WO2011052183A1 - 生体疲労評価装置及び生体疲労評価方法 - Google Patents

生体疲労評価装置及び生体疲労評価方法 Download PDF

Info

Publication number
WO2011052183A1
WO2011052183A1 PCT/JP2010/006309 JP2010006309W WO2011052183A1 WO 2011052183 A1 WO2011052183 A1 WO 2011052183A1 JP 2010006309 W JP2010006309 W JP 2010006309W WO 2011052183 A1 WO2011052183 A1 WO 2011052183A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
feature amount
unit
wave
feature
Prior art date
Application number
PCT/JP2010/006309
Other languages
English (en)
French (fr)
Inventor
金井 江都子
船倉 正三
恭良 渡辺
雅彰 田中
良仁 鴫原
敬 水野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/142,604 priority Critical patent/US8706206B2/en
Priority to JP2011517709A priority patent/JP5559784B2/ja
Priority to CN201080003836.7A priority patent/CN102271584B/zh
Priority to EP10826319.5A priority patent/EP2371286B1/en
Publication of WO2011052183A1 publication Critical patent/WO2011052183A1/ja
Priority to US14/200,483 priority patent/US20140180145A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4035Evaluating the autonomic nervous system

Definitions

  • the present invention relates to a biological fatigue evaluation apparatus and a biological fatigue evaluation method for evaluating a fatigue state from a human biological signal.
  • 25A and 25B are block diagrams showing a configuration of a conventional biological fatigue evaluation apparatus described in Patent Document 1. As shown in FIG. Hereinafter, the apparatus described in Patent Document 1 will be described with reference to FIGS. 25A and 25B.
  • the acceleration pulse wave calculation unit 2502 calculates an acceleration pulse wave from the measured pulse wave signal and extracts a waveform component of the acceleration pulse wave.
  • the peak value from the first wave (a wave) to the fifth wave (e wave) is calculated.
  • the evaluation unit 2504 evaluates that the user is tired if the newly calculated peak value is smaller than the reference value of the pulse height of the acceleration pulse wave stored in the storage unit 2503.
  • Patent Document 1 focusing on the a wave among the waveform components of the acceleration pulse wave, the relationship between the decrease in the crest value of the a wave and fatigue is shown in the data.
  • a configuration in which a chaos analysis unit 2505 is further added between the acceleration pulse wave calculation unit 2502 and the evaluation unit 2507 is also disclosed.
  • the chaos analysis unit 2505 performs chaos analysis on the acceleration pulse wave calculated by the acceleration pulse wave calculation unit 2502 to calculate the maximum Lyapunov exponent.
  • the evaluation unit 2507 evaluates that the user is tired.
  • Patent Document 1 it is assumed that fatigue can be evaluated non-invasively with the above configuration.
  • the driver is assumed to be “sleepiness (contradiction)” in a state of overcoming drowsiness, and both the sympathetic nerve activity amount and the parasympathetic nerve activity amount are If it falls, the driver is depressing “depressed (contradiction)”.
  • Patent Document 2 it is proposed that the user's state is divided into four states and estimated using the pulse wave signal, but data supporting the determination of the state is not shown. Therefore, it is unclear whether this separation has an effect that is more than just convenient separation.
  • the present invention solves these problems, and an object of the present invention is to provide a biological fatigue evaluation apparatus and a biological fatigue evaluation method capable of performing fatigue evaluation with high evaluation accuracy.
  • a biological fatigue evaluation apparatus includes a biological signal measurement unit that measures a user's pulse wave signal, and a systole of a pulse wave signal measured by the biological signal measurement unit.
  • a feature amount extraction unit that extracts a first feature amount obtained from a rear component, a storage unit for storing the first feature amount extracted by the feature amount extraction unit, and a first feature amount extracted by the feature amount extraction unit
  • a fatigue determination unit that determines whether or not the user is fatigued using one feature amount, wherein the fatigue determination unit includes any one of the feature amounts of the first feature amount extracted by the feature amount extraction unit; The presence / absence of the fatigue is determined by comparing at least one of the first feature values stored in the storage unit.
  • the first feature value obtained from the systolic posterior component of the pulse wave signal is extracted, and any one of the extracted first feature values is stored in the storage unit.
  • the presence or absence of fatigue is determined by comparing at least one feature amount of one feature amount.
  • the systolic posterior component of the pulse wave signal is affected by factors other than fatigue, it is less susceptible to fatigue. For this reason, by using the first feature amount obtained from the post-systolic component, it is possible to reduce the influence of factors other than fatigue and improve the evaluation accuracy of fatigue evaluation.
  • the feature amount extraction unit calculates an acceleration pulse wave from the pulse wave signal and includes at least information on a c wave or a d wave that is a component wave of the acceleration pulse wave corresponding to the backward systolic component.
  • the first feature amount is extracted using information on a plurality of component waves.
  • the feature amount extraction unit extracts, as the first feature amount, a ratio of a peak value of the c wave to a peak value of the a-wave, b-wave, or e-wave of the acceleration pulse wave as the first feature amount.
  • the unit determines that the user is tired when the absolute value of the first feature value increases in time series.
  • the feature amount extraction unit extracts a difference between a peak value of the a wave of the acceleration pulse wave and a peak value of the c wave as the first feature amount, and the fatigue determination unit includes the first feature amount.
  • the fatigue determination unit includes the first feature amount.
  • this configuration mitigates the effects of factors other than fatigue than when evaluating fatigue based on the peak value of the acceleration pulse waveform itself. In addition, the evaluation accuracy of fatigue evaluation can be improved.
  • the feature amount extraction unit obtains a value obtained by dividing a difference between the c-wave crest value of the acceleration pulse wave and the c-wave crest value of the acceleration pulse wave by the a-wave of the acceleration pulse wave. Extracted as a feature value, the fatigue determination unit determines that the user is tired when the absolute value of the first feature value increases in time series.
  • the fatigue is evaluated more than when fatigue is evaluated based on the crest value of the acceleration pulse wave waveform itself. It is possible to alleviate the influence of other factors and improve the evaluation accuracy of fatigue evaluation.
  • a device control unit that controls an external device that gives a stimulus to the user when the fatigue determination unit determines that the user is tired is further provided.
  • This configuration makes it possible to present a fatigue evaluation result or automatically perform care based on the evaluation result by giving a stimulus to the user when it is determined that the user is tired.
  • the biological signal measurement unit further measures a user's heartbeat or pulse wave as a biological signal
  • the feature amount extraction unit is further obtained from the biological signal measured by the biological signal measurement unit.
  • the second feature value indicating the amount of parasympathetic nerve activity is extracted
  • the storage unit further stores the second feature value extracted by the feature value extraction unit
  • the biological fatigue evaluation apparatus further includes: Using the second feature amount extracted by the feature amount extraction unit, comprising a fatigue quality determination unit that determines a user's fatigue quality, whether fatigue due to difficult work or fatigue due to monotonous work,
  • the determination unit determines that the fatigue determination unit is fatigued
  • the determination unit stores any one of the feature amounts extracted from the feature amount extraction unit and the storage unit. Of the second feature By comparing the one feature quantity even without, it determines the quality of the fatigue.
  • the fatigue quality determination unit determines that the fatigue is caused by difficult work when the second feature amount is reduced in time series, and if the second feature amount does not decrease, is fatigue caused by monotonous work. Is determined.
  • This configuration makes it possible to determine the quality of fatigue based on time-series changes in the second feature value, and to provide recovery support suitable for the user. Moreover, since the quality of fatigue can be determined by a biological signal that can be easily measured regardless of the scene, it is excellent in versatility.
  • the biological signal measuring unit further measures a user's brain signal as a biological signal
  • the feature amount extracting unit is further obtained from the biological signal measured by the biological signal measuring unit.
  • a third feature amount related to at least one of ⁇ wave and ⁇ wave is extracted, and the storage unit further stores the third feature amount extracted by the feature amount extraction unit,
  • the living body fatigue evaluation apparatus further uses the third feature amount extracted by the feature amount extraction unit to determine a user's fatigue quality, which is fatigue due to difficult work or fatigue due to monotonous work.
  • a quality determination unit and when the fatigue determination unit determines that the fatigue determination unit is fatigued, any one of the feature amounts of the third feature amount extracted by the feature amount extraction unit and , Recorded in the storage unit
  • the quality of the fatigue is determined by comparing with at least one of the remembered third feature values.
  • the third feature when fatigued, the third feature can be used to determine the quality of fatigue, whether it is fatigue due to work that is difficult for the user or fatigue due to monotonous work, and recovery suitable for the user Support can be provided.
  • the quality of fatigue can be determined by a brain signal, it can be widely applied to, for example, labor management of occupational people wearing hats, headset microphones, and the like.
  • the information processing apparatus further includes an identification unit that generates identification information for identifying whether the user is in an open eye state or a closed eye state, and the biological signal measurement unit adds the identification information to the measured biological signal.
  • the feature amount extraction unit includes at least one of a power value of the ⁇ wave band and a power value of the ⁇ wave band in a time interval in which the identification unit identifies that the user is in an open eye state or a closed eye state. The third feature amount using the power value is extracted.
  • the power value of the ⁇ wave band in the brain signal in order to use the power value of the ⁇ wave band in the brain signal, the power value of at least one of the ⁇ wave band power value to distinguish whether the value in the user's eye open state or the value in the closed eye state, It becomes possible to improve the evaluation accuracy of fatigue evaluation.
  • the feature amount extraction unit extracts the third feature amount using a power value of an ⁇ wave band in a time interval in which the identification unit identifies that the user is in an eye-closed state, and the fatigue
  • the quality determination unit determines that the fatigue is due to difficult work when the third feature value increases in time series.
  • the feature amount extraction unit extracts the third feature amount using a power value of a ⁇ -wave band in a time interval in which the identification unit identifies that the user is in an open eye state or a closed eye state.
  • the fatigue quality determination unit determines that the fatigue is due to monotonous work when the third feature value decreases in time series.
  • This configuration improves the evaluation accuracy of fatigue evaluation to determine whether the user's fatigue is due to monotonous work from the power value of the ⁇ wave band in the time interval in which the user is identified as being in the open or closed state. It becomes possible to do. Moreover, it becomes possible to aim at the recovery assistance suitable for a user with respect to the fatigue by a monotonous operation
  • a stimulus output unit that outputs an auditory stimulus for stimulating hearing to the user and the first feature amount extracted by the feature amount extraction unit, fatigue due to difficult work, or A fatigue quality determination unit that determines a user's fatigue quality due to fatigue due to monotonous work, and the fatigue quality determination unit stores in the storage unit when the fatigue determination unit determines that the user is fatigued
  • the first feature amount in the time interval before the auditory stimulus is output by the stimulus output unit and the first feature amount in the time interval when the auditory stimulus is output by the stimulus output unit Determine the quality of the fatigue.
  • the feature amount extraction unit calculates an acceleration pulse wave from the pulse wave signal, and extracts a ratio of a c-wave peak value to an a-wave peak value of the acceleration pulse wave as the first feature amount.
  • the fatigue quality determination unit outputs an auditory stimulus by the stimulus output unit with respect to the first feature amount in a time interval before the auditory stimulus is output by the stimulus output unit stored in the storage unit.
  • the first feature amount in the time interval increases, it is determined that the fatigue is due to monotonous work, and when it is not increased, it is determined that the fatigue is due to difficult work.
  • a device control unit that controls an external device that gives a stimulus to the user according to the quality of fatigue determined by the fatigue quality determination unit is further provided.
  • This configuration makes it possible to present the determination result of the fatigue quality to the user or to provide recovery support suitable for the user by giving the user a stimulus according to the fatigue quality.
  • a biological fatigue evaluation apparatus is measured by a biological signal measurement unit that measures a heartbeat or a pulse wave of a user as a biological signal and the biological signal measurement unit.
  • a feature amount extraction unit that extracts a second feature amount indicating a parasympathetic activity amount obtained from a biological signal, a storage unit for storing the second feature amount extracted by the feature amount extraction unit, and the feature amount
  • a fatigue quality determination unit for determining a user's fatigue quality, whether fatigue due to difficult work or fatigue due to monotonous work, using the second feature amount extracted by the extraction unit, Compares one of the second feature values extracted by the feature value extraction unit with at least one feature value of the second feature values stored in the storage unit. Determine the quality of the fatigue
  • a biological fatigue evaluation apparatus includes a biological signal measurement unit that measures a user's brain signal as a biological signal, and the biological signal measured by the biological signal measurement unit.
  • a feature amount extraction unit that extracts a third feature amount related to at least one of ⁇ wave and ⁇ wave obtained from the signal, and for storing the third feature amount extracted by the feature amount extraction unit
  • a storage unit and a fatigue quality determination unit that determines a user's fatigue quality, whether fatigue due to difficult work or fatigue due to monotonous work, using the third feature amount extracted by the feature amount extraction unit.
  • the fatigue quality determination unit includes at least one of the feature amount of the third feature amount extracted by the feature amount extraction unit and the third feature amount stored in the storage unit. Compare with features The fatigue quality is determined.
  • the quality of fatigue can be determined by a brain signal, it can be widely applied to, for example, labor management of occupational people wearing hats, headset microphones, and the like.
  • the biological fatigue evaluation apparatus which concerns on 1 aspect of this invention is a living body which measures the stimulation output part which outputs the auditory stimulus which stimulates hearing with respect to a user, and a user's pulse wave signal A signal measurement unit, a feature amount extraction unit that extracts a first feature amount obtained from a backward systolic component of the pulse wave signal measured by the biological signal measurement unit, and a first feature extracted by the feature amount extraction unit Using the storage unit for storing the amount and the first feature amount extracted by the feature amount extraction unit, the user's fatigue quality, whether fatigue due to difficult work or fatigue due to monotonous work, is determined.
  • a fatigue quality determination unit wherein the fatigue quality determination unit includes a first feature amount in a time interval before an auditory stimulus is output by the stimulus output unit stored in the storage unit, and the stimulus output unit. Auditory stimulus was output By comparing the first feature quantity in the time interval, it determines the quality of the fatigue.
  • the present invention can be realized not only as such a biological fatigue evaluation apparatus, but also as a biological fatigue evaluation method including steps performed by each processing unit included in the biological fatigue evaluation apparatus. It can also be realized as a program that causes a computer to execute characteristic processing included in the biological fatigue evaluation method. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet. Further, it can be realized as an integrated circuit including a characteristic processing unit included in the biological fatigue evaluation apparatus.
  • FIG. 1 is a block diagram showing the configuration of the biological fatigue evaluation apparatus in the first embodiment.
  • FIG. 2A is a diagram illustrating an example of a volume pulse wave waveform.
  • FIG. 2B is a diagram illustrating an example of an acceleration pulse wave waveform.
  • FIG. 3A is a flowchart illustrating an example of fatigue evaluation by the fatigue determination unit in the first embodiment.
  • FIG. 3B is a flowchart illustrating another example of fatigue evaluation by the fatigue determination unit in the first exemplary embodiment.
  • FIG. 4 is a block diagram illustrating a configuration of the biological fatigue evaluation apparatus according to the second embodiment.
  • FIG. 5A is a flowchart showing an example of fatigue quality determination by the fatigue quality determination unit in the second embodiment.
  • FIG. 5B is a flowchart showing another example of fatigue quality determination by the fatigue quality determination unit in the second exemplary embodiment.
  • FIG. 6 is a block diagram illustrating a configuration of the biological fatigue evaluation apparatus according to the third embodiment.
  • FIG. 7A is a flowchart illustrating an example of fatigue quality determination using the power value in the ⁇ band by the fatigue quality determination unit according to the third embodiment.
  • FIG. 7B is a flowchart illustrating an example of fatigue quality determination using ⁇ -blocking by the fatigue quality determination unit in the third exemplary embodiment.
  • FIG. 8A is a flowchart showing another example of the fatigue quality determination using the power value in the ⁇ band by the fatigue quality determination unit in the third embodiment.
  • FIG. 8B is a flowchart showing an example of fatigue quality determination using the power value and average frequency in the ⁇ band by the fatigue quality determination unit in the third embodiment.
  • FIG. 9A is a flowchart illustrating an example of fatigue quality determination using a ⁇ -band power value by the fatigue quality determination unit according to the third embodiment.
  • FIG. 9B is a flowchart illustrating another example of fatigue quality determination using the ⁇ -band power value by the fatigue quality determination unit according to Embodiment 3.
  • FIG. 10 is a block diagram illustrating a configuration of the biological fatigue evaluation apparatus according to the fourth embodiment.
  • FIG. 11 is a flowchart illustrating an example of fatigue quality determination by the fatigue quality determination unit according to the fourth embodiment.
  • FIG. 12 is a block diagram illustrating a configuration of the biological fatigue evaluation apparatus according to the fifth embodiment.
  • FIG. 13 is a flowchart showing an example of the operation of the biological fatigue evaluation apparatus in the fifth embodiment.
  • FIG. 14 is a diagram showing changes in the ATMT results before and after mental fatigue load.
  • FIG. 15A is a diagram showing a subjective report score before and after mental fatigue load.
  • FIG. 15B is a diagram showing a subjective report score recorded during the N-back test recorded at the end of the test.
  • FIG. 16A is a diagram illustrating a change in the peak value of the APG waveform before and after mental fatigue load (0-back).
  • FIG. 16B is a diagram illustrating a change in the peak value of the APG waveform before and after mental fatigue load (2-back).
  • FIG. 17 is a diagram illustrating changes in index values (c / a, c / b, c / e) based on APG before and after mental fatigue load.
  • FIG. 18 is a diagram showing changes in index values (ac, ca,
  • FIG. 19 is a diagram illustrating a change in c / a value with respect to auditory stimulation before and after mental fatigue load.
  • FIG. 20 is a diagram showing changes in lnHF before and after mental fatigue load.
  • FIG. 21 is a diagram showing changes in ln ⁇ , ln ⁇ , and ln ⁇ / ln ⁇ before and after mental fatigue load.
  • FIG. 22 is a diagram showing changes in ln ⁇ , ln ⁇ , and ln ⁇ / ln ⁇ before and after mental fatigue load.
  • FIG. 23A is a diagram showing a change in% ⁇ before and after mental fatigue load.
  • FIG. 23B is a diagram showing a change in% ⁇ before and after mental fatigue load.
  • FIG. 24 is a diagram illustrating a change in ⁇ -blocking before and after mental fatigue load.
  • FIG. 25A is a block diagram illustrating a configuration of a conventional biological fatigue evaluation apparatus.
  • FIG. 25B is a block diagram illustrating a configuration of a conventional biological fatigue evaluation apparatus.
  • FIG. 1 is a block diagram showing a configuration of a biological fatigue evaluation apparatus 100 according to Embodiment 1 of the present invention.
  • a biological fatigue evaluation apparatus 100 includes a biological signal measurement unit 101 that measures a user's pulse wave signal, a feature amount extraction unit 102 that extracts a feature amount from the pulse wave signal, and a storage unit that stores the feature amount. 103 and a fatigue judgment unit 104 for judging the presence or absence of fatigue. As shown in the figure, the biological fatigue evaluation apparatus 100 may further include a device control unit 105 that controls an external device based on the fatigue evaluation result.
  • the biological signal measuring unit 101 acquires pulse wave data in time series by sampling a user's pulse wave detected by a transducer or the like at a predetermined sampling period.
  • the part to which the biological signal measuring unit 101 is attached is typically a fingertip or earlobe, but may be any part as long as it can acquire other pulse waves, such as a forehead or a nose tip.
  • the feature quantity extraction unit 102 extracts the first feature quantity obtained from the systolic posterior component of the pulse wave signal measured by the biological signal measurement unit 101. Specifically, the feature amount extraction unit 102 calculates an acceleration pulse wave from the pulse wave signal, and includes a plurality of pieces of information on at least c-wave or d-wave that is a component wave of the acceleration pulse wave corresponding to the backward systolic component. The first feature amount is extracted using the component wave information.
  • the storage unit 103 is a memory for storing the first feature amount extracted by the feature amount extraction unit 102.
  • the fatigue determination unit 104 determines whether the user is fatigued using the first feature amount extracted by the feature amount extraction unit 102. Specifically, the fatigue determination unit 104 includes at least one of the feature amounts of the first feature amount extracted by the feature amount extraction unit 102 and the first feature amount stored in the storage unit 103. The presence or absence of fatigue is determined by comparing with one feature amount. For example, the fatigue determination unit 104 compares the currently extracted first feature amount with the first feature amount extracted in the past among the plurality of extracted first feature amounts, and determines the presence or absence of fatigue. .
  • the fatigue determination unit 104 determines whether the user is tired.
  • the fatigue determination unit 104 determines the absolute value of the first feature amount. If the value decreases over time, it is determined that the user is tired.
  • the fatigue determination unit 104 determines that the user is fatigued when the absolute value of the first feature value increases in time series.
  • FIG. 2A is a diagram illustrating an example of a plethysmogram (abbreviated as PTG) waveform measured by the biological signal measurement unit 101.
  • FIG. 2B is a diagram showing an example of an accelerated pulse wave (accelerated plethysmogram, abbreviated as APG) waveform obtained by second-order differentiation of the volume pulse wave of FIG. 2A.
  • APG accelerated pulse wave
  • the waveform of the acceleration pulse wave includes an initial contraction positive wave (a wave), an initial contraction negative wave (b wave), a mid-systolic re-rising wave (c wave), and a post-systolic re-lowering wave ( d wave) and an extended initial positive wave (e wave).
  • the a wave and the b wave of the acceleration pulse wave component are the acceleration pulse wave waveform components in the systolic front component of the volume pulse wave.
  • the c-wave and d-wave are included in the backward systolic component of the volume pulse wave.
  • the systolic anterior component of the volume pulse wave reflects the driving pressure wave generated by ejection of blood, and the posterior systolic component reflects the reflected pressure wave that the driving pressure wave propagates to the periphery and reflects back. .
  • the present inventors conducted a feasibility verification experiment on non-invasive evaluation of biological fatigue, and among the acceleration pulse wave components obtained by second-order differentiation of the pulse wave, a wave peak value and b wave peak value, and e wave We found a tendency for the crest value to change significantly before and after mental fatigue.
  • “significantly changed” means that the value changes statistically at a significance level of 5% or 1%.
  • the c-wave crest value and the d-wave crest value which are feature quantities reflecting the post-systolic component of the pulse wave, do not change significantly before and after mental fatigue load (that is, no change due to fatigue is observed). ) I found a trend. Furthermore, the feature amount using a plurality of acceleration pulse waveform components including c-wave or d-wave has been found to change significantly before and after mental fatigue load.
  • the peak values of the a wave to the e wave will be described as a to e, respectively.
  • the feature amount using information of a plurality of acceleration pulse wave component components including c wave or d wave information includes a c / a value that is a crest wave to a wave crest ratio, and a c wave to b wave crest ratio. C / b value, and c / e value that is the crest-to-e wave height ratio.
  • dc ⁇ / a Value The possibility verification experiment regarding the non-invasive evaluation of biological fatigue conducted by the present inventors will be described in detail later.
  • the feature quantity extraction unit 102 extracts c / a values from among a number of feature quantities.
  • the feature quantity extraction unit 102 performs second-order differentiation on the pulse wave signal measured by the biological signal measurement unit 101 and converts it into an acceleration pulse wave waveform as shown in FIG. 2B.
  • the feature quantity extraction unit 102 extracts the peak value a of the a wave from the extreme value that occurs earliest in time from the acceleration pulse wave waveform component, and the c wave from the third extreme value in time.
  • the crest value c is extracted, and a c / a value that is a ratio thereof is obtained.
  • the feature amount extraction unit 102 stores the obtained c / a value in the storage unit 103 in time series.
  • the feature amount extraction unit 102 may output the value for each beat of the pulse wave signal as it is as the c / a value, or output an average value in a predetermined time interval (for example, 10 seconds). May be.
  • the fatigue determination unit 104 compares c / a values at at least two points in time to determine the presence or absence of fatigue. For example, when a new c / a value is output from the feature amount extraction unit 102, the fatigue determination unit 104 chronologically stores the c / a value stored in the storage unit 103 in the time series. The c / a value is compared with the current c / a value.
  • the fatigue determination unit 104 may use the c / a value stored at a certain timing (for example, immediately after the start) as a reference value and compare it with the current c / a value. Good. As another comparison method, for example, the fatigue determination unit 104 may compare the sum of c / a values at all time points from a current time to a certain period before a predetermined threshold value. The fatigue determination unit 104 may determine that the user is fatigued if the sum of the c / a values is equal to or greater than a predetermined threshold.
  • 3A and 3B are flowcharts illustrating an example of fatigue evaluation by the fatigue determination unit 104 in the first embodiment.
  • the fatigue determination unit 104 When the c / a value is output from the feature amount extraction unit 102 (step S31), the fatigue determination unit 104 chronologically stores the previous c / a value stored in the storage unit 103. The c / a value at the time is called (step S32).
  • the fatigue judgment unit 104 compares these two current c / a values with the previous c / a value (step S33).
  • the fatigue determination unit 104 determines that the current c / a value is larger than the previous c / a value (Yes in step S33), the fatigue determination unit 104 determines that the user is fatigued (step S34). .
  • the feature amount extraction unit 102 receives the c / a value from the c / a value. Wait until the a value is output, and after the next c / a value is output, repeat the operation from step S31.
  • the fatigue determination unit 104 may perform the operation shown in FIG. 3B.
