WO2011052449A1 - 打撃工具 - Google Patents

打撃工具 Download PDF

Info

Publication number
WO2011052449A1
WO2011052449A1 PCT/JP2010/068481 JP2010068481W WO2011052449A1 WO 2011052449 A1 WO2011052449 A1 WO 2011052449A1 JP 2010068481 W JP2010068481 W JP 2010068481W WO 2011052449 A1 WO2011052449 A1 WO 2011052449A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
torque
tool
shaft
striking
Prior art date
Application number
PCT/JP2010/068481
Other languages
English (en)
French (fr)
Inventor
陽之介 青木
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Priority to US13/505,034 priority Critical patent/US9339923B2/en
Priority to BR112012010312A priority patent/BR112012010312A2/pt
Priority to CN201080048824.6A priority patent/CN102596510B/zh
Priority to EP10826581.0A priority patent/EP2497608B1/en
Priority to RU2012122780/02A priority patent/RU2012122780A/ru
Publication of WO2011052449A1 publication Critical patent/WO2011052449A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D16/003Clutches specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D16/006Mode changers; Mechanisms connected thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/06Means for driving the impulse member
    • B25D2211/068Crank-actuated impulse-driving mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2216/00Details of portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D2216/0007Details of percussion or rotation modes
    • B25D2216/0015Tools having a percussion-only mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2216/00Details of portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D2216/0007Details of percussion or rotation modes
    • B25D2216/0023Tools having a percussion-and-rotation mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2216/00Details of portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D2216/0069Locking means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/141Magnetic parts used in percussive tools
    • B25D2250/145Electro-magnetic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/165Overload clutches, torque limiters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/255Switches

