評価した。
 析出物の密度を下記ランクにて評価した。
  ランク1:10個/μm2未満
  ランク2:10~100個/μm2
  ランク3:100~600個/μm2
  ランク4:600個/μm2超え
 なお、大きさ0.5~80nmの析出物の密度は、ランク2、ランク3が本発明の範囲に該当する。その結果を表2に示す。
2.加工性
 ロウ付け前の継目無管を、円錐状のプラグによる拡管試験により、加工性試験を行った。管端の外径を拡管前の外径の3倍まで拡管した後も、割れが生じなかったものを合格「○」とし、割れが生じたものを不合格「×」とした。その結果を表2に示す。
3.ロウ付け前後の機械的性質
 ロウ付け時の管の温度上昇と同等の条件として、800℃で30秒間の加熱を行い、その加熱前後の機械的性質(引張強さと伸び)を評価した。
 引張試験により機械的性質を評価し、JIS Z2241に準じ、引張強さと伸びを測定した。その結果を、表3に示す。
 また、ロウ付け後の継目無管の組織の平均結晶粒度を、ロウ付け前の継目無管の組織の平均結晶粒度の測定と同様にして、測定した。その結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
実施例2(No.27~29)及び比較例2(No.30~32)
 表4に示す化学成分の鋳塊を用い、次いで、該鋳塊を930℃の適宜の温度に加熱した後、この温度で、熱間押出を行い、外径81mm×肉厚8mm管(押出素管)とした。なお、熱間押出を、水中押出にて行った。また、熱間押出前の加熱にて溶体化処理を兼ねた。
 次いで、冷間圧延及び冷間抽伸を行い、外径9.52mm×肉厚0.8mm管(冷間抽伸管)を得た。
 次いで、バッチ炉内にて、非酸化性雰囲気中で、表4に示す処理条件で時効処理を行い、継目無管を得た。
 なお、No.27~31では、熱間押出と時効処理との間には、中間焼鈍を行っていない。No.32では、熱間押出と時効処理との間にて、中間焼鈍を表4に示す条件にて行った。
 また、このとき、冷間圧延及び冷間抽伸の合計の冷間加工度、すなわち、冷間加工工程の総加工度(断面減少率)を、表4に示す。なお、No.32は、中間焼鈍以降、時効処理までの合計の冷間加工度である。
(評価)
 ロウ付け前の継目無管の組織(平均結晶粒度、Zr系析出物の分布密度)、加工性及びロウ付け前後の継目無管の機械的性質については、実施例1及び比較例1と同様に評価を行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の銅合金継目無管のうち、内面溝付管の例について説明する。
実施例3(No.33~38)
 Cu、Sn、Zn及びAlの地金又はスクラップ、並びにCu-Zr母合金及びCu-P母合金を用いて、表6に示す化学成分の鋳塊を用い、次いで、該鋳塊を930℃に加熱した後、この温度で、熱間押出を行い、外径81mm×肉厚8mm管(押出素管)とした。なお、熱間押出を、水中押出にて行った。また、熱間押出前の加熱にて溶体化処理を兼ねた。
 次いで、冷間圧延及び冷間抽伸を行い、外径9.5mm×肉厚0.5mm管(冷間抽伸管)を得た。
 次いで、下記条件で中間焼鈍(A)を行った。
<中間焼鈍(A)の条件>
  500℃から730℃までの最小昇温速度:10℃/秒
  最高到達温度:800℃
  750℃~800℃での保持時間:2秒
  730℃から500℃までの最小冷却速度:10℃/秒
 次いで、転造加工を行い、外径7mmの内面溝付管を得た。得られた内面溝付管の寸法諸元を表8に示す。
 次いで、バッチ炉内にて、非酸化性雰囲気中で、600℃で30分間の時効処理を行い、継目無管を得た。
 なお、熱間押出と中間焼鈍(A)との間には、中間焼鈍を行っていない。また、このとき、冷間圧延及び冷間抽伸の合計の冷間加工度、すなわち、冷間加工工程の総加工度(断面減少率)は99.2%であった。
(評価)
 ロウ付け前の継目無管の組織(平均結晶粒度、Zr系析出物の分布密度)、加工性及びロウ付け前後の継目無管の機械的性質については、実施例1及び比較例1と同様に評価を行った。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(実施例1、比較例1)
 No.1~9、17~26は、本発明例である。ロウ付け前の結晶粒度、0.5~80nmサイズの析出物の密度が適正であるため、加工性、ロウ付け前後の強度、ロウ付け後の強度低下率が良好であった。
 No.1~5、7~9、17~26は、更に、0.5~10nmサイズの析出物の密度も良好であった。
 No.18は、P含有量が高いため、No.2と比較して、導電率が若干低くなり、熱伝導率が若干劣った。
 No.17は、P含有量が低いため、No.2と比較して、脱酸が十分ではなく、水素脆化の発生の可能性がNo.2と比較例して高くなるので、使用上好ましくない。
 No.10~12は、Zr含有量が高過ぎるために、0.5~80nmサイズの析出物の密度が高くなり過ぎて、加工性が良好でなかった。
 No.13は、Zr含有量が低過ぎるために、0.5~80nmサイズの析出物の密度が低くなり過ぎて、ロウ付け加熱時に結晶粒が粗大化し、強度が低かった。
 No.14、15は、A+2Bの値が低過ぎるために、強度が低かった。
 No.16は、A+2Bの値が高過ぎるために、加工性が低かった。
(実施例2、比較例2)
 No.27~29は、本発明例である。ロウ付け前の結晶粒度、0.5~80nmサイズの析出物の密度が適正であるため、加工性、ロウ付け前後の強度、ロウ付け後の強度低下率が良好であった。
 No.30は、0.5~80nmサイズの析出物の密度が低過ぎたため、ロウ付け加熱時に結晶粒が粗大化し、強度低下も大きかった。
 No.31は、0.5~80nmサイズの析出物の密度が高過ぎたため、加工性が低かった。
 No.32は、ロウ付け前の結晶粒径が大き過ぎたため、析出物の密度は適正であっても、ロウ付け後の結晶粒度が大きく、強度が低くなった。
(実施例3)
 No.33~38は、本発明例である。ロウ付け前の結晶粒度、0.5~80nmサイズの析出物の密度が適正であるため、加工性、ロウ付け前後の強度、ロウ付け後の強度低下率が良好であった。
 熱交換器等の耐圧強度設計においては、ロウ付け熱影響部の材料強度を元に管の肉厚を決める。そして、本発明の銅合金継目無管は、強度が高く且つロウ付けによる強度低下が少ないので、本発明によれば、伝熱管、冷媒管の薄肉化が可能となるとともに、ロウ付け熱影響のない部分で、不必要な強度向上がなく、その裏返しとしての加工性低下が抑制されることによって、良好な加工性を確保することが可能となる。
t      肉厚
h      フィン高さ
α      フィン頂角