  • the operation flow from step S31 to step S33 is the same as the operation example shown in FIG. 3A.
  • step S33 When the fatigue determination unit 104 determines in step S33 that the current c / a value is larger than the c / a value at the previous time (Yes in step S33), the fatigue determination unit 104 determines the c / a at the previous time. A change amount from the value to the current c / a value is calculated and compared with a preset threshold value L1 (for example, a change amount of about 0.03) (step S35).
  • a preset threshold value L1 for example, a change amount of about 0.03
  • the fatigue determination unit 104 determines that the calculated change amount is greater than the threshold L1 (Yes in step S35).
  • the fatigue determination unit 104 determines that the current c / a value is not greater than the previous c / a value or if the calculated change amount is not greater than the threshold value L1 (in step S35). No) Next, it waits until the c / a value is output from the feature quantity extraction unit 102, and after the next c / a value is output, the operation from step S31 is repeated.
  • the threshold L1 is not limited to about 0.03, but it is preferable to set the threshold L1 to a value included in the range of about 0.03 to about 0.035 in view of the experimental results described later (see FIG. 17). .
  • the fatigue determination unit 104 determines whether or not the user is fatigued by outputting information such as 1 if the user is fatigued or 0 if the user is not fatigued.
  • the device control unit 105 controls the external device based on the result determined by the fatigue determination unit 104.
  • the device control unit 105 may notify a fatigue determination result to a user or a department that manages and supervises the user by controlling a display having a display function and a speaker that outputs sound.
  • the device control unit 105 may control an external device that gives a stimulus to the user when the fatigue determination unit 104 determines that the user is tired.
  • the device control unit 105 may output a stimulus such as a scent, air flow, or heat that has an effect of recovering or reducing fatigue by controlling a device that generates air flow or heat.
  • the device control unit 105 may store, store, and transmit the results determined by the fatigue determination unit 104.
  • the biological fatigue evaluation apparatus 100 performs fatigue based on the feature amount extracted from a pulse wave signal using a plurality of acceleration pulse wave waveform components including c waves or d waves that change specifically for fatigue. Determine the presence or absence.
  • the first feature value obtained from the systolic posterior component of the pulse wave signal is extracted, and stored in the storage unit 103 with any one of the extracted first feature values.
  • the presence or absence of fatigue is determined by comparing at least one of the first feature amounts.
  • the systolic posterior component of the pulse wave signal is affected by factors other than fatigue, it is less susceptible to fatigue. For this reason, by using the first feature value obtained from the post-systolic component, the influence of factors other than fatigue included in the pulse wave can be reduced, and the evaluation accuracy of fatigue evaluation can be improved.
  • the user when it is determined that the user is tired, the user can be stimulated to present the fatigue evaluation result or to perform care based on the evaluation result automatically.
  • the external device may be controlled by an external configuration.
  • FIG. 4 is a block diagram showing a configuration of the biological fatigue evaluation apparatus 400 in the second embodiment of the present invention.
  • a biological fatigue evaluation apparatus 400 includes a biological signal measurement unit 401 that measures a biological signal, a feature amount extraction unit 402 that extracts a feature amount from the biological signal, a storage unit 403 that stores a feature amount, and fatigue.
  • a fatigue quality judgment unit 406 for judging the quality of the tire is provided.
  • the biological fatigue evaluation apparatus 400 may further include a device control unit 405 that controls an external device based on a fatigue quality determination result.
  • the biological signal measurement unit 401 measures a user's heartbeat or pulse wave as a biological signal.
  • the biological signal measurement unit 401 is a biological sensor unit that measures biological signals such as an electrocardiogram, a pulse wave, an electroencephalogram, and a magnetoencephalogram.
  • a typical method is to attach a plurality of electrodes to the surface of the living body and derive it as an electrical signal outside the body.
  • a biomagnetism such as a magnetoencephalogram
  • a fluxgate magnetometer or a more sensitive superconducting quantum interferometer is used to measure a weak magnetic flux density.
  • a typical method for acquiring pulse waves is to irradiate a living body with infrared light using a light source such as an LED, and convert the light intensity that has passed through the living body with a photodiode into an electrical signal.
  • the present inventors have fatigue caused by difficult work (hereinafter referred to as fatigue due to difficult work), fatigue caused by monotonous work (hereinafter, We found that the quality of fatigue (denoted as fatigue due to monotonous work) is related to the amount of parasympathetic nerve activity, which is one of the autonomic nerve activities. Specifically, parasympathetic nerve activity decreases significantly during fatigue due to difficult work, and paraswitchive nerve activity does not decrease significantly during fatigue due to monotonous work (i.e., due to fatigue due to monotonous work). (There was no accompanying decrease in the amount of paraswitch activity).
  • the index value indicating the amount of parasympathetic nerve activity is a high frequency band (High) from 0.15 Hz to 0.4 Hz in the power spectrum obtained by frequency analysis of time series data of heartbeat intervals in the electrocardiogram and a-wave intervals between pulses.
  • the power value of “Frequency” (hereinafter referred to as HF) is representative.
  • the index value representing the amount of parasympathetic nerve activity is not limited to this power value, but may be lnHF obtained by logarithmizing the power value of HF.
  • VLF Very Low Frequency
  • LF Low Frequency
  • the biological signal measuring unit 401 measures a user's pulse wave signal as a biological signal.
  • the feature amount extraction unit 402 extracts a second feature amount indicating the amount of parasympathetic nerve activity obtained from the biological signal measured by the biological signal measurement unit 401.
  • the feature quantity extraction unit 402 calculates an a-wave interval between pulses from the acceleration pulse wave waveform obtained by second-order differentiation of the pulse wave signal measured by the biological signal measurement unit 401 (hereinafter referred to as aa interval).
  • the amount of parasympathetic nerve activity which is one of the autonomic nerve activities, is obtained using time series data of aa intervals.
  • the feature quantity extraction unit 402 performs frequency analysis on time-series data at intervals aa using fast Fourier transform (FFT), maximum entropy method (MEM), and the like, and calculates the power value of HF in the power spectrum. And ask.
  • FFT fast Fourier transform
  • MEM maximum entropy method
  • the feature amount extraction unit 402 causes the storage unit 403 to store the calculated HF power value in time series.
  • the feature amount extraction unit 402 may use the power value of the HF as a calculated value in a minimum time interval (for example, 30 seconds) necessary for frequency analysis, or may further calculate the calculated value in the minimum time interval. An average value in a certain interval (for example, 2 minutes) collected in series may be used.
  • the storage unit 403 is a memory that stores the second feature amount extracted by the feature amount extraction unit 402. Specifically, the storage unit 403 accumulates the HF power value in time series every time the HF power value is output as the feature amount from the feature amount extraction unit 402.
  • the fatigue quality determination unit 406 uses the second feature amount extracted by the feature amount extraction unit 402 to determine the fatigue quality of the user, which is fatigue due to difficult work or fatigue due to monotonous work.
  • the fatigue quality determination unit 406 determines the fatigue quality by comparing the power values of HF at at least two time points.
  • the fatigue quality determination unit 406 includes at least one of the feature amounts of the second feature amounts extracted by the feature amount extraction unit 402 and the second feature amounts stored in the storage unit 403. The quality of fatigue is determined by comparing with the feature amount.
  • the fatigue quality determination unit 406 chronologically precedes one of the HF power values stored in the storage unit 403.
  • the HF power value is compared with the current HF power value.
  • the determination of the fatigue quality by the fatigue quality determination unit 406 is not limited to this, and the HF power value stored at a predetermined timing (for example, immediately after the start) is used as a reference value, and the current HF is determined. It may be compared with the power value.
  • the fatigue quality determination unit 406 determines that the fatigue is due to difficult work when the second feature value is decreased in time series, and determines that the fatigue is due to monotonous work when the second feature value is not decreased.
  • FIGS. 5A and 5B are flowcharts showing an example of fatigue quality determination by the fatigue quality determination unit 406 in the second embodiment.
  • step S51 When the HF power value is output from the feature amount extraction unit 402 (step S51), the fatigue quality determination unit 406 chronologically advances the previous HF power value stored in the storage unit 403. The power value of HF at the point of time is called (step S52).
  • the fatigue quality determination unit 406 compares the current HF power value, which is these two values, with the HF power value at the previous time point (step S53).
  • step S53 If the fatigue quality determination unit 406 determines that the current HF power value is smaller than the HF power value at the previous time (Yes in step S53), the fatigue quality determination unit 406 determines that the fatigue is due to difficult work (step S53). S54).
  • the fatigue quality determination unit 406 determines that the current HF power value is not smaller than the HF power value at the previous time (No in step S53), the fatigue quality determination unit 406 determines that the fatigue is due to monotonous work. (Step S55).
  • the fatigue quality determination unit 406 repeats the operation from step S51.
  • the fatigue quality determination unit 406 may compare the sum of the power values of HF at all time points from a current time point to a predetermined threshold value with a predetermined threshold value. Good. The fatigue quality determination unit 406 determines that the fatigue is due to difficult work if the sum of the HF power values is equal to or less than a predetermined threshold. You may determine that you are fatigued.
  • the fatigue quality determination unit 406 may perform the operation shown in FIG. 5B.
  • the operation flow from step S51 to step S53 is the same as the operation example shown in FIG. 5A.
  • the fatigue quality determination unit 406 determines in step S53 that the current HF power value is smaller than the HF power value of the previous time (Yes in step S53), the HF power value of the previous time is determined.
  • the amount of change in the current HF power value is calculated from the power value, and the amount of change and a preset threshold L2 (for example, the amount of change in the HF power value such that the change in lnHF is about 0.3) Are compared (step S56).
  • the fatigue quality determination unit 406 determines that the calculated change amount is greater than the threshold value L2 (Yes in step S56). If the fatigue quality determination unit 406 determines that the fatigue is due to difficult work (step S57).
  • fatigue quality determination unit 406 determines that the current HF power value is not smaller than the previous HF power value (No in step S53), or the calculated change amount is greater than threshold L2. Is determined not to be large (No in step S56), it is determined that the fatigue is due to monotonous work (step S58).
  • the fatigue quality determination unit 406 repeats the operation from step S51.
  • the threshold L2 is not limited to the amount of change in the HF power value so that the amount of change in lnHF is about 0.3, but in view of the experimental results described below, the amount of change in lnHF is 0.25. It is preferable to set the amount of change in the HF power value to a value included in the range of about 0.4 to about 0.4 (see FIG. 20).
  • the device control unit 405 controls the external device based on the result determined by the fatigue quality determination unit 406.
  • the device control unit 405 may control a display such as a display having a display function or a speaker that outputs sound to notify the user or a department that manages and supervises the user of the fatigue quality determination result.
  • the device control unit 405 may control an external device that gives a stimulus to the user according to the fatigue quality determined by the fatigue quality determination unit 406.
  • the device control unit 405 may output a stimulus such as a fragrance, air flow, or heat that has an effect of recovering or reducing fatigue suitable for the quality of fatigue by controlling a device that generates air flow or heat.
  • the device control unit 405 may store, store, and transmit the result determined by the fatigue quality determination unit 406.
  • the biological fatigue evaluation apparatus 400 determines the quality of fatigue, which is fatigue due to difficult work or fatigue due to monotonous work, based on the index value indicating the amount of parasympathetic nerve activity. With such a configuration, it is possible to determine the quality of fatigue of the user, and for example, it is possible to switch the prescription (rest, sleep, medicine, etc.) to be given thereby to provide more suitable recovery support for the user.
  • the biological fatigue evaluation apparatus 400 has excellent versatility because it extracts the parasympathetic nerve activity amount using an electrocardiogram or pulse wave that can be easily measured and determines the quality of fatigue regardless of the scene.
  • the external device may be controlled by an external configuration.
  • FIG. 6 is a block diagram showing a configuration of biological fatigue assessment apparatus 600 according to Embodiment 3 of the present invention.
  • the biological fatigue evaluation apparatus 600 includes a biological signal measurement unit 401, a feature amount extraction unit 602, a storage unit 603, and a fatigue quality determination unit 606, and further identifies whether the user is in an open eye state or a closed eye state.
  • An identification unit 601 is provided.
  • the biological fatigue evaluation apparatus 600 may further include a device control unit 405.
  • the present inventors conducted alpha-waves in the closed eye state extracted based on the intracerebral signal (electroencephalogram or magnetoencephalogram), or in the open eye state and the closed eye state, through a possibility verification experiment regarding non-invasive evaluation of biological fatigue.
  • the intracerebral signal electroencephalogram or magnetoencephalogram
  • the present inventors conducted alpha-waves in the closed eye state extracted based on the intracerebral signal (electroencephalogram or magnetoencephalogram), or in the open eye state and the closed eye state, through a possibility verification experiment regarding non-invasive evaluation of biological fatigue.
  • the ⁇ wave in the closed eye state significantly increased during fatigue due to difficult work
  • the ⁇ wave in the open and closed eye state significantly decreased during fatigue due to monotonous work. .
  • a typical index value for ⁇ waves is a power value (hereinafter referred to as ⁇ ) in an ⁇ wave band (8 Hz to 13 Hz) in a power spectrum obtained by frequency analysis of time series data of brain signals.
  • the index value related to the ⁇ wave is obtained by using a logarithmic value of ⁇ (value represented by the following expression 1) or a logarithmic value of a power value (hereinafter referred to as ⁇ ) in a ⁇ wave band (3 Hz to 8 Hz). It may be expressed as a Slow-wave Index (a value represented by the following Expression 2) in a closed eye state.
  • the index value related to the ⁇ wave is expressed as% ⁇ (the following formula) obtained by dividing ⁇ by ⁇ , ⁇ , and a power value (hereinafter referred to as ⁇ ) of a ⁇ wave band (13 Hz to 25 Hz). 3),% ⁇ obtained by dividing ⁇ by the total power value (value shown by the following equation 4), or Slow-wave Index in the closed eye state using% ⁇ (shown by the following equation 5). Value).
  • index value related to the ⁇ wave a value representing an ⁇ wave block that is suppressed by eye opening, which is one of the most characteristic properties of the ⁇ wave, may be used.
  • the index value related to the ⁇ wave is the difference between ⁇ in the open eye state (hereinafter referred to as ⁇ (open)) and ⁇ in the closed eye state (hereinafter referred to as ⁇ (closed)).
  • ⁇ -blocking (closed eye-opened) may be used, or ⁇ -blocking (closed eye / opened) may be used as a ratio of ⁇ (closed) to ⁇ (opened) as shown in Equation 7 below.
  • (Formula 6) ⁇ (closed)- ⁇ (open) (Expression 7) ⁇ (closed) / ⁇ (open)
  • the index value is a multiplication value of ⁇ and the center frequency of the ⁇ wave band (Center frequency), a multiplication value of ⁇ and the center frequency of the ⁇ wave band, and a multiplication value of ⁇ and the center frequency of the ⁇ wave band.
  • An average frequency (mean power frequency) (value expressed by the following equation 8) may be used.
  • the identification unit 601 generates identification information for identifying whether the user is in an open eye state or a closed eye state. Specifically, the identification unit 601 uses information such as a camera and an electrooculogram to identify whether the user is in an open state or a closed eye state, and outputs the identification information to the biological signal measurement unit 401.
  • This identification information is, for example, information such as 1 if the eye is open and 0 if the eye is closed.
  • the biological signal measuring unit 401 measures a user's brain signal as a biological signal, and adds identification information to the measured biological signal. Specifically, the biological signal measurement unit 401 measures an electroencephalogram among the signals in the user's brain. Then, when the identification information is input from the identification unit 601, the biological signal measurement unit 401 adds the identification information to the measured time series data of the electroencephalogram and outputs it to the feature amount extraction unit 602.
  • the feature amount extraction unit 602 extracts a third feature amount related to at least one of ⁇ wave and ⁇ wave obtained from the biological signal measured by the biological signal measurement unit 401. That is, the feature amount extraction unit 602 is at least one of the power value of the ⁇ wave band and the power value of the ⁇ wave band in the time interval in which the identification unit 601 has identified that the user is in the open or closed eye state. The third feature value using the power value of is extracted.
  • the feature quantity extraction unit 602 extracts the third feature quantity using the power value of the ⁇ wave band in the time interval in which the identification unit 601 identifies that the user is in the closed eye state. Also, the feature quantity extraction unit 602 extracts a third feature quantity using the power value of the ⁇ wave band in the time interval in which the identification unit 601 has identified that the user is in the open eye state or the closed eye state.
  • the feature quantity extraction unit 602 performs frequency analysis on the input time-series data of the brain waves, and a frequency band corresponding to ⁇ waves (8 Hz to 13 Hz) or ⁇ waves (13 Hz to 25 Hz). ) And the respective power values ( ⁇ or ⁇ ). These may be power values in a minimum time interval (for example, 30 seconds) required for frequency analysis, or a certain interval (for example, 2 minutes) in which calculated values in the minimum time interval are further collected in time series. Etc.) may be the average power. Then, the feature amount extraction unit 602 obtains ln ⁇ or ln ⁇ obtained by logarithmizing them.
  • the feature amount extraction unit 602 stores the obtained ln ⁇ or ln ⁇ in the storage unit 603 in time series together with the input identification information.
  • various index values related to ⁇ waves and ⁇ waves are conceivable, and the index values are not limited to logarithmic values of power values.
  • the storage unit 603 is a memory for storing the third feature amount extracted by the feature amount extraction unit 602. Specifically, the storage unit 603 accumulates ln ⁇ or ln ⁇ in time series every time ln ⁇ or ln ⁇ is output from the feature amount extraction unit 602.
  • the fatigue quality determination unit 606 uses the third feature amount extracted by the feature amount extraction unit 602 to determine the fatigue quality of the user, which is fatigue due to difficult work or fatigue due to monotonous work. Specifically, the fatigue quality determination unit 606 includes any one of the third feature amounts extracted by the feature amount extraction unit 602 and the third feature amount stored in the storage unit 603. The quality of fatigue is determined by comparing with at least one feature amount.
  • the fatigue quality determination unit 606 includes ln ⁇ or ln ⁇ to which the identification information output from the feature amount extraction unit 602 is assigned, and ln ⁇ to which the identification information stored in the storage unit 603 is assigned. Or ln ⁇ to determine the quality of fatigue.
  • the fatigue quality determination unit 606 uses ln ⁇ , it is desirable to use data to which information indicating that the eye is closed is assigned as identification information.
  • the fatigue quality determination unit 606 may use data to which information on either the open eye state or the closed eye state is given.
  • the fatigue quality determination unit 606 extracts the third feature amount using the power value of the ⁇ wave band in the time interval in which the feature amount extraction unit 602 has identified that the user is in the closed eye state by the identification unit 601.
  • the fatigue quality determination unit 606 uses the power value of the ⁇ wave band in the time interval in which the feature amount extraction unit 602 has identified that the user is in the open or closed eye state by the identification unit 601. Is extracted, and it is determined that the fatigue is due to monotonous work when the third feature value decreases in time series.
  • the fatigue quality determination unit 606 selects one in time series among the ln ⁇ stored in the storage unit 603. Compare ln ⁇ at the previous time point with ln ⁇ in the current closed eye state. The same applies to the case of using ln ⁇ in an open eye state or a closed eye state.
  • the fatigue quality determination unit 606 compares the feature quantity of the immediately previous time point with the current feature quantity in time series, the present invention is not limited to this, and a predetermined timing (for example, The feature amount stored immediately after the activation may be used as a reference value and compared with the current feature amount.
  • FIG. 7A to 9B are flowcharts showing an example of fatigue quality determination by the fatigue quality determination unit 606 in the third embodiment.
  • the fatigue quality determination unit 606 performs the operation shown in FIG. 7A.
  • the fatigue quality determination unit 606 advances the time series in the ln ⁇ stored in the storage unit 603 in time series. Ln ⁇ in the closed eye state at the time of is called (step S72).
  • the fatigue quality determination unit 606 compares these two values, ln ⁇ in the current closed eye state and ln ⁇ in the closed eye state immediately before (step S73).
  • the fatigue quality determination unit 606 determines that ln ⁇ in the current closed eye state is greater than ln ⁇ in the previous closed eye state (Yes in step S73), the fatigue quality determination unit 606 determines that the fatigue is due to difficult work. (Step S74).
  • the fatigue quality determination unit 606 determines that ln ⁇ in the current closed eye state is not larger than ln ⁇ in the closed eye state immediately before (No in step S73)
  • the feature amount extraction unit 602 next outputs ln ⁇ . Is output, and after the next ln ⁇ is output, the operation from step S71 is repeated.
  • the fatigue quality determination unit 606 may be configured to perform the operation shown in FIG. 7B.
  • ⁇ -blocking closed eyes / open eyes
  • the fatigue quality determination unit 606 stores ⁇ -blocking (closed eyes / open eyes) stored in the storage unit 603.
  • ⁇ -blocking of the previous time point is called in time series (step S76).
  • the fatigue quality determination unit 606 compares the current ⁇ -blocking, which is these two values, with the previous ⁇ -blocking (step S77).
  • step S77 If the fatigue quality determination unit 606 determines that the current ⁇ -blocking is larger than the previous ⁇ -blocking (Yes in step S77), the fatigue quality determination unit 606 determines that the fatigue is due to difficult work (step S77). S78).
  • the fatigue quality determination unit 606 determines that the current ⁇ -blocking is not larger than the previous ⁇ -blocking (No in step S77), the feature amount extraction unit 602 then determines that ⁇ Wait until -blocking is output, and repeat the operation from step S81 after the output of the next ⁇ -blocking.
  • the fatigue quality determination unit 606 may be configured to perform the operation shown in FIG. 8A.
  • the fatigue quality determination unit 606 is stored in the storage unit 603.
  • the ⁇ feature amount in the closed eye state at the previous time point in time series is called (step S82).
  • the fatigue quality determination unit 606 compares these two values, ln ⁇ in the current closed eye state and ln ⁇ in the closed eye state at the previous time point (step S83).
  • step S84 when the fatigue quality determination unit 606 determines that ln ⁇ in the current closed eye state is larger than ln ⁇ in the previous closed eye state (Yes in step S83), ln ⁇ / ln ⁇ in the current closed eye state. And ln ⁇ / ln ⁇ in the closed eye state at the previous time point are compared (step S84).
  • step S84 If the fatigue quality determination unit 606 determines that ln ⁇ / ln ⁇ in the current closed eye state is smaller than ln ⁇ / ln ⁇ in the previous closed eye state (Yes in step S84), fatigue due to difficult work. It is determined that there is (step S85).
  • the fatigue quality determination unit 606 When the ln ⁇ in the current closed eye state is not larger than the ln ⁇ in the closed eye state at the previous time point (No in step S83), the fatigue quality determination unit 606 outputs the ⁇ feature amount from the feature amount extraction unit 602. Until the next ⁇ feature value is output, the operation from step S81 is repeated.
  • step S84 when the fatigue quality determination unit 606 determines that ln ⁇ / ln ⁇ in the current closed eye state is not smaller than ln ⁇ / ln ⁇ in the previous closed eye state (No in step S84), the following After outputting the ⁇ feature amount, the operation from step S81 is repeated.
  • the fatigue quality determination unit 606 may be configured to perform the operation shown in FIG. 8B. In this case, when the ln ⁇ and the average frequency in the closed eye state are extracted from the feature amount extraction unit 602 (step S86), the fatigue quality determination unit 606 extracts the previous one in time series stored in the storage unit 603. Call ln ⁇ and the average frequency in the closed eye state (step S87).
  • the fatigue quality determination unit 606 compares these two values, the average frequency in the current closed eye state and the average frequency in the closed eye state at the previous time point (step S88).
  • fatigue quality determination unit 606 is in the current closed eye state. ln ⁇ is compared with ln ⁇ in the closed eye state at the previous time point (step S83).
  • the fatigue quality determination unit 606 determines that the current ln ⁇ is greater than the previous ln ⁇ (Yes in step S83), the fatigue quality determination unit 606 determines that the fatigue is due to difficult work (step S89).
  • step S83 the current ln ⁇ is larger than the ln ⁇ at the previous time. If it is determined that there is not (No in step S83), the process waits until the next feature value is output, and after the output, the operation from step S86 is repeated.
  • step S91 when the ln ⁇ in the eye open state is output from the feature amount extraction unit 602 (step S91), the fatigue quality determination unit 606 chronologically in the ln ⁇ in the eye open state stored in the storage unit 603. Call ln ⁇ in the open eye state at the previous time point (step S92).
  • the fatigue quality determination unit 606 compares these two values, ln ⁇ in the current open eye state and ln ⁇ in the previous open eye state (step S93).
  • the fatigue quality determination unit 606 determines that ln ⁇ in the current open eye state is smaller than ln ⁇ in the previous open eye state (Yes in step S93), the fatigue quality determination unit 606 determines that the fatigue is due to monotonous work. (Step S94).
  • step S93 If the fatigue quality determination unit 606 determines that ln ⁇ in the current open eye state is not smaller than the previous open eye state ln ⁇ (No in step S93), then the feature value extraction unit 602 outputs ln ⁇ . The operation from step S91 is repeated after the next ln ⁇ is output.
  • the feature amount extraction unit 602 may extract ln ⁇ in the closed eye state, and the fatigue quality determination unit 606 may perform the same processing. Also in this case, similarly to the process of step S93, the fatigue quality determination unit 606 determines whether or not the fatigue is due to monotonous work based on whether or not the current ln ⁇ is smaller than the previous ln ⁇ .
  • the fatigue quality determination unit 606 may be configured to perform the operation shown in FIG. 9B.
  • the fatigue quality determination unit 606 is stored in the storage unit 603.
  • the ⁇ feature amount in the eye open state at the previous time point in time series is called (step S96).
  • the fatigue quality determination unit 606 compares these two values, ln ⁇ in the current open eye state and ln ⁇ in the previous open eye state (step S93).
  • step S93 if the fatigue quality determination unit 606 determines that ln ⁇ in the current eye open state is smaller than ln ⁇ in the eye open state immediately before (Yes in step S93), ln ⁇ / ln ⁇ in the current eye open state is determined. And ln ⁇ / ln ⁇ in the eye-opened state at the previous time point are compared (step S97).