Definitions

  • the present invention relates to an impact tool capable of preventing an excessive reaction torque from acting on a tool body when a tool bit is locked unexpectedly.
  • Patent Document 1 a clutch is arranged in a power transmission mechanism that transmits torque of a motor to a tool bit, and the hammer bit is unexpectedly locked during a hammer drill operation.
  • a hammer drill is disclosed in which torque transmission from the motor to the tool bit is interrupted by a clutch to prevent an excessive torque in the direction opposite to the hammer bit rotation direction, that is, a reaction torque from acting on the tool body side.
  • reaction torque prevention technology described in the above publication is a configuration in which a clutch is provided in a power transmission mechanism in which the rotational speed of the motor is reduced. For this reason, the clutch is enlarged to enable transmission of high torque, and there is still room for improvement in this respect.
  • an object of the present invention is to provide an impact tool that contributes to downsizing of a clutch.
  • the tool bit is subjected to a striking operation in the major axis direction and rotating around the major axis, thereby causing the tool bit to perform a predetermined machining operation.
  • a striking tool according to a preferred embodiment of the present invention has, as a characteristic configuration, a tool main body, a motor housed in the tool main body and driving a tool bit, and a rotation speed of the motor in a path for transmitting torque of the motor to the tool bit.
  • the “torque around the long axis of the tool bit generated in the tool body” refers to a torque that acts on the tool body in a direction opposite to the rotation direction of the tool bit, that is, a reaction torque.
  • the “predetermined set torque state” acting on the tool body is determined by measuring the torque value of the shaft on the power transmission path that rotates together with the tool bit with a torque sensor, and whether or not the predetermined torque state is exceeded from the measured value. Or a method of measuring the motion state of the tool body around the long axis direction of the tool bit with a speed sensor or an acceleration sensor, and determining whether or not a predetermined torque state is exceeded from the measured value. Can be recognized.
  • the clutch is provided in the high-rotation low-torque region before the motor rotational speed is decelerated, and the torque load on the clutch is reduced, thereby realizing a reduction in size and weight. .
  • the tool bit is provided on the downstream side of the motor output shaft and the motor output shaft in the path for transmitting the motor torque to the tool bit, and the rotational speed of the motor output shaft is reduced.
  • a clutch shaft provided between the motor output shaft and the power transmission shaft.
  • the clutch is provided on the clutch shaft.
  • the clutch shaft is set between the motor output shaft and the power transmission shaft to which the rotational speed of the motor output shaft is transmitted at a reduced speed, and the clutch is provided on the clutch shaft.
  • the present invention sets a dedicated shaft for mounting the clutch, which increases the degree of freedom in designing the clutch, enables the clutch to be driven at high rotation and low torque, and provides a torque load for the clutch. Is reduced, and a reduction in size and weight is realized.
  • the speed ratio between a motor output shaft and a clutch is set smaller than the reduction ratio between a clutch shaft and a power transmission shaft.
  • the speed ratio between the motor output shaft and the clutch shaft can be arbitrarily set to any one of constant speed, deceleration, and acceleration.
  • the clutch has a striker which is driven linearly by the motor to the long-axis direction of a tool bit, and strikes a tool bit to a long-axis direction.
  • the clutch is arranged closer to the striker axis of the striker than the power transmission area between the clutch shaft and the power transmission shaft.
  • the “power transmission region” typically corresponds to a power transmission region by meshing engagement between gears provided on both shafts.
  • a clutch has a drive side clutch part and a driven side clutch part, torque is transmitted when both clutch parts contact each other, and torque transmission is performed by separating. It is configured to block.
  • the clutch shaft has a drive-side clutch shaft formed with a drive-side clutch portion and a driven-side clutch shaft formed with a driven-side clutch portion, and both shafts are coaxially arranged radially inside and outside. It was.
  • the clutch surface (power transmission surface) of the clutch can be set on the same shaft end side. That is, input and output can be performed on the same shaft end side, thereby enabling the clutch to be disposed close to the striking axis.
  • the axial dimension of the clutch is shortened, and a rational arrangement in a small space becomes possible.
  • an impact driving mechanism for driving the tool bit to strike in the path for transmitting the torque of the motor to the tool bit, an impact driving mechanism for driving the tool bit to strike, a rotational drive mechanism for rotationally driving the tool bit, and a rotational drive by the motor
  • the impact driving mechanism includes an impact drive shaft that drives the impact drive mechanism at all times, and a rotation drive shaft that is rotationally driven by a motor independently of the impact drive shaft and drives the rotation drive mechanism.
  • the striking drive shaft and the rotary drive shaft are arranged coaxially, and the clutch is arranged on the rotary drive shaft.
  • the clutch cuts off torque transmission between the motor and the rotary drive mechanism, and the tool It is possible to prevent an excessive reaction torque from acting on the main body.
  • the clutch is provided on the rotary drive shaft that is driven by the high rotation and low torque of the motor, so that the torque load of the clutch is reduced, and the size and weight of the clutch can be reduced.
  • the impact drive shaft is radially inward.
  • the rotational drive shaft is disposed coaxially with the rotational drive shaft positioned radially outward. According to the present invention, it is possible to reduce the dimension in the major axis direction, and it is possible to rationally arrange in a space-saving manner.
  • the clutch includes a driving side clutch portion, a driven side clutch portion, and a biasing member that biases the clutch portions to be separated from each other to interrupt torque transmission
  • the electromagnetic clutch includes an electromagnetic coil that transmits torque by bringing both clutch portions into contact with each other against the urging force of the urging member when energized.
  • torque transmission between the shafts in the torque transmission path for transmitting torque from the motor to the tool bit is performed by the gear, and the gear is a gear housing chamber in which a lubricant is enclosed. Is housed in.
  • the clutch is configured to be separated from the gear housing chamber. According to the present invention, the slip problem due to the lubricant is solved by arranging the clutch outside the oil so as to be isolated from the gear housing chamber. For this reason, a friction clutch with a quick reaction speed can be used as a clutch.
  • the components of the impact driving mechanism that is driven by the motor to drive the tool bit and the rotary drive mechanism that is driven by the motor to drive the tool bit to rotate are independent of each other. Is set.
  • the hammer drill 101 As shown in FIG. 1 and FIG. 2, the hammer drill 101 according to the present embodiment generally has a main body 103 that forms an outline of the hammer drill 101, and a tip region (left side in the drawing) of the main body 103.
  • a hammer bit 119 detachably attached via a hollow tool holder 137 and a hand grip 109 gripped by an operator connected to the opposite side of the main body 103 to the hammer bit 119 are mainly configured.
  • the hammer bit 119 is held by a tool holder 137 so as to be relatively linearly movable in the long axis direction.
  • the main body 103 corresponds to the “tool main body” in the present invention
  • the hammer bit 119 corresponds to the “tool bit” in the present invention.
  • the hammer bit 119 side is referred to as the front
  • the hand grip 109 side is referred to as the rear.
  • the main body 103 includes a motor housing 105 that houses a drive motor 111 and a gear housing 107 that houses a motion conversion mechanism 113, a striking element 115, and a power transmission mechanism 117.
  • the drive motor 111 is arranged such that the rotation axis (output shaft 111a) is in the vertical direction (vertical direction in FIG. 1) substantially orthogonal to the long axis direction of the main body 103 (long axis direction of the hammer bit 119).
  • the torque (rotational output) of the drive motor 111 is appropriately converted into a linear motion by the motion conversion mechanism 113 and then transmitted to the striking element 115, and the hammer bit 119 passes through the striking element 115 in the major axis direction (in FIG. 1). Generates an impact force in the horizontal direction).
  • the drive motor 111 corresponds to the “motor” in the present invention, and the motion conversion mechanism 113 and the striking element 115 correspond to the “striking drive mechanism” in the present invention.
  • the torque of the drive motor 111 is transmitted to the hammer bit 119 through the tool holder 137 after the rotational speed is appropriately reduced by the power transmission mechanism 117, and the hammer bit 119 is rotated in the circumferential direction.
  • the drive motor 111 is energized and driven by a pulling operation of a trigger 109 a disposed on the hand grip 109.
  • the power transmission mechanism 117 corresponds to the “rotary drive mechanism” in the present invention.
  • the motion conversion mechanism 113 is formed on the output shaft (rotary shaft) 111 a of the drive motor 111 and is engaged with the first drive gear 121, which is driven to rotate in a horizontal plane.
  • the driven gear 123 to be engaged, the crankshaft 122 to which the driven gear 123 is fixed, the crank plate 125 that rotates in the horizontal plane together with the crankshaft 122, and the crank plate 125 are connected to the crank plate 125 through an eccentric shaft 126 in a loose fit.
  • the crank arm 127 and a piston 129 as a driver attached to the crank arm 127 via a connecting shaft 128 are mainly configured.
  • the output shaft 111a and the crankshaft 122 of the drive motor 111 are arranged in parallel and side by side.
  • the crank shaft 122, the crank plate 125, the eccentric shaft 126, the crank arm 127, and the piston 129 constitute a crank mechanism.
  • the piston 129 is slidably disposed in the cylinder 141, and performs a linear motion in the long axis direction of the hammer bit along the cylinder 141 when the drive motor 111 is energized.
  • the striking element 115 is slidably disposed on the striker 143 slidably disposed on the bore inner wall of the cylinder 141 and the tool holder 137, and transmits the kinetic energy of the striker 143 to the hammer bit 119.
  • an impact bolt 145 as an intermediate element.
  • the cylinder 141 has an air chamber 141 a that is partitioned by a piston 129 and a striker 143.
  • the striker 143 is driven via the pressure fluctuation (air spring) of the air chamber 141a accompanying the sliding movement of the piston 129, and collides (hits) the impact bolt 145 slidably disposed on the tool holder 137.
  • the impact force is transmitted to the hammer bit 119 via the impact bolt 145.
  • the motion conversion mechanism 113 and the striking element 115 that drive the hammer bit 119 are directly connected to the drive motor 111.
  • the power transmission mechanism 117 includes a second drive gear 131, a first intermediate gear 132, a first intermediate shaft 133, an electromagnetic clutch 134, a second intermediate gear 135, a mechanical torque limiter 147, a second intermediate shaft 136, a small bevel gear 138,
  • the large bevel gear 139 and the tool holder 137 are mainly configured to transmit the torque of the drive motor 111 to the hammer bit 119.
  • the second drive gear 131 is fixed to the output shaft 111 a of the drive motor 111 and is rotationally driven in the horizontal plane together with the first drive gear 121.
  • first intermediate shaft 133 and the second intermediate shaft 136 located on the downstream side of the output shaft 111a are arranged in parallel and laterally with respect to the output shaft 111a.
  • the first intermediate shaft 133 is provided as a shaft for mounting a clutch, and is disposed between the output shaft 111a and the second intermediate shaft 136, and is in meshing engagement with the second drive gear 131 at all times.
  • the intermediate gear 132 is driven to rotate through the electromagnetic clutch 134.
  • the speed ratio of the first intermediate gear 132 is set so as to be substantially constant with respect to the second drive gear 131.
  • the second intermediate shaft 136 corresponds to a “power transmission shaft” in the present invention.
  • the output shaft 111a of the drive motor 111 corresponds to the “motor output shaft” in the present invention.
  • the electromagnetic clutch 134 transmits torque or interrupts transmission of torque between the drive motor 111 and the hammer bit 119, in other words, between the output shaft 111 a and the second intermediate shaft 136. That is, when the hammer bit 119 is unexpectedly locked during the hammer drilling operation, the electromagnetic clutch 134 prevents the reaction torque acting on the main body 103 side from increasing abnormally and swinging the main body 103. It is provided as a means and set on the first intermediate shaft 133.
  • the electromagnetic clutch 134 is disposed above the first intermediate gear 132 in the major axis direction of the first intermediate shaft 133 and is closer to the operation axis (striking axis) of the striker 143 than the first intermediate gear 132. Yes.
  • the electromagnetic clutch 134 corresponds to the “clutch” in the present invention. That is, the power transmission mechanism 117 that rotationally drives the hammer bit 119 has a structure in which the torque of the drive motor 111 is transmitted or cut off via the electromagnetic clutch 134.
  • the electromagnetic clutch 134 includes a circular cup-shaped driving-side rotating member 161 and a disk-shaped driven-side rotating member 163, and a driving-side rotating member 161 and a driven-side rotation.
  • a spring disk 167 as a biasing member that constantly biases in a direction to release the coupling (frictional contact) with the member 163, and an electromagnetic coil that couples the driving side rotating member 161 to the driven side rotating member 163 by energizing. 165 is mainly configured.
  • the driving side rotating member 161 corresponds to the “driving side clutch portion” in the present invention
  • the driven side rotating member 163 corresponds to the “driven side clutch portion” in the present invention.
  • the drive-side rotating member 161 has a shaft portion (boss portion) 161a that protrudes downward, and the shaft portion 161a is attached to the first intermediate shaft 133 so as to be relatively rotatable about the major axis direction.
  • a first intermediate gear 132 is fixed to the outer surface of the shaft portion 161a. Therefore, the driving side rotating member 161 and the first intermediate gear 132 are configured to rotate integrally.
  • the driven-side rotating member 163 has a shaft portion (boss portion) 163a that protrudes downward, and the shaft portion 163a is fixed to one end (upper end) side of the first intermediate shaft 133 in the long axis direction. It is integrated.
  • the driven side rotating member 163 is rotatable relative to the driving side rotating member 161.
  • the shaft portion 163a and the shaft portion 161a of the driving side rotating member 161 are coaxial. It is set as the structure arrange
  • the shaft portion 161a of the driving side rotating member 161 corresponds to the “driving side clutch shaft” in the present invention
  • the shaft portion 163a of the driven side rotating member 163 and the first intermediate shaft 133 are the “driven clutch shaft” in the present invention.
  • the drive-side rotating member 161 is divided into an inner peripheral region 162a and an outer peripheral region 162b in the radial direction, and both the regions 162a and 162b are joined by a spring disk 167 so as to be relatively movable in the major axis direction.
  • the outer peripheral area 162b is set as a movable member that makes frictional contact with the driven-side rotating member 163.
  • the electromagnetic clutch 134 configured as described above, the outer peripheral area 162b of the driving side rotating member 161 is displaced in the long axis direction by the intermittent current of the electromagnetic coil 165 based on the command from the controller 157, and the driven side rotating member 163 is moved to the driven side rotating member 163.
  • the torque is transmitted (the state shown in FIG. 5) by being coupled (frictional contact), or the torque transmission is interrupted (the state shown in FIG. 4) when the coupling is released.
  • a second intermediate gear 135 is fixed to the other end (lower end) of the first intermediate shaft 133 in the major axis direction, and the torque of the second intermediate gear 135 is mechanical.
  • the torque is transmitted to the second intermediate shaft 136 via the torque limiter 147.
  • the mechanical torque limiter 147 is provided as a safety device against overload applied to the hammer bit 119.
  • a design value hereinafter also referred to as a maximum transmission torque value
  • the mechanical torque limiter 147 includes a drive-side member 148 having a third intermediate gear 148a meshingly engaged with the second intermediate gear 135, and a hollow driven side that fits loosely on the outer periphery of the second intermediate shaft 136.
  • the tooth 149a formed on the driven side member 149 and the tooth 136a formed on the second intermediate shaft 136 mesh with each other on one end side (the lower end in the drawing) of the driven side member 149 in the long axis direction. Is engaged.
  • the mechanical torque limiter 147 and the second intermediate shaft 136 are configured to rotate integrally.
  • the speed ratio of the third intermediate gear 148 a of the drive side member 148 is set so as to be decelerated with respect to the second intermediate gear 135.
  • the torque value acting on the second intermediate shaft 136 (corresponding to the torque value acting on the hammer bit 119) is not more than the maximum transmission torque value predetermined by the spring 147a.
  • torque is transmitted between the driving side member 148 and the driven side member 149, but when the torque value acting on the second intermediate shaft 136 exceeds the maximum transmission torque value, the driving side member 148 and the driven side member 149 are transmitted with each other.
  • the torque transmission is configured to be interrupted.
  • the torque transmitted to the second intermediate shaft 136 is engaged with and engaged with the small bevel gear 138 integrally formed with the second intermediate shaft 136 to the large bevel gear 139 that rotates in the vertical plane.
  • the rotation speed is decelerated and transmitted, and the torque of the large bevel gear 139 is further transmitted to the hammer bit 119 via the tool holder 137 as a final output shaft coupled to the large bevel gear 139. .
  • each gear that needs to be lubricated is accommodated in a sealed gear accommodating space 107a in which a lubricant is enclosed in the gear housing 107.
  • the gear housing space 107a corresponds to the “gear housing chamber” in the present invention.
  • the electromagnetic clutch 134 employs a method of transmitting torque by frictional contact between the driving side rotating member 161 and the driven side rotating member 163, slipping occurs when the lubricant adheres to the clutch surface. May cause.