Claims (6)

  1.  銅合金を加工して得られる銅合金継目無管であり、
     該銅合金は、Sn、Zn及びAlのうちの1種以上の元素と、0.01~0.08質量%のZrと、を含有し、残部Cu及び不可避不純物からなり、
     該銅合金中のSn、Zn、Al及びZrの含有量が、下記式(1):
       (1)0.4≦A+2B≦0.85
    (式中、AはSn、Zn及びAlの合計含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
    を満たし、
     該銅合金継目無管の平均結晶粒度が30μm以下であり、
     0.5~80nmの大きさのZr系析出物が10~600個/μmで分布していること、
    を特徴とする銅合金継目無管。
  2.  Snの含有量が0.01質量%以上であり且つZnの含有量及びAlの含有量がいずれも0.01質量%未満であることを特徴とする請求項1記載の銅合金継目無管。
  3.  Znの含有量が0.01質量%以上であり且Snの含有量及びAlの含有量がいずれも0.01質量%未満であることを特徴とする請求項1記載の銅合金継目無管。
  4.  Alの含有量が0.01質量%以上であり且Snの含有量及びZnの含有量がいずれも0.01質量%未満であることを特徴とする請求項1記載の銅合金継目無管。
  5.  前記銅合金中のSn、Zn、Al及びZrの含有量が、更に、下記式(2):
      (2)0.40≦A
    (式中、Aは、前記と同義である。)
    を満たし、且つ、Zrの含有量が0.06質量%以下であることを特徴とする請求項1~4いずれか1項記載の銅合金継目無管。
  6.  Pの含有量が0.004~0.04質量%であることを特徴とする請求項1~5いずれか1項記載の銅合金継目無管。
PCT/JP2010/068978 2009-10-28 2010-10-26 銅合金継目無管 WO2011052593A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080047337.8A CN102575319B (zh) 2009-10-28 2010-10-26 铜合金无缝管
MYPI2012001837A MY182025A (en) 2009-10-28 2010-10-26 Copper alloy seamless tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-248148 2009-10-28
JP2009248148A JP5534777B2 (ja) 2009-10-28 2009-10-28 銅合金継目無管

Publications (1)

Publication Number Publication Date
WO2011052593A1 true WO2011052593A1 (ja) 2011-05-05

Family

ID=43922018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068978 WO2011052593A1 (ja) 2009-10-28 2010-10-26 銅合金継目無管

Country Status (6)

Country Link
JP (1) JP5534777B2 (ja)
KR (1) KR20120084744A (ja)
CN (1) CN102575319B (ja)
MY (1) MY182025A (ja)
TW (1) TWI490349B (ja)
WO (1) WO2011052593A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076123A (ja) * 2011-09-30 2013-04-25 Kobelco & Materials Copper Tube Inc 銅合金管
WO2014086543A1 (en) * 2012-12-07 2014-06-12 Luvata Espoo Oy A grooved tube