  • fatigue quality determination unit 606 determines that ln ⁇ / ln ⁇ in the current open eye state is greater than ln ⁇ / ln ⁇ in the previous open eye state (Yes in step S97), fatigue due to monotonous work. Determination is made (step S98).
  • the fatigue quality determination unit 606 determines that ln ⁇ in the current open eye state is not smaller than ln ⁇ in the open eye state at the previous time (No in step S93), then the feature amount extraction unit 602 outputs the ⁇ feature amount. Is output, and after the next ⁇ feature amount is output, the operation from step S95 is repeated.
  • step S95 After outputting the ⁇ feature value, the operations from step S95 are repeated.
  • the feature amount extraction unit 602 may extract the ⁇ feature amount in the closed eye state, and the fatigue quality determination unit 606 may perform the same processing. In this case as well, the fatigue quality determination unit 606 determines whether or not the current ln ⁇ is smaller than ln ⁇ at the previous time and the current ln ⁇ / ln ⁇ at the previous time, as in the processes of Step S93 and Step S97. It is determined whether or not it is fatigue due to monotonous work based on whether or not it is greater than ln ⁇ / ln ⁇ .
  • the biological fatigue evaluation apparatus 600 determines whether fatigue due to difficult work or fatigue due to monotonous work based on the feature quantity related to at least one of ⁇ wave and ⁇ wave from the brain signal.
  • the quality of fatigue can be determined. Based on the determined quality of fatigue, for example, it is possible to switch the prescription (rest, sleep, medicine, etc.) to be given to the user and to support recovery more suitable for the user.
  • the biological fatigue evaluation apparatus 600 can determine the quality of fatigue from the brain signals measured by bringing a sensor into contact with the head, for example, people of occupations wearing hats, headset microphones, etc. It can also be applied to labor management.
  • At least one of the power value of the ⁇ wave band and the power value of the ⁇ wave band in the brain signal is distinguished from the value in the user's open eye state or the closed eye state. Therefore, it becomes possible to improve the evaluation accuracy of fatigue evaluation.
  • this configuration further improves the evaluation accuracy of fatigue evaluation because it is determined whether the user is fatigued due to work that is difficult to fatigue from the power value of the ⁇ wave band in the time interval in which it is identified that the user is in an eye-closed state. It becomes possible to do. Further, it is possible to provide recovery support suitable for the user against fatigue due to difficult work by judging the quality of fatigue.
  • the external device may be controlled by an external configuration.
  • FIG. 10 is a block diagram showing the configuration of the biological fatigue evaluation apparatus 1000 according to Embodiment 4 of the present invention. 10, the same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.
  • the biological fatigue evaluation apparatus 1000 includes a biological signal measurement unit 401, a feature amount extraction unit 1002, a storage unit 1003, and a fatigue quality determination unit 1006, and further outputs a stimulation stimulus to the user. Part 1001.
  • the biological fatigue evaluation apparatus 1000 may further include a device control unit 405.
  • the present inventors change the feature amount in the acceleration pulse wave waveform with respect to the auditory stimulation by the tone burst stimulation (90 dB at 1000 Hz) depending on the quality of fatigue. I found out.
  • the feature quantity related to the acceleration pulse wave waveform for auditory stimulation changes significantly before mental fatigue load and after fatigue load due to monotonous work, but significantly after fatigue load due to difficult work. Found no change. That is, in the case of fatigue due to difficult work, it can be said that the response of the pulse wave to the auditory stimulus is slowed down.
  • the feature quantity related to the acceleration pulse wave waveform a feature quantity using information on a plurality of acceleration pulse waveform components including the c-wave or d-wave information described in the first embodiment may be used.
  • the possibility verification experiment regarding the non-invasive evaluation of biological fatigue conducted by the present inventors will be described in detail later.
  • the biological signal measurement unit 401 measures a pulse wave and the feature amount extraction unit 1002 extracts a c / a value that is a crest wave to a wave height ratio will be described as an example.
  • the stimulus output unit 1001 outputs an auditory stimulus that stimulates hearing to the user. Specifically, the stimulus output unit 1001 outputs an auditory stimulus to the user, and outputs stimulus information indicating that the auditory stimulus has been output to the biological signal measuring unit 401.
  • the auditory stimulus output to the user may be a stimulus that gives a sound stimulus of 90 dB at 1000 Hz for several minutes, which is often used in clinical experiments in the medical field.
  • the stimulus information is, for example, information such as 1 when an auditory stimulus is output and 0 when it is not output.
  • the biological signal measurement unit 401 measures a user's pulse wave signal, and when stimulus information is input from the stimulus output unit 1001, adds the stimulus information to the time-series data of the measured pulse wave signal, and the feature amount extraction unit To 1002.
  • the feature quantity extraction unit 1002 extracts the first feature quantity obtained from the systolic posterior component of the pulse wave signal measured by the biological signal measurement unit 401. That is, the feature amount extraction unit 1002 calculates an acceleration pulse wave from the pulse wave signal, and extracts a ratio of the c-wave peak value to the a-wave peak value of the acceleration pulse wave as a first feature amount.
  • the feature amount extraction unit 1002 performs second-order differentiation on the pulse wave signal measured by the biological signal measurement unit 401 and converts it into an acceleration pulse wave waveform.
  • the c / a value which is the ratio of the c wave corresponding to the backward systolic component of the volume pulse wave and the a wave corresponding to the forward systolic component, is obtained, and the c / a value is determined as the stimulus information.
  • it is output to the storage unit 1003.
  • the storage unit 1003 stores the first feature amount extracted by the feature amount extraction unit 1002 in time series. Note that when the c / a value is extracted by the feature amount extraction unit 1002, a value for each beat of the pulse wave signal may be output as it is, or an average over a predetermined time interval (for example, 10 seconds). A value may be output.
  • the fatigue quality determination unit 1006 uses the first feature amount extracted by the feature amount extraction unit 1002 to determine the user's fatigue quality, which is fatigue due to difficult work or fatigue due to monotonous work.
  • the fatigue quality determination unit 1006 includes the first feature amount in the time interval before the auditory stimulus is output by the stimulus output unit 1001 stored in the storage unit 1003, and the auditory stimulus is output by the stimulus output unit 1001. The quality of fatigue is determined by comparing the first feature value in the time interval when output.
  • the auditory stimulus is output by the stimulus output unit with respect to the first feature amount in the time interval before the auditory stimulus is output by the stimulus output unit 1001 stored in the storage unit 1003.
  • the first feature amount in the time interval increases, it is determined that the fatigue is due to monotonous work, and when it is not increased, it is determined that the fatigue is due to difficult work.
  • the fatigue quality determination unit 1006 determines the quality of fatigue by comparing the c / a value to which the stimulus information is not given with the c / a value to which the stimulus information is given. Therefore, when the c / a value to which the stimulus information is newly added is output from the feature amount extraction unit 1002, the fatigue quality determination unit 1006 determines the time among the c / a values stored in the storage unit 1003. The c / a value to which the stimulus information of the immediately previous time is not assigned is called and compared with the c / a value to which the current stimulus information is assigned.
  • the determination of the quality of fatigue by the fatigue quality determination unit 1006 is not limited to this, and the c / a value to which the stimulation information stored at a certain fixed timing (for example, immediately after activation) is not applied is used. As a reference value, you may compare with the c / a value to which the present stimulus information is provided.
  • FIG. 11 is a flowchart illustrating an example of fatigue quality determination by the fatigue quality determination unit 1006 according to the fourth embodiment.
  • the fatigue quality determination unit 1006 stores c stored in the storage unit 1003. In the / a value, the c / a value to which the stimulus information of the immediately previous time point is not added is called (step S112).
  • the fatigue quality determination unit 1006 compares the c / a value to which the present stimulus information, which is these two values, is given with the c / a value to which the previous stimulus information is not given (Step). S113).
  • step S114 determines that the fatigue quality determination unit 1006 determines that the c / a value to which the current stimulus information is assigned is greater than the c / a value to which the previous stimulus information is not assigned (Yes in step S113) It is determined that the fatigue is due to monotonous work (step S114).
  • the biological fatigue evaluation apparatus 1000 determines the quality of fatigue, which is fatigue due to work that is difficult for the user to fatigue or fatigue due to monotonous work, from the change in the feature amount related to the acceleration pulse wave waveform with respect to the auditory stimulus. To do. With such a configuration, it is possible to determine the quality of fatigue of the user, and to switch the prescription (rest, sleep, medicine, etc.) to be given thereby to provide a recovery support more suitable for the user.
  • the biological fatigue evaluation apparatus 1000 has excellent versatility because it determines the quality of fatigue using a pulse wave that can be easily measured and an auditory stimulus that does not require a special apparatus, regardless of the scene. For example, it is possible to measure the pulse wave from the place where the driver touches during driving and judge the quality of fatigue using the change of the pulse wave signal with respect to the sound stimulus output by the car navigation system, and also apply as a driving monitoring device Can do.
  • FIG. 12 is a block diagram showing a configuration of the biological fatigue evaluation apparatus 1200 according to Embodiment 5 of the present invention. 12, the same components as those in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.
  • a biological fatigue evaluation apparatus 1200 includes a biological signal measurement unit 401, a feature amount extraction unit 1202, a storage unit 1203, and a fatigue quality determination unit 1206, and a fatigue determination unit 1204 that determines whether the user is fatigued. Is further provided.
  • the biological fatigue evaluation apparatus 1200 may further include a device control unit 405.
  • the feature amount extraction unit 1202 obtains the c / a value as in the first embodiment and the power value of HF as in the second embodiment. Extract.
  • the feature amount extraction unit 1202 may output the value for each beat of the pulse wave signal as it is for the c / a value, or the same as the minimum time interval (for example, 30 seconds) of the HF power value. You may output the average value in a time interval.
  • the storage unit 1203 accumulates the c / a value extracted by the feature amount extraction unit 1202 and the HF power value in time series.
  • the fatigue determination unit 1204 determines the presence or absence of fatigue in the same manner as in the first embodiment.
  • the fatigue quality determination unit 1206 determines the user's fatigue quality, which is fatigue due to difficult work or fatigue due to monotonous work, as in the second embodiment. judge.
  • FIG. 13 is a flowchart showing an example of the operation of the biological fatigue evaluation apparatus 1200 according to the fifth embodiment.
  • the form of the biological signal measuring unit 401 may be a biological sensor mounted on the steering unit, or a wearable biological sensor that is attached to an appropriate part such as a driver's finger or ear.
  • the feature amount extraction unit 1202 extracts and outputs the c / a value and the HF power value (step S1302). ).
  • the fatigue determination unit 1204 c / a at the previous time point in time series among the c / a values stored in the storage unit 1203. Call a value (step S1303).
  • the fatigue determination unit 1204 compares the current c / a value, which is these two values, with the previous c / a value (step S1304).
  • the fatigue determination unit 1204 determines that the current c / a value is greater than the previous c / a value (Yes in step S1304), the fatigue determination unit 1204 determines that the user is fatigued and determines that the user is fatigued. Is output to the fatigue quality determination unit 1206 (step S1305).
  • the output fatigue determination signal may be, for example, 1 if fatigued, 0 if not.
  • the feature amount extraction unit 1202 when the fatigue determination unit 1204 determines that the current c / a value is not larger than the c / a value at the previous time (No in step S1304), the feature amount extraction unit 1202 then outputs c / a Wait until the a value and the HF power value are output. After the next c / a value and the HF power value are output, the operation from step S1302 is repeated.
  • the fatigue quality determination unit 1206 uses the time series of the HF power values stored in the storage unit 1203. Thus, the power value of the HF at the previous time is called (step S1306).
  • the fatigue quality determination unit 1206 compares these two values of the current HF power value with the previous HF power value (step S1307).
  • step S1307 If the fatigue quality determination unit 1206 determines that the power value of the current HF is smaller than the power value of the HF at the previous time (Yes in step S1307), the fatigue quality determination unit 1206 determines that the fatigue is due to difficult work (step S1307). S1308).
  • the fatigue quality determination unit 1206 determines that the current HF power value is not smaller than the previous HF power value (No in step S1307), the fatigue quality determination unit 1206 determines that the fatigue is due to monotonous work. (Step S1309).
  • the device control unit 405 decreases the difficulty of the set route of the car navigation system or guides the vehicle to stop at a safe place.
  • An assist function such as prompting for rest is executed (step S1310).
  • the device control unit 405 switches the car navigation setting route to a route with less monotony, or has a refreshing scent or heat. Then, an assist function such as outputting an airflow stimulus or accelerating the beat or tempo of the music is executed (step S1311).
  • the fatigue determination unit 1204 determines the presence or absence of fatigue based on the feature quantity related to the pulse wave, and the fatigue quality determination unit 1206 determines the quality of fatigue based on the feature quantity related to the parasympathetic nerve activity amount.
  • the present invention is not limited to this.
  • the fatigue determination unit 1204 may further determine the presence or absence of fatigue using a feature quantity related to the electroencephalogram, and the fatigue quality determination unit 1206 determines the quality of fatigue in the same manner as in the third or fourth embodiment. May be.
  • the biological fatigue evaluation apparatus 1200 determines whether or not there is fatigue based on the feature quantity related to the pulse wave and the feature quantity related to the parasympathetic nerve activity quantity which is one of the autonomic nerve activities and difficult work.
  • the quality of fatigue is determined. With such a configuration, the influence of factors other than fatigue can be alleviated, and the accuracy of determining the presence or absence of fatigue and the accuracy of determining the quality of fatigue can be improved. Further, it is possible to switch the prescription given to the user based on the determination result of the quality of fatigue and to provide recovery support more suitable for the user.
  • each of the above devices is configured by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, etc.
  • the RAM or the hard disk unit is similar to the above each device.
  • a computer program for achieving the operation is stored.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • a part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration).
  • the system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. .
  • the RAM stores a computer program that achieves the same operation as each of the above devices.
  • the system LSI achieves its functions by the microprocessor operating according to the computer program.
  • a part or all of the constituent elements constituting each of the above devices may be constituted by an IC card or a single module that can be attached to and detached from each device.
  • the IC card or the module is a computer system including a microprocessor, a ROM, a RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be a method realized by the computer processing described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
  • the computer program or the digital signal may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium include a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray Disc), and a semiconductor memory.
  • the present invention may be the digital signal recorded on these recording media.
  • the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention may also be a computer system including a microprocessor and a memory.
  • the memory may store the computer program, and the microprocessor may operate according to the computer program.
  • the program or the digital signal is recorded on the recording medium and transferred, or the program or the digital signal is transferred via the network or the like, and executed by another independent computer system. It is good.
  • the present inventors conducted a subject experiment for the purpose of verifying the possibility of non-invasive fatigue assessment of human beings, a state in which a human has fallen into fatigue (a state of fatigue), and This is based on the finding that there are different correlations between changes in electrocardiogram, acceleration pulse wave, electroencephalogram and magnetoencephalogram during fatigue due to fatigue due to difficult work and fatigue due to monotonous work.
  • Test design The present inventors used 20 healthy adults (male, age 32.0 ⁇ 10.2 years (mean ⁇ standard deviation)) as subjects, and two types of N using a personal computer (PC). -A mental fatigue load was applied by performing a back test for 30 minutes, and performance evaluation (measurement of the total number of trials and errors during task execution) was performed for 30 minutes before and after that, respectively, by Advanced Trail Making Test (ATMT).
  • ATMT Advanced Trail Making Test
  • the 0-back test is a test that makes a subject judge whether or not a designated number, character, or symbol is displayed without using a working memory, and imposes monotonous work.
  • the inventors of the present invention assumed that fatigue was caused by monotonous work on the subject by performing this continuously for 30 minutes. Specifically, when a specified number, character, or symbol is displayed on the PC screen, the PC mouse is right-clicked, and if not, the PC mouse is left-clicked. .
  • the 2-back test is a test that uses a working memory and allows the subject to determine whether the currently displayed number, letter, or symbol is the same as the last displayed number, letter, or symbol. This is a difficult task.
  • the inventors of the present invention assumed that fatigue was caused by difficult work on the subject by performing this continuously for 30 minutes. Specifically, if the number, character, or symbol displayed on the PC screen is the same as the number, character, or symbol displayed two times before, right-click the PC mouse, otherwise In other words, the left mouse button is clicked.
  • the display time of numbers, characters or symbols was 0.5 sec, and the display timing from the disappearance of the display of numbers, characters or symbols to the next display was 2.5 sec.
  • FIG. 14 is a diagram showing changes in ATMT results before and after mental fatigue loading.
  • FIG. 15A is a diagram showing a subjective report score before and after mental fatigue load.
  • FIG. 15B is a diagram showing the subjective report score recorded when the N-back test is performed, recorded at the end of the test.
  • the 2-back test group showed significantly higher mental fatigue and difficulty VAS score than the 0-back test group.
  • the monotonicity, boredom VAS, and sleepiness KSS score were significantly higher in the 0-back test group than in the 2-back test group.
  • Test design The present inventors used 10 healthy adults (male, age 30.8 ⁇ 9.4 years (mean ⁇ standard deviation)) as subjects in Example 1, “monotonous and light work” Mental fatigue with the 0-back test proved appropriate as “the task causing fatigue due to fatigue” and the 2-back test proved appropriate as “the task causing fatigue due to difficult and heavy work” Each task was performed for 30 minutes.
  • a resting test As a specific flow of the test, a resting test, a visual stimulus test, and an auditory stimulus test were performed as a pre-task test.
  • a resting test the patient was allowed to rest for 2 minutes with the eyes open, and then rested for 1 minute with the eyes closed.
  • a visual stimulus test a light stimulus was applied to the left half visual field by blinking of a red light emitting diode. Stimulation was tried twice a minute, and a blinking stimulus of 1 Hz was used for the first time and 16 Hz for the second time.
  • a tone burst stimulus 1000 Hz, 90 dB was used, and the stimulus was loaded into the right ear for the first time for about 4 minutes and the left ear for the second time.
  • a 0-back test and a 2-back test were performed for 30 minutes.
  • the post-task inspection was the same as the pre-task inspection, but was performed in the order of rest test, auditory stimulus test, and visual stimulus test.
  • the acceleration pulse wave (APG), electrocardiogram (ECG), electroencephalogram (EEG), and magnetoencephalogram (MEG) were continuously measured from the rest test before the task execution to the visual stimulus test after the task execution.
  • VAS Visual Analog Scale
  • KSS Karolinska Sleepness Scale
  • the fatigue strength was measured by the Chalder's fatigue scale before the start of the test only on the first day of the two types of test implementation days.
  • two types of tests were conducted at the crossover, and the influence due to the order of the tests was excluded.
  • frequency analysis is performed by the maximum entropy method from time series data of aa interval fluctuations, which are intervals of a waves between pulses, and Low Frequency component (LF) and High Frequency component (HF) are calculated. Changes in the autonomic nervous activity index associated with a certain N-back test were analyzed. Furthermore, the difference in the response of the acceleration pulse wave waveform when an auditory stimulus was given before and after the N-back test was analyzed.
  • LF Low Frequency component
  • HF High Frequency component
  • ECG inspection An active tracer (manufactured by Arm Electronics Co., Ltd.) was used for measurement. As a result, heart rate variability was measured, frequency analysis using the maximum entropy method was performed to calculate LF and HF, and changes in the autonomic nervous activity index associated with the N-back test, which is a mental fatigue load, were analyzed.
  • NEROFAX EEG 1518 manufactured by Nihon Kohden Co., Ltd. was used for measurement.
  • time series data of the electroencephalogram was acquired, and frequency analysis was performed by a fast Fourier transform method (FFT).
  • FFT fast Fourier transform method
  • the analysis target site is a research report of Kaida et al. (Non-patent literature: Kaida K et al., Validation of Karolinska sleepines scale against performance 10 and EEG variables. -F3, C3 and O1 in the -20 method.
  • the analysis frequency band was a ⁇ wave band (3 Hz or more and 8 Hz or less), an ⁇ wave band (8 Hz or more and 13 Hz or less), and a ⁇ wave band (13 Hz or more and 25 Hz or less), and an arithmetic sum of these power values was defined as a total power value.
  • the ⁇ wave band (0 Hz or more and 3 Hz or less) was excluded from the analysis in consideration of the effect of blinking in the open eye state.
  • MEG examination A 160-channel helmet-type magnetoencephalograph (MEG vision) (manufactured by Yokogawa Electric Corporation) was used for measurement. As a result, the spontaneous magnetic field activity was measured when the eyes were open and closed before and after the N-back test, and frequency analysis by FFT was performed. The target of frequency analysis of spontaneous brain activity by FFT was 160 channels, and the range of each frequency was defined in the same way as EEG.
  • MEG vision helmet-type magnetoencephalograph
  • FIG. 16A is a diagram showing changes in the peak value of the APG waveform before and after mental fatigue load (0-back).
  • FIG. 16B is a diagram illustrating a change in the peak value of the APG waveform before and after mental fatigue load (2-back).
  • both the 0-back test execution group and the 2-back test execution group have N-back test as reported in the previous research as shown in Patent Document 1.
  • a significant decrease in the a wave and e wave and a significant increase in the b wave were observed.
  • no influence of mental fatigue load was observed on the c wave or d wave.
  • the c-wave or d-wave is a component wave that changes due to factors other than fatigue. For this reason, the influence by factors other than fatigue can be offset by using c wave or d wave as an index value.
  • FIG. 17 is a diagram showing changes in index values (c / a, c / b, c / e) based on APG before and after mental fatigue load.
  • FIG. 18 is a diagram showing changes in index values (ac, ca,
  • / a were significantly increased by the N-back test, and c / B and ac were found to decrease significantly.
  • the c / a value shown in FIG. 17 increases significantly from 0.043 to 0.091 before and after fatigue in the 0-back test group, and before and after fatigue in the 2-back test group. There was a significant increase from 0.048 to 0.085.
  • the index value using c-wave or d-wave that does not show the influence of these mental fatigue loads can cancel the influence of factors other than fatigue compared to the case where the crest value is used as it is, and the fatigue evaluation It was considered a more effective index.
  • FIG. 19 is a diagram showing a change in c / a value with respect to auditory stimulation before and after mental fatigue load.
  • the present inventors analyzed this time. As a result, in the 0-back test execution group, c / a was determined to be before the auditory stimulation before and after the 0-back test. It was found that there was a significant change in auditory stimulation. On the other hand, the 2-back test group showed significant changes before and during auditory stimulation before the 2-back test, but significant changes before and during auditory stimulation after the 2-back test. (The “**” mark is not displayed on the graph after the 2-back test is performed).
  • FIG. 20 is a diagram showing changes in lnHF before and after mental fatigue load.
  • lnHF is considered to be an indicator of parasympathetic nervous system activity. From this result, parasympathetic nervous system activity is not observed in fatigue caused by monotonous work, but is not accompanied by changes in parasympathetic nervous system activity. It was thought that the decline was characteristic.
  • FIG. 21 is a diagram showing changes in ln ⁇ , ln ⁇ , and ln ⁇ / ln ⁇ before and after mental fatigue load.
  • FIG. 22 is a diagram showing changes in ln ⁇ , ln ⁇ , and ln ⁇ / ln ⁇ before and after mental fatigue load.
  • FIG. 23A is a diagram showing a change in% ⁇ before and after mental fatigue load
  • FIG. 23B is a diagram showing a change in% ⁇ before and after mental fatigue load
  • FIG. 24 is a diagram showing changes in ⁇ -blocking before and after mental fatigue load.
  • the average frequency in the power spectrum of MEG or EEG is determined by multiplying the center frequency of the ⁇ and ⁇ wave bands (5.5 Hz), the multiply value of ⁇ and the center frequency of the ⁇ wave band (10.5 Hz), ⁇ and The average frequency was confirmed to be unchanged before and after the 2-back test, as determined by an expression obtained by dividing the sum of the multiplication values of the center frequency (19 Hz) of the ⁇ wave band by the total power value.
  • fatigue due to difficult work not only promotes speeding up, but also enhances alpha waves, which are one of the basic rhythms of the brain (further than returning to standard values). It was considered.
  • the c-wave or d-wave of the APG waveform is not easily affected by mental fatigue load.
  • the evaluation accuracy of fatigue evaluation can be improved as compared with the conventional case.
  • the parasympathetic nerve activity index calculated by the frequency analysis of APG or ECG, the power value of the ⁇ wave and the power value of the ⁇ wave calculated by the frequency analysis of EEG or MEG are “fatigue caused by monotonous and light work” And "Fatigue caused by difficult and heavy work” was found to behave differently.
  • an autonomic nervous activity index is calculated by frequency analysis of APG or ECG, and an increase in sympathetic nervous system activity and a decrease in parasympathetic nervous system activity are observed during fatigue.
  • the present inventors have now found that there is a type of fatigue that is not accompanied by a decrease in parasympathetic activity. Therefore, it has been found that by using the parasympathetic nerve activity index, the power value of the ⁇ wave, and the power value of the ⁇ wave, it is possible to differentiate not only the presence of fatigue but also the qualitative difference of fatigue.
  • the living body fatigue evaluation apparatus can evaluate human fatigue non-invasively and easily with high accuracy, and is useful for early detection of fatigue in daily life.
  • recovery support suitable for the user can be achieved, and it can also be applied to uses such as driver status estimation systems in automobiles and employee management systems in workplaces. it can.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Developmental Disabilities (AREA)
  • Social Psychology (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Educational Technology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Traffic Control Systems (AREA)