  • the clutch housing space 107b is provided in the gear housing 107 so as to be partitioned from the gear housing space 107a, the electromagnetic clutch 134 is housed in the clutch housing space 107b, and is isolated from the gear housing space 107a. It is configured to do.
  • the clutch housing space 107 b is press-fitted from below into a substantially downward cup-shaped inner housing portion 108 a formed integrally with the inside of the gear housing 107 and the opening of the inner housing portion 108 a.
  • the cover member 108b is partitioned.
  • the first intermediate shaft 133 and the shaft portion 161a of the driving side rotating member 161 extend through the center portion of the cover member 108b downward (gear accommodating space 107a).
  • the bearing 169 is used as a sealing material to prevent the lubricant from entering the clutch housing space 107b.
  • the power transmission mechanism 117 is provided with a non-contact type magnetostrictive torque sensor 151 that detects torque acting on the hammer bit 119 during the machining operation.
  • the magnetostrictive torque sensor 151 is provided to measure the torque acting on the driven member 149 of the mechanical torque limiter 147 in the power transmission mechanism 117.
  • the magnetostrictive torque sensor 151 has a structure in which an excitation coil 153 and a detection coil 155 are disposed around an inclined groove formed on an outer peripheral surface of a driven side member 149 as a torque detection shaft, and the driven side member 149 is twisted. The torque is measured by detecting the change in the magnetic permeability of the inclined groove as a voltage change by the detection coil 155.
  • the torque value measured by the magnetostrictive torque sensor 151 is output to the controller 157.
  • the controller 157 When the torque value input from the magnetostrictive torque sensor 151 exceeds a predetermined torque value, the controller 157 outputs an energization cutoff command to the electromagnetic coil 165 of the electromagnetic clutch 134 and releases the coupling of the electromagnetic clutch 134.
  • the designated torque for determining the release of the coupling of the electromagnetic clutch 134 by the controller 157 can be arbitrarily changed manually by the operator by an external operation of the torque adjusting means (for example, a dial). ). Further, the designated torque adjusted by the torque adjusting means is limited to a range lower than the maximum transmission torque value set by the spring 147a of the mechanical torque limiter 147.
  • the controller 157 constitutes a clutch control device.
  • the hammer drill 119 for causing the hammer bit 119 to perform the striking operation and the rotating operation for the electromagnetic clutch 134 provided for preventing excessive reaction torque action on the main body 103 and the hammer bit 119 for the striking operation.
  • This is also used as a work mode switching clutch when the work mode is switched to the hammer mode in which only the operation is performed. This will be described below.
  • a work mode switching lever 171 as a work mode switching member is disposed on the upper surface region of the main body 103.
  • the work mode switching lever 171 is composed of a disk-like member provided with an operation knob, and is attached to the main body 103 so as to be rotatable around an axis in the vertical direction perpendicular to the long axis of the hammer bit 119. 360 degree rotation operation is possible.
  • the main body 103 is provided with a position sensor 173 for detecting a work mode.
  • a detection signal from the detection unit 175 is input to the controller 157.
  • the controller 157 When the detection signal of the detected part 175 by the position sensor 173 is input, the controller 157 outputs an energization command to the electromagnetic coil 165 of the electromagnetic clutch 134, while the position sensor 173 does not detect the detected part 175. At the time of non-detection, it is configured to output an energization cutoff command for the electromagnetic coil 165.
  • the position sensor 173 detects the detected portion 175 only when the work mode switching lever 171 is rotated and the hammer drill mode is selected (when switched), and the other parts are detected. It is set not to detect in the area.
  • the electric hammer drill 101 is configured as described above. Next, the operation and usage method of the hammer drill 101 will be described.
  • the operator rotates the work mode switching lever 171 to the hammer mode position (as shown in FIG. 1, the arrow attached to the work mode switching lever 171 is the mark indicating the hammer mode attached to the main body 103.
  • Position sensor 173 does not detect the detected portion 175 of the work mode switching lever 171.
  • the energization of the electromagnetic coil 165 of the electromagnetic clutch 134 is interrupted by the energization cutoff command from the controller 157, and the electromagnetic force disappears accordingly, so that the outer peripheral area 162b of the drive side rotating member 161 is It is pulled away from the rotating member 163. That is, the electromagnetic clutch 134 is switched to the torque cutoff state (see FIGS. 1 and 4).
  • the piston 129 slides linearly along the cylinder 141 via the motion conversion mechanism 113, whereby the air in the cylinder 141 is moved.
  • the striker 143 moves linearly in the cylinder 141 by the pressure change of the air in the chamber 141a, that is, by the action of the air spring.
  • the striker 143 collides with the impact bolt 145 to transmit the kinetic energy to the hammer bit 119. That is, when the hammer mode is selected, the hammer bit 119 performs a hammer operation in the axial direction, and performs a hammer operation (chipping operation) on the workpiece.
  • the position sensor 173 is The detected portion 175 of the work mode switching lever 171 is detected.
  • the electromagnetic coil 165 is energized by an energization command from the controller 157, and the outer peripheral area 162b of the driving side rotating member 161 is pressed against the driven side rotating member 163 against the biasing force of the spring disk 167 by the electromagnetic force generated accordingly. . That is, the electromagnetic clutch 134 is switched to the torque transmission state (see FIGS. 2 and 5).
  • the hammer bit 119 is rotated around the major axis. That is, when the hammer drill mode is selected, the hammer bit 119 performs the hammer operation in the axial direction and the drill operation in the circumferential direction, and performs a hammer drill operation (drilling operation) on the workpiece.
  • the magnetostrictive torque sensor 151 measures the torque value acting on the driven member 149 of the mechanical torque limiter 147 and outputs it to the controller 157. If the hammer bit 119 is unexpectedly locked due to some cause and the measured value input from the magnetostrictive torque sensor 151 to the controller 157 exceeds the designated torque value designated in advance by the operator, the controller 157 An energization cutoff command for the electromagnetic coil 165 is output to release the coupling. For this reason, the energization of the electromagnetic coil 165 is cut off, and the electromagnetic force disappears accordingly, whereby the outer peripheral area 162b of the driving side rotating member 161 is separated from the driven side rotating member 163 by the biasing force of the spring disk 167.
  • the electromagnetic clutch 134 is switched from the torque transmission state to the torque cutoff state, and the torque transmission from the drive motor 111 to the hammer bit 119 is cut off.
  • the specified torque value corresponds to the “predetermined set torque state” in the present invention.
  • the torque transmission structure of the drive motor 111 is provided with the electromagnetic clutch 134 in the rotation drive path of the hammer bit 119, and a direct connection structure is provided for impact, and only the rotation transmission is performed by the electromagnetic clutch 134. It is configured to do. For this reason, for example, the torque acting on the electromagnetic clutch 134 is reduced as compared with the case where the clutch is arranged in such a manner that the torque of the drive motor 111 is transmitted to both the striking drive system and the rotary drive system.
  • the clutch 134 can be reduced in size and weight.
  • the first intermediate shaft 133 dedicated for mounting the clutch is set, and the electromagnetic clutch 134 is set on the first intermediate shaft 133.
  • the electromagnetic clutch 134 can be used in the high rotation low torque region before the rotational speed of the drive motor 111 (output shaft 111a) is decelerated. For this reason, the degree of freedom in designing the electromagnetic clutch 134 is increased, and further miniaturization is possible.
  • the shaft portion 161a of the drive side rotating member 161 is rotatable relative to the first intermediate shaft 133 to which the shaft portion 163a of the driven side rotating member 163 is fixed. It is set as the structure to fit. That is, the clutch shaft of the electromagnetic clutch 134 constituted by the first intermediate shaft 133, the shaft portion 161a of the driving side rotating member 161, and the shaft portion 163a of the driven side rotating member 163 is coaxial on the driving side and the driven side and is in the radial direction. It is set as the structure arrange
  • the electromagnetic clutch 134 can be arranged close to the operation line (striking axis) side of the striker 143, and the center of gravity position generated in the main body 103 during machining work is used as a fulcrum.
  • the moment (vibration) in the hitting direction can be reduced, and the dimension of the electromagnetic clutch 134 in the major axis direction can be shortened.
  • the electromagnetic clutch 134 is a power transmission region in which torque is transmitted between the first intermediate shaft 133 and the second intermediate shaft 136, that is, the drive side of the second intermediate gear 135 and the mechanical torque limiter 147.
  • the member 148 is disposed above the meshing engagement region with the third intermediate gear 148a.
  • the electromagnetic clutch 134 can be disposed closer to the operation line (striking axis) of the striker 143, which is more advantageous in reducing the striking direction moment (vibration).
  • the clutch housing space 107b partitioned from the gear housing space 107a is set in the gear housing 107, and the electromagnetic clutch 134 is housed in the clutch housing space 107b separately from the gear housing space 107a. It is configured. For this reason, there is no possibility that the lubricant comes into contact with the clutch surface and slips, and a friction clutch having a high reaction speed can be used as the electromagnetic clutch 134.
  • a friction clutch having a high reaction speed can be used as the electromagnetic clutch 134.
  • since a part of the drive side rotation member 161 (only the outer peripheral region 162b) is displaced in the major axis direction, the torque transmission state and the torque cutoff state are switched, so that there are fewer movable parts.
  • the clutch becomes easy to design.
  • the hammer bit 119 is caused to perform only the striking operation in the long axis direction with respect to the electromagnetic clutch 134 provided to prevent the excessive reaction torque from acting on the main body 103, and the hammer mode
  • the work mode switching clutch is also used when the work mode is switched between the hammer drill mode in which the striking operation and the rotation around the long axis are performed.
  • the present embodiment is a modification regarding the arrangement of the electromagnetic clutch 134 and corresponds to claim 2.
  • the electromagnetic clutch 134 is arranged on the output shaft 111 a of the drive motor 111.
  • the electromagnetic clutch 134 includes a driving side rotating member 181 and a driven side rotating member 183 that are arranged to face each other in the long axis direction, and a shaft portion (boss portion) of the driving side rotating member 181.
  • 181a is fixed to and integrated with the output shaft 111a
  • the shaft portion (boss portion) 183a of the driven side rotating member 183 is fitted to the outside of the output shaft 111a so as to be relatively rotatable.
  • the driven side rotation member 183 is disposed on the upper surface side of the drive side rotation member 181.
  • the driven-side rotating member 183 is divided into an inner peripheral region 182a and an outer peripheral region 182b in the radial direction, and both the regions 182a and 182b are joined via a spring disk 187 so as to be relatively movable in the long axis direction.
  • the outer peripheral region 182b is set as a member that is coupled (frictionally contacted) to the driving side rotation member 181. That is, in this embodiment, the outer peripheral region 182b of the driven side rotating member 183 is configured to be displaced in the major axis direction via the spring disk 187, and the drive side rotation is performed by the spring disk 187 when the electromagnetic coil 185 is not energized. It is urged to be separated from the member 181, and is configured to be coupled (friction contact) to the drive side rotation member 181 by electromagnetic force when the electromagnetic coil 185 is energized.
  • a first drive gear 121 is provided at the upper end of the output shaft 111 a and meshes with a driven gear 123 of a crank mechanism that constitutes the motion conversion mechanism 113.
  • the motion conversion mechanism 113 and the striking element 115 that drive the hammer bit 119 are directly connected to the drive motor 111. This is the same as in the first embodiment.
  • the motion conversion mechanism 113 and the striking element 115 correspond to the “striking drive mechanism” in the present invention
  • the output shaft 111a corresponds to the “striking drive shaft” in the present invention.
  • the shaft portion 183a of the driven side rotating member 183 extends upward, and the second drive gear 191 is fixed to the outer surface of the extended end portion.
  • a first intermediate shaft 193 parallel to both the shafts 111a and 136 is disposed between the output shaft 111a and the second intermediate shaft 136 of the power transmission mechanism 117 arranged in parallel and laterally with respect to the output shaft 111a. Is provided.
  • a first intermediate gear 195 that meshes with and engages with the second drive gear 191 is fixed to one axial end (lower end) of the first intermediate shaft 193, and a second intermediate gear 197 is fixed to the other axial end (upper end). Has been.
  • the second intermediate gear 197 is meshed and engaged with the third intermediate gear 148 a of the drive side member 148 of the mechanical torque limiter 147 provided on the second intermediate shaft 136.
  • the electromagnetic clutch 134 set on the output shaft 111a of the drive motor 111 performs transmission and interruption of torque between the output shaft 111a and the first intermediate shaft 193. That is, the power transmission mechanism 117 that rotationally drives the hammer bit 119 has a structure in which the torque of the drive motor 111 is transmitted or cut off via the electromagnetic clutch 134.
  • the power transmission mechanism 117 corresponds to the “rotary drive mechanism” in the present invention.
  • the shaft portion 181a of the driving side rotating member 181 and the shaft portion 183a of the driven side rotating member 183 constitute a clutch shaft, and the clutch shaft corresponds to the “rotation driving shaft” in the present invention.
  • the electromagnetic clutch 134 is housed in a clutch housing space 107b formed in the gear housing 107 and is isolated from the gear housing space 107a.
  • the clutch housing space 107b is formed by an inner housing portion 108a formed (fixed later) in the gear housing 107, and a cover member 108b as a partition partitioning the inner space of the inner housing portion 108a from the gear housing space 107a. ing.
  • the shaft portion 183a of the driven-side rotating member 183 protrudes from the clutch housing space 107b to the gear housing space 107a.
  • gaps are generated between the outer peripheral surface of the shaft portion 183a and the inner peripheral surface of the cover member 108b, and between the inner peripheral surface of the shaft portion 183a and the outer peripheral surface of the output shaft 111a.
  • the bearings 198 and 199 are used as a sealing material to prevent the lubricant from entering the clutch housing chamber 107b.
  • the configuration related to coupling and release is the same as in the first embodiment. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the striking drive is directly connected and only the rotation transmission is performed by the electromagnetic clutch 134, and further, the drive motor 111 driven at a higher rotation and lower torque is used.
  • the electromagnetic clutch 134 is set on the output shaft 111a. As a result, torque acting on the electromagnetic clutch 134 is reduced, so that the electromagnetic clutch 134 can be reduced in size and weight.
  • the clutch shaft is coaxially disposed on the radially outer side of the output shaft 111a, the dimension in the major axis direction is configured while the electromagnetic clutch 134 is disposed on the output shaft 111a. Therefore, it is possible to rationally arrange in a space-saving manner.
  • the electromagnetic clutch 134 since the electromagnetic clutch 134 is isolated from the gear housing space 107a so that the lubricant does not adhere thereto, the lubricant contacts the clutch surface and slides as in the case of the first embodiment.
  • a friction clutch having a high reaction speed can be used as the electromagnetic clutch 134.
  • the electromagnetic clutch 134 is switched from the torque transmission state to the torque cutoff state, so that the main body portion 103 is swung by the reaction torque acting on the main body portion 103.
  • the operational effects such as that the electromagnetic clutch 134 for preventing excessive reaction torque from acting on the main body 103 can also be used as a clutch for switching the work mode are the same as in the first embodiment described above. is there.
  • the magnetostrictive torque sensor 151 is used as a means for detecting the reaction torque acting on the main body 103.
  • the present invention is not limited to this. You may change to the structure which measures with an acceleration sensor and detects the reaction torque of the main-body part 103 by the said measured value.
  • a striking tool according to claim 1 The path for transmitting the torque of the motor to the tool bit has a striking drive system that drives the tool bit linearly in the major axis direction, and a rotary drive system that drives the tool bit to rotate about the major axis, The impact tool according to claim 1, wherein the clutch is disposed in the rotary drive system.
  • a striking tool according to aspect 2 A striking tool comprising a torque adjusting member that can be manually operated to adjust a set torque value set by the torque sensor.
  • a striking tool according to any one of claims 1 to 10, A striking tool comprising a speed or acceleration sensor for measuring a momentum of the tool body and detecting a reaction torque acting on the tool body based on the measured value.
  • a striking tool according to any one of claims 1 to 10 or aspect 1 The clutch has a driving side clutch portion and a driven side clutch portion, and either one of the driving side clutch portion or the driven side clutch portion has a long axis direction in an outer peripheral side region with respect to an inner peripheral side region.
  • a striking tool according to claim 9, A clutch housing space for housing the clutch isolated from the gear housing chamber; A striking tool comprising a seal member that suppresses the intrusion of the lubricant in the gear housing chamber into the clutch housing space by a bearing that rotatably supports the shaft of the clutch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