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638999B2 (ja) * 2010-03-31 2014-12-10 株式会社コベルコ マテリアル銅管 銅合金管
JP5792088B2 (ja) * 2012-02-02 2015-10-07 株式会社コベルコ マテリアル銅管 銅合金管
CN103074513B (zh) * 2012-03-08 2015-06-10 特能传热科技(中山)有限公司 一种热管用材料、其制备方法及应用
JP6244588B2 (ja) * 2013-03-11 2017-12-13 株式会社Uacj 伝熱管用銅合金継目無管
TWI674326B (zh) * 2018-11-19 2019-10-11 財團法人工業技術研究院 銅鋯合金散熱元件及銅鋯合金殼體的製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521530A (en) * 1978-08-01 1980-02-15 Onahama Smelt & Refining Co Ltd High tensile copper alloy with superior heat resistance and conductivity
JP2002146454A (ja) * 2000-11-08 2002-05-22 Mitsubishi Shindoh Co Ltd 不凍液用伝熱管および冷凍装置
JP2005133185A (ja) * 2003-10-31 2005-05-26 Nippon Mining & Metals Co Ltd 析出型銅合金の熱処理方法と析出型銅合金および素材
WO2008041777A1 (fr) * 2006-10-04 2008-04-10 Sumitomo Light Metal Industries, Ltd. Alliage de cuivre pour tuyaux sans soudure
JP2008255381A (ja) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc 耐熱高強度熱交換器用銅合金管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521530A (en) * 1978-08-01 1980-02-15 Onahama Smelt & Refining Co Ltd High tensile copper alloy with superior heat resistance and conductivity
JP2002146454A (ja) * 2000-11-08 2002-05-22 Mitsubishi Shindoh Co Ltd 不凍液用伝熱管および冷凍装置
JP2005133185A (ja) * 2003-10-31 2005-05-26 Nippon Mining & Metals Co Ltd 析出型銅合金の熱処理方法と析出型銅合金および素材
WO2008041777A1 (fr) * 2006-10-04 2008-04-10 Sumitomo Light Metal Industries, Ltd. Alliage de cuivre pour tuyaux sans soudure
JP2008255381A (ja) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc 耐熱高強度熱交換器用銅合金管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076123A (ja) * 2011-09-30 2013-04-25 Kobelco & Materials Copper Tube Inc 銅合金管
WO2014086543A1 (en) * 2012-12-07 2014-06-12 Luvata Espoo Oy A grooved tube

Also Published As

Publication number Publication date
CN102575319B (zh) 2014-12-10
CN102575319A (zh) 2012-07-11
TW201130997A (en) 2011-09-16
KR20120084744A (ko) 2012-07-30
TWI490349B (zh) 2015-07-01
JP5534777B2 (ja) 2014-07-02
MY182025A (en) 2021-01-18
JP2011094174A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
US8986471B2 (en) High strength and high thermal conductivity copper alloy tube and method for producing the same
WO2011052593A1 (ja) 銅合金継目無管
JP4629080B2 (ja) 熱交換器用銅合金管
JP4349640B2 (ja) 継目無管
JP2009024221A (ja) 高強度アルミニウム合金ブレージングシート
JP5464659B2 (ja) 破壊強度および曲げ加工性に優れた熱交換器用銅管
JP2003268467A (ja) 熱交換器用銅合金管
JP2017082301A (ja) 銅合金管の製造方法及び熱交換器
JP4228166B2 (ja) 疲労強度の優れた継目無銅合金管
TWI608110B (zh) 傳熱管用銅合金無縫管
JP6034727B2 (ja) 高強度銅合金管
US11655530B2 (en) Copper alloy tube for heat exchanger with excellent thermal conductivity and breaking strength and method of manufacturing the same
JP5451217B2 (ja) 内面溝付管の製造方法
JP2010065270A (ja) 曲げ加工性に優れた熱交換器用銅合金管
JP2011094175A (ja) 銅合金継目無管
JP2011094176A (ja) 銅合金継目無管
JP6238274B2 (ja) 給水給湯用銅合金継目無管
JP5602707B2 (ja) ろう付け後の強度に優れた高強度銅管
JP5208562B2 (ja) 継目無管
JP2017036468A (ja) 銅合金管
JP2017036467A (ja) 銅合金管
JP6402043B2 (ja) 高強度銅合金管
JP6360363B2 (ja) 銅合金管
JP2016180170A (ja) 銅合金管
JP2016180169A (ja) 銅合金管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047337.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010277

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201001950

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826725

Country of ref document: EP

Kind code of ref document: A1