Abstract

 評価精度の高い疲労評価が可能な生体疲労評価装置を提供する。 生体疲労評価装置(100)は、ユーザの脈波信号を計測する生体信号計測部(101)と、生体信号計測部(101)により計測された脈波信号の収縮期後方成分から得られる第一特徴量を抽出する特徴量抽出部(102)と、特徴量抽出部(102)により抽出された第一特徴量を記憶するための記憶部(103)と、特徴量抽出部(102)により抽出された第一特徴量を用いて、ユーザの疲労の有無を判断する疲労判断部(104)とを備え、疲労判断部(104)は、特徴量抽出部(102)により抽出された第一特徴量のうちのいずれかの特徴量と、記憶部(103)に記憶されている第一特徴量の少なくとも1つの特徴量とを比較して、疲労の有無を判断する。

Description

生体疲労評価装置及び生体疲労評価方法
 本発明は、ヒトの生体信号から疲労状態であることを評価する生体疲労評価装置及び生体疲労評価方法に関するものである。
 近年、車や職域などの分野において、事故死や過労死を予防するべく、専門家などにより、ヒトの疲労を客観的に評価することの重要性が唱えられている。この際、従来のような実験室における疲労評価ではなく、実用面でリアルタイムに評価をし、ユーザに気づきを与え注意を促すことが重要である。しかし、従来の評価方法は、非侵襲さや無拘束さ、また簡易さに乏しく、そのまま実用面での評価に用いることは難しかった。
 そこで、実用面での使用を目指した生体疲労評価装置として、ヒトの脈波信号から得られる特徴量と疲労との関係性を明らかにし、脈波から疲労を評価する方法が提案されている(例えば、特許文献1参照)。図25A及び図25Bは、特許文献1に記載された従来の生体疲労評価装置の構成を示すブロック図である。以下、特許文献1に記載された装置について、図25A及び図25Bを用いて説明する。
 図25Aに示すように、脈波計測部2501が脈波信号を計測すると、加速度脈波算出部2502は計測した脈波信号から加速度脈波を算出し、加速度脈波の波形成分を抽出して第1波(a波)から第5波(e波)までの波高値を計算する。次に、評価部2504は、記憶部2503に記憶された加速度脈波の波高の基準値に対し、新たに計算された波高値が小さい場合、疲労していると評価する。具体的には、特許文献1では、加速度脈波の波形成分の中でも特にa波に注目し、a波の波高値の低下と疲労との関係性がデータで示されている。
 また、図25Bに示すように、加速度脈波算出部2502と評価部2507との間にカオス解析部2505をさらに加えた構成も開示されている。カオス解析部2505は、加速度脈波算出部2502で算出された加速度脈波をカオス解析して、最大リアプノフ指数を計算する。次に、評価部2507は、記憶部2506に記憶された最大リアプノフ指数の基準値に対し、新たに計算された最大リアプノフ指数が小さい場合、疲労していると評価する。特許文献1では、以上の構成により、非侵襲で疲労の評価を行うことができるとしている。
 また、ハンドル等に搭載した脈波計測部でドライバの脈波信号を計測し、心拍に相当する脈拍情報を用いて計算した自律神経活動に基づいて緊張や眠気などの状態を推定する方法も提案されている(例えば、特許文献2参照)。
 特許文献2で提案されている方法では、交感神経活動量が亢進し副交感神経活動量が低下している場合(すなわち交感神経優位状態では)、ドライバはイライラ状態や興奮状態である「興奮」としている。また、交感神経活動量が低下し副交感神経活動量が亢進している場合(すなわち副交感神経優位状態)では、ドライバは眠気の高い状態或いは疲労が蓄積された状態である「眠気」としている。さらに、交感神経活動量及び副交感神経活動量がともに亢進している場合は、ドライバは眠気に打ち勝とうとしている状態である「眠気(矛盾)」とし、交感神経活動量及び副交感神経活動量がともに低下する場合は、ドライバは憂鬱状態である「憂鬱(矛盾)」としている。
特許第3790266号公報 特開2008-125801号公報
 しかしながら、脈波は疲労以外の影響でも値の変動が発生するため、図25Aのような構成の場合、計測値の再現性が乏しくなり、評価の精度を維持することは難しい。
 一方、図25Bのようにカオス解析を行う場合は、疲労以外の影響をある程度緩和できるが、カオス解析の処理は複雑で計算量が多くなり、また解析対象のデータとしてある程度の量が必要になるためリアルタイム性に乏しくなる。
 また、上記特許文献2では、脈波信号を用いてユーザの状態を4つの状態に切り分け推定することを提案しているが、状態の決定にあたっての裏づけとなるデータが示されていない。よって、この切り分けが単に便宜的な切り分け以上の効果を有しているか否かは不明である。
 本発明は、これらの課題を解決するもので、評価精度の高い疲労評価が可能な生体疲労評価装置及び生体疲労評価方法を提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係る生体疲労評価装置は、ユーザの脈波信号を計測する生体信号計測部と、前記生体信号計測部により計測された脈波信号の収縮期後方成分から得られる第一特徴量を抽出する特徴量抽出部と、前記特徴量抽出部により抽出された第一特徴量を記憶するための記憶部と、前記特徴量抽出部により抽出された第一特徴量を用いて、ユーザの疲労の有無を判断する疲労判断部とを備え、前記疲労判断部は、前記特徴量抽出部により抽出された第一特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第一特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の有無を判断する。
 本構成によれば、脈波信号の収縮期後方成分から得られる第一特徴量を抽出し、抽出された第一特徴量のうちのいずれかの特徴量と、記憶部に記憶されている第一特徴量のうちの少なくとも1つの特徴量とを比較して、疲労の有無を判断する。ここで、脈波信号の収縮期後方成分は、疲労以外の要因による影響は受けるものの、疲労による影響は受けにくい。このため、当該収縮期後方成分から得られる第一特徴量を用いることで、疲労以外の要因による影響を緩和させ、疲労評価の評価精度を向上することが可能となる。
 また、好ましくは、前記特徴量抽出部は、前記脈波信号から加速度脈波を算出し、前記収縮期後方成分に対応した加速度脈波の成分波であるc波またはd波の情報を少なくとも含む複数の成分波の情報を用いて、前記第一特徴量を抽出する。
 本構成によって、c波またはd波の情報を用いることで、加速度脈波波形の波高値そのものに基づいて疲労を評価する場合よりも、疲労以外の要因による影響を緩和し、疲労評価の評価精度を向上することが可能となる。
 また、好ましくは、前記特徴量抽出部は、前記加速度脈波のa波、b波またはe波の波高値に対する前記c波の波高値の比を前記第一特徴量として抽出し、前記疲労判断部は、前記第一特徴量の絶対値が時系列的に増加した場合に疲労していると判断する。
 本構成によって、a波、b波またはe波の波高値に対するc波の波高値の比を用いることで、加速度脈波波形の波高値そのものに基づいて疲労を評価する場合よりも、疲労以外の要因による影響を緩和し、疲労評価の評価精度を向上することが可能となる。
 また、好ましくは、前記特徴量抽出部は、前記加速度脈波のa波の波高値と前記c波の波高値との差を前記第一特徴量として抽出し、前記疲労判断部は、前記第一特徴量の絶対値が時系列的に減少した場合に疲労していると判断する。
 本構成によって、a波の波高値とc波の波高値との差を用いることで、加速度脈波波形の波高値そのものに基づいて疲労を評価する場合よりも、疲労以外の要因による影響を緩和し、疲労評価の評価精度を向上することが可能となる。
 また、好ましくは、前記特徴量抽出部は、前記加速度脈波の前記c波の波高値と前記d波の波高値との差を、前記加速度脈波のa波で除した値を前記第一特徴量として抽出し、前記疲労判断部は、前記第一特徴量の絶対値が時系列的に増加した場合に疲労していると判断する。
 本構成によって、c波の波高値とd波の波高値との差をa波で除した値を用いることで、加速度脈波波形の波高値そのものに基づいて疲労を評価する場合よりも、疲労以外の要因による影響を緩和し、疲労評価の評価精度を向上することが可能となる。
 また、好ましくは、さらに、前記疲労判断部により疲労していると判断された場合、ユーザに刺激を与える外部機器を制御する機器制御部を備える。
 本構成によって、疲労していると判断した場合にユーザに刺激を与えることで、疲労の評価結果の提示、または評価結果に基づいたケアを自動で行うことが可能となる。
 また、好ましくは、前記生体信号計測部は、さらに、ユーザの心拍或いは脈波を生体信号として計測し、前記特徴量抽出部は、さらに、前記生体信号計測部により計測された生体信号から得られる、副交感神経活動量を示す第二特徴量を抽出し、前記記憶部は、さらに、前記特徴量抽出部により抽出された第二特徴量を記憶しており、前記生体疲労評価装置は、さらに、前記特徴量抽出部により抽出された第二特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部を備え、前記疲労質判定部は、前記疲労判断部が疲労していると判断した場合に、前記特徴量抽出部により抽出された第二特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第二特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の質を判定する。
 本構成によって、疲労している場合に、第二特徴量を用いてユーザの疲労が困難な作業による疲労か単調な作業による疲労かという疲労の質を判定することができ、ユーザに適した回復支援を図ることが可能となる。また、心拍或いは脈波という場面によらず容易に計測できる生体信号による判定のため、汎用性に優れている。
 また、好ましくは、前記疲労質判定部は、前記第二特徴量が時系列的に減少した場合に、困難な作業による疲労であると判定し、減少しない場合に、単調な作業による疲労であると判定する。
 本構成によって、第二特徴量の時系列的な変化によって、疲労の質を判定することができ、ユーザに適した回復支援を図ることが可能となる。また、場面によらず、容易に計測できる生体信号により疲労の質を判定することができるため、汎用性に優れている。
 また、好ましくは、さらに、前記生体信号計測部は、さらに、ユーザの脳内信号を生体信号として計測し、前記特徴量抽出部は、さらに、前記生体信号計測部により計測された生体信号から得られる、β波およびα波のうち少なくともどちらか一方に関連する第三特徴量を抽出し、前記記憶部は、さらに、前記特徴量抽出部により抽出された第三特徴量を記憶しており、前記生体疲労評価装置は、さらに、前記特徴量抽出部により抽出された第三特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部を備え、前記疲労質判定部は、前記疲労判断部が疲労していると判断した場合に、前記特徴量抽出部により抽出された第三特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第三特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の質を判定する。
 本構成によって、疲労している場合に、第三特徴量を用いてユーザの疲労が困難な作業による疲労か単調な作業による疲労かという疲労の質を判定することができ、ユーザに適した回復支援を図ることが可能となる。また、脳内信号により疲労の質を判定することができるため、例えば、帽子やヘッドセットマイクなどを装着する職業の人々の労務管理などに広く応用できる。
 また、好ましくは、さらに、ユーザが開眼状態にあるか閉眼状態にあるかを識別する識別情報を生成する識別部を備え、前記生体信号計測部は、計測した生体信号に前記識別情報を付加し、前記特徴量抽出部は、前記識別部によりユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値、およびα波帯域のパワー値のうち少なくともどちらか一方のパワー値を用いた前記第三特徴量を抽出する。
 本構成によって、脳内信号におけるβ波帯域のパワー値、α波帯域のパワー値のうち少なくともどちらか一方のパワー値を、ユーザの開眼状態における値か閉眼状態における値かを区別して用いるため、より疲労評価の評価精度を向上することが可能となる。
 また、好ましくは、前記特徴量抽出部は、前記識別部によりユーザが閉眼状態にあることを識別された時間区間におけるα波帯域のパワー値を用いた前記第三特徴量を抽出し、前記疲労質判定部は、前記第三特徴量が時系列的に増加した場合に、困難な作業による疲労であると判定する。
 本構成によって、ユーザが閉眼状態にあることを識別された時間区間におけるα波帯域のパワー値からユーザの疲労が困難な作業による疲労かを判定するため、より疲労評価の評価精度を向上することが可能となる。また、疲労の質判定により困難な作業による疲労に対して、ユーザに適した回復支援を図ることが可能となる。
 また、好ましくは、前記特徴量抽出部は、前記識別部によりユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値を用いた前記第三特徴量を抽出し、前記疲労質判定部は、前記第三特徴量が時系列的に減少した場合に、単調な作業による疲労であると判定する。
 本構成によって、ユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値からユーザの疲労が単調な作業による疲労かを判定するため、疲労評価の評価精度を向上することが可能となる。また、疲労の質判定により単調な作業による疲労に対して、ユーザに適した回復支援を図ることが可能となる。
 また、好ましくは、さらに、ユーザに対して聴覚を刺激する聴覚刺激を出力する刺激出力部と、前記特徴量抽出部により抽出された第一特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部とを備え、前記疲労質判定部は、前記疲労判断部が疲労していると判断した場合に、前記記憶部に記憶されている前記刺激出力部により聴覚刺激が出力される前の時間区間における第一特徴量と、前記刺激出力部により聴覚刺激が出力された時の時間区間における第一特徴量とを比較して、前記疲労の質を判定する。
 本構成によって、聴覚刺激を出力することで、ユーザの疲労が困難な作業による疲労か単調な作業による疲労かという疲労の質を判定することができ、ユーザに適した回復支援を図ることが可能となる。また、場面によらず計測が容易な脈波と特別な装置が不要な聴覚刺激とを用いて疲労の質を判定するため、例えば、運転の場面等でドライバが触れる箇所から脈波を計測し、カーナビが出力する音刺激に対する脈波信号を用いて疲労の質を判定するなど、広く応用できる。
 また、好ましくは、前記特徴量抽出部は、前記脈波信号から加速度脈波を算出し、前記加速度脈波のa波の波高値に対するc波の波高値の比を前記第一特徴量として抽出し、前記疲労質判定部は、前記記憶部に記憶されている前記刺激出力部により聴覚刺激が出力される前の時間区間における第一特徴量に対し、前記刺激出力部により聴覚刺激が出力された時の時間区間における第一特徴量が増加した場合に、単調な作業による疲労であると判定し、増加していない場合に、困難な作業による疲労であると判定する。
 本構成によって、ユーザの疲労が困難な作業による疲労か単調な作業による疲労かという疲労の質を判定することができ、ユーザに適した回復支援を図ることが可能となる。また、場面によらず計測が容易な脈波と特別な装置が不要な聴覚刺激を用いて疲労の質を判定するため、広く応用できる。
 また、好ましくは、さらに、前記疲労質判定部により判定された疲労の質に応じてユーザに刺激を与える外部機器を制御する機器制御部を備える。
 本構成によって、疲労の質に応じてユーザに刺激を与えることで、疲労の質の判定結果をユーザへ提示したり、ユーザに適した回復支援を行うことができる。
 また、上記課題を解決するために、本発明の一態様に係る生体疲労評価装置は、ユーザの心拍或いは脈波を生体信号として計測する生体信号計測部と、前記生体信号計測部により計測された生体信号から得られる、副交感神経活動量を示す第二特徴量を抽出する特徴量抽出部と、前記特徴量抽出部により抽出された第二特徴量を記憶するための記憶部と、前記特徴量抽出部により抽出された第二特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部とを備え、前記疲労質判定部は、前記特徴量抽出部により抽出された第二特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第二特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の質を判定する。
 本構成によって、第二特徴量を用いてユーザの疲労が困難な作業による疲労か単調な作業による疲労かという疲労の質を判定することができ、ユーザに適した回復支援を図ることが可能となる。また、心拍或いは脈波という場面によらず容易に計測できる生体信号による判定のため、汎用性に優れている。
 また、上記課題を解決するために、本発明の一態様に係る生体疲労評価装置は、ユーザの脳内信号を生体信号として計測する生体信号計測部と、前記生体信号計測部により計測された生体信号から得られる、β波およびα波のうち少なくともどちらか一方に関連する第三特徴量を抽出する特徴量抽出部と、前記特徴量抽出部により抽出された第三特徴量を記憶するための記憶部と、前記特徴量抽出部により抽出された第三特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部とを備え、前記疲労質判定部は、前記特徴量抽出部により抽出された第三特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第三特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の質を判定する。
 本構成によって、第三特徴量を用いてユーザの疲労が困難な作業による疲労か単調な作業による疲労かという疲労の質を判定することができ、ユーザに適した回復支援を図ることが可能となる。また、脳内信号により疲労の質を判定することができるため、例えば、帽子やヘッドセットマイクなどを装着する職業の人々の労務管理などに広く応用できる。
 また、上記課題を解決するために、本発明の一態様に係る生体疲労評価装置は、ユーザに対して聴覚を刺激する聴覚刺激を出力する刺激出力部と、ユーザの脈波信号を計測する生体信号計測部と、前記生体信号計測部により計測された脈波信号の収縮期後方成分から得られる第一特徴量を抽出する特徴量抽出部と、前記特徴量抽出部により抽出された第一特徴量を記憶するための記憶部と、前記特徴量抽出部により抽出された第一特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部とを備え、前記疲労質判定部は、前記記憶部に記憶されている前記刺激出力部により聴覚刺激が出力される前の時間区間における第一特徴量と、前記刺激出力部により聴覚刺激が出力された時の時間区間における第一特徴量とを比較して、前記疲労の質を判定する。
 本構成によって、聴覚刺激を出力することで、ユーザの疲労が困難な作業による疲労か単調な作業による疲労かという疲労の質を判定することができ、ユーザに適した回復支援を図ることが可能となる。また、場面によらず計測が容易な脈波と特別な装置が不要な聴覚刺激とを用いて疲労の質を判定するため、例えば、運転の場面等でドライバが触れる箇所から脈波を計測し、カーナビが出力する音刺激に対する脈波信号を用いて疲労の質を判定するなど、広く応用できる。
 また、本発明は、このような生体疲労評価装置として実現することができるだけでなく、生体疲労評価装置が備える各処理部が行う処理をステップとする生体疲労評価方法として実現することもできる。また、当該生体疲労評価方法に含まれる特徴的な処理をコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。また、生体疲労評価装置に含まれる特徴的な処理部を備える集積回路として実現したりすることもできる。
 本発明によれば、評価精度の高い疲労評価を行うことができる。
図1は、実施の形態1における生体疲労評価装置の構成を示すブロック図である。 図2Aは、容積脈波波形の一例を示す図である。 図2Bは、加速度脈波波形の一例を示す図である。 図3Aは、実施の形態1における疲労判断部による疲労評価の一例を示すフローチャートである。 図3Bは、実施の形態1における疲労判断部による疲労評価の他の一例を示すフローチャートである。 図4は、実施の形態2における生体疲労評価装置の構成を示すブロック図である。 図5Aは、実施の形態2における疲労質判定部による疲労の質判定の一例を示すフローチャートである。 図5Bは、実施の形態2における疲労質判定部による疲労の質判定の他の一例を示すフローチャートである。 図6は、実施の形態3における生体疲労評価装置の構成を示すブロック図である。 図7Aは、実施の形態3における疲労質判定部によるα帯域のパワー値を用いた疲労の質判定の一例を示すフローチャートである。 図7Bは、実施の形態3における疲労質判定部によるα‐blockingを用いた疲労の質判定の一例を示すフローチャートである。 図8Aは、実施の形態3における疲労質判定部によるα帯域のパワー値を用いた疲労の質判定の他の一例を示すフローチャートである。 図8Bは、実施の形態3における疲労質判定部によるα帯域のパワー値と平均周波数とを用いた疲労の質判定の一例を示すフローチャートである。 図9Aは、実施の形態3における疲労質判定部によるβ帯域のパワー値を用いた疲労の質判定の一例を示すフローチャートである。 図9Bは、実施の形態3における疲労質判定部によるβ帯域のパワー値を用いた疲労の質判定の他の一例を示すフローチャートである。 図10は、実施の形態4における生体疲労評価装置の構成を示すブロック図である。 図11は、実施の形態4における疲労質判定部による疲労の質判定の一例を示すフローチャートである。 図12は、実施の形態5の生体疲労評価装置の構成を示すブロック図である。 図13は、実施の形態5における生体疲労評価装置の動作の一例を示すフローチャートである。 図14は、精神疲労負荷前後のATMTの成績変化を示す図である。 図15Aは、精神疲労負荷前後における主観申告スコアを示す図である。 図15Bは、試験終了時に記録したN‐backテスト遂行時の主観申告スコアを示す図である。 図16Aは、精神疲労負荷(0‐back)前後におけるAPG波形の波高値の変化を表す図である。 図16Bは、精神疲労負荷(2‐back)前後におけるAPG波形の波高値の変化を表す図である。 図17は、精神疲労負荷前後におけるAPGに基づく指標値(c/a、c/b、c/e)の変化を表す図である。 図18は、精神疲労負荷前後におけるAPGに基づく指標値(a-c、c-a、|d-c|/a)の変化を表す図である。 図19は、精神疲労負荷前後における聴覚刺激に対するc/a値の変化を表す図である。 図20は、精神疲労負荷前後におけるlnHFの変化を表す図である。 図21は、精神疲労負荷前後におけるlnβ、lnθ及びlnθ/lnβの変化を表す図である。 図22は、精神疲労負荷前後におけるlnβ、lnα及びlnθ/lnαの変化を表す図である。 図23Aは、精神疲労負荷前後における%θの変化を表す図である。 図23Bは、精神疲労負荷前後における%αの変化を表す図である。 図24は、精神疲労負荷前後におけるα‐blockingの変化を表す図である。 図25Aは、従来の生体疲労評価装置の構成を示すブロック図である。 図25Bは、従来の生体疲労評価装置の構成を示すブロック図である。
 以下本発明の実施の形態について、図面を参照しながら説明する。なお、同じ要素には同じ符号を付し、説明を省略する場合もある。
 (実施の形態1)
 図1は、本発明の実施の形態1における生体疲労評価装置100の構成を示すブロック図である。
 同図に示すように、生体疲労評価装置100は、ユーザの脈波信号を計測する生体信号計測部101、脈波信号から特徴量を抽出する特徴量抽出部102、特徴量を記憶する記憶部103、及び疲労の有無を判断する疲労判断部104を備えている。なお、同図に示すように、生体疲労評価装置100は、疲労評価結果に基づいて外部機器を制御する機器制御部105をさらに備える構成でもよい。
 生体信号計測部101は、トランデューサー等により検出されたユーザの脈波を所定のサンプリング周期でサンプリングして脈波データを時系列的に取得する。生体信号計測部101を装着する部位については、指尖部や耳朶部などが代表的ではあるが、前額や鼻尖部など、その他脈波を取得できる部位であればどこでもよい。
 特徴量抽出部102は、生体信号計測部101により計測された脈波信号の収縮期後方成分から得られる第一特徴量を抽出する。具体的には、特徴量抽出部102は、脈波信号から加速度脈波を算出し、収縮期後方成分に対応した加速度脈波の成分波であるc波またはd波の情報を少なくとも含む複数の成分波の情報を用いて、第一特徴量を抽出する。