 打撃工具において、クラッチの小型化に資する技術を提供する。 工具ビット(119)を長軸方向への打撃動作及び長軸線周りに回転動作させ、これによって当該工具ビット(119)に所定の加工作業を遂行させる打撃工具であって、工具本体(103)と、工具本体(103)に収容され、工具ビット(119)を駆動するモータ(111)と、モータ(111)のトルクを工具ビット(119)に伝達する経路において、モータ(111)の回転速度が減速する前段階の高回転低トルク領域に設けられ、常時にはモータ(111)のトルクを工具ビット(119)へと伝達し、工具本体(103)に生ずる工具ビット長軸周りのトルクが所定の設定トルク状態を超える場合にはトルクの伝達を遮断するクラッチ(134)と、を有することを特徴とする打撃工具。

Description

打撃工具
 本発明は、工具ビットが不意にロックした場合に工具本体に過大な反動トルクが作用することを防止することができる打撃工具に関する。
 米国出願公開特許2007-0289759号明細書(特許文献1)は、モータのトルクを工具ビットに伝達する動力伝達機構にクラッチを配置し、ハンマドリル作業中にハンマビットが不意にロックしたような場合に、モータから工具ビットへのトルク伝達をクラッチによって遮断することで工具本体側にハンマビット回転方向と逆向きの過大なトルク、すなわち反動トルクが作用することを防止するハンマドリルを開示している。
 上記公報記載の反動トルクの防止技術は、モータの回転速度が減速された動力伝達機構中にクラッチを設ける構成である。このため、クラッチが高トルクの伝達を可能とするべく大型化することになり、この点でなお改良の余地がある。
 本発明は、上記の問題に鑑み、クラッチの小型化に資する打撃工具を提供することをその目的とする。
 上記課題を達成するため、本発明の好ましい形態によれば、工具ビットを長軸方向への打撃動作及び長軸線周りに回転動作させ、これによって当該工具ビットに所定の加工作業を遂行させる打撃工具が構成される。
 本発明の好ましい形態に係る打撃工具は、特徴的構成として、工具本体と、工具本体に収容され、工具ビットを駆動するモータと、モータのトルクを工具ビットに伝達する経路において、モータの回転速度が減速される前段階の高回転低トルク領域に設けられ、常時にはモータのトルクを工具ビットへと伝達し、工具本体に生ずる工具ビット長軸周りのトルクが所定の設定トルク状態を超える場合にはトルクの伝達を遮断するクラッチと、を有する。
 本発明における「工具本体に生ずる工具ビット長軸周りのトルク」とは、加工作業時において、工具本体に対して工具ビットの回転方向とは逆方向に作用するトルク、すなわち反動トルクをいう。また、工具本体に作用する「所定の設定トルク状態」は、工具ビットと共に回転する動力伝達経路上の軸のトルク値をトルクセンサによって測定し、当該測定値から所定のトルク状態を超えるか否かを判断する手法、あるいは工具ビットの長軸方向周りの工具本体の運動状態を速度センサあるいは加速度センサによって測定し、当該測定値から所定のトルク状態を超えるか否かを判断する手法等を用いて認識することができる。
 上記のように構成された本発明によれば、被加工材に対する穴明け作業等の加工作業中において、工具ビットが不意にロックしたような場合には、クラッチがモータと工具ビット間でのトルク伝達を遮断し、工具本体に過大な反動トルクが作用することを防止することができる。特に本発明によれば、クラッチをモータの回転速度が減速される前段階の高回転低トルク領域に設けたものであり、当該クラッチのトルク負荷が軽減し、小型化及び軽量化が実現される。
 本発明の更なる形態によれば、モータのトルクを工具ビットに伝達する経路において、モータ出力軸と、モータ出力軸の下流側に設けられ、当該モータ出力軸の回転速度を減速して工具ビットへと伝達する動力伝達軸と、モータ出力軸と動力伝達軸との間に設けられたクラッチ軸とを有する。そしてクラッチは、クラッチ軸上に設けられている。
 本発明によれば、被加工材に対する穴明け作業等の加工作業中において、工具ビットが不意にロックしたような場合には、クラッチがモータ出力軸と動力伝達軸間でのトルク伝達を遮断し、工具本体に過大な反動トルクが作用することを防止することができる。特に本発明によれば、モータ出力軸と、当該モータ出力軸の回転速度が減速して伝達される動力伝達軸との間にクラッチ軸を設定し、当該クラッチ軸上にクラッチを設ける構成としている。すなわち、本発明はクラッチ搭載用として専用の軸を設定したものであり、これによりクラッチを設計する上の自由度が増し、クラッチにつき、高回転低トルクでの駆動が可能となり、クラッチのトルク負荷が軽減し、小型化及び軽量化が実現される。
 また、本発明の更なる形態によれば、モータ出力軸とクラッチ間の速度比が、クラッチ軸と動力伝達軸間の減速比よりも小さく設定されている。
 本発明によれば、モータ出力軸とクラッチ軸間の速度比につき、等速、減速、増速のいずれにも任意に設定できる。
 また、本発明の更なる形態によれば、モータによって工具ビットの長軸方向に直線状に駆動され、工具ビットを長軸方向に打撃する打撃子を更に有する。そしてクラッチが、クラッチ軸と動力伝達軸間の動力伝達領域よりも打撃子の打撃軸線に近接して配置された構成とされる。なお、「動力伝達領域」とは、典型的には両軸にそれぞれ設けたギア相互の噛合い係合による動力伝達領域がこれに該当する。
 本発明によれば、クラッチが打撃子の打撃軸線に近接して配置されることにより、工具ビットの打撃動作時における電動工具の重心位置を支点とする打撃方向モーメント(振動)を低減する上で有効となる。
 また、本発明の更なる形態によれば、クラッチは、駆動側クラッチ部と被動側クラッチ部を有し、両クラッチ部が互いに接触することでトルクを伝達し、離間することでトルクの伝達を遮断するように構成されている。そしてクラッチ軸は、駆動側クラッチ部が形成された駆動側クラッチ軸と、被動側クラッチ部が形成された被動側クラッチ軸とを有し、両軸が同軸上において径方向内外に配置される構成とした。
 本発明によれば、クラッチのクラッチ面(動力伝達面)を同じ軸端側に設定できる。つまり、同じ軸端側での入力と出力が可能となり、これによりクラッチを打撃軸線側に寄せて配置することが可能になる。またクラッチの軸方向寸法が短縮され、省スペースでの合理的配置が可能になる。
 また、本発明の更なる形態によれば、モータのトルクを工具ビットに伝達する経路において、工具ビットを打撃駆動する打撃駆動機構と、工具ビットを回転駆動する回転駆動機構と、モータにより回転駆動されて打撃駆動機構を常時に駆動する打撃駆動軸と、打撃駆動軸とは独立してモータにより回転駆動されて回転駆動機構を駆動する回転駆動軸とを有する。そして打撃駆動軸と回転駆動軸が同軸上に配置されており、クラッチは、回転駆動軸上に配置された構成とした。
 本発明によれば、被加工材に対する穴明け作業等の加工作業中において、工具ビットが不意にロックしたような場合には、クラッチがモータと回転駆動機構間でのトルク伝達を遮断し、工具本体に過大な反動トルクが作用することを防止することができる。特に本発明によれば、モータの高回転低トルクで駆動される回転駆動軸にクラッチを設けているため、クラッチのトルク負荷が軽減し、当該クラッチの小型化及び軽量化が実現される。
 また、本発明の更なる形態によれば、打撃駆動軸と回転駆動軸が同軸上に配置され、当該回転駆動軸上にはクラッチが配置されている打撃工具において、打撃駆動軸が径方向内側に位置し、回転駆動軸が径方向外側に位置する関係で同軸上に配置される構成とした。本発明によれば、長軸方向の寸法短縮が可能となり、省スペースでの合理的配置が可能となる。
 また、本発明の更なる形態によれば、クラッチは、駆動側クラッチ部と、被動側クラッチ部と、両クラッチ部を互いに離間させてトルクの伝達を遮断するべく付勢する付勢部材と、通電することで付勢部材の付勢力に抗して両クラッチ部を互いに接触させてトルクを伝達する電磁コイルとを有する電磁クラッチとして構成されている。
 本発明によれば、工具本体に過大な反動トルクが作用することを防止するクラッチとして電磁クラッチを利用することによって、クラッチの制御が容易で、かつ小型化を図ることができる。
 また、本発明の更なる形態によれば、モータから工具ビットへとトルクを伝達するトルク伝達経路における軸相互間でのトルク伝達がギアによって行なわれるとともに、当該ギアが潤滑剤封入のギア収容室に収容されている。そしてクラッチは、ギア収容室から隔離して配置された構成とされる。本発明によれば、クラッチをギア収容室から隔離した油外配置としたことで、潤滑剤によるスリップ問題が解消される。このため、クラッチとして反応速度が速い摩擦クラッチを用いることができる。
 また、本発明の更なる形態によれば、モータにより駆動されて工具ビットを打撃駆動する打撃駆動機構と、モータにより駆動されて工具ビットを回転駆動する回転駆動機構の構成要素は、それぞれ独立して設定されている。
 本発明によれば、クラッチの小型化に資する打撃工具が提供されることとなった。本発明の他の特質、作用及び効果については、本明細書、特許請求の範囲、添付図面を参照することで直ちに理解可能である。
本発明の第1の実施形態に係るハンマドリルの全体構成を示す側断面図であり、クラッチのトルク伝達の遮断状態を示す。 同じくハンマドリルの全体構成を示す側断面図であり、クラッチのトルク伝達状態を示す。 ハンマドリルの要部の構成を拡大して示す断面図である。 クラッチのトルク遮断状態を拡大して示す断面図である。 クラッチのトルク伝達状態を拡大して示す断面図である。 本発明の第2の実施形態に係るハンマドリルの全体構成を示す側断面図である。 第2の実施形態に係るハンマドリルの要部を拡大して示す断面図である。
 以上および以下の記載に係る構成ないし方法は、本発明に係る「打撃工具」の製造および使用、当該「打撃工具」の構成要素の使用を実現せしめるべく、他の構成ないし方法と別に、あるいはこれらと組み合わせて用いることができる。本発明の代表的実施形態は、これらの組み合わせも包含し、添付図面を参照しつつ詳細に説明される。以下の詳細な説明は、本発明の好ましい適用例を実施するための詳細情報を当業者に教示するに留まり、本発明の技術的範囲は、当該詳細な説明によって制限されず、特許請求の範囲の記載に基づいて定められる。このため、以下の詳細な説明における構成や方法ステップの組み合わせは、広義の意味において、本発明を実施するのに全て必須であるというものではなく、添付図面の参照番号とともに記載された詳細な説明において、本発明の代表的形態を開示するに留まるものである。
(本発明の第1の実施形態)
 以下、本発明の第1の実施形態につき、図1~図5を参照しつつ詳細に説明する。第1の実施形態は、本発明の請求項1に対応する。打撃工具の一例として電動式のハンマドリルを用いて説明する。図1及び図2に示すように、本実施の形態に係るハンマドリル101は、概括的に見て、ハンマドリル101の外郭を形成する本体部103と、当該本体部103の先端領域(図示左側)に中空状のツールホルダ137を介して着脱自在に取付けられたハンマビット119と、本体部103のハンマビット119の反対側に連接された作業者が握るハンドグリップ109とを主体として構成されている。ハンマビット119は、ツールホルダ137によってその長軸方向への相対的な直線動作可能に保持される。本体部103は、本発明における「工具本体」に対応し、ハンマビット119は、本発明における「工具ビット」に対応する。なお説明の便宜上、ハンマビット119側を前、ハンドグリップ109側を後という。
 本体部103は、駆動モータ111を収容したモータハウジング105と、運動変換機構113、打撃要素115及び動力伝達機構117を収容したギアハウジング107とによって構成されている。駆動モータ111は、回転軸線(出力軸111a)が本体部103の長軸方向(ハンマビット119の長軸方向)と概ね直交する縦方向(図1において上下方向)となるように配置される。駆動モータ111のトルク(回転出力)は、運動変換機構113によって直線運動に適宜変換された上で打撃要素115に伝達され、当該打撃要素115を介してハンマビット119の長軸方向(図1における左右方向)への衝撃力を発生する。駆動モータ111は、本発明における「モータ」に対応し、運動変換機構113及び打撃要素115が本発明における「打撃駆動機構」に対応する。
 また、駆動モータ111のトルクは、動力伝達機構117によって回転速度が適宜減速された上でツールホルダ137を介してハンマビット119に伝達され、当該ハンマビット119が周方向に回転動作される。なお駆動モータ111は、ハンドグリップ109に配置されたトリガ109aの引き操作によって通電駆動される。動力伝達機構117が本発明における「回転駆動機構」に対応する。
 図3に示すように、運動変換機構113は、駆動モータ111の出力軸(回転軸)111aに形成され、水平面内にて回転駆動される第1駆動ギア121、当該第1駆動ギア121に噛み合い係合する被動ギア123、当該被動ギア123が固定されたクランク軸122、クランク軸122とともに水平面内にて回転するクランク板125、当該クランク板125に偏心軸126を介して遊嵌状に連接されたクランクアーム127、当該クランクアーム127に連結軸128を介して取り付けられた駆動子としてのピストン129を主体として構成される。駆動モータ111の出力軸111aとクランク軸122は、互いに平行にかつ横並びに配置される。上記のクランク軸122、クランク板125、偏心軸126、クランクアーム127、ピストン129によってクランク機構が構成される。ピストン129は、シリンダ141内に摺動自在に配置されており、駆動モータ111が通電駆動されることに伴い当該シリンダ141に沿ってハンマビット長軸方向の直線動作を行う。
 打撃要素115は、シリンダ141のボア内壁に摺動自在に配置された打撃子としてのストライカ143と、ツールホルダ137に摺動自在に配置されるとともに、ストライカ143の運動エネルギをハンマビット119に伝達する中間子としてのインパクトボルト145とを主体として構成される。シリンダ141は、ピストン129及びストライカ143によって仕切られる空気室141aを有する。ストライカ143は、ピストン129の摺動動作に伴う空気室141aの圧力変動(空気バネ)を介して駆動され、ツールホルダ137に摺動自在に配置されたインパクトボルト145に衝突(打撃)し、当該インパクトボルト145を介してハンマビット119に打撃力を伝達する。すなわち、ハンマビット119を打撃駆動する運動変換機構113及び打撃要素115は、駆動モータ111と直結する構造である。