 記憶部103は、特徴量抽出部102により抽出された第一特徴量を記憶するためのメモリである。
 疲労判断部104は、特徴量抽出部102により抽出された第一特徴量を用いて、ユーザの疲労の有無を判断する。具体的には、疲労判断部104は、特徴量抽出部102により抽出された第一特徴量のうちのいずれかの特徴量と、記憶部103に記憶されている第一特徴量のうちの少なくとも1つの特徴量とを比較して、疲労の有無を判断する。例えば、疲労判断部104は、抽出された複数の第一特徴量のうち、現在抽出された第一特徴量と過去に抽出された第一特徴量とを比較して、疲労の有無を判断する。
 例えば、特徴量抽出部102が、加速度脈波のa波、b波またはe波の波高値に対するc波の波高値の比を第一特徴量として抽出した場合は、疲労判断部104は、第一特徴量の絶対値が時系列的に増加した場合に疲労していると判断する。
 また、特徴量抽出部102が、加速度脈波のa波の波高値とc波の波高値との差を第一特徴量として抽出した場合は、疲労判断部104は、第一特徴量の絶対値が時系列的に減少した場合に疲労していると判断する。
 さらに、特徴量抽出部102が、加速度脈波のc波の波高値とd波の波高値との差を、加速度脈波のa波で除した値を第一特徴量として抽出した場合は、疲労判断部104は、第一特徴量の絶対値が時系列的に増加した場合に疲労していると判断する。
 図2Aは、生体信号計測部101が計測する容積脈波(Plethysmogram、略してPTG)波形の一例を示す図である。そして、図2Bは、図2Aの容積脈波を2階微分した加速度脈波(Accelerated Plethysmogram、略してAPG)波形の一例を示す図である。
 図2Aに示すように、容積脈波には、駆出波(P1)と反射波(P2)が検出される。また、図2Bに示すように、加速度脈波の波形は、収縮初期陽性波(a波)、収縮初期陰性波(b波)、収縮中期再上昇波(c波)、収縮後期再下降波(d波)、そして拡張初期陽性波(e波)とで構成される。
 図2Aが示す容積脈波と図2Bが示す加速度脈波との対応を見た場合、加速度脈波波形成分のa波とb波は容積脈波の収縮期前方成分に、加速度脈波波形成分のc波とd波は容積脈波の収縮期後方成分に含まれる。容積脈波の収縮期前方成分は血液の駆出によって生ずる駆動圧波を反映したものであり、収縮期後方成分は駆動圧波が末梢に伝搬し反射して戻ってきた反射圧波を反映したものである。
 今回、本発明者らは、生体疲労の非侵襲評価に関する可能性検証実験を通じ、脈波を2階微分した加速度脈波波形成分のうちa波の波高値とb波の波高値、さらにe波の波高値が精神疲労負荷前後で有意に変化する傾向を見出した。ここで、有意に変化するとは、統計学的に5%或いは1%の有意水準を満たして変化することを示している。
 一方、脈波の収縮期後方成分を反映した特徴量である、c波の波高値及びd波の波高値は精神疲労負荷前後で有意に変化しない(すなわち、疲労に伴った変化が見られない)傾向を見出した。またさらに、c波またはd波を含む複数の加速度脈波波形成分を用いた特徴量が、精神疲労負荷前後で有意に変化する傾向を見出した。以下、a波からe波の波高値をそれぞれaからeとして説明する。
 c波またはd波の情報を含む、複数の加速度脈波波形成分の情報を用いた特徴量としては、c波とa波の波高比であるc/a値、c波とb波の波高比であるc/b値、c波とe波の波高比であるc/e値が挙げられる。また、その他に、c波とa波の波高差分である、a-c値或いはc-a値、c波とd波の波高差分をa波の波高値で除した|d-c|/a値などが挙げられる。本発明者らが実施した、生体疲労の非侵襲評価に関する可能性検証実験については、後に詳細に説明する。
 ここでは、特徴量抽出部102が、数ある特徴量の中でもc/a値を抽出する場合を例にとり、以下に説明する。
 まず、特徴量抽出部102は、生体信号計測部101により計測された脈波信号を2階微分して図2Bに示すような加速度脈波波形へ変換する。
 そして、特徴量抽出部102は、加速度脈波波形成分の中から時間的に最も早くに起こる極値からa波の波高値aを抽出し、時間的に3つ目の極値からc波の波高値cを抽出し、それらの比であるc/a値を求める。ここで、特徴量抽出部102は、求めたc/a値を記憶部103に時系列的に記憶させる。
 なお、特徴量抽出部102は、c/a値として、脈波信号1拍分ごとの値をそのまま出力してもよいし、予め定められた時間区間(例えば10秒など)における平均値を出力してもよい。
 疲労判断部104は、少なくとも2つの時点におけるc/a値を比較して、疲労の有無を判断する。例えば、疲労判断部104は、特徴量抽出部102から新しくc/a値が出力されると、記憶部103に記憶されているc/a値の中で時系列的に1つ前の時点のc/a値と、現時点のc/a値とを比較する。
 もちろん、これに限定するものではなく、疲労判断部104は、ある決まったタイミング(例えば起動直後など)に記憶されたc/a値を基準値として、現時点のc/a値と比較してもよい。なお、他の比較方法として、例えば、疲労判断部104は、現時点からある期間分前までの、全ての時点のc/a値の合算を所定閾値と比較してもよい。そして、疲労判断部104は、c/a値の合算が所定閾値以上であれば疲労していると判断してもよい。
 図3A及び図3Bは、本実施の形態1における疲労判断部104による疲労評価の一例を示すフローチャートである。
 まず疲労判断部104が、図3Aに示す動作を行う場合について説明する。疲労判断部104は、特徴量抽出部102からc/a値が出力されると(ステップS31)、記憶部103に記憶されているc/a値の中で、時系列的に1つ前の時点のc/a値を呼び出す(ステップS32)。
 そして、疲労判断部104は、これら2つの現時点のc/a値と1つ前の時点のc/a値とを比較する(ステップS33)。
 疲労判断部104は、現時点のc/a値が1つ前の時点のc/a値よりも大きいと判断した場合(ステップS33でYes)、ユーザが疲労していると判断する(ステップS34)。
 また、疲労判断部104は、現時点のc/a値が1つ前の時点のc/a値よりも大きくないと判断した場合(ステップS33でNo)、次に特徴量抽出部102からc/a値が出力されるまで待機し、次のc/a値の出力後、ステップS31からの動作をくり返す。
 また、疲労判断部104は、図3Bに示す動作を行ってもよい。図3Bに示す動作を行う場合、ステップS31~ステップS33までの動作フローは図3Aに示した動作例と同様である。
 疲労判断部104は、ステップS33において、現時点のc/a値が1つ前の時点のc/a値よりも大きいと判断した場合(ステップS33でYes)、1つ前の時点のc/a値から現時点のc/a値への変化量を算出し、予め設定された閾値L1(例えば、0.03程度の変化量)と比較する(ステップS35)。
 疲労判断部104は、算出した変化量が閾値L1よりも大きいと判断した場合(ステップS35でYes)、ユーザが疲労していると判断する(ステップS36)。
 疲労判断部104は、現時点のc/a値が1つ前の時点のc/a値よりも大きくない場合や、算出した変化量が閾値L1よりも大きくないと判断した場合は(ステップS35でNo)、次に特徴量抽出部102からc/a値が出力されるまで待機し、次のc/a値の出力後、ステップS31からの動作をくり返す。
 なお、閾値L1は、0.03程度に限ったものではないが、後述する実験結果に鑑みると0.03程度から0.035程度の範囲に含まれる値にすることが好ましい(図17参照)。
 疲労判断部104は、疲労しているか否かの判断は、例えば疲労している場合には1を、疲労していない場合には0を出力するなどの情報を出力することで行う。
 生体疲労評価装置100が、機器制御部105を備える場合、機器制御部105は、疲労判断部104により判断された結果に基づいて、外部機器を制御する。例えば、機器制御部105は、表示機能を持つディスプレイや、音を出力するスピーカーを制御してユーザやユーザを管理監督する部門へ疲労判断結果を報知してもよい。
 また、機器制御部105は、疲労判断部104により疲労していると判断された場合、ユーザに刺激を与える外部機器を制御してもよい。例えば、機器制御部105は、気流や熱を発生する機器を制御して、疲労を回復または軽減させる効果のある香りや気流、温熱などの刺激を出力してもよい。或いは、機器制御部105は、疲労判断部104により判断された結果を保存・蓄積、伝送してもよい。
 以上のように、生体疲労評価装置100は、脈波信号から疲労に特異的な変化をするc波またはd波を含む複数の加速度脈波波形成分を用いて抽出した特徴量に基づいて、疲労の有無を判断する。
 このような構成により、脈波信号の収縮期後方成分から得られる第一特徴量を抽出し、抽出された第一特徴量のうちのいずれかの特徴量と、記憶部103に記憶されている第一特徴量のうちの少なくとも1つの特徴量とを比較して、疲労の有無を判断する。ここで、脈波信号の収縮期後方成分は、疲労以外の要因による影響は受けるものの、疲労による影響は受けにくい。このため、当該収縮期後方成分から得られる第一特徴量を用いることで、脈波に含まれる疲労以外の要因による影響を軽減させ、疲労評価の評価精度を向上することができる。
 また、本構成によって、c波またはd波の情報を用いることで、加速度脈波波形の波高値そのものに基づいて疲労を評価する場合よりも、疲労以外の要因による影響を緩和し、疲労評価の評価精度を向上することが可能となる。
 また、本構成によって、a波、b波またはe波の波高値に対するc波の波高値の比を用いることで、加速度脈波波形の波高値そのものに基づいて疲労を評価する場合よりも、疲労以外の要因による影響を緩和し、疲労評価の評価精度を向上することが可能となる。
 また、本構成によって、a波の波高値とc波の波高値との差を用いることで、加速度脈波波形の波高値そのものに基づいて疲労を評価する場合よりも、疲労以外の要因による影響を緩和し、疲労評価の評価精度を向上することが可能となる。
 また、本構成によって、c波の波高値とd波の波高値との差をa波で除した値を用いることで、加速度脈波波形の波高値そのものに基づいて疲労を評価する場合よりも、疲労以外の要因による影響を緩和し、疲労評価の評価精度を向上することが可能となる。
 また、本構成によって、疲労していると判断した場合にユーザに刺激を与えることで、疲労の評価結果の提示、または評価結果に基づいたケアを自動で行うことが可能となる。
 なお、生体疲労評価装置100が機器制御部105を備えない場合は、外部の構成により外部機器を制御してもよい。
 (実施の形態2)
 図4は、本発明の実施の形態2における生体疲労評価装置400の構成を示すブロック図である。
 同図に示すように、生体疲労評価装置400は、生体信号を計測する生体信号計測部401、生体信号から特徴量を抽出する特徴量抽出部402、特徴量を記憶する記憶部403、及び疲労の質を判定する疲労質判定部406を備えている。なお、同図に示すように、生体疲労評価装置400は、疲労の質の判定結果に基づいて外部機器を制御する機器制御部405をさらに備える構成でもよい。
 生体信号計測部401は、ユーザの心拍或いは脈波を生体信号として計測する。具体的には、生体信号計測部401は、例えば、心電図、脈波、脳波、脳磁図のような生体信号を計測する生体センサー部である。
 心電図や脳波などの生体電気量を取得する場合は、生体皮膚表面に複数の電極を装着し、電気信号として体外に導出する方法が代表的である。脳磁図など生体磁気量を取得する場合は、微弱な磁束密度を計測するため、フラックスゲート形磁束計またはさらに高感度の超伝導量子干渉計が用いられる。脈波を取得する場合は、LEDなどの光源を用いて生体に赤外光を照射し、フォトダイオードで生体を通過した光強度を電気信号へ変換して取得する方法が代表的である。
 本発明者らは、生体疲労の非侵襲評価に関する可能性検証実験を通じ、困難な作業が原因で生じる疲労(以下、困難な作業による疲労と記す)、単調な作業が原因で生じる疲労(以下、単調な作業による疲労と記す)という疲労の質と、自律神経活動の1つである副交感神経活動量とが関連することを見出した。具体的には、困難な作業による疲労の際に副交感神経活動量は有意に低下し、単調な作業による疲労の際に副交換神経活動量は有意に低下しない(すなわち、単調な作業による疲労に伴った副交換神経活動量の低下が見られない)傾向を見出した。
 副交感神経活動量を表す指標値は、心電図における心拍間隔や、脈拍間のa波間隔の時系列データを周波数解析して求めたパワースペクトルのうち0.15Hzから0.4Hzまでの高周波帯域(High Frequency、以下、HFと記す)のパワー値が代表的である。また、副交感神経活動量を表す指標値は、このパワー値に限ったものではなく、HFのパワー値を対数化したlnHFでもよい。また、その他にも、パワースペクトルのその他の帯域(0.04Hz以下の帯域であるVery Low Frequency(VLF)、0.04Hzから0.15Hzまでの帯域であるLow Frequency(LF)など)をあわせたトータルパワー値で、HFのパワー値を除した%HFなどでもよい。本発明者らが実施した、生体疲労の非侵襲評価に関する可能性検証実験については、後に詳細に説明する。
 ここでは、脈波を用いて算出した値を副交感神経活動量の指標値とする場合を例にとり、生体疲労評価装置400の動作について以下に説明する。
 まず、生体信号計測部401は、ユーザの脈波信号を生体信号として計測する。
 特徴量抽出部402は、生体信号計測部401により計測された生体信号から得られる、副交感神経活動量を示す第二特徴量を抽出する。
 具体的には、特徴量抽出部402は、生体信号計測部401により計測された脈波信号を2階微分した加速度脈波波形から脈拍間のa波の間隔(以下、aa間隔と記す)を求め、aa間隔の時系列データを用いて自律神経活動の1つである副交感神経活動量を求める。例えば、特徴量抽出部402は、高速フーリエ変換(FFT)や最大エントロピー法(MEM)などを用いて、aa間隔の時系列データに対して周波数解析を行い、パワースペクトルにおけるHFのパワー値を計算して求める。
 そして、特徴量抽出部402は、計算したHFのパワー値を、記憶部403に時系列的に記憶させる。なお、特徴量抽出部402は、HFのパワー値を、周波数解析をするために必要となる最小時間区間(例えば30秒間など)における算出値としてもよいし、最小時間区間における算出値をさらに時系列的に集めたある一定区間(例えば2分間など)における平均値としてもよい。
 記憶部403は、特徴量抽出部402により抽出された第二特徴量を記憶しているメモリである。具体的には、記憶部403は、特徴量抽出部402から特徴量としてHFのパワー値が出力される度に、時系列的にHFのパワー値を蓄積する。
 疲労質判定部406は、特徴量抽出部402により抽出された第二特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する。
 具体的には、疲労質判定部406は、少なくとも2つの時点におけるHFのパワー値を比較して疲労の質を判定する。つまり、疲労質判定部406は、特徴量抽出部402により抽出された第二特徴量のうちのいずれかの特徴量と、記憶部403に記憶されている第二特徴量のうちの少なくとも1つの特徴量とを比較して、疲労の質を判定する。
 例えば、疲労質判定部406は、特徴量抽出部402から新しくHFのパワー値が出力されると、記憶部403に記憶されているHFのパワー値の中で時系列的に1つ前の時点のHFのパワー値と、現時点のHFのパワー値を比較する。もちろん、疲労質判定部406による疲労の質の判定は、これに限定されるものではなく、ある決まったタイミング(例えば起動直後など)に記憶されたHFのパワー値を基準値として、現時点のHFのパワー値と比較してもよい。
 そして、疲労質判定部406は、第二特徴量が時系列的に減少した場合に、困難な作業による疲労であると判定し、減少しない場合に、単調な作業による疲労であると判定する。
 図5A及び図5Bは、本実施の形態2における疲労質判定部406による疲労の質判定の一例を示すフローチャートである。
 まず、疲労質判定部406が、図5Aに示す動作を行う場合について説明する。疲労質判定部406は、特徴量抽出部402からHFのパワー値が出力されると(ステップS51)、記憶部403に記憶されているHFのパワー値の中で、時系列的に1つ前の時点のHFのパワー値を呼び出す(ステップS52)。
 そして、疲労質判定部406は、これら2つの値である現在のHFのパワー値と1つ前の時点のHFのパワー値とを比較する(ステップS53)。
 疲労質判定部406は、現時点のHFのパワー値が1つ前の時点のHFのパワー値よりも小さいと判断した場合(ステップS53でYes)、困難な作業による疲労であると判定する(ステップS54)。
 また、疲労質判定部406は、現時点のHFのパワー値が1つ前の時点のHFのパワー値よりも小さくないと判断した場合(ステップS53でNo)、単調な作業による疲労であると判定する(ステップS55)。
 その後、次に特徴量抽出部402からHFのパワー値が出力されれば、疲労質判定部406は、ステップS51からの動作をくり返す。
 なお、2つ以上の時点における他の比較方法として、例えば、疲労質判定部406は、現時点からある期間分前までの、全ての時点のHFのパワー値の合算を所定閾値と比較してもよい。そして、疲労質判定部406は、HFのパワー値の合算が所定閾値以下であれば困難な作業による疲労であると判定し、HFのパワー値の合算が所定閾値以下でなければ単調な作業による疲労であると判定してもよい。
 また、疲労質判定部406は、図5Bに示す動作を行ってもよい。図5Bに示す動作を行う場合、ステップS51~ステップS53までの動作フローは図5Aに示した動作例と同様である。
 疲労質判定部406は、ステップS53において、現時点のHFのパワー値が1つ前の時点のHFのパワー値よりも小さいと判断した場合(ステップS53でYes)、1つ前の時点のHFのパワー値から現時点のHFのパワー値の変化量を算出し、当該変化量と予め設定された閾値L2(例えば、lnHFの変化量が0.3程度になるようなHFのパワー値の変化量)とを比較する(ステップS56)。
 疲労質判定部406は、算出した変化量が閾値L2よりも大きいと判断した場合(ステップS56でYes)、困難な作業による疲労であると判定する(ステップS57)。
 また、疲労質判定部406は、現時点のHFのパワー値が1つ前の時点のHFのパワー値よりも小さくないと判断した場合(ステップS53でNo)、または算出した変化量が閾値L2よりも大きくないと判断した場合(ステップS56でNo)、単調な作業による疲労であると判定する(ステップS58)。
 その後、次に特徴量抽出部402からHFのパワー値が出力されれば、疲労質判定部406は、ステップS51からの動作をくり返す。
 なお、閾値L2は、lnHFの変化量が0.3程度になるようなHFのパワー値の変化量に限ったものではないが、後述する実験結果に鑑みると、lnHFの変化量が0.25程度から0.4程度の範囲に含まれる値になるようなHFのパワー値の変化量にするのが好ましい(図20参照)。
 生体疲労評価装置400が、機器制御部405を備える場合、機器制御部405は、疲労質判定部406により判定された結果に基づいて、外部機器を制御する。例えば、機器制御部405は、表示機能を持つディスプレイや音を出力するスピーカーのようなものを制御して、ユーザやユーザを管理監督する部署へ疲労質判定結果を報知してもよい。
 また、機器制御部405は、疲労質判定部406により判定された疲労の質に応じてユーザに刺激を与える外部機器を制御してもよい。例えば、機器制御部405は、気流や熱を発生する機器を制御して、疲労の質に適した回復または軽減させる効果のある香りや気流、温熱などの刺激を出力してもよい。或いは、機器制御部405は、疲労質判定部406により判定された結果を、保存・蓄積、伝送してもよい。
 以上のように、生体疲労評価装置400は、副交感神経活動量を示す指標値に基づいて、困難な作業による疲労か、単調な作業による疲労かという疲労の質を判定する。このような構成により、ユーザの疲労の質を判定することができ、例えばそれにより与える処方(休息、睡眠、薬など)を切り替えて、ユーザにより適した回復支援を図ることが可能となる。また、生体疲労評価装置400は、場面によらず、計測が容易な心電図或いは脈波を用いて副交感神経活動量を抽出し、疲労の質を判定するため、優れた汎用性を有する。
 また、本構成によって、疲労の質に応じてユーザに刺激を与えることで、疲労の質の判定結果をユーザへ提示したり、ユーザに適した回復支援を行うことができる。
 なお、生体疲労評価装置400が機器制御部405を備えない場合は、外部の構成により外部機器を制御してもよい。
 (実施の形態3)
 図6は、本発明の実施の形態3における生体疲労評価装置600の構成を示すブロック図である。図6において、図4と同じ構成要素については同じ符号を用い、説明を省略する場合がある。
 同図に示すように、生体疲労評価装置600は、生体信号計測部401、特徴量抽出部602、記憶部603、疲労質判定部606を備え、さらにユーザが開眼状態か閉眼状態かを識別する識別部601を備える。また、生体疲労評価装置600は、機器制御部405をさらに備える構成でもよい。
 今回、本発明者らは、生体疲労の非侵襲評価に関する可能性検証実験を通じ、脳内信号(脳波または脳磁図)に基づいて抽出される閉眼状態でのα波、または開眼状態及び閉眼状態でのβ波と、困難な作業による疲労、単調な作業による疲労という疲労の質とが関連することを見出した。具体的には、困難な作業による疲労の際に閉眼状態でのα波は有意に増加し、単調な作業による疲労の際に開眼状態及び閉眼状態のβ波が有意に低下することを見出した。
 α波に関する指標値としては、脳内信号の時系列データを周波数解析して求めたパワースペクトルにおけるα波帯域(8Hz以上13Hz以下)のパワー値(以下、αと記す)が代表的である。また、α波に関する指標値は、αの対数値(以下の式1で示される値)、またはθ波帯域(3Hz以上8Hz以下)のパワー値(以下、θと記す)の対数値を用いて表現する、閉眼状態でのSlow‐wave Index(以下の式2で示される値)でもよい。
(式1)lnα
(式2)lnθ/lnα
 また、α波に関する指標値は、αをθとαとβ波帯域(13Hz以上25Hz以下)のパワー値(以下、βと記す)とをあわせたトータルパワー値で除した%α(以下の式3で示される値)、θをトータルパワー値で除した%θ(以下の式4で示される値)、または%θを用いた閉眼状態でのSlow‐wave Index(以下の式5で示される値)でもよい。
(式3)%α=α/(θ+α+β)
(式4)%θ=θ/(θ+α+β)
(式5)%θ/%α
 また、α波に関する指標値は、α波の最も特徴的な性質の一つである、開眼によって抑制されるα波ブロックを表現した値を用いてもよい。例えば、α波に関する指標値は、以下の式6に示すように、開眼状態におけるα(以下、α(開)と記す)と閉眼状態におけるα(以下、α(閉)と記す)との差としてのα‐blocking(閉眼-開眼)でもよいし、以下の式7に示すように、α(開)に対するα(閉)の比としてのα‐blocking(閉眼/開眼)でもよい。
(式6)α(閉)-α(開)
(式7)α(閉)/α(開)
 また、当該指標値は、θとθ波帯域の中心周波数(Center frequency)との乗算値、αとα波帯域の中心周波数との乗算値、及びβとβ波帯域の中心周波数との乗算値の総和をトータルパワー値で除した平均周波数(Mean power frequency)(以下の式8で示される値)でもよい。
(式8)(θ×5.5+α×10.5+β×19)/(θ+α+β)
 一方、β波に関する指標値としては、β波帯域(13Hz以上25Hz以下)のパワー値βが代表的である。その他、β波に関する指標値として、βの対数値(以下の式9で示される値)、開眼状態或いは閉眼状態のSlow‐wave Index(以下の式10で示される値)、開眼状態におけるSlow‐wave Index(以下の式11で示される値)、%β(以下の式12で示される値)、開眼状態或いは閉眼状態のSlow‐wave Index(以下の式13で示される値)などが挙げられる。
(式9)lnβ
(式10)lnθ/lnβ
(式11)(lnα+lnθ)/lnβ
(式12)%β=β/θ+α+β
(式13)%θ/%β
 なお、式3に示された%α、式4に示された%θ、式12に示された%β、また式8に示された平均周波数を求める方法として、これに限定するものではなく、例えば、δ波帯域(0Hz以上3Hz以下)のパワー値もトータルパワーに加えて求めてもよい。しかし、通常、δ波帯域は瞬きの影響が大きい帯域であることから、除外される場合も少なくはない。
 本発明者らが実施した生体疲労の非侵襲評価に関する可能性検証実験については、後に詳細に説明する。
 まず、上記で説明したαの対数値を指標値とする場合を例にとり、生体疲労評価装置600の動作について、以下に説明する。
 まず、識別部601は、ユーザが開眼状態にあるか閉眼状態にあるかを識別する識別情報を生成する。具体的には、識別部601は、カメラや眼電位などの情報を用い、ユーザが開眼状態か、または閉眼状態かを識別し、生体信号計測部401へ識別情報として出力する。この識別情報は、例えば、開眼状態であれば1、閉眼状態であれば0というような情報である。
 生体信号計測部401は、ユーザの脳内信号を生体信号として計測し、計測した生体信号に識別情報を付加する。具体的には、生体信号計測部401は、ユーザの脳内信号の中でも脳波を計測する。そして、生体信号計測部401は、識別部601から識別情報が入力されると、計測した脳波の時系列データに識別情報を付加して特徴量抽出部602へ出力する。
 特徴量抽出部602は、生体信号計測部401により計測された生体信号から得られる、β波およびα波のうち少なくともどちらか一方に関連する第三特徴量を抽出する。つまり、特徴量抽出部602は、識別部601によりユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値、およびα波帯域のパワー値のうち少なくともどちらか一方のパワー値を用いた第三特徴量を抽出する。
 例えば、特徴量抽出部602は、識別部601によりユーザが閉眼状態にあることを識別された時間区間におけるα波帯域のパワー値を用いた第三特徴量を抽出する。また、特徴量抽出部602は、識別部601によりユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値を用いた第三特徴量を抽出する。
 具体的には、特徴量抽出部602は、入力された脳波の時系列データに対して周波数解析を行い、α波に相当する周波数帯域(8Hz以上13Hz以下)、またはβ波(13Hz以上25Hz以下)に相当する周波数帯域、それぞれのパワー値(α、またはβ)を求める。これらは、周波数解析をするために必要となる最小時間区間(例えば30秒間など)におけるパワー値としてもよいし、最小時間区間における算出値をさらに時系列的に集めたある一定区間(例えば2分間など)におけるパワーの平均値としてもよい。そして、特徴量抽出部602は、それらを対数化したlnα、またはlnβを求める。
 また、特徴量抽出部602は、求めたlnα、またはlnβを、入力された識別情報と共に記憶部603に時系列的に記憶させる。なお、上述したようにα波、β波に関連する指標値としては様々考えられ、パワー値の対数値に限定するものではない。
 記憶部603は、特徴量抽出部602により抽出された第三特徴量を記憶するためのメモリである。具体的には、記憶部603は、特徴量抽出部602からlnα、またはlnβが出力される度に、時系列的にlnα、またはlnβを蓄積する。
 疲労質判定部606は、特徴量抽出部602により抽出された第三特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する。具体的には、疲労質判定部606は、特徴量抽出部602により抽出された第三特徴量のうちのいずれかの特徴量と、記憶部603に記憶されている第三特徴量のうちの少なくとも1つの特徴量とを比較して、疲労の質を判定する。
 具体的には、疲労質判定部606は、特徴量抽出部602から出力された識別情報が付与されているlnα、またはlnβと、記憶部603に記憶されている識別情報が付与されているlnα、またはlnβと、を比較して疲労の質を判定する。なお、疲労質判定部606は、lnαを用いる際は、識別情報として閉眼状態であるという情報が付与されたデータを用いることが望ましい。一方、疲労質判定部606は、lnβを用いる際は、開眼状態と閉眼状態のどちらの情報が付与されたデータを用いてもよい。
 例えば、疲労質判定部606は、特徴量抽出部602が、識別部601によりユーザが閉眼状態にあることを識別された時間区間におけるα波帯域のパワー値を用いた第三特徴量を抽出し、当該第三特徴量が時系列的に増加した場合に、困難な作業による疲労であると判定する。また、疲労質判定部606は、特徴量抽出部602が、識別部601によりユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値を用いた第三特徴量を抽出し、当該第三特徴量が時系列的に減少した場合に、単調な作業による疲労であると判定する。
 具体的には、疲労質判定部606は、特徴量抽出部602から閉眼状態におけるlnαが出力されると、記憶部603に記憶されている閉眼状態におけるlnαの中で、時系列的に1つ前の時点のlnαと、現時点の閉眼状態におけるlnαを比較する。これは、開眼状態、或いは閉眼状態のlnβを用いる際も同様である。なお、ここでは疲労質判定部606は、時系列的に1つ前の時点の特徴量と現時点の特徴量とを比較するとしているが、これに限定するものではなく、ある決まったタイミング(例えば起動直後など)に記憶された特徴量を基準値として、現時点の特徴量と比較してもよい。
 図7A~図9Bは、本実施の形態3における疲労質判定部606による疲労の質判定の一例を示すフローチャートである。
 まず、疲労質判定部606が、図7Aに示す動作を行う場合について説明する。疲労質判定部606は、特徴量抽出部602から閉眼状態におけるlnαが出力されると(ステップS71)、記憶部603に記憶されている閉眼状態におけるlnαの中で、時系列的に1つ前の時点の閉眼状態におけるlnαを呼び出す(ステップS72)。
 そして、疲労質判定部606は、これら2つの値である現時点の閉眼状態におけるlnαと1つ前の時点の閉眼状態におけるlnαとを比較する(ステップS73)。
 疲労質判定部606は、現時点の閉眼状態におけるlnαが1つ前の時点の閉眼状態におけるlnαよりも大きいと判断した場合には(ステップS73でYes)、困難な作業による疲労であると判定する(ステップS74)。
 また、疲労質判定部606は、現時点の閉眼状態におけるlnαが1つ前の時点の閉眼状態におけるlnαよりも大きくないと判断した場合(ステップS73でNo)、次に特徴量抽出部602からlnαが出力されるまで待機し、次のlnαの出力後、ステップS71からの動作をくり返す。
 また、疲労質判定部606は、図7Bに示す動作を行う構成であってもよい。この場合、疲労質判定部606は、特徴量抽出部602からα‐blocking(閉眼/開眼)が出力されると(ステップS75)、記憶部603に記憶されているα‐blocking(閉眼/開眼)の中で、時系列的に1つ前の時点のα‐blockingを呼び出す(ステップS76)。
 疲労質判定部606は、これら2つの値である現時点のα‐blockingと1つ前の時点のα‐blockingとを比較する(ステップS77)。
 疲労質判定部606は、現時点のα‐blockingが1つ前の時点のα‐blockingよりも大きいと判断した場合には(ステップS77でYes)、困難な作業による疲労であると判定する(ステップS78)。
 また、疲労質判定部606は、現時点のα‐blockingが1つ前の時点のα‐blockingよりも大きくないと判断した場合には(ステップS77でNo)、次に特徴量抽出部602からα‐blockingが出力されるまで待機し、次のα‐blockingの出力後ステップS81からの動作をくり返す。
 また、疲労質判定部606は、図8Aに示す動作を行う構成であってもよい。この場合、疲労質判定部606は、特徴量抽出部602から閉眼状態におけるlnαとlnθ/lnα(以下、α特徴量と記す)とが出力されると(ステップS81)、記憶部603に記憶されている閉眼状態におけるα特徴量の中で、時系列的に1つ前の時点の閉眼状態におけるα特徴量を呼び出す(ステップS82)。
 そして、疲労質判定部606は、これら2つの値である現時点の閉眼状態におけるlnαと1つ前の時点の閉眼状態におけるlnαとを比較する(ステップS83)。
 まず、疲労質判定部606は、現時点の閉眼状態におけるlnαが1つ前の時点の閉眼状態におけるlnαよりも大きいと判断した場合には(ステップS83でYes)、現時点の閉眼状態におけるlnθ/lnαと1つ前の時点の閉眼状態におけるlnθ/lnαとを比較する(ステップS84)。
 疲労質判定部606は、現時点の閉眼状態におけるlnθ/lnαが1つ前の時点の閉眼状態におけるlnθ/lnαよりも小さいと判断した場合には(ステップS84でYes)、困難な作業による疲労であると判定する(ステップS85)。
 疲労質判定部606は、現時点の閉眼状態におけるlnαが1つ前の時点の閉眼状態におけるlnαよりも大きくない場合(ステップS83でNo)、次に特徴量抽出部602からα特徴量が出力されるまで待機し、次のα特徴量の出力後、ステップS81からの動作をくり返す。
 また、疲労質判定部606は、現時点の閉眼状態におけるlnθ/lnαが1つ前の時点の閉眼状態におけるlnθ/lnαよりも小さくないと判断した場合(ステップS84でNo)も同様に、次のα特徴量の出力後ステップS81からの動作をくり返す。
 また、疲労質判定部606は、図8Bに示す動作を行う構成であってもよい。この場合、疲労質判定部606は、特徴量抽出部602から閉眼状態におけるlnαと平均周波数とが抽出されると(ステップS86)、記憶部603に記憶されている時系列的に1つ前の閉眼状態におけるlnαと平均周波数とを呼び出す(ステップS87)。
 疲労質判定部606は、これら2つの値である現時点の閉眼状態における平均周波数と1つ前の時点の閉眼状態における平均周波数とを比較する(ステップS88)。
 疲労質判定部606は、これら2つの値の平均周波数が含まれる周波数帯域(θ波帯域、α波帯域、β波帯域など)に変化がなければ(ステップS88でYes)、現時点の閉眼状態におけるlnαと1つ前の時点の閉眼状態におけるlnαとを比較する(ステップS83)。
 疲労質判定部606は、現時点のlnαが1つ前の時点のlnαより大きいと判断した場合(ステップS83でYes)、困難な作業による疲労であると判定する(ステップS89)。
 疲労質判定部606は、ステップS88で平均周波数が含まれる周波数帯域に変化があると判断した場合(ステップS88でNo)、及びステップS83で現時点のlnαが1つ前の時点のlnαよりも大きくないと判断した場合(ステップS83でNo)、次の特徴量が出力されるまで待機し、出力後、ステップS86からの動作をくり返す。
 つづいて、疲労質判定部606が、図9Aに示す動作を行う場合について説明する。この場合、疲労質判定部606は、特徴量抽出部602から開眼状態におけるlnβが出力されると(ステップS91)、記憶部603に記憶されている開眼状態におけるlnβの中で、時系列的に1つ前の時点の開眼状態におけるlnβを呼び出す(ステップS92)。
 そして、疲労質判定部606は、これら2つの値である現時点の開眼状態におけるlnβと1つ前の時点の開眼状態におけるlnβとを比較する(ステップS93)。
 疲労質判定部606は、現時点の開眼状態におけるlnβが1つ前の時点の開眼状態におけるlnβよりも小さいと判断した場合には(ステップS93でYes)、単調な作業による疲労であると判定する(ステップS94)。
 疲労質判定部606は、現時点の開眼状態におけるlnβが1つ前の時点の開眼状態のlnβよりも小さくないと判断した場合(ステップS93でNo)、次に特徴量抽出部602からlnβが出力されるまで待機し、次のlnβの出力後、ステップS91からの動作をくり返す。
 なお、特徴量抽出部602において、閉眼状態におけるlnβを抽出し、疲労質判定部606において同様の処理を行ってもよい。この場合もステップS93の処理と同様に、疲労質判定部606は、現時点のlnβが1つ前の時点のlnβより小さいか否かに基づいて、単調な作業による疲労か否かを判定する。
 また、疲労質判定部606は、図9Bに示す動作を行う構成であってもよい。この場合、疲労質判定部606は、特徴量抽出部602から開眼状態におけるlnβとlnθ/lnβ(以下、β特徴量と記す)が出力されると(ステップS95)、記憶部603に記憶されている開眼状態におけるβ特徴量の中で、時系列的に1つ前の時点の開眼状態におけるβ特徴量を呼び出す(ステップS96)。
 そして、疲労質判定部606は、これら2つの値である現時点の開眼状態におけるlnβと1つ前の時点の開眼状態におけるlnβとを比較する(ステップS93)。
 まず、疲労質判定部606は、現時点の開眼状態におけるlnβが1つ前の時点の開眼状態におけるlnβよりも小さいと判断した場合には(ステップS93でYes)、現時点の開眼状態におけるlnθ/lnβと1つ前の時点の開眼状態におけるlnθ/lnβとを比較する(ステップS97)。
 疲労質判定部606は、現時点の開眼状態におけるlnθ/lnβが1つ前の時点の開眼状態におけるlnθ/lnβよりも大きいと判断した場合(ステップS97でYes)、単調な作業による疲労であると判定する(ステップS98)。
 疲労質判定部606は、現時点の開眼状態におけるlnβが1つ前の時点の開眼状態のlnβよりも小さくないと判断した場合(ステップS93でNo)、次に特徴量抽出部602からβ特徴量が出力されるまで待機し、次のβ特徴量の出力後、ステップS95からの動作をくり返す。
 また、疲労質判定部606は、現時点の開眼状態におけるlnθ/lnβが1つ前の時点の開眼状態のlnθ/lnβよりも大きくないと判断した場合(ステップS97でNo)も同様に、次のβ特徴量の出力後ステップS95からの動作をくり返す。
 なお、特徴量抽出部602において、閉眼状態におけるβ特徴量を抽出し、疲労質判定部606において同様の処理を行ってもよい。この場合もステップS93、ステップS97の処理と同様に、疲労質判定部606は、現時点のlnβが1つ前の時点のlnβより小さいか否か、及び現時点のlnθ/lnβが1つ前の時点のlnθ/lnβより大きいか否か、に基づいて、単調な作業による疲労か否かを判定する。
 以上では、困難な作業による疲労と判定する場合と単調な作業による疲労と判定する場合とで分けて説明したが、もちろん両者を組み合わせれば、脳内信号から、困難な作業による疲労か単調な作業による疲労かという疲労の質を判定できる。
 以上のように、生体疲労評価装置600は、脳内信号からβ波、α波のうち少なくともいずれか一方に関連する特徴量に基づいて、困難な作業による疲労か、単調な作業による疲労かの疲労の質を判定することができる。判定した疲労の質に基づいて、例えば、ユーザに与える処方(休息、睡眠、薬など)を切り替えて、ユーザにより適した回復支援を図ることが可能となる。また、生体疲労評価装置600は、頭部にセンサーを接触させることで計測する脳内信号から疲労の質を判定することができるため、例えば、帽子やヘッドセットマイクなどを装着する職業の人々の労務管理に応用することもできる。
 また、本構成によって、脳内信号におけるβ波帯域のパワー値、α波帯域のパワー値のうち少なくともどちらか一方のパワー値を、ユーザの開眼状態における値か閉眼状態における値かを区別して用いるため、より疲労評価の評価精度を向上することが可能となる。
 また、本構成によって、ユーザが閉眼状態にあることを識別された時間区間におけるα波帯域のパワー値からユーザの疲労が困難な作業による疲労かを判定するため、より疲労評価の評価精度を向上することが可能となる。また、疲労の質判定により困難な作業による疲労に対して、ユーザに適した回復支援を図ることが可能となる。
 また、本構成によって、ユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値からユーザの疲労が単調な作業による疲労かを判定するため、疲労評価の評価精度を向上することが可能となる。また、疲労の質判定により単調な作業による疲労に対して、ユーザに適した回復支援を図ることが可能となる。
 また、本構成によって、疲労の質に応じてユーザに刺激を与えることで、疲労の質の判定結果をユーザへ提示したり、ユーザに適した回復支援を行うことができる。
 なお、生体疲労評価装置600が、機器制御部405を備えない場合は、外部の構成により外部機器を制御してもよい。
 (実施の形態4)
 図10は、本発明の実施の形態4における生体疲労評価装置1000の構成を示すブロック図である。図10において、図4と同じ構成要素については同じ符号を用い、説明を省略する。
 同図に示すように、生体疲労評価装置1000は、生体信号計測部401、特徴量抽出部1002、記憶部1003、疲労質判定部1006を備え、さらにユーザに対して聴覚刺激を出力する刺激出力部1001を備えている。また、生体疲労評価装置1000は、機器制御部405をさらに備える構成でもよい。
 今回、本発明者らは、生体疲労の非侵襲評価に関する可能性検証実験を通じ、トーンバースト刺激(1000Hzで90dB)による聴覚刺激に対する、加速度脈波波形における特徴量の変化が、疲労の質により異なることを見出した。
 具体的には、聴覚刺激に対して加速度脈波波形に関連する特徴量は精神疲労負荷前も単調な作業による疲労負荷後も有意に変化するが、困難な作業による疲労負荷後には、有意に変化しないことを見出した。すなわち、困難な作業による疲労の際には、聴覚刺激に対する脈波の反応が鈍化するといえる。
 ここでいう加速度脈波波形に関連する特徴量は、実施の形態1で挙げたc波またはd波の情報を含む、複数の加速度脈波波形成分の情報を用いた特徴量を用いればよい。本発明者らが実施した、生体疲労の非侵襲評価に関する可能性検証実験については、後に詳細に説明する。
 ここでは、生体信号計測部401が脈波を計測し、特徴量抽出部1002がc波とa波の波高比であるc/a値を抽出する場合を例にとり、以下に説明する。
 刺激出力部1001は、ユーザに対して聴覚を刺激する聴覚刺激を出力する。具体的には、刺激出力部1001は、聴覚刺激をユーザに対して出力し、聴覚刺激を出力したことを示す刺激情報を生体信号計測部401へ出力する。
 ここで、ユーザに対して出力する聴覚刺激は、医学分野の臨床実験でよく用いられる1000Hzで90dBの音刺激を数分間与えるような刺激とするとよい。なお、この刺激情報は、例えば、聴覚刺激を出力している場合には1、出力していない場合には0というような情報である。
 生体信号計測部401は、ユーザの脈波信号を計測するとともに、刺激出力部1001から刺激情報が入力されると、計測した脈波信号の時系列データに刺激情報を付加して特徴量抽出部1002へ出力する。
 特徴量抽出部1002は、生体信号計測部401により計測された脈波信号の収縮期後方成分から得られる第一特徴量を抽出する。つまり、特徴量抽出部1002は、脈波信号から加速度脈波を算出し、加速度脈波のa波の波高値に対するc波の波高値の比を第一特徴量として抽出する。
 具体的には、まず、特徴量抽出部1002は、生体信号計測部401により計測された脈波信号を2階微分して加速度脈波波形へ変換する。加速度脈波波形成分の中でも特に容積脈波の収縮期後方成分に相当するc波と、収縮期前方成分に相当するa波の比であるc/a値を求め、c/a値を刺激情報と共に記憶部1003に出力する。
 記憶部1003は、特徴量抽出部1002により抽出された第一特徴量を時系列的に記憶する。なお、特徴量抽出部1002においてc/a値を抽出する際は、脈波信号1拍分ごとの値をそのまま出力してもよいし、予め定められた時間区間(例えば10秒など)における平均値を出力してもよい。
 疲労質判定部1006は、特徴量抽出部1002により抽出された第一特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する。
 具体的には、疲労質判定部1006は、記憶部1003に記憶されている刺激出力部1001により聴覚刺激が出力される前の時間区間における第一特徴量と、刺激出力部1001により聴覚刺激が出力された時の時間区間における第一特徴量とを比較して、疲労の質を判定する。
 つまり、疲労質判定部1006は、記憶部1003に記憶されている刺激出力部1001により聴覚刺激が出力される前の時間区間における第一特徴量に対し、刺激出力部により聴覚刺激が出力された時の時間区間における第一特徴量が増加した場合に、単調な作業による疲労であると判定し、増加していない場合に、困難な作業による疲労であると判定する。
 さらに具体的には、疲労質判定部1006は、刺激情報が付与されていないc/a値と刺激情報が付与されているc/a値とを比較して、疲労の質を判定する。したがって、疲労質判定部1006は、特徴量抽出部1002から新しく刺激情報が付与されているc/a値が出力されると、記憶部1003に記憶されているc/a値の中で、時系列的に1つ前の時点の刺激情報が付与されていないc/a値を呼び出し、現時点の刺激情報が付与されているc/a値と比較する。
 もちろん、疲労質判定部1006による疲労の質の判定は、これに限定されるものではなく、ある決まったタイミング(例えば起動直後など)に記憶された刺激情報が付与されていないc/a値を基準値として、現時点の刺激情報が付与されているc/a値と比較してもよい。
 図11は、本実施の形態4における疲労質判定部1006による疲労の質判定の一例を示すフローチャートである。
 同図に示すように、疲労質判定部1006は、特徴量抽出部1002から刺激情報が付与されているc/a値が出力されると(ステップS111)、記憶部1003に記憶されているc/a値の中で、時系列的に1つ前の時点の刺激情報が付与されていないc/a値を呼び出す(ステップS112)。
 疲労質判定部1006は、これら2つの値である現時点の刺激情報が付与されているc/a値と1つ前の時点の刺激情報が付与されていないc/a値とを比較する(ステップS113)。
 疲労質判定部1006は、現時点の刺激情報が付与されているc/a値が1つ前の時点の刺激情報が付与されていないc/a値よりも大きいと判断した場合(ステップS113でYes)、単調な作業による疲労であると判定する(ステップS114)。
 また、疲労質判定部1006は、現時点の刺激情報が付与されているc/a値が1つ前の時点の刺激情報が付与されていないc/a値よりも大きくないと判断した場合(ステップS113でNo)、困難な作業による疲労であると判定する(ステップS115)。
 以上のように、生体疲労評価装置1000は、聴覚刺激に対する加速度脈波波形に関連する特徴量の変化から、ユーザの疲労が困難な作業による疲労か単調な作業による疲労かという疲労の質を判定する。このような構成により、ユーザの疲労の質を判定することができ、それにより与える処方(休息、睡眠、薬など)を切り替えて、ユーザにより適した回復支援を図ることが可能となる。また、生体疲労評価装置1000は、場面によらず、計測が容易な脈波と特別な装置が不要な聴覚刺激を用いて疲労の質を判定するため、優れた汎用性を有する。例えば、運転中にドライバが触れる箇所から脈波を計測し、カーナビが出力する音刺激に対する、脈波信号の変化を用いて疲労の質を判定することもでき、運転モニタリング装置としても応用することができる。
 (実施の形態5)
 図12は、本発明の実施の形態5における生体疲労評価装置1200の構成を示すブロック図である。図12において、図4と同じ構成要素については同じ符号を用い、説明を省略する。
 同図に示すように、生体疲労評価装置1200は、生体信号計測部401、特徴量抽出部1202、記憶部1203、疲労質判定部1206を備え、ユーザにおける疲労の有無を判断する疲労判断部1204をさらに備える。また生体疲労評価装置1200は、機器制御部405をさらに備える構成でもよい。
 ここでは、生体信号計測部401で脈波信号を計測する場合を例にとり、生体疲労評価装置1200の動作について、以下に説明する。
 特徴量抽出部1202は、生体信号計測部401により脈波信号が計測されると、実施の形態1と同様にしてc/a値と、実施の形態2と同様にしてHFのパワー値とを抽出する。ここで、特徴量抽出部1202は、c/a値について、脈波信号1拍分ごとの値をそのまま出力してもよいし、HFのパワー値の最小時間区間(例えば30秒間など)と同じ時間区間における平均値を出力してもよい。
 記憶部1203は、特徴量抽出部1202により抽出されたc/a値とHFのパワー値とを時系列的に蓄積する。
 疲労判断部1204は、実施の形態1と同様にして、疲労の有無を判断する。
 疲労質判定部1206は、疲労判断部1204が疲労していると判断した場合に、実施の形態2と同様にして、困難な作業による疲労か単調な作業による疲労かのユーザの疲労の質を判定する。
 図13は、本実施の形態5における生体疲労評価装置1200の動作の一例を示すフローチャートである。
 具体的には、同図は、生体疲労評価装置1200を自動車の運転時に適用した場合の処理を示すフローチャートである。ここで、生体信号計測部401の形態は、ステアリング部へ搭載した生体センサーでもよいし、ドライバの指や耳など適切な部位へ装着するウェアラブル生体センサーでもよい。
 同図に示すように、生体信号計測部401により脈波が計測されると(ステップS1301)、特徴量抽出部1202によりc/a値とHFのパワー値とが抽出され出力される(ステップS1302)。
 疲労判断部1204は、特徴量抽出部1202からc/a値が出力されると、記憶部1203に記憶されているc/a値の中で、時系列的に1つ前の時点のc/a値を呼び出す(ステップS1303)。
 そして、疲労判断部1204は、これら2つの値である現時点のc/a値と1つ前の時点のc/a値とを比較する(ステップS1304)。