 動力伝達機構117は、第2駆動ギア131、第1中間ギア132、第1中間軸133、電磁クラッチ134、第2中間ギア135、機械式トルクリミッター147、第2中間軸136、小ベベルギア138、大ベベルギア139及びツールホルダ137を主体として構成され、駆動モータ111のトルクをハンマビット119に伝達する。第2駆動ギア131は、駆動モータ111の出力軸111aに固定され、第1駆動ギア121と共に水平面内にて回転駆動される。トルク伝達において、出力軸111aの下流側に位置する第1中間軸133及び第2中間軸136は、出力軸111aに対して平行かつ横並びに配置される。第1中間軸133は、クラッチ搭載用の軸として備えられており、出力軸111aと第2中間軸136との間に配置されるとともに、第2駆動ギア131と常時に噛み合い係合する第1中間ギア132により電磁クラッチ134を経て回転駆動される。なお、第1中間ギア132は、第2駆動ギア131に対して概ね等速となるよう速度比が設定されている。第2中間軸136は、本発明における「動力伝達軸」に対応する。駆動モータ111の出力軸111aは、本発明における「モータ出力軸」に対応する。
 電磁クラッチ134は、駆動モータ111とハンマビット119との間、換言すれば出力軸111aと第2中間軸136との間において、トルクを伝達し又はトルクの伝達を遮断するものである。すなわち、電磁クラッチ134は、ハンマドリル作業中において、ハンマビット119が不意にロックしたような場合に、本体部103側に作用する反動トルクが異常に増大し、本体部103が振り回されることを防止する手段として備えられ、第1中間軸133上に設定されている。電磁クラッチ134は、第1中間軸133の長軸方向において第1中間ギア132の上方に配置されており、ストライカ143の動作軸線(打撃軸線)に対して第1中間ギア132よりも近接されている。電磁クラッチ134は、本発明における「クラッチ」に対応する。すなわち、ハンマビット119を回転駆動する動力伝達機構117は、電磁クラッチ134を介して駆動モータ111のトルクが伝達又は遮断される構造とされる。
 図4及び図5に示すように、電磁クラッチ134は、長軸方向において互いに対向する円形カップ状の駆動側回転部材161と円盤状の被動側回転部材163、駆動側回転部材161と被動側回転部材163との結合(摩擦接触)を解除させる方向へと常時に付勢する付勢部材としてのバネディスク167、及び通電することで駆動側回転部材161を被動側回転部材163に結合させる電磁コイル165を主体として構成されている。駆動側回転部材161は、本発明における「駆動側クラッチ部」に対応し、被動側回転部材163は、本発明における「被動側クラッチ部」に対応する。
 駆動側回転部材161は、下方に向けて突出する軸部(ボス部)161aを有し、当該軸部161aが第1中間軸133に対し長軸方向周りに相対回転可能に取り付けられるとともに、当該軸部161aの外面には第1中間ギア132が固定されている。従って、駆動側回転部材161と第1中間ギア132は一体に回転する構成とされる。一方、被動側回転部材163は、下方に向けて突出する軸部(ボス部)163aを有し、当該軸部163aが第1中間軸133の長軸方向の一端(上端)側に固定されて一体化されている。これにより、被動側回転部材163は、駆動側回転部材161に対して相対回転自在とされている。そして、被動側回転部材163の軸部163aと一体化された第1中間軸133を軸部163aの一部として見ると、当該軸部163aと駆動側回転部材161の軸部161aとは同軸上において径方向の内外に配置された構成とされる。すなわち、被動側回転部材163の軸部163aが径方向内側に配置され、駆動側回転部材161の軸部161aが径方向外側に配置されている。駆動側回転部材161の軸部161aは、本発明における「駆動側クラッチ軸」に対応し、被動側回転部材163の軸部163a及び第1中間軸133は、本発明における「被動側クラッチ軸」に対応する。
 また、駆動側回転部材161は、径方向において内周領域162aと外周領域162bとに分割されるとともに、両領域162a,162bがバネディスク167によって長軸方向への相対移動可能に接合された構成とされており、外周領域162bが被動側回転部材163に対して摩擦接触する可動部材として設定される。上記のように構成される電磁クラッチ134は、コントローラ157からの指令に基づく電磁コイル165の電流の断続によって駆動側回転部材161の外周領域162bが長軸方向に変位し、被動側回転部材163に対して結合(摩擦接触)されることでトルクを伝達(図5に示す状態)し、あるいは結合が解除されることでトルクの伝達を遮断(図4に示す状態)する。
 また、図3に示すように、第1中間軸133の長軸方向の他端(下端)には、第2中間ギア135が固定されており、当該第2中間ギア135のトルクは、機械式トルクリミッター147を介して第2中間軸136に伝達されるよう構成されている。機械式トルクリミッター147は、ハンマビット119にかかる過負荷に対する安全装置として備えられ、ハンマビット119に設計値(以下、最大伝達トルク値ともいう)を超える過大なトルクが作用したとき、ハンマビット119へのトルク伝達を遮断するものであり、第2中間軸136上に同軸で取り付けられている。
 機械式トルクリミッター147は、第2中間ギア135と噛み合い係合する第3中間ギア148aを有する駆動側部材148と、第2中間軸136の外周に遊嵌状に嵌合する中空状の被動側部材149を有し、当該被動側部材149の長軸方向の一端側(図示下端部)において、被動側部材149に形成された歯149aと第2中間軸136に形成された歯136aが互いに噛み合い係合している。これにより機械式トルクリミッター147と第2中間軸136が一体に回転する構成とされる。なお、駆動側部材148の第3中間ギア148aは、第2中間ギア135に対して減速されるよう速度比が設定されている。そして、詳細については便宜上図示を省略するが、第2中間軸136に作用するトルク値(ハンマビット119に作用するトルク値に相当する)が、スプリング147aによって予め定めた最大伝達トルク値以下であれば、駆動側部材148と被動側部材149間でトルク伝達するが、第2中間軸136に作用するトルク値が最大伝達トルク値を超えたときには、駆動側部材148と被動側部材149間でのトルク伝達を遮断するように構成されている。
 第2中間軸136へと伝達されたトルクは、当該第2中間軸136に一体に形成された小ベベルギア138から当該小ベベルギア138に噛み合い係合して鉛直面内にて回転する大ベベルギア139へと回転速度が減速されて伝達され、更には大ベベルギア139のトルクが、当該大ベベルギア139と結合された最終出力軸としてのツールホルダ137を介してハンマビット119へと伝達される構成とされる。
 運動変換機構113及び動力伝達機構117の構成部材のうち、潤滑が必要な各ギアについては、ギアハウジング107のうち、潤滑剤が封入された密閉状のギア収容空間107aに収容されている。ギア収容空間107aは、本発明における「ギア収容室」に対応する。一方、本実施の形態では、電磁クラッチ134として駆動側回転部材161と被動側回転部材163の摩擦接触によってトルク伝達を行なう方式を採用しているため、クラッチ面に潤滑剤が付着した場合、スリップを引き起こす可能性がある。
 そこで、本実施の形態では、ギアハウジング107内に、ギア収容空間107aから区画された形でクラッチ収容空間107bを設け、当該クラッチ収容空間107bに電磁クラッチ134を収容し、ギア収容空間107aから隔離する構成としている。クラッチ収容空間107bは、図4及び図5に示すように、ギアハウジング107の内部に一体に形成された略下向きカップ状のインナハウジング部108aと、当該インナハウジング部108aの開口部に下方から圧入されたカバー部材108bとによって区画形成されている。第1中間軸133及び駆動側回転部材161の軸部161aは、カバー部材108bの中心部を貫通して下方(ギア収容空間107a)へと延在されている。このことにより、軸部161aの外面とカバー部材108bの内周面との間には隙間が生ずるが、当該隙間は軸部161aの外面とカバー部材108bの内周面との間に介在された軸受169によって塞ぐ構成としている。すなわち、軸受169をシーリング材として利用し、潤滑剤がクラッチ収容空間107bに侵入することを抑制している。
 また、図3に示すように、動力伝達機構117には、加工作業時にハンマビット119に作用するトルクを検知する非接触式の磁歪式トルクセンサ151が配設されている。磁歪式トルクセンサ151は、動力伝達機構117における機械式トルクリミッター147の被動側部材149に作用するトルクを測定するべく設けられる。磁歪式トルクセンサ151は、トルク検知軸としての被動側部材149の外周面に施された傾斜溝の周囲に、励磁コイル153及び検知コイル155を配設した構造であり、被動側部材149が捻られたときの傾斜溝の透磁率の変化を検知コイル155で電圧変化として検知することによってトルクを測定する構成とされる。
 磁歪式トルクセンサ151によって測定されたトルク値は、コントローラ157に出力される。コントローラ157は、磁歪式トルクセンサ151から入力されたトルク値が予め定めた指定トルク値を超えたとき、電磁クラッチ134の電磁コイル165に対する通電遮断指令を出力し、当該電磁クラッチ134の結合を解除する構成とされる。なお、便宜上図示を省略するが、コントローラ157による電磁クラッチ134の結合解除を決定する指定トルクについては、トルク調整手段(例えばダイヤル)の外部操作によって作業者が手動操作で任意に変更可能(調整可能)とされている。また、トルク調整手段により調整される指定トルクは、機械式トルクリミッター147のスプリング147aによって設定される最大伝達トルク値よりも低い範囲内に制限されている。コントローラ157は、クラッチ制御装置を構成している。
 また、本実施の形態においては、本体部103に対する過大な反動トルク作用防止用として備えられた電磁クラッチ134につき、ハンマビット119に打撃動作と回転動作を行なわせるハンマドリルモードとハンマビット119に打撃動作のみを行なわせるハンマモードとの間で作業モードを切替える場合の、作業モード切替用クラッチとして兼用する構成としている。以下、このことにつき説明する。
 図1及び図2に示すように、本体部103の上面領域には、作業モード切替部材としての作業モード切替レバー171が配置されている。作業モード切替レバー171は、操作用摘みが付設された円板状部材からなり、本体部103に対しハンマビット119の長軸線と直交する上下方向の軸線周りに回動自在に取付けられ、水平面内での360度の回動操作が可能とされている。本体部103には、作業モード検知用の位置センサ173が設けられており、この位置センサ173による作業モード切替レバー171の位置検知信号、具体的には当該作業モード切替レバー171に設けられた被検知部175の検知信号がコントローラ157に入力されるよう構成されている。
 コントローラ157は、位置センサ173による被検知部175の検知信号が入力された場合には、電磁クラッチ134の電磁コイル165に対する通電指令を出力し、一方、位置センサ173が被検知部175を検知しない非検知時には、電磁コイル165に対する通電遮断指令を出力するよう構成されている。そして本実施の形態においては、位置センサ173は、作業モード切替レバー171が回動操作され、ハンマドリルモードが選択された場合(切り替えられた場合)にのみ被検知部175を検知し、それ以外の領域では検知しないよう設定されている。
 本実施の形態に係る電動式のハンマドリル101は上記のように構成される。次にハンマドリル101の作用および使用方法について説明する。作業者が作業モード切替レバー171をハンマモード位置へと回動操作したとき(図1に示すように、作業モード切替レバー171に付された矢印を本体部103に付されたハンマモードの標示マークM1に合致させたとき)には、位置センサ173が作業モード切替レバー171の被検知部175を検知しない。このときには、コントローラ157による通電遮断指令によって電磁クラッチ134の電磁コイル165の通電が遮断し、それに伴い電磁力が消えることで駆動側回転部材161の外周領域162bがバネディスク167の付勢力によって被動側回転部材163から引き離される。すなわち、電磁クラッチ134がトルク遮断状態に切り替えられる(図1及び図4参照)。
 この状態において、トリガ109aを引き操作し、駆動モータ111を通電駆動すれば、運動変換機構113を介してピストン129がシリンダ141に沿って直線状に摺動動作され、これにより当該シリンダ141の空気室141a内の空気の圧力変化、すなわち空気バネの作用により、ストライカ143がシリンダ141内を直線運動する。ストライカ143は、インパクトボルト145に衝突することで、その運動エネルギをハンマビット119に伝達する。すなわち、ハンマモード選択時には、ハンマビット119が軸方向のハンマ動作を行い、被加工材にハンマ作業(ハツリ作業)を遂行する。
 一方、作業モード切替レバー171がハンマドリルモードに切り替えられたとき(図2に示すように、作業モード切替レバー171の矢印をハンマドリルモードの標示マークM2に合致させたとき)には、位置センサ173が作業モード切替レバー171の被検知部175を検知する。このときには、コントローラ157による通電指令によって電磁コイル165が通電し、それに伴い生ずる電磁力で駆動側回転部材161の外周領域162bがバネディスク167の付勢力に抗して被動側回転部材163に押し付けられる。すなわち、電磁クラッチ134がトルク伝達状態に切り替えられる(図2及び図5参照)。
 この状態において、トリガ109aを引き操作し、駆動モータ111を通電駆動すれば、駆動モータ111の回転出力は、動力伝達機構117を介してツールホルダ137へと伝達され、当該ツールホルダ137にて保持されたハンマビット119を長軸周りに回転駆動する。すなわち、ハンマドリルモード選択時には、ハンマビット119が軸方向のハンマ動作と周方向のドリル動作を行い、被加工材にハンマドリル作業(穴開け作業)を遂行する。
 上記のハンマドリル作業中においては、磁歪式トルクセンサ151が機械式トルクリミッター147の被動側部材149に作用するトルク値を測定し、コントローラ157に出力する。そして、何らかの原因によってハンマビット119が不意にロックし、磁歪式トルクセンサ151からコントローラ157に入力される測定値が、予め作業者が指定した指定トルク値を超えると、コントローラ157が電磁クラッチ134の結合を解除するべく電磁コイル165の通電遮断指令を出力する。このため、電磁コイル165の通電が遮断し、それに伴い電磁力が消えることで駆動側回転部材161の外周領域162bがバネディスク167の付勢力によって被動側回転部材163から引き離される。すなわち、電磁クラッチ134がトルク伝達状態からトルク遮断状態に切り替わり、駆動モータ111からハンマビット119へのトルク伝達が遮断される。これによりハンマビット119がロックしたことに起因して本体部103に作用する過大な反動トルクによって本体部103が振り回されることを防止することができる。上記の指定トルク値が、本発明における「所定の設定トルク状態」に対応する。