 疲労判断部1204は、現時点のc/a値が1つ前の時点のc/a値よりも大きいと判断した場合(ステップS1304でYes)、疲労していると判断し、疲労している判断が下されたことを示す信号を疲労質判定部1206へ出力する(ステップS1305)。ここで、出力する疲労判断の信号は、例えば、疲労している場合には1、そうでない場合は0などとすればよい。
 また、疲労判断部1204は、現時点のc/a値が1つ前の時点のc/a値よりも大きくないと判断した場合(ステップS1304でNo)、次に特徴量抽出部1202からc/a値とHFのパワー値とが出力されるまで待機し、次のc/a値及びHFのパワー値の出力後、ステップS1302からの動作をくり返す。
 次に、疲労質判定部1206は、疲労判断部1204から疲労している判断が下されたことを示す信号を受信すると、記憶部1203に記憶されているHFのパワー値の中で、時系列的に1つ前の時点のHFのパワー値を呼び出す(ステップS1306)。
 そして、疲労質判定部1206は、これら2つの値である現時点のHFのパワー値と1つ前の時点のHFのパワー値とを比較する(ステップS1307)。
 疲労質判定部1206は、現時点のHFのパワー値が1つ前の時点のHFのパワー値よりも小さいと判断した場合(ステップS1307でYes)、困難な作業による疲労であると判定する(ステップS1308)。
 一方、疲労質判定部1206は、現時点のHFのパワー値が1つ前の時点のHFのパワー値よりも小さくないと判断した場合(ステップS1307でNo)、単調な作業による疲労であると判定する(ステップS1309)。
 次に、機器制御部405は、疲労質判定部1206から困難な作業による疲労という判定結果が出力された場合、カーナビの設定ルートの難易度を下げたり、安全な場所での停車を誘導して休息を促したりなどのアシスト機能を実行させる(ステップS1310)。
 一方、機器制御部405は、疲労質判定部1206から単調な作業による疲労という判定結果が出力された場合、カーナビの設定のルートを単調さの少ないルートへ切り替えたり、リフレッシュ効果のある香りや温熱、気流刺激を出力したり、音楽のビートやテンポを速めたりなどのアシスト機能を実行させる(ステップS1311)。
 ここでは、疲労判断部1204が脈波に関連する特徴量に基づいて疲労の有無を判断し、疲労質判定部1206が副交感神経活動量に関連する特徴量に基づいて疲労の質を判定したが、これに限定されるものではない。疲労判断部1204がさらに脳波に関連する特徴量を用いて疲労の有無を判断してもよいし、疲労質判定部1206が実施の形態3または実施の形態4と同様にして疲労の質を判定してもよい。
 以上のように、生体疲労評価装置1200は、脈波に関連する特徴量と自律神経活動の1つである副交感神経活動量に関連する特徴量に基づいて、疲労の有無の判断及び困難な作業による疲労か、単調な作業による疲労かの疲労の質を判定する。このような構成により、疲労以外の要因による影響を緩和し、疲労の有無の判断精度及び疲労の質の判定精度を向上させることができる。また、疲労の質の判定結果により、ユーザに与える処方を切り替えて、ユーザにより適した回復支援を図ることが可能となる。
 (その他の変形例)
 なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されず、以下のような場合も本発明に含まれる。
 (1)上記の各装置の全部、もしくは一部を、マイクロプロセッサ、ROM、RAM、ハードディスクユニットなどから構成されるコンピュータシステムで構成した場合、前記RAMまたはハードディスクユニットには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、各装置はその機能を達成する。
 (2)上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。前記RAMには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。
 (3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。前記ICカードまたは前記モジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。前記ICカードまたは前記モジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、前記ICカードまたは前記モジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしてもよい。
 (4)本発明は、上記に示すコンピュータの処理で実現する方法であるとしてもよい。また、本発明は、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、前記コンピュータプログラムからなるデジタル信号であるとしてもよい。
 また、本発明は、前記コンピュータプログラムまたは前記デジタル信号をコンピュータ読み取り可能な記録媒体に記録したものとしてもよい。コンピュータ読み取り可能な記録媒体は例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどである。また、本発明は、これらの記録媒体に記録されている前記デジタル信号であるとしてもよい。
 また、本発明は、前記コンピュータプログラムまたは前記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。
 また本発明は、マイクロプロセッサとメモリとを備えたコンピュータシステムであって、前記メモリは、上記コンピュータプログラムを記憶しており、前記マイクロプロセッサは、前記コンピュータプログラムにしたがって動作するとしてもよい。
 また前記プログラムまたは前記デジタル信号を前記記録媒体に記録して移送することにより、または前記プログラムまたは前記デジタル信号を、前記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。
 (5)上記実施の形態及び上記変形例をそれぞれ任意に組み合わせた構成としてもよい。
 上記実施の形態1から5はいずれも、本発明者らが非侵襲的な生体疲労評価可能性検証を目的とした被験者実験を通じて、ヒトが疲労に陥った状態(疲労している状態)、及び疲労中に、困難な作業による疲労と単調な作業による疲労とで、心電図や加速度脈波や脳波、脳磁図の変化に異なる相関性があることを見出したことに基づくものである。
 以下に、本被験者実験をより詳細に説明するが、本被験者実験はこれらに限定されるものではない。
 <精神疲労負荷の妥当性検証>
 (1)試験デザイン
 本発明者らは、健常成人20名(男性、年齢32.0±10.2歳(平均±標準偏差))を被験者として、パーソナルコンピュータ(PC)を用いた2種類のN‐backテストを30分間実施することで精神疲労負荷を与え、その前後にAdvanced Trail Making Test(ATMT)によるパフォーマンス評価(課題遂行時の総トライアル数及びエラー数の測定)をそれぞれ30分間実施した。
 また、ATMT実施前後には主観検査を実施し、その内容としては、Visual Analog Scale(VAS)により全体的疲労感、精神的疲労感、身体的疲労感、ストレス、意欲、眠気、難しさ、単調さ、退屈さを測定し、Karolinska Sleepness Scale(KSS)により眠気を測定した。2種類の試験はクロスオーバーで実施し、試験を行う順序による影響を除外した。
 (2)精神疲労負荷方法
 N‐backテストの中でも、0‐backテストと2‐backテストを採用した。0‐backテストは、ワーキングメモリを使用せず、指定された数字や文字或いは記号が表示されたかどうかを被験者に判断させるテストであり、単調作業を強いるものである。
 本発明者らはこれを30分間連続して実施することにより、被験者に対して単調な作業による疲労を引き起こすことを想定した。具体的な作業としては、PCの画面に指定した数字や文字或いは記号が表示された場合はPCマウスの右クリックを、そうでない場合はPCマウスの左クリックを実行してもらう、というものである。
 一方、2‐backテストは、ワーキングメモリを使用し、現在表示されている数字や文字或いは記号が、2つ前に表示された数字や文字或いは記号と同一かどうかを被験者に判断させるテストであり、困難作業を強いるものである。
 本発明者らはこれを30分間連続して実施することにより、被験者に対して困難な作業による疲労を引き起こすことを想定した。具体的な作業としては、PCの画面に表示された数字や文字或いは記号が、2つ前に表示された数字や文字或いは記号と同一である場合はPCマウスの右クリックを、そうでない場合はPCマウスの左クリックを実行してもらう、というものである。数字や文字或いは記号の表示時間は0.5secとし、数字や文字或いは記号の表示を消滅させてから次の表示までの表示タイミングは2.5sec間隔とした。
 (3)結果
 図14は、精神疲労負荷前後のATMTの成績変化を示す図である。
 30分間のN‐backテスト遂行にて疲労が誘発されるかどうかを判断するために、精神疲労負荷前後のATMTの成績を見てみると、0‐backテスト実施群及び2‐backテスト実施群ともにエラー数において有意な増加が認められた。なお、30分間のリラックス課題においては、課題前後のATMTのエラー数の変化が認められないことは、従前、確認されている。
 ここで、同図に示す「P<0.05」は、同図中の*マークのグラフにおいて、統計学的に5%の有意水準を満たしてエラー数が増加したことを示している。なお、以下の図においても同様であるため、各図において詳細な説明は省略する。
 図15Aは、精神疲労負荷前後における主観申告スコアを示す図である。
 精神疲労負荷前後の全体的疲労感及び精神的疲労感VASスコアの成績を見てみると、0‐backテスト実施群及び2‐backテスト実施群とも有意な増加が認められた。したがって、精神的パフォーマンスの低下及び疲労感の増加が、30分間のN‐backテスト遂行にて示され、本試験(30分間のN‐backテスト)は疲労試験として適切であると判定した。
 また、図15Bは、試験終了時に記録したN‐backテスト遂行時の主観申告スコアを示す図である。
 試験終了時に記録したN‐backテスト遂行時の主観検査では、2‐backテスト実施群は0‐backテスト実施群に比べて精神的疲労感及び難しさVASスコアが有意に高値を示した。一方、0‐backテスト実施群は2‐backテスト実施群に比べて、単調さ及び退屈さVAS及び眠気KSSスコアが有意に高値を示した。
 このことは、30分間の0‐backテストが、「単調で、退屈な、負荷の小さい課題」であり、30分間の2‐backテストが、「困難で、負荷の大きい課題」であることを示している。
 以上により、30分間の0‐backテストが、「単調で、負荷の小さい作業による疲労を引き起こす課題」として適切であると考えられた。また、30分間の2‐backテストが、「困難で、負荷の大きい作業による疲労を引き起こす課題」として適切であると考えられた。
 <非侵襲的疲労評価可能性検証>
 (1)試験デザイン
 本発明者らは、健常成人10名(男性、年齢30.8±9.4歳(平均±標準偏差))を被験者として、実施例1で「単調で、負荷の小さい作業による疲労を引き起こす課題」として適切だと証明された0‐backテストと、「困難で、負荷の大きい作業による疲労を引き起こす課題」として適切だと証明された2‐backテストとを、精神疲労を引き起こす課題としてそれぞれ30分間実施した。
 試験の具体的な流れとしては、課題実施前検査として、安静時検査、視覚刺激検査、聴覚刺激検査を行った。最初に安静時検査として、開眼状態で2分間安静にしてもらい、つづいて閉眼状態で1分間安静にしてもらった。次に視覚刺激検査として、赤色発光ダイオードの点滅による左半視野に対する光刺激を負荷した。刺激は1分ずつ2回試行し、1回目は1Hz、2回目は16Hzの点滅刺激を用いた。
 その次に聴覚刺激検査として、トーンバースト刺激(1000Hz、90dB)を用いて約4分ずつ1回目は右耳へ、2回目は左耳へ刺激を負荷した。聴覚刺激検査終了の後、0‐backテスト及び2‐backテストを30分間実施した。
 N‐backテスト実施後は、課題実施後検査を行った。課題実施後検査は課題実施前検査と同様であるが、安静時検査、聴覚刺激検査、視覚刺激検査の順に実施した。そして、課題実施前の安静時検査から課題実施後の視覚刺激検査までの間、連続で加速度脈波(APG)、心電図(ECG)、脳波(EEG)、脳磁図(MEG)を計測した。
 また、課題実施前後には主観検査を実施し、Visual Analog Scale(VAS)により全体的疲労感、精神的疲労感、身体的疲労感、ストレス、意欲、眠気、難しさ、単調さ、退屈さを測定し、Karolinska Sleepness Scale(KSS)により眠気を測定した。
 さらに、被験者における慢性的な疲労具合も調査するため、2種類の試験の実施日のうち初日のみ、試験開始前にChalder’s fatigue scaleにより疲労の強さを測定した。また、2種類の試験はクロスオーバーで実施し、試験を行う順序による影響を除外した。
 (2)観察項目
 APG検査:測定には指尖用フィンガープローブ(日本光電工業株式会社製)と独自開発した加速度脈波計測プログラムを用いた。これにより、指尖容積脈波を2階微分した加速度脈波を測定してa波、b波、c波、d波、e波それぞれの波高値を測定し、精神疲労負荷であるN‐backテストに伴う加速度脈波波形の波高値やそれらを用いた特徴量の変化を解析した。また、脈拍間のa波の間隔であるaa間隔変動の時系列データから最大エントロピー法により周波数解析を実施してLow Frequency component(LF)やHigh Frequency component(HF)を算出し、精神疲労負荷であるN‐backテストに伴う自律神経活動指標の変化を解析した。さらにN‐backテスト実施前と実施後に聴覚刺激を与えた際の加速度脈波波形の反応の違いを解析した。
 ECG検査:測定にはアクティブトレーサー(アームエレクトロニクス株式会社製)を用いた。これにより、心拍変動を測定し、最大エントロピー法による周波数解析を実施してLFやHFを算出し、精神疲労負荷であるN‐backテストに伴う自律神経活動指標の変化を解析した。
 EEG検査:測定にはNEUROFAX EEG 1518(日本光電工業株式会社製)を用いた。これにより、脳波の時系列データを取得し、高速フーリエ変換法(FFT)による周波数解析を実施した。解析対象部位は、Kaidaらの研究報告(非特許文献:Kaida K et al., Validation of Karolinska sleepiness scale against performance and EEG variables. Clinical Neurophysiology. 117: 1574-1581, 2006.)を参考として、国際10‐20法におけるF3、C3、O1とした。解析周波数帯域はθ波帯域(3Hz以上8Hz以下)、α波帯域(8Hz以上13Hz以下)、β波帯域(13Hz以上25Hz以下)とし、これらのパワー値の算術和をトータルパワー値とした。なお、δ波帯域(0Hz以上3Hz以下)は開眼状態での瞬目の影響を考慮し、解析から除外した。
 MEG検査:測定には160チャネルヘルメット型脳磁図計(MEG vision)(横河電機株式会社製)を用いた。これにより、N‐backテスト実施前後における開眼安静時及び閉眼安静時に自発磁場活動を測定し、これに対してFFTによる周波数解析を実施した。FFTによる自発脳活動の周波数解析対象は全160チャネルとし、各周波数の範囲はEEGと同様に定義した。
 なお、2群間の比較についてはPaired t‐testを実施した。2群間の相関についてはPearsonの相関分析を実施した。P値は0.05未満を統計学的有意と判定した。
 (3)結果
 N‐backテスト実施後の主観データでは、0‐backテスト実施群は2‐backテスト実施群に比べて、眠気、単調、退屈VASスコアが有意に高値を示した。一方では、2‐backテスト実施群は0‐backテスト実施群に比べて、ストレス及び難しさのVASスコアが有意に高値を示す傾向にあった。これらの結果は、実施例1の結果とほぼ同じ傾向であり、本試験の信頼性・妥当性を保証するものと考えられた。
 図16Aは、精神疲労負荷(0‐back)前後におけるAPG波形の波高値の変化を表す図である。図16Bは、精神疲労負荷(2‐back)前後におけるAPG波形の波高値の変化を表す図である。
 これらの図に示すように、APGの波形解析において、特許文献1が示すような先の研究でも報告があるように、0‐backテスト実施群及び2‐backテスト実施群ともに、N‐backテストによりa波、e波の有意な低下及びb波の有意な上昇が認められた。しかし、c波またはd波については、精神疲労負荷の影響が見られなかった。
 つまり、c波またはd波は、疲労以外の要因による影響で変化する成分波である。このため、指標値にc波またはd波を用いることで、疲労以外の要因による影響を相殺することができる。
 今回見出したこの現象は、単調な作業による疲労や困難な作業による疲労を問わず、疲労共通の特徴であると考えられた。そこで、c波またはd波を用いたc/a、c/b、c/e、a-c及びc-a、さらに|d-c|/aのような指標値を算出して精神疲労負荷に対する変化を分析した。
 図17は、精神疲労負荷前後におけるAPGに基づく指標値(c/a、c/b、c/e)の変化を表す図である。また、図18は、精神疲労負荷前後におけるAPGに基づく指標値(a-c、c-a、|d-c|/a)の変化を表す図である。
 これらの図に示すように、精神疲労負荷に対する変化を分析したところ、N‐backテストにより、c/a、c/e、c-a、|d-c|/aが有意に増加し、c/b、a-cが有意に減少することがわかった。例えば、図17に示すc/a値は、0‐backテスト実施群の場合、疲労前後で0.043から0.091へと有意に増加し、2‐backテスト実施群の場合、疲労前後で0.048から0.085へと有意に増加した。
 これらの精神疲労負荷の影響が見られないc波またはd波を用いた指標値は、波高値をそのまま用いる場合に比べて、疲労以外の要因による影響を相殺することが可能になり、疲労評価においてはより有効な指標と考えられた。
 図19は、精神疲労負荷前後における聴覚刺激に対するc/a値の変化を表す図である。
 聴覚刺激に対するAPG波形の反応解析については、今回本発明者らが解析を行った結果、0‐backテスト実施群では、0‐backテスト実施前も実施後も、c/aが聴覚刺激前と聴覚刺激中で有意な変化を示すことがわかった。一方、2‐backテスト実施群では、2‐backテスト実施前は聴覚刺激前と聴覚刺激中で有意な変化を示すが、2‐backテスト実施後は聴覚刺激前と聴覚刺激中で有意な変化を示さない(2‐backテスト実施後のグラフに「**」マークが表示されていない)ことがわかった。
 つまり、2‐backテスト実施後は、聴覚刺激前と聴覚刺激中で1%の有意水準を満たさなかったことを示しており、具体的には、聴覚刺激前よりも聴覚刺激中の方が高い値を示したのは、99%未満の確率であったことを示している。これにより、単調な作業による疲労と困難な作業による疲労とで聴覚刺激に対するc/aの挙動が異なると考えられた。これは、c/a以外の、c/b、c/e、a-c及びc-a、さらに|d-c|/aのような指標値でも同様の結果となった。
 図20は、精神疲労負荷前後におけるlnHFの変化を表す図である。
 APGまたはECGの周波数解析において、0‐backテスト実施群では、0‐backテスト実施前後でHFを対数化したlnHFは有意に変化しないが、2‐backテスト実施群では、2‐backテスト実施によりlnHFが有意に低下した。つまり、同図に示すlnHFは、0‐backテスト実施群の場合、疲労前後で6.20から6.01へと減少し(有意差なし)、2‐backテスト実施群の場合、疲労前後で6.67から6.25へと有意に減少した。
 lnHFは副交感神経系活動の指標であると考えてられており、今回の結果から、単調な作業による疲労では、副交感神経系活動の変化を伴わず、困難な作業による疲労では、副交感神経系活動の低下が特徴であると考えられた。
 図21は、精神疲労負荷前後におけるlnβ、lnθ及びlnθ/lnβの変化を表す図である。
 EEGの周波数解析において、開眼安静時では、0‐backテスト実施群では、0‐backテスト実施によりβ波のパワー値を対数化したlnβが有意に減少し、Slow‐wave Indexであるlnθ/lnβが有意に増加した。2‐backテスト実施群では、2‐backテスト実施によりlnθ及びlnθ/lnβが有意に減少した。
 図22は、精神疲労負荷前後におけるlnβ、lnα及びlnθ/lnαの変化を表す図である。
 閉眼安静時では、0‐backテスト実施群では、0‐backテスト実施によりO1部のlnβが有意に減少した。2‐backテスト実施群では、2‐backテスト実施によりlnαが有意に増加し、閉眼時のSlow‐wave Indexであるlnθ/lnαが有意に減少した。
 これにより、単調な作業による疲労は、徐波化を促進し、覚醒度の低下を誘発したと考えられ、一方、困難な作業による疲労は、速波化を促進し、覚醒度の持続或いは亢進を誘発したと考えられた。
 図23Aは、精神疲労負荷前後における%θの変化を表す図であり、図23Bは、精神疲労負荷前後における%αの変化を表す図である。また、図24は、精神疲労負荷前後におけるα‐blockingの変化を表す図である。
 図23Aに示すように、MEGの周波数解析においても、開眼安静時、0‐backテスト実施群において、0‐backテスト実施によりθ波とα波とβ波のトータルパワー値に対するθ波のパワー値の比率(%θ)が、有意に増加した。なお、θ波のパワー値でも同様の結果となり、EEGによる徐波化と一致した結果となった。
 また、図23Bに示すように、閉眼安静時、2‐backテスト実施群では、2‐backテスト実施によりθ波とα波とβ波のトータルパワー値に対するα波のパワー値の比率(%α)が、有意に増加した。なお、α波のパワー値及びlnαでも同様の結果となった。
 さらに、図24に示すように、2‐backテスト実施群では、開眼安静時のα波のパワー値と閉眼安静時のα波のパワー値の差としてのα‐blocking(閉眼-開眼)、開眼安静時のα波のパワー値と閉眼安静時のα波のパワー値の比としてのα‐blocking(閉眼/開眼)が、ともに有意に増加した。また、EEGでも同様の傾向が見られた。
 この際、MEGやEEGのパワースペクトルにおける平均周波数を、θとθ波帯域の中心周波数(5.5Hz)の乗算値、αとα波帯域の中心周波数(10.5Hz)の乗算値、βとβ波帯域の中心周波数(19Hz)の乗算値の総和をトータルパワー値で除した式により求めたところ、平均周波数は2‐backテスト実施前後で変化していないことを確認した。これにより、困難な作業による疲労は、単に速波化を促進するだけではなく、脳の基礎律動の1つであるα波を増強(標準値に戻ると言うよりもさらに増強)する側面があると考えられた。
 以上の結果から、APG波形のc波またはd波が精神疲労負荷の影響を受けにくいことを見出した。これにより、c波またはd波を用いた指標値を用いることで、従来よりも疲労評価の評価精度を向上することができることを見出した。さらに、APGまたはECGの周波数解析により算出した副交感神経活動指標、EEGまたはMEGの周波数解析により算出したα波のパワー値とβ波のパワー値が、「単調で、負荷の小さい作業により生じる疲労」と「困難で、負荷の大きい作業により生じる疲労」とで異なる挙動をすることを見出した。APGまたはECGの周波数解析により自律神経活動指標を算出し、疲労時に交感神経系活動の増加と副交感神経系活動の減少が見られることは既に知られていた。しかし、今回本発明者らは、副交感神経活動の減少を伴わないタイプの疲労が存在することを見出した。よって、副交感神経活動指標、α波のパワー値、β波のパワー値を用いることで、疲労の有無の判断にとどまらず、疲労の質的相違を差別化できることを見出した。
 本発明にかかる生体疲労評価装置は、ヒトの疲労を非侵襲的かつ簡易に精度良く評価することが可能となり、日常生活における疲労の早期発見に有用である。また、簡易な方法で疲労の質まで判定することが可能となるため、ユーザに適した回復支援を図ることができ、自動車におけるドライバ状態推定システムや職域における従業員管理システム等の用途にも応用できる。
 100、400、600、1000、1200 生体疲労評価装置
 101、401 生体信号計測部
 102、402、602、1002、1202 特徴量抽出部
 103、403、603、1003、1203 記憶部
 104、1204 疲労判断部
 105、405 機器制御部
 406、606、1006、1206 疲労質判定部
 601 識別部
 1001 刺激出力部
 2501 脈波計測部
 2502 加速度脈波算出部
 2503、2506 記憶部
 2504、2507 評価部
 2505 カオス解析部