 上記のように、本実施の形態では、駆動モータ111のトルク伝達構造につき、ハンマビット119の回転駆動経路に電磁クラッチ134を配置し、打撃については直結構造とし、回転伝達のみを電磁クラッチ134で行なう構成としている。このため、例えば駆動モータ111のトルクを打撃駆動系と回転駆動系との両方に伝達する態様でクラッチを配置する場合に比べると、電磁クラッチ134に作用するトルクが軽減されることになり、電磁クラッチ134を小型化及び軽量化することができる。しかも、本実施の形態によれば、クラッチ搭載用として専用の第1中間軸133を設定し、この第1中間軸133上に電磁クラッチ134を設定する構成としている。これにより、駆動モータ111(出力軸111a)の回転速度が減速される前段階の高回転低トルク領域において電磁クラッチ134を用いることができる。このため、電磁クラッチ134を設計する上での自由度が増し、より一層の小型化が可能となる。
 また、本実施の形態によれば、電磁クラッチ134につき、被動側回転部材163の軸部163aが固着された第1中間軸133に対し、駆動側回転部材161の軸部161aが相対回転自在に嵌合する構成としている。すなわち、第1中間軸133、駆動側回転部材161の軸部161a及び被動側回転部材163の軸部163aによって構成される電磁クラッチ134のクラッチ軸は、駆動側と被動側が同軸上でかつ径方向の内側と外側に配置される構成としている。これにより、電磁クラッチ134のクラッチ面(動力伝達面)を同じ軸端側(上端側)に設定することができる。つまり、同じ軸端側での入力と出力が可能となり、これにより電磁クラッチ134をストライカ143の動作線(打撃軸線)側に寄せて配置でき、加工作業時に本体部103に生ずる重心位置を支点とする打撃方向モーメント(振動)を低減できるとともに、電磁クラッチ134の長軸方向の寸法を短縮できる。
 また、本実施の形態では、電磁クラッチ134を、第1中間軸133と第2中間軸136との間でトルク伝達する動力伝達領域、すなわち第2中間ギア135と機械式トルクリミッター147の駆動側部材148の第3中間ギア148aとの噛合い係合領域よりも上方位置に配置している。これにより電磁クラッチ134を、ストライカ143の動作線(打撃軸線)に対してより一層近接して配置することが可能となり、打撃方向モーメント(振動)を低減する上でより有利となる。
 また、本実施の形態では、ギアハウジング107内に、ギア収容空間107aから区画されたクラッチ収容空間107bを設定し、当該クラッチ収容空間107bに電磁クラッチ134をギア収容空間107aから隔離して収容する構成としている。このため、クラッチ面に潤滑剤が接触して滑るといった虞がなく、電磁クラッチ134として反応速度が速い摩擦クラッチを用いることができる。また、本実施の形態では、駆動側回転部材161の一部(外周領域162bのみ)が長軸方向に変位することによってトルク伝達状態とトルク遮断状態に切り替わる構成のため、可動部分が少なくて済み、クラッチが設計し易くなる。
 また、本実施の形態においては、本体部103に過大な反動トルクが作用することを防止するべく備えられる電磁クラッチ134につき、ハンマビット119に長軸方向の打撃動作のみを行なわせハンマモードと、打撃動作と長軸方向周りの回転動作とを行なわせるハンマドリルモードとの間で作業モードを切替える場合の、作業モード切替用のクラッチを兼用する構成としている。これにより本体部103に対する過大な反動トルク作用防止と作業モード切り替えに関する合理的な設計が実現されることとなった。
(本発明の第2の実施形態)
 次に本発明の第2の実施形態につき、図6及び図7を参照しつつ説明する。本実施の形態は、電磁クラッチ134の配置に関する変形例であり、請求項2に対応する。この実施の形態においては、電磁クラッチ134が駆動モータ111の出力軸111a上に配置された構成としている。
 図7に示すように、電磁クラッチ134は、長軸方向において対向状に配置される駆動側回転部材181と被動側回転部材183とを有し、駆動側回転部材181の軸部(ボス部)181aが出力軸111aに固着されて一体化され、被動側回転部材183の軸部(ボス部)183aが出力軸111aの外側に相対回転自在に嵌合されている。なお、被動側回転部材183が駆動側回転部材181の上面側に配置されている。
 被動側回転部材183は、径方向において内周領域182aと外周領域182bとに分割されるとともに、両領域182a,182bがバネディスク187を介して長軸方向への相対移動可能に接合された構成とされており、外周領域182bが駆動側回転部材181に対して結合(摩擦接触)する部材として設定される。すなわち、この実施の形態では、被動側回転部材183の外周領域182bがバネディスク187を介して長軸方向に変位する構成とされるとともに、電磁コイル185の非通電時にはバネディスク187によって駆動側回転部材181から引き離されるよう付勢されており、電磁コイル185の通電時には電磁力によって駆動側回転部材181に結合(摩擦接触)されるよう構成される。
 なお、出力軸111aの上端部には第1駆動ギア121が設けられ、運動変換機構113を構成するクランク機構の被動ギア123と噛合い係合している。すなわち、ハンマビット119を打撃駆動する運動変換機構113及び打撃要素115は、駆動モータ111と直結している。このことについては、第1の実施形態と同様である。運動変換機構113及び打撃要素115は、本発明における「打撃駆動機構」に対応し、出力軸111aは、本発明における「打撃駆動軸」に対応する。
 被動側回転部材183の軸部183aは、上方へ向けて延在されており、その延在端部外面に第2駆動ギア191が固着されている。また出力軸111aと、当該出力軸111aに対して平行かつ横並びに配置された動力伝達機構117の第2中間軸136との間には、両軸111a,136に平行な第1中間軸193が設けられている。そして、第1中間軸193の軸方向一端(下端)に第2駆動ギア191と噛合い係合する第1中間ギア195が固定され、軸方向他端(上端)に第2中間ギア197が固定されている。第2中間ギア197は、第2中間軸136上に設けられた機械式トルクリミッター147の駆動側部材148の第3中間ギア148aに噛合い係合されている。このように、駆動モータ111の出力軸111a上に設定された電磁クラッチ134は、出力軸111aと第1中間軸193との間でトルクの伝達と遮断を行う。すなわち、ハンマビット119を回転駆動する動力伝達機構117は、電磁クラッチ134を介して駆動モータ111のトルクが伝達又は遮断される構造とされる。動力伝達機構117は、本発明における「回転駆動機構」に対応する。また、駆動側回転部材181の軸部181aと被動側回転部材183の軸部183aとによってクラッチ軸が構成されており、当該クラッチ軸は、本発明における「回転駆動軸」に対応する。
 また、電磁クラッチ134は、ギアハウジング107内に形成されたクラッチ収容空間107bに収容され、ギア収容空間107aから隔離されている。クラッチ収容空間107bは、ギアハウジング107に形成(後付けで固定)されたインナハウジング部108aと、当該インナハウジン部108aの内部空間をギア収容空間107aから区画する隔壁としてのカバー部材108bとによって形成されている。
 電磁クラッチ134の構成部材のうち、被動側回転部材183の軸部183aは、クラッチ収容空間107bからギア収容空間107aへと突出されている。これにより、軸部183aの外周面とカバー部材108bの内周面との間、及び軸部183aの内周面と出力軸111aの外周面との間には、それぞれ隙間が生ずるが、当該隙間は軸部183aの外周面とカバー部材108bの内周面との間に介在された軸受198及び軸部183aの内周面と出力軸111aの外周面との間に介在された軸受199によって塞ぐ構成としている。すなわち、軸受198,199をシーリング材として利用し、潤滑剤がクラッチ収容室107bに侵入することを抑制している。
 なお、上記以外の、例えば磁歪式トルクセンサ151によるトルク値の測定に基づく電磁クラッチ134の結合と解除(トルク伝達と遮断)に関する構成、及び作業モード切替レバー171の切り替え操作に基づく電磁クラッチ134の結合と解除に関する構成等については、前述の第1の実施形態と同様である。このため、第1の実施形態と同一の構成部材については同一符号を付してその説明を省略する。
 本実施の形態によれば、ハンマビット119の駆動に関し、打撃駆動については直結とし、回転伝達のみを電磁クラッチ134で行なう構成とした上で、更に高回転低トルクで駆動される駆動モータ111の出力軸111a上に電磁クラッチ134を設定する構成としている。これにより電磁クラッチ134に作用するトルクが軽減されることから、電磁クラッチ134を小型化及び軽量化することができる。
 また、本実施の形態によれば、出力軸111aの径方向外側にクラッチ軸を同軸で配置する構成としたので、出力軸111a上に電磁クラッチ134を配置する構成でありながら長軸方向の寸法を短縮できるため、省スペースでの合理的配置が可能となる。また、本実施の形態では、電磁クラッチ134をギア収容空間107aから隔離して潤滑剤が付着しない構成としたので、第1の実施形態の場合と同様、クラッチ面に潤滑剤が接触して滑るといった虞がなく、電磁クラッチ134として反応速度が速い摩擦クラッチを用いることができる。
 更にはハンマドリル作業中において、ハンマビット119が不意にロックしたような場合に、電磁クラッチ134がトルク伝達状態からトルク遮断状態に切り替わることで、本体部103に作用する反動トルクにより本体部103が振り回されることを防止できること、また本体部103に対する過大な反動トルク作用防止用としての電磁クラッチ134を作業モード切替用のクラッチに兼用できること等の作用効果については、前述した第1の実施形態と同様である。
 なお、本実施の形態では、本体部103に働く反動トルクを検知する手段として、磁歪式トルクセンサ151を用いるとしたが、これに限定するものではなく、例えば本体部103の運動を速度センサあるいは加速度センサによって測定し、当該測定値によって本体部103の反動トルクを検知する構成に変更してもよい。
 上記発明の趣旨に鑑み、下記のごとき態様が構成可能である。
(態様1)
 「請求項1に記載の打撃工具であって、
 前記モータのトルクを前記工具ビットに伝達する経路は、前記工具ビットを長軸方向に直線状に駆動する打撃駆動系と前記工具ビットを長軸周りに回転駆動する回転駆動系とを有し、前記クラッチは、前記回転駆動系に配置されていることを特徴とする打撃工具。」
(態様2)
 「請求項1~10のいずれか1つに記載の打撃工具であって、
 加工作業時に前記工具ビットに作用するトルクを、当該工具ビットと共に回転する回転軸に非接触状態で検出する非接触式のトルクセンサを有し、当該トルクセンサにより検出されたトルク値が設定トルク値を超えたときに、前記クラッチによるトルク伝達を遮断する構成としたことを特徴とする打撃工具。」
(態様3)
 「態様2に記載の打撃工具であって、
 前記トルクセンサによって設定される設定トルク値を調整するべく、手動操作が可能なトルク調整部材を有することを特徴とする打撃工具。」
(態様4)
 「請求項1~10のいずれか1つに記載の打撃工具であって、
 前記工具本体の運動量を測定し、当該測定値によって前記工具本体に作用する反動トルクを検知する速度又は加速度センサを有することを特徴とする打撃工具。」
(態様5)
 「請求項1~10のいずれか1つ又は態様1に記載の打撃工具であって、
 前記クラッチは、駆動側クラッチ部と被動側クラッチ部を有し、前記駆動側クラッチ部又は被動側クラッチ部のいずれか一方のクラッチ部が、内周側領域に対して外周側領域が長軸方向に変位することで他方のクラッチ部に対して接触又は離間される構成としたことを特徴とする打撃工具。」
(態様6)
 「請求項2に記載の打撃工具であって、
 前記モータ出力軸と前記クラッチ軸間の速度比が等速に設定されていることを特徴とする打撃工具。」
(態様7)
 「請求項9に記載の打撃工具であって、
 前記ギア収容室から隔離された前記クラッチを収容するクラッチ収容空間を有し、
 前記クラッチの軸を回転自在に支持する軸受によって、前記クラッチ収容空間に対する前記ギア収容室内の潤滑剤の侵入を抑えるシール材を構成していることを特徴とする打撃工具。」
101 ハンマドリル(打撃工具)
103 本体部(工具本体)
105 モータハウジング
107 ギアハウジング
107a ギア収容空間(ギア収容室)
107b クラッチ収容空間
108a インナハウジング部
108b カバー部材
109 ハンドグリップ
109a トリガ
111 駆動モータ(モータ)
111a 出力軸(モータ出力軸、打撃駆動軸)
113 運動変換機構(打撃駆動機構)
115 打撃要素(打撃駆動機構)
117 動力伝達機構(回転駆動機構)
119 ハンマビット(工具ビット)
121 第1駆動ギア
122 クランク軸
123 被動ギア
125 クランク板
126 偏心軸
127 クランクアーム
128 連結軸
129 ピストン
131 第2駆動ギア
132 第1中間ギア
133 第1中間軸
134 電磁クラッチ(クラッチ)
135 第2中間ギア
136 第2中間軸
136a 歯
137 ツールホルダ
138 小ベベルギア
139 大ベベルギア
141 シリンダ
141a 空気室
143 ストライカ(打撃子)
145 インパクトボルト(中間子)
147 機械式トルクリミッター
147a スプリング
148 駆動側部材
148a 第3中間ギア
149 被動側部材
149a 歯
151 磁歪式トルクセンサ
153 励磁コイル
155 検知コイル
157 コントローラ
161 駆動側回転部材(被動側クラッチ部)
161a 軸部(駆動側クラッチ軸)
162a 内周領域
162b 外周領域
163 被動側回転部材(駆動側クラッチ部)
163a 軸部(被動側クラッチ軸)
165 電磁コイル
167 バネディスク
169 軸受
171 作業モード切替レバー(作業モード切替部材)
173 位置センサ
175 被検知部
181 駆動側回転部材
181a 軸部(クラッチ軸)
182a 内周領域
182b 外周領域
183 被動側回転部材
183a 軸部(クラッチ軸、回転駆動軸)
185 電磁コイル
187 バネディスク
191 第2駆動ギア
193 第1中間軸
195 第1中間ギア
197 第2中間ギア
198 軸受
199 軸受

Claims (10)

  1.  工具ビットを長軸方向への打撃動作及び長軸線周りに回転動作させ、これによって当該工具ビットに所定の加工作業を遂行させる打撃工具であって、
     工具本体と、
     前記工具本体に収容され、前記工具ビットを駆動するモータと、
     前記モータのトルクを前記工具ビットに伝達する経路において、前記モータの回転速度が減速される前段階の高回転低トルク領域に設けられ、常時には前記モータのトルクを前記工具ビットへと伝達し、前記工具本体に生ずる前記工具ビット長軸周りのトルクが所定の設定トルク状態を超える場合には前記トルクの伝達を遮断するクラッチと、
    を有することを特徴とする打撃工具。
  2.  請求項1に記載の打撃工具であって、
     前記モータのトルクを前記工具ビットに伝達する経路において、
     モータ出力軸と、
     前記モータ出力軸の下流側に設けられ、当該モータ出力軸の回転速度を減速して前記工具ビットへと伝達する動力伝達軸と、
     前記モータ出力軸と前記動力伝達軸との間に設けられたクラッチ軸と、
    を有し、
     前記クラッチは、前記クラッチ軸上に設けられていることを特徴とする打撃工具。
  3.  請求項2に記載の打撃工具であって、
     前記モータ出力軸と前記クラッチ軸間の速度比が、前記クラッチ軸と動力伝達軸間の減速比よりも小さいことを特徴とする打撃工具。
  4.  請求項1~3のいずれか1つに記載の打撃工具であって、
     前記モータによって前記工具ビットの長軸方向に直線状に駆動され、前記工具ビットを長軸方向に打撃する打撃子を更に有し、
     前記クラッチが、前記クラッチ軸と前記動力伝達軸間の動力伝達領域よりも前記打撃子の打撃軸線に近接して配置されていることを特徴とする打撃工具。
  5.  請求項1~4のいずれか1つに記載の打撃工具であって、
     前記クラッチは、駆動側クラッチ部と被動側クラッチ部を有し、両クラッチ部が互いに接触することでトルクを伝達し、離間することでトルクの伝達を遮断するように構成されており、
     前記クラッチ軸は、前記駆動側クラッチ部に形成された駆動側クラッチ軸と、前記被動側クラッチ部に形成された被動側クラッチ軸とを有し、両軸が同軸上において径方向内外に配置されていることを特徴とする打撃工具。
  6.  請求項1に記載の打撃工具であって、
     前記モータのトルクを前記工具ビットに伝達する経路において、
     前記工具ビットを打撃駆動する打撃駆動機構と、
     前記工具ビットを回転駆動する回転駆動機構と、
     前記モータにより回転駆動されて前記打撃駆動機構を常時に駆動する打撃駆動軸と、
     前記打撃駆動軸とは独立して前記モータにより回転駆動されて前記回転駆動機構を駆動する回転駆動軸と、
    を有し、
     前記打撃駆動軸と前記回転駆動軸が同軸上に配置されており、
     前記クラッチは、前記回転駆動軸上に配置されていることを特徴とする打撃工具。
  7.  請求項6に記載の打撃工具であって、
     前記打撃駆動軸が径方向内側に位置し、前記回転駆動軸が径方向外側に位置する関係で同軸上に配置されていることを特徴とする打撃工具。
  8.  請求項1~7に記載の打撃工具であって、
     前記クラッチは、駆動側クラッチ部と、被動側クラッチ部と、両クラッチ部を互いに離間させてトルクの伝達を遮断するべく付勢する付勢部材と、通電することで前記付勢部材の付勢力に抗して前記両クラッチ部を互いに接触させてトルクを伝達する電磁コイルとを有する電磁クラッチとして構成されていることを特徴とする打撃工具。
  9.  請求項1~8に記載の打撃工具であって、
     前記モータから前記工具ビットへとトルクを伝達するトルク伝達経路における軸相互間でのトルク伝達がギアによって行なわれるとともに、当該ギアが潤滑剤封入のギア収容室に収容されており、
     前記クラッチは、前記ギア収容室から隔離して配置されていることを特徴とする打撃工具。
  10.  請求項1~9に記載の打撃工具であって、
     前記モータにより駆動されて前記工具ビットを打撃駆動する打撃駆動機構と、前記モータにより駆動されて前記工具ビットを回転駆動する回転駆動機構の構成要素は、それぞれ独立して設定されていることを特徴とする打撃工具。
PCT/JP2010/068481 2009-11-02 2010-10-20 打撃工具 WO2011052449A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/505,034 US9339923B2 (en) 2009-11-02 2010-10-20 Power tool
BR112012010312A BR112012010312A2 (pt) 2009-11-02 2010-10-20 ferramenta de impacto
CN201080048824.6A CN102596510B (zh) 2009-11-02 2010-10-20 击打工具
EP10826581.0A EP2497608B1 (en) 2009-11-02 2010-10-20 Striking tool
RU2012122780/02A RU2012122780A (ru) 2009-11-02 2010-10-20 Электроинструмент

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009251927A JP5395620B2 (ja) 2009-11-02 2009-11-02 打撃工具
JP2009-251927 2009-11-02

Publications (1)

Publication Number Publication Date
WO2011052449A1 true WO2011052449A1 (ja) 2011-05-05

Family

ID=43921873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068481 WO2011052449A1 (ja) 2009-11-02 2010-10-20 打撃工具

Country Status (7)

Country Link
US (1) US9339923B2 (ja)
EP (1) EP2497608B1 (ja)
JP (1) JP5395620B2 (ja)
CN (1) CN102596510B (ja)
BR (1) BR112012010312A2 (ja)
RU (1) RU2012122780A (ja)
WO (1) WO2011052449A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914248A (zh) * 2018-01-12 2018-04-17 江苏恒丰电动工具有限公司 一种移动式拨扭

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537122B2 (ja) * 2009-11-02 2014-07-02 株式会社マキタ 電動工具
RU2012140965A (ru) 2011-10-04 2014-03-27 Макита Корпорейшн Электроинструмент (варианты)
CN103291844A (zh) * 2012-03-02 2013-09-11 博世电动工具(中国)有限公司 电动工具及其传动装置
KR101453714B1 (ko) * 2013-04-25 2014-10-22 주식회사 림사이언스 전기 제어될 수 있는 회전 가압 장치 및 그 제어 방법
US9289878B2 (en) 2013-08-30 2016-03-22 Ingersoll-Rand Company Grinders with friction drives
EP3023200A1 (de) * 2014-11-20 2016-05-25 HILTI Aktiengesellschaft Steuerungsverfahren für einen Bohrhammer
GB201421577D0 (en) * 2014-12-04 2015-01-21 Black & Decker Inc Drill
GB201421576D0 (en) 2014-12-04 2015-01-21 Black & Decker Inc Drill
US10406662B2 (en) * 2015-02-27 2019-09-10 Black & Decker Inc. Impact tool with control mode
DE102015205689A1 (de) * 2015-03-30 2016-10-06 Robert Bosch Gmbh Schutzvorrichtung zumindest zu einem Schutz eines Bedieners bei einem unbeherrschten Blockierfall einer Handwerkzeugmaschine
DE102015226085A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Handwerkzeugmaschine mit einer Schalteinheit
JP6814979B2 (ja) * 2017-02-24 2021-01-20 パナソニックIpマネジメント株式会社 電動工具
US11529725B2 (en) 2017-10-20 2022-12-20 Milwaukee Electric Tool Corporation Power tool including electromagnetic clutch
CN213616506U (zh) 2017-10-26 2021-07-06 米沃奇电动工具公司 电动工具
US11641102B2 (en) 2020-03-10 2023-05-02 Smart Wires Inc. Modular FACTS devices with external fault current protection within the same impedance injection module
WO2021202968A1 (en) * 2020-04-02 2021-10-07 Milwaukee Electric Tool Corporation Power tool
US11642769B2 (en) * 2021-02-22 2023-05-09 Makita Corporation Power tool having a hammer mechanism
JP2022131731A (ja) * 2021-02-26 2022-09-07 パナソニックホールディングス株式会社 電動工具
US11858100B2 (en) * 2021-04-07 2024-01-02 Milwaukee Electric Tool Corporation Impact power tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707052A1 (de) * 1987-03-05 1988-09-15 Bosch Gmbh Robert Verfahren zum unterbrechen der antriebstaetigkeit, insbesondere drehantriebstaetigkeit, einer handwerkzeugmaschine
JP2002224975A (ja) * 2000-12-01 2002-08-13 Hilti Ag 電動手工具装置の安全クラッチ
US20070289759A1 (en) 2006-05-30 2007-12-20 Markus Hartmann Hand-held machine tool with slip clutch

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1315904A (en) 1970-06-16 1973-05-09 Metabowerke Kg Percussive drills
DE2242944B2 (de) * 1972-08-31 1981-04-23 Robert Bosch Gmbh, 7000 Stuttgart Bohrhammer
DE2252951B2 (de) * 1972-10-28 1981-09-10 Robert Bosch Gmbh, 7000 Stuttgart Bohrhammer
CA1136446A (en) * 1979-06-18 1982-11-30 Norman J. Ince Hammer drill
DE2944275A1 (de) * 1979-11-02 1981-05-14 Hilti AG, 9494 Schaan Motorisch betriebenes handwerkzeug
DE3311265A1 (de) * 1983-03-28 1984-10-11 Hilti Ag, Schaan Elektropneumatischer bohr- und meisselhammer
US4825992A (en) * 1987-12-21 1989-05-02 Alfred Skrobisch Magnetic torque limiting clutch having overload disconnection means
DE3821594A1 (de) * 1988-06-27 1989-12-28 Hilti Ag Motorisch betriebenes handwerkzeug
DE3931329C1 (ja) * 1989-05-31 1990-06-28 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4112012A1 (de) * 1991-04-12 1992-10-15 Bosch Gmbh Robert Handwerkzeugmaschine mit blockiersensor
DE4332323C2 (de) * 1993-09-23 1995-11-30 Leybold Ag Getriebemotor mit einem eine Hohlwelle aufweisenden Elektromotor
JP3663638B2 (ja) * 1994-06-27 2005-06-22 松下電工株式会社 電動ドライバのトルク制御装置
DE19540718B4 (de) * 1995-11-02 2007-04-05 Robert Bosch Gmbh Handwerkzeugmaschine mit einer von einer Detektionseinrichtung auslösbaren Blockiereinrichtung
DE19646382A1 (de) * 1996-11-11 1998-05-14 Hilti Ag Handgerät
DE10021356A1 (de) * 2000-05-02 2001-11-08 Hilti Ag Drehendes Elektrohandwerkzeuggerät mit Sicherheitsroutine
DE10029728A1 (de) * 2000-06-16 2001-12-20 Hilti Ag Handwerkzeuggerät
JP4281273B2 (ja) * 2000-10-20 2009-06-17 日立工機株式会社 ハンマドリル
DE10057139A1 (de) * 2000-11-17 2002-05-23 Hilti Ag Elektrohandwerkzeug mit Sicherheitskupplung
US7506694B2 (en) * 2002-09-13 2009-03-24 Black & Decker Inc. Rotary tool
DE102004025951A1 (de) * 2004-05-27 2005-12-22 Robert Bosch Gmbh Handwerkzeugmaschine, insbesondere Bohr- und/oder Schlaghammer
JP4647957B2 (ja) * 2004-08-27 2011-03-09 株式会社マキタ 作業工具
DE102004051911A1 (de) * 2004-10-26 2006-04-27 Robert Bosch Gmbh Handwerkzeugmaschine, insbesondere Bohrschrauber
EP1702723B1 (en) * 2005-03-18 2014-04-02 Black & Decker, Inc. Power tool torque overload clutch
JP4458018B2 (ja) * 2005-10-26 2010-04-28 日立工機株式会社 打撃工具
DE102005061399A1 (de) * 2005-12-22 2007-07-05 Robert Bosch Gmbh Handwerkzeugmaschine, insbesondere Bohr- und/oder Meißelhammer
WO2007102449A1 (en) * 2006-03-07 2007-09-13 Hitachi Koki Co., Ltd. Electrical power tool
CN101489731A (zh) * 2006-07-10 2009-07-22 罗伯特·博世有限公司 手持式工具机
US7878265B2 (en) * 2007-02-06 2011-02-01 Makita Corporation Impact power tool
JP4940012B2 (ja) * 2007-04-27 2012-05-30 株式会社マキタ 打撃工具
GB0713432D0 (en) * 2007-07-11 2007-08-22 Black & Decker Inc Rotary hammer-chain drive
US7798245B2 (en) * 2007-11-21 2010-09-21 Black & Decker Inc. Multi-mode drill with an electronic switching arrangement
DE102009029055A1 (de) * 2009-09-01 2011-03-10 Robert Bosch Gmbh Bohr- und/oder Meißelhammervorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707052A1 (de) * 1987-03-05 1988-09-15 Bosch Gmbh Robert Verfahren zum unterbrechen der antriebstaetigkeit, insbesondere drehantriebstaetigkeit, einer handwerkzeugmaschine
JP2002224975A (ja) * 2000-12-01 2002-08-13 Hilti Ag 電動手工具装置の安全クラッチ
US20070289759A1 (en) 2006-05-30 2007-12-20 Markus Hartmann Hand-held machine tool with slip clutch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2497608A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914248A (zh) * 2018-01-12 2018-04-17 江苏恒丰电动工具有限公司 一种移动式拨扭

Also Published As

Publication number Publication date
JP2011093071A (ja) 2011-05-12
CN102596510B (zh) 2014-12-31
US20120261150A1 (en) 2012-10-18
CN102596510A (zh) 2012-07-18
BR112012010312A2 (pt) 2018-03-20
JP5395620B2 (ja) 2014-01-22
EP2497608A1 (en) 2012-09-12
US9339923B2 (en) 2016-05-17
EP2497608B1 (en) 2016-08-10
EP2497608A4 (en) 2015-07-08
RU2012122780A (ru) 2013-12-10

Similar Documents

Publication Publication Date Title
JP5395620B2 (ja) 打撃工具
JP5496605B2 (ja) 打撃工具
US9364944B2 (en) Power tool
JP5537055B2 (ja) 電動工具
JP5852509B2 (ja) 電動工具
JP5534783B2 (ja) 電動工具
US11123854B2 (en) Handheld power tool and control method
JP2021024051A (ja) 打撃工具
JP2013078820A (ja) 回転工具
JP5738146B2 (ja) 作業工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048824.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010826581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010826581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012122780

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13505034

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010312

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010312

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120502