Claims (20)

  1.  ユーザの脈波信号を計測する生体信号計測部と、
     前記生体信号計測部により計測された脈波信号の収縮期後方成分から得られる第一特徴量を抽出する特徴量抽出部と、
     前記特徴量抽出部により抽出された第一特徴量を記憶するための記憶部と、
     前記特徴量抽出部により抽出された第一特徴量を用いて、ユーザの疲労の有無を判断する疲労判断部とを備え、
     前記疲労判断部は、前記特徴量抽出部により抽出された第一特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第一特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の有無を判断する
     生体疲労評価装置。
  2.  前記特徴量抽出部は、前記脈波信号から加速度脈波を算出し、前記収縮期後方成分に対応した加速度脈波の成分波であるc波またはd波の情報を少なくとも含む複数の成分波の情報を用いて、前記第一特徴量を抽出する
     請求項1に記載の生体疲労評価装置。
  3.  前記特徴量抽出部は、前記加速度脈波のa波、b波またはe波の波高値に対する前記c波の波高値の比を前記第一特徴量として抽出し、
     前記疲労判断部は、前記第一特徴量の絶対値が時系列的に増加した場合に疲労していると判断する
     請求項2に記載の生体疲労評価装置。
  4.  前記特徴量抽出部は、前記加速度脈波のa波の波高値と前記c波の波高値との差を前記第一特徴量として抽出し、
     前記疲労判断部は、前記第一特徴量の絶対値が時系列的に減少した場合に疲労していると判断する
     請求項2に記載の生体疲労評価装置。
  5.  前記特徴量抽出部は、前記加速度脈波の前記c波の波高値と前記d波の波高値との差を、前記加速度脈波のa波で除した値を前記第一特徴量として抽出し、
     前記疲労判断部は、前記第一特徴量の絶対値が時系列的に増加した場合に疲労していると判断する
     請求項2に記載の生体疲労評価装置。
  6.  さらに、
     前記疲労判断部により疲労していると判断された場合、ユーザに刺激を与える外部機器を制御する機器制御部を備える
     請求項1~5のいずれか1項に記載の生体疲労評価装置。
  7.  前記生体信号計測部は、さらに、ユーザの心拍或いは脈波を生体信号として計測し、
     前記特徴量抽出部は、さらに、前記生体信号計測部により計測された生体信号から得られる、副交感神経活動量を示す第二特徴量を抽出し、
     前記記憶部は、さらに、前記特徴量抽出部により抽出された第二特徴量を記憶しており、
     前記生体疲労評価装置は、さらに、
     前記特徴量抽出部により抽出された第二特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部を備え、
     前記疲労質判定部は、前記疲労判断部が疲労していると判断した場合に、前記特徴量抽出部により抽出された第二特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第二特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の質を判定する
     請求項1~6のいずれか1項に記載の生体疲労評価装置。
  8.  前記疲労質判定部は、前記第二特徴量が時系列的に減少した場合に、困難な作業による疲労であると判定し、減少しない場合に、単調な作業による疲労であると判定する
     請求項7に記載の生体疲労評価装置。
  9.  さらに、
     前記生体信号計測部は、さらに、ユーザの脳内信号を生体信号として計測し、
     前記特徴量抽出部は、さらに、前記生体信号計測部により計測された生体信号から得られる、β波およびα波のうち少なくともどちらか一方に関連する第三特徴量を抽出し、
     前記記憶部は、さらに、前記特徴量抽出部により抽出された第三特徴量を記憶しており、
     前記生体疲労評価装置は、さらに、
     前記特徴量抽出部により抽出された第三特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部を備え、
     前記疲労質判定部は、前記疲労判断部が疲労していると判断した場合に、前記特徴量抽出部により抽出された第三特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第三特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の質を判定する
     請求項1~6のいずれか1項に記載の生体疲労評価装置。
  10.  さらに、
     ユーザが開眼状態にあるか閉眼状態にあるかを識別する識別情報を生成する識別部を備え、
     前記生体信号計測部は、計測した生体信号に前記識別情報を付加し、
     前記特徴量抽出部は、前記識別部によりユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値、およびα波帯域のパワー値のうち少なくともどちらか一方のパワー値を用いた前記第三特徴量を抽出する
     請求項9に記載の生体疲労評価装置。
  11.  前記特徴量抽出部は、前記識別部によりユーザが閉眼状態にあることを識別された時間区間におけるα波帯域のパワー値を用いた前記第三特徴量を抽出し、
     前記疲労質判定部は、前記第三特徴量が時系列的に増加した場合に、困難な作業による疲労であると判定する
     請求項10に記載の生体疲労評価装置。
  12.  前記特徴量抽出部は、前記識別部によりユーザが開眼状態或いは閉眼状態にあることを識別された時間区間におけるβ波帯域のパワー値を用いた前記第三特徴量を抽出し、
     前記疲労質判定部は、前記第三特徴量が時系列的に減少した場合に、単調な作業による疲労であると判定する
     請求項10または11に記載の生体疲労評価装置。
  13.  さらに、
     ユーザに対して聴覚を刺激する聴覚刺激を出力する刺激出力部と、
     前記特徴量抽出部により抽出された第一特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部とを備え、
     前記疲労質判定部は、前記疲労判断部が疲労していると判断した場合に、前記記憶部に記憶されている前記刺激出力部により聴覚刺激が出力される前の時間区間における第一特徴量と、前記刺激出力部により聴覚刺激が出力された時の時間区間における第一特徴量とを比較して、前記疲労の質を判定する
     請求項1または2に記載の生体疲労評価装置。
  14.  前記特徴量抽出部は、前記脈波信号から加速度脈波を算出し、前記加速度脈波のa波の波高値に対するc波の波高値の比を前記第一特徴量として抽出し、
     前記疲労質判定部は、前記記憶部に記憶されている前記刺激出力部により聴覚刺激が出力される前の時間区間における第一特徴量に対し、前記刺激出力部により聴覚刺激が出力された時の時間区間における第一特徴量が増加した場合に、単調な作業による疲労であると判定し、増加していない場合に、困難な作業による疲労であると判定する
     請求項13に記載の生体疲労評価装置。
  15.  さらに、
     前記疲労質判定部により判定された疲労の質に応じてユーザに刺激を与える外部機器を制御する機器制御部を備える
     請求項7~14のいずれか1項に記載の生体疲労評価装置。
  16.  ユーザの心拍或いは脈波を生体信号として計測する生体信号計測部と、
     前記生体信号計測部により計測された生体信号から得られる、副交感神経活動量を示す第二特徴量を抽出する特徴量抽出部と、
     前記特徴量抽出部により抽出された第二特徴量を記憶するための記憶部と、
     前記特徴量抽出部により抽出された第二特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部とを備え、
     前記疲労質判定部は、前記特徴量抽出部により抽出された第二特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第二特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の質を判定する
     生体疲労評価装置。
  17.  ユーザの脳内信号を生体信号として計測する生体信号計測部と、
     前記生体信号計測部により計測された生体信号から得られる、β波およびα波のうち少なくともどちらか一方に関連する第三特徴量を抽出する特徴量抽出部と、
     前記特徴量抽出部により抽出された第三特徴量を記憶するための記憶部と、
     前記特徴量抽出部により抽出された第三特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部とを備え、
     前記疲労質判定部は、前記特徴量抽出部により抽出された第三特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第三特徴量のうちの少なくとも1つの特徴量とを比較して、前記疲労の質を判定する
     生体疲労評価装置。
  18.  ユーザに対して聴覚を刺激する聴覚刺激を出力する刺激出力部と、
     ユーザの脈波信号を計測する生体信号計測部と、
     前記生体信号計測部により計測された脈波信号の収縮期後方成分から得られる第一特徴量を抽出する特徴量抽出部と、
     前記特徴量抽出部により抽出された第一特徴量を記憶するための記憶部と、
     前記特徴量抽出部により抽出された第一特徴量を用いて、困難な作業による疲労か、或いは単調な作業による疲労かのユーザの疲労の質を判定する疲労質判定部とを備え、
     前記疲労質判定部は、前記記憶部に記憶されている前記刺激出力部により聴覚刺激が出力される前の時間区間における第一特徴量と、前記刺激出力部により聴覚刺激が出力された時の時間区間における第一特徴量とを比較して、前記疲労の質を判定する
     生体疲労評価装置。
  19.  コンピュータにより生体の疲労を評価する生体疲労評価方法であって、
     ユーザの脈波信号を計測する生体信号計測ステップと、
     前記生体信号計測ステップで計測された脈波信号の収縮期後方成分から得られる第一特徴量を抽出する特徴量抽出ステップと、
     前記特徴量抽出ステップで抽出された第一特徴量を記憶部に記憶させる記憶ステップと、
     前記特徴量抽出ステップで抽出された第一特徴量を用いて、ユーザの疲労の有無を判断する疲労判断ステップとを備え、
     前記疲労判断ステップでは、前記特徴量抽出ステップで抽出された第一特徴量のうちのいずれかの特徴量と、前記記憶部に記憶されている第一特徴量のうち前記記憶部から読み出した少なくとも1つの特徴量とを比較して、前記疲労の有無を判断する
     生体疲労評価方法。
  20.  請求項19に記載の生体疲労評価方法に含まれるステップをコンピュータに実行させるプログラム。
PCT/JP2010/006309 2009-10-29 2010-10-26 生体疲労評価装置及び生体疲労評価方法 WO2011052183A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/142,604 US8706206B2 (en) 2009-10-29 2010-10-26 Human fatigue assessment device and human fatigue assessment method
JP2011517709A JP5559784B2 (ja) 2009-10-29 2010-10-26 生体疲労評価装置及び生体疲労評価方法
CN201080003836.7A CN102271584B (zh) 2009-10-29 2010-10-26 生物疲劳评价装置以及生物疲劳评价方法
EP10826319.5A EP2371286B1 (en) 2009-10-29 2010-10-26 Organism fatigue evaluation device and organism fatigue evaluation method
US14/200,483 US20140180145A1 (en) 2009-10-29 2014-03-07 Human fatigue assessment device and human fatigue assessment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009249537 2009-10-29
JP2009-249537 2009-10-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/142,604 A-371-Of-International US8706206B2 (en) 2009-10-29 2010-10-26 Human fatigue assessment device and human fatigue assessment method
US14/200,483 Division US20140180145A1 (en) 2009-10-29 2014-03-07 Human fatigue assessment device and human fatigue assessment method

Publications (1)

Publication Number Publication Date
WO2011052183A1 true WO2011052183A1 (ja) 2011-05-05

Family

ID=43921618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006309 WO2011052183A1 (ja) 2009-10-29 2010-10-26 生体疲労評価装置及び生体疲労評価方法

Country Status (5)

Country Link
US (2) US8706206B2 (ja)
EP (1) EP2371286B1 (ja)
JP (1) JP5559784B2 (ja)
CN (1) CN102271584B (ja)
WO (1) WO2011052183A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187243A1 (ja) * 2012-06-16 2013-12-19 株式会社デルタツーリング 生体状態分析装置及びコンピュータプログラム
JP2017528282A (ja) * 2014-07-02 2017-09-28 ガオンディレクター カンパニー リミテッドGaondirector Co., Ltd ストレス緩和及び集中力向上のためのホワイトノイズ発生ヘッドセット及びそれを用いたホワイトノイズ発生方法
JP2017197002A (ja) * 2016-04-27 2017-11-02 株式会社デンソーアイティーラボラトリ ドライバ緊張度判定装置及びドライバ緊張度判定方法
WO2018159462A1 (ja) * 2017-03-03 2018-09-07 コニカミノルタ株式会社 作業情報表示システム
CN109833049A (zh) * 2019-03-05 2019-06-04 浙江强脑科技有限公司 疲劳驾驶预防方法、装置及可读存储介质
JP2021077134A (ja) * 2019-11-11 2021-05-20 マツダ株式会社 車両制御装置および運転者状態判定方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011110486A1 (de) * 2011-08-17 2013-02-21 Daimler Ag Verfahren und Vorrichtung zur Überwachung zumindest eines Fahrzeuginsassen und Verfahren zum Betrieb zumindest einer Assistenzvorrichtung
TWI478691B (zh) * 2012-01-06 2015-04-01 Wistron Corp 睡意偵測方法及其裝置
US20130237867A1 (en) * 2012-03-07 2013-09-12 Neurosky, Inc. Modular user-exchangeable accessory for bio-signal controlled mechanism
JP5717716B2 (ja) * 2012-12-28 2015-05-13 三菱電機株式会社 生活管理装置及び生活管理方法及びプログラム
US20160058378A1 (en) * 2013-10-24 2016-03-03 JayBird LLC System and method for providing an interpreted recovery score
US20150119732A1 (en) * 2013-10-24 2015-04-30 JayBird LLC System and method for providing an interpreted recovery score
US9848828B2 (en) * 2013-10-24 2017-12-26 Logitech Europe, S.A. System and method for identifying fatigue sources
CN104146720B (zh) * 2014-08-06 2016-04-13 华侨大学 一种快速检测疲劳的检测设备
CN107530012B (zh) 2015-02-16 2019-12-10 内森·英特拉托 用于脑活动解析的系统
CN104825174B (zh) * 2015-04-17 2017-11-07 深圳还是威健康科技有限公司 一种疲劳状态的检测方法及终端
CN106175799A (zh) * 2015-04-30 2016-12-07 深圳市前海览岳科技有限公司 基于脑电波评估人体情绪和疲劳状态的方法及系统
CN108712879B (zh) * 2016-02-29 2021-11-23 大金工业株式会社 疲劳状态判定装置及疲劳状态判定方法
WO2017212333A1 (en) 2016-06-07 2017-12-14 NeuroSteer Ltd. Systems and methods for analyzing brain activity and applications thereof
CN106128032A (zh) * 2016-07-05 2016-11-16 北京理工大学珠海学院 一种疲劳状态监测及预警方法及其系统
JP6676499B2 (ja) * 2016-08-12 2020-04-08 オムロンヘルスケア株式会社 疲労度判定装置、疲労度判定方法、疲労度判定プログラム、及び、生体情報測定装置
KR20180020594A (ko) * 2016-08-19 2018-02-28 주식회사 현대아이티 생체정보 연동형 스마트보드 시스템 및 그 방법
CN106691474A (zh) * 2016-11-25 2017-05-24 中原电子技术研究所(中国电子科技集团公司第二十七研究所) 融合脑电信号与生理信号的疲劳检测系统
CN106691402A (zh) * 2016-12-19 2017-05-24 深圳欧德蒙科技有限公司 一种基于脉搏特征的疲劳程度分析方法和装置
US20180235540A1 (en) 2017-02-21 2018-08-23 Bose Corporation Collecting biologically-relevant information using an earpiece
KR102287315B1 (ko) 2017-04-14 2021-08-09 현대자동차주식회사 피로도 기반 차량 제어 장치 및 방법
US10213157B2 (en) * 2017-06-09 2019-02-26 Bose Corporation Active unipolar dry electrode open ear wireless headset and brain computer interface
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US10827942B2 (en) * 2018-01-03 2020-11-10 Intel Corporation Detecting fatigue based on electroencephalogram (EEG) data
JP2019124977A (ja) * 2018-01-11 2019-07-25 トヨタ自動車株式会社 車載音声出力装置、音声出力制御方法、及び音声出力制御プログラム
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
WO2020003697A1 (ja) * 2018-06-27 2020-01-02 ソニー株式会社 評価装置、評価方法
CN108961680B (zh) * 2018-07-20 2020-09-22 武汉理工大学 一种酒后驾驶和疲劳驾驶判别系统的性能检测系统及方法
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
CN109589112B (zh) * 2018-10-12 2021-06-29 天津大学 基于iab在线调控睁、闭眼状态的静息脑电采集方法
US11541895B2 (en) * 2019-04-03 2023-01-03 Industrial Technology Research Institute Driving assistance system and driving assistance method
CN110151166B (zh) * 2019-05-07 2022-04-26 中国电子科技集团公司第二十八研究所 一种基于双模态生物电信号与生理数据的疲劳度评估系统及评估方法
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
CN110458191B (zh) * 2019-07-05 2024-04-12 中国平安财产保险股份有限公司 疲劳状态判断方法、装置、计算机设备及存储介质
KR20210007368A (ko) 2019-07-11 2021-01-20 삼성전자주식회사 생체정보 추정 장치 및 방법
CN110477897B (zh) * 2019-08-15 2022-04-01 中国体育国际经济技术合作有限公司 一种体能测试方法及系统
GB2588973B (en) * 2019-11-18 2022-04-27 Jaguar Land Rover Ltd Apparatus and method for controlling vehicle functions
CN112190233A (zh) * 2020-10-20 2021-01-08 黄淮学院 患者术后居家疼痛观察远程分析管理系统
CN112837707A (zh) * 2021-01-29 2021-05-25 苏州车萝卜汽车电子科技有限公司 多媒体播放控制方法、装置、设备和存储介质
CN113057594A (zh) * 2021-03-19 2021-07-02 疲劳科学研究(广州)有限公司 一种疲劳程度评价的判断处理系统及其疲劳判断方法
CN113952580A (zh) * 2021-11-18 2022-01-21 苏州大学 一种正念冥想训练的方法、装置、设备以及存储介质
CN114343644A (zh) * 2021-12-31 2022-04-15 北京烽火万家科技有限公司 一种疲劳驾驶检测方法和设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889488A (ja) * 1994-09-21 1996-04-09 Nou Kinou Kenkyusho:Kk 生体情報自動識別装置
JPH11155845A (ja) * 1997-11-26 1999-06-15 Nissan Motor Co Ltd ストレス度判定装置
WO2005000119A1 (ja) * 2003-06-27 2005-01-06 Soiken Inc. 疲労度評価方法、疲労度評価装置、およびデータベース
JP2005028016A (ja) * 2003-07-11 2005-02-03 Family Co Ltd マッサージシステム、マッサージ機及び制御プログラムデータベース
JP2005329148A (ja) * 2004-05-21 2005-12-02 Sony Corp 生体情報測定装置及び方法
WO2008149559A1 (ja) * 2007-06-08 2008-12-11 Panasonic Corporation 脈波検出装置、機器制御装置および脈波検出方法
JP2009022610A (ja) * 2007-07-20 2009-02-05 Delta Tooling Co Ltd 疲労度演算装置及びコンピュータプログラム
JP2009178456A (ja) * 2008-01-31 2009-08-13 Nippon Koden Corp 自律神経活動計測装置及び計測方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002951605A0 (en) * 2002-09-24 2002-10-10 University Of Technology, Sydney Eeg-based fatigue detection
JP2005018167A (ja) * 2003-06-23 2005-01-20 Softopia Japan Foundation 生体反応利用機器制御装置及び機器の制御方法
EP1711102A4 (en) * 2004-01-27 2009-11-04 Spirocor Ltd METHOD AND SYSTEM FOR DIAGNOSING THE CARDIOVASCULAR SYSTEM
JP2008125801A (ja) 2006-11-21 2008-06-05 Toyota Motor Corp バイオフィードバック装置及びバイオフィードバック方法
JP4468398B2 (ja) * 2007-03-27 2010-05-26 株式会社東芝 自律神経指標計測装置および自律神経指標計測方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889488A (ja) * 1994-09-21 1996-04-09 Nou Kinou Kenkyusho:Kk 生体情報自動識別装置
JPH11155845A (ja) * 1997-11-26 1999-06-15 Nissan Motor Co Ltd ストレス度判定装置
WO2005000119A1 (ja) * 2003-06-27 2005-01-06 Soiken Inc. 疲労度評価方法、疲労度評価装置、およびデータベース
JP2005028016A (ja) * 2003-07-11 2005-02-03 Family Co Ltd マッサージシステム、マッサージ機及び制御プログラムデータベース
JP2005329148A (ja) * 2004-05-21 2005-12-02 Sony Corp 生体情報測定装置及び方法
WO2008149559A1 (ja) * 2007-06-08 2008-12-11 Panasonic Corporation 脈波検出装置、機器制御装置および脈波検出方法
JP2009022610A (ja) * 2007-07-20 2009-02-05 Delta Tooling Co Ltd 疲労度演算装置及びコンピュータプログラム
JP2009178456A (ja) * 2008-01-31 2009-08-13 Nippon Koden Corp 自律神経活動計測装置及び計測方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AKIKO SUZUKI ET AL.: "WORK EFFICIENCY AND PHYSIOLOGICAL RESPONSES WITH THE USE OF A THIMBLE IN SKILLED AND UNSKILLED SEWERS : COMPARISON OF THE CARDIOVASCULAR AND RESPIRATORY ACTIVITIES AND EEG", JAPANISE JOURNAL OF PHYSIOLOGICAL ANTHROPOLOGY, vol. 5, no. 3, 25 August 2000 (2000-08-25), pages 7 - 14, XP008152596 *
G. MULDER ET AL.: "Information Processing and Cardiovascular Control", PSYCHOPHYSIOLOGY, vol. 18, July 1981 (1981-07-01), pages 392 - 402, XP008152602 *
KAIDA K: "Validation of Karolinska sleepiness scale against performance and EEG variables", CLINICAL NEUROPHYSIOLOGY, vol. 117, 2006, pages 1574 - 1581, XP028040302, DOI: doi:10.1016/j.clinph.2006.03.011
SATOMI NODA ET AL.: "Changes in EGG and psychological arousal level and hedonic tone level during a finger movement", JAPANESE JOURNAL OF BIOFEEDBACK RESEARCH, vol. 36, no. 1, 25 April 2009 (2009-04-25), pages 41 - 46, XP008152467 *
SATOMI NODA ET AL.: "Teyubi no Undo o Tomonau Asobi ni Okeru Noha.Jiritsu Shinkei Kino Shihyo Oyobi Shinriteki Kakuseido-Kaikando no Henka", RESEARCH JOURNAL OF SPORT SCIENCE IN NARA WOMEN'S UNIVERSITY, vol. 11, 31 March 2009 (2009-03-31), pages 21 - 27, XP008152469 *
See also references of EP2371286A4
YOSHIHITO SHIGIHARA ET AL.: "Jidosha Unten o Sotei shita Kyusei Seishin Hiro no Kyakkanteki Hyokakei no Kakuritsu", NIPPON HIRO GAKKAISHI, vol. 6, no. 1, 25 June 2010 (2010-06-25), pages 51, XP008152599 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187243A1 (ja) * 2012-06-16 2013-12-19 株式会社デルタツーリング 生体状態分析装置及びコンピュータプログラム
JP2014000178A (ja) * 2012-06-16 2014-01-09 Delta Tooling Co Ltd 生体状態分析装置及びコンピュータプログラム
JP2017528282A (ja) * 2014-07-02 2017-09-28 ガオンディレクター カンパニー リミテッドGaondirector Co., Ltd ストレス緩和及び集中力向上のためのホワイトノイズ発生ヘッドセット及びそれを用いたホワイトノイズ発生方法
JP2017197002A (ja) * 2016-04-27 2017-11-02 株式会社デンソーアイティーラボラトリ ドライバ緊張度判定装置及びドライバ緊張度判定方法
WO2018159462A1 (ja) * 2017-03-03 2018-09-07 コニカミノルタ株式会社 作業情報表示システム
CN109833049A (zh) * 2019-03-05 2019-06-04 浙江强脑科技有限公司 疲劳驾驶预防方法、装置及可读存储介质
JP2021077134A (ja) * 2019-11-11 2021-05-20 マツダ株式会社 車両制御装置および運転者状態判定方法
JP7342636B2 (ja) 2019-11-11 2023-09-12 マツダ株式会社 車両制御装置および運転者状態判定方法

Also Published As

Publication number Publication date
US20140180145A1 (en) 2014-06-26
EP2371286B1 (en) 2019-12-04
EP2371286A1 (en) 2011-10-05
US20110288424A1 (en) 2011-11-24
JP5559784B2 (ja) 2014-07-23
US8706206B2 (en) 2014-04-22
CN102271584B (zh) 2015-01-07
CN102271584A (zh) 2011-12-07
JPWO2011052183A1 (ja) 2013-03-14
EP2371286A4 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5559784B2 (ja) 生体疲労評価装置及び生体疲労評価方法
Brouwer et al. Evidence for effects of task difficulty but not learning on neurophysiological variables associated with effort
JP4545446B2 (ja) 記憶媒体と容積脈波を用いた人体の安定度評価装置
JP7191159B2 (ja) コンピュータプログラム、及び、被験者の感情状態を提供する方法
JP2006514570A (ja) 麻酔および鎮静監視のシステムおよび方法
WO2014063160A1 (en) Detection of emotional states
JP2015109964A (ja) 感情推定装置、感情推定処理システム、感情推定方法および感情推定プログラム
KR101534809B1 (ko) 다차원 생체신호 측정기반 집중력 향상용 시청각콘텐츠의 효능 평가 방법
Handouzi et al. Objective model assessment for short-term anxiety recognition from blood volume pulse signal
JP7327816B2 (ja) 脈波信号の解析装置、脈波信号の解析方法およびコンピュータプログラム
Cosoli et al. Heart rate variability analysis with wearable devices: Influence of artifact correction method on classification accuracy for emotion recognition
Das et al. Classification and quantitative estimation of cognitive stress from in-game keystroke analysis using EEG and GSR
Scherz et al. RR interval analysis for the distinction between stress, physical activity and no activity using a portable ECG
Al-Shargie et al. Stress assessment and mitigation using fnirs and binaural beat stimulation
Beiramvand et al. Mental workload assessment using low-channel prefrontal EEG signals
Reanaree et al. Stress and office-syndrome detection using EEG, HRV and hand movement
EP3986265B1 (en) Sleep staging using an in-ear photoplethysmography (ppg)
Bousefsaf et al. Remote assessment of physiological parameters by non-contact technologies to quantify and detect mental stress states
JP2011078705A (ja) 生体疲労評価装置
Rahman et al. Detecting physiological responses using multimodal earbud sensors
KR101771835B1 (ko) 생체신호기반 수면 상호영향 분석방법
Saidi et al. Mental arousal level recognition competition on the shared database
Ashwin et al. Stress Detection using Wearable Physiological Sensors and Machine Learning Algorithm
Polo et al. Understanding the role of emotion in decision making process: using machine learning to analyze physiological responses to visual, auditory, and combined stimulation
JP2002112974A (ja) 生体状況判定方法及び生体状況判定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003836.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011517709

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010826319

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13142604

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE