WO2011052101A1 - プリズム板、撮像装置の照明光学系、及びプリズム板の成形型 - Google Patents

プリズム板、撮像装置の照明光学系、及びプリズム板の成形型 Download PDF

Info

Publication number
WO2011052101A1
WO2011052101A1 PCT/JP2010/000211 JP2010000211W WO2011052101A1 WO 2011052101 A1 WO2011052101 A1 WO 2011052101A1 JP 2010000211 W JP2010000211 W JP 2010000211W WO 2011052101 A1 WO2011052101 A1 WO 2011052101A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
light
mold
prism plate
plate
Prior art date
Application number
PCT/JP2010/000211
Other languages
English (en)
French (fr)
Inventor
山崎行造
岩口功
Original Assignee
富士通フロンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通フロンテック株式会社 filed Critical 富士通フロンテック株式会社
Priority to KR1020127010169A priority Critical patent/KR101377846B1/ko
Priority to EP10826242A priority patent/EP2495588A4/en
Priority to CN201080047798.5A priority patent/CN102576102B/zh
Priority to JP2011538211A priority patent/JP5337256B2/ja
Publication of WO2011052101A1 publication Critical patent/WO2011052101A1/ja
Priority to US13/499,393 priority patent/US20130128571A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene

Definitions

  • the present invention relates to a prism plate capable of controlling the emission direction and the like of incident light, an illumination optical system of an imaging apparatus, and a prism plate mold.
  • FIG. 1 is a diagram illustrating control of the light emission direction by the prism plate 111.
  • 2 is a diagram of the prism plate 111 as viewed from the II-II direction, and
  • FIG. 3 is a diagram illustrating the directivity characteristics of the emitted light by the prism plate 111.
  • the prism plate 111 has a prism surface 112 in which prism rows having a large number of ridge lines 113 are arranged in parallel, and light (solid lines and broken lines) incident from the prism surface 112 side is moved to the left and right. It has a function to deflect. Therefore, the prism plate 111 is used in an illumination optical system or the like as an optical element that controls the light emission direction.
  • the light vertically incident on the prism surface 112 is deflected only in the left-right direction (tangential direction) in FIG. 3 and does not go in the direction of the ridge line 113. From FIG. 1 to FIG. 3, it can be seen that the light incident from the prism surface 112 side is deflected by the prism plate 111.
  • the emitted light cannot be directed in the direction of the ridge line 113. Therefore, when it is not desired to create a dead zone while giving directivity to the illumination, that is, in order to distribute the illumination light also in the ridge line direction of the prism row, it is necessary to diffuse the emitted light.
  • FIG. 4 is a diagram showing an example in which a minute concavo-convex portion (diffusion surface) 114 is formed by performing a blast process on the exit surface of the prism plate 111.
  • FIG. 5 is a diagram showing the directivity characteristics of the emitted light by the prism plate 111 having a blast process on the exit surface, and
  • FIG. 6 is a diagram of the prism plate 111 viewed from the VI-VI direction.
  • the light deflected by the prism plate 111 is diffused on the exit surface, and a part thereof is also directed toward the ridge line 113.
  • the illumination light emitted from the prism plate 111 can be distributed in all directions while maintaining the directivity in the left-right direction.
  • FIG. 7 is a diagram showing a directivity distribution of outgoing light when the prism plate 111 is viewed from the outgoing surface.
  • the light emitted from the prism plate 111 exhibits an elliptical directivity that is long to the left and right. In this way, if a blast process is performed on the exit surface to provide a diffusion effect, a dead zone can be eliminated in the exit direction of illumination. Further, the directivity of the emitted light can be controlled by the strength of blasting.
  • Patent Document 1 discloses a technique in which a minute convex portion is randomly formed on the emission surface side of the outgoing light control plate and light incident from the incident surface side is scattered by the minute convex portion.
  • Patent Document 2 discloses a technique in which oblique incident light from a light guide plate is converted into a vertical direction by a prism sheet, and the emitted light is diffused by minute uneven portions formed on the exit surface.
  • the present invention provides a prism plate, an illumination optical system for an imaging apparatus, and a prism plate mold that can provide directivity in the emission direction of incident light and control the illuminance distribution.
  • the prism plate has a prism surface on which a triangular prism-shaped prism array having a large number of ridge lines on one side is formed, and minute uneven portions formed on the prism surface.
  • the illumination optical system of the imaging apparatus is arranged around the imaging element in the illumination optical system of the imaging apparatus that irradiates the imaging object with light so that the reflected light from the imaging object is received by the imaging element.
  • a ring-shaped prism plate that is arranged toward the plurality of light emitting elements and has minute irregularities formed on the prism surface.
  • the prism plate molding die has a first die and a second die arranged opposite to each other, and a molding material arranged between the first die and the second die is heated and softened to be added.
  • a prism plate molding die for forming a prism plate by pressing, or by injecting a molding material by injecting a molding material between the first die and the second die the first die and the second die
  • a prismatic prism array having a large number of ridge lines is formed on one molding surface, and minute irregularities are formed on the slope of the prism array on the side where at least the prism array of the first mold and the second mold is formed. Part was formed.
  • FIG. 8 is an external perspective view of the prism plate 11 of the present embodiment.
  • FIG. 9 is a diagram showing the directivity characteristics of the emitted light by the prism plate 11, and
  • FIG. 10 is a diagram of the prism plate 11 viewed from the XX direction.
  • the prism plate 11 includes a prism surface 12 on which a triangular prism-shaped prism array having a large number of ridge lines 13 is formed on one side, and a minute uneven portion 14 formed on the prism surface 12. Yes.
  • the light incident surface side is referred to as a prism surface 12, and the light exit surface side opposite to the prism surface 12 is referred to as an exit surface 15 for distinction.
  • the prism surface 12 having a triangular prism-shaped prism array can be formed by a known forming means or the like.
  • the minute uneven portion 14 can be formed, for example, by subjecting the prism surface 12 to blasting.
  • the blast treatment is a treatment method in which non-metallic particles such as silica sand and metal particles are sprayed at a high speed on the surface of the workpiece to roughen the surface. In this embodiment, the sand blast treatment is assumed.
  • the minute concavo-convex portion 14 is formed on the slope of the triangular prism shaped prism row.
  • the minute concavo-convex portion 14 forms a light diffusion surface.
  • the minute uneven portion 14 refers to a region in which relatively minute concave portions and convex portions are continuously formed in an array or randomly, for example, by sandblasting.
  • various shapes such as a hemispherical shape, a spherical shape, a cone (trapezoid) shape, or a pyramid (trapezoid) shape can be considered as the shape of the convex portion.
  • the pitch between the concave and convex portions of the minute uneven portion 14 and the height (depth) of the uneven portion can be determined in consideration of the luminance distribution of light from the emission surface 15 and the like. Further, the pitch between the concave and convex portions and the height (depth) of the concave and convex portions are also affected by the wavelength of light used.
  • the prism plate 11 In addition to the case where the large number of ridge lines 13 formed on the prism surface 12 of the prism plate 11 are parallel to each other, when the prism plate 11 is ring-shaped, it has a triangular prism shape having a large number of ridge lines 13 in the radial direction. This includes the case where the prism row is formed on the circumference (see FIG. 17A described later).
  • the concavo-convex portion 14 is formed on the prism surface 12 by sand blasting to form a diffusion surface, a desired luminance distribution of emitted light can be obtained by controlling the injection pressure and the injection time of the sand used. .
  • description of the sandblasting process is omitted here.
  • the minute uneven portion 14 is formed by sandblasting
  • the present invention is not limited thereto.
  • a molding means using a molding die or other means may be used.
  • the directional characteristics of the emitted light from the exit surface 15 can be controlled by blasting the prism surface 12 on the light incident surface side to form the minute uneven portion 14.
  • the directivity characteristic of the emitted light can be freely controlled by the strength of blasting, that is, the depth of the unevenness of the minute unevenness 14.
  • FIG. 9 is a diagram showing the directivity when the blasting process performed on the prism surface 12 of the prism plate 11 is relatively weak. 9 and 10, the light incident on the prism surface 12 from the LED 16 is deflected by refraction at the prism slope of the prism surface 12 and is diffused by the minute uneven portion 14. Then, the light is distributed in all directions including the longitudinal direction of the ridge 13 by diffusing on the prism surface 12.
  • the optical axis O of the light which is the center of the light quantity distribution, proceeds in a direction determined by the angle of the prism slope.
  • the directivity is maintained, and the same directivity as when the blasting process is performed on the exit surface 15 side is obtained. It is considered that the light emitted from the emission surface 15 has directivity characteristics in the direction determined by the prism slope of the prism surface 12 because the individual irregularities of the minute irregularities 14 are shallow when the blast process is weak.
  • FIG. 11 is a diagram showing the directivity characteristics of the emitted light as seen from the exit surface 15 side when the prism surface 12 is subjected to strong blasting.
  • FIG. 12A schematically shows a light refraction state when the prism surface is subjected to strong blasting
  • FIG. 12B schematically shows a light refraction state when the blast injection time onto the prism surface is shortened.
  • FIG. 12C is a diagram schematically illustrating a light refraction state when the blast injection pressure (flow velocity) to the prism surface is lowered.
  • FIG. 12A shows a schematic diagram of surface irregularities in the case of non-directivity of FIG. 20D described later.
  • the individual minute irregularities 14 are deeply irregularized on the entire prism surface 12. Yes.
  • the blasting process is performed from the vertical lower side of the figure (the lower side in the direction perpendicular to the emission surface 15), the surface of each minute uneven portion 14 has a wide range of angles from the vertical surface to the horizontal plane. .
  • each minute uneven portion 14 is, for example, hemispherical or gun-ball shaped (this shape can be controlled by blast flow rate, time, etc.), the normal of the surface of the minute uneven portion 14 is evenly distributed around the vertical direction. Will be.
  • the incident light L from the LED 16 is incident on each minute concavo-convex portion 14 and is deflected according to an angle formed with the normal of the point. For this reason, the light deflection direction is also widely distributed around the vertical direction (no deflection) in FIG. 12A. For this reason, although the incident surface of light on the prism surface 12 is an inclined surface as a whole, it does not affect the deflection direction of the incident light beam. For this reason, it is considered that the prism plate 11 of FIG. 12A exhibits non-directionality as a result.
  • the directivity characteristic of the emitted light can be freely controlled by the strength of the blasting process.
  • the strength of the blasting process can be controlled by the flow rate or the spraying time in the blast granule spraying.
  • the reference of the flow velocity and the injection time in the blast particle injection differ depending on the particle size used for the particle injection, the material of the prism plate 11, and the like.
  • FIG. 12B has shown the schematic diagram of the surface unevenness
  • the density of the minute uneven portions 14 is sparse (the density of the minute uneven portions 14 is half), and half of the inclined portion of the prism surface 12 remains.
  • the incident light has a mixture of prism deflection (uneven portions) and diffusion (uneven portions), and the emitted light has directivity and is diffused.
  • FIG. 12C shows a schematic diagram of surface irregularities when the flow velocity (injection pressure) is weakened as a weak blasting process.
  • the jet pressure is weakened, the depth of the unevenness of the micro uneven portion 14 becomes shallow, and the normal line of the uneven surface is distributed small (for example, 30 ° ⁇ 30 °) around the angle of the prism surface 12.
  • the optical axis of the diffused light becomes the same as the prism deflection (the deflection characteristic of the prism surface 12), the incident light diffuses around the deflection angle, and the diffused light is distributed at the front and back angles.
  • the emitted light has directivity and is diffused.
  • the fine uneven part 14 becomes smooth, it corresponds to performing a weak blast process. For this reason, the emitted light has a strong elliptical directivity characteristic.
  • FIGS. 12A to 12C are schematic diagrams for explanation only, and are different from the actual surface shape.
  • the actual unevenness of the sandblasted prism surface has non-uniform amplitude and period, and may not have a hemispherical shape or bell shape as shown in FIGS. 12A to 12C.
  • the amplitude of the unevenness of the prism surface as a whole is large, and as described above, the direction of the normal of the surface is distributed evenly, and as a result, the emitted light becomes non-directional.
  • the surface irregularity state of the prism surface that is, the surface roughness of the prism surface can be expressed by parameters defined in JIS-B0601.
  • the arithmetic average roughness Ra ( ⁇ m), which is one of them, represents the average line of the amplitude of the surface after expressing the uneven state with a roughness curve corresponding to the cross-sectional shape, taking the x-axis in that direction,
  • Ra 1 / L ⁇ ⁇ 0 L
  • the surface roughness of the prism surface can be expressed by parameters defined in JIS-B0601: 1994 (10-point average roughness Rz). This is a parameter having a meaning similar to the maximum amplitude, which is a value obtained by adding the averages of the peak height and valley depth from the maximum to the fifth, and adding the averages thereof.
  • the uneven amplitude is sufficiently large, and the directivity of the emitted light disappears.
  • the prism plate 11 includes the prism surface 12 on which a triangular prism-shaped prism array having a large number of ridge lines 13 is formed, and the minute uneven portions 14 formed on the prism surface 12.
  • the micro concavo-convex portion 14 can provide directivity in the emission direction of illumination light and can control the illuminance distribution.
  • FIG. 13 and 14 are diagrams showing the prism plate 11 of the present embodiment
  • FIG. 13 is a diagram showing the directivity characteristics of light emitted from the prism plate 11
  • FIG. 14 shows the prism plate 11 as XIV ⁇ . It is the figure seen from the XIV direction.
  • the concavo-convex portion 14 is formed by blasting the prism surface 12 on the light incident side, and the concavo-convex portion 14 'is also blasted on the exit surface 15 on the exit side of the illumination light. Is forming.
  • the light incident on the prism surface 12 is diffused by the minute uneven portion 14 of the prism surface 12 and further diffused by the minute uneven portion 14 ′ of the emitting surface 15 and emitted.
  • the directivity of the emitted light from the exit surface 15 is controlled by the strength of the blast of the incident-side prism surface 12.
  • finer directivity can be controlled by performing blasting on the exit surface 15 in addition to the prism surface 12.
  • FIG. 15 is a diagram illustrating a configuration of the molding die 20 of the prism plate 11 according to the present embodiment.
  • the concavo-convex portion 14 is formed by directly blasting the prism surface 12 of the prism plate 11 .
  • the method for forming the minute uneven portion 14 is not limited to this.
  • it can be formed by molding means.
  • the prism plate 11 is manufactured by molding a plastic material such as acrylic. Therefore, in practice, as shown in FIG. 15, a minute uneven portion 25 is formed in the molding die 20, the minute uneven portion 25 is transferred to the molding material 23, and the prism plate 11 is formed. .
  • the molding die 20 has an upper die 21 and a lower die 22 that are arranged to face each other.
  • a plastic material 23 is disposed between the molding surface 21 a of the upper mold 21 and the molding surface 22 a of the lower mold 22.
  • the plastic material 23 is heated and softened to a predetermined temperature.
  • the upper die 21 and the lower die 22 are moved relatively close to each other to pressurize the plastic material 23 to mold the prism plate 11.
  • FIG. 15 is a diagram for explaining the above-described pressure molding die, but the same applies to an injection molding (injection) method in which a molding material is injected into a space surrounded by the die. .
  • the molding die 20 has a triangular prism-shaped prism array having a large number of ridge lines 24 formed on the molding surface 22a of the lower mold 22, and a micro uneven portion 25 formed on the slope on which the prism array is formed.
  • the minute uneven portion 25 can be formed by, for example, blasting. By doing so, the prism plate 11 can be molded by transferring the minute irregularities 25 to the molding material 23.
  • minute uneven portions 25 may be formed on the molding surface 21 a of the upper mold 21. Thereby, it is possible to form minute uneven portions on both the prism surface and the exit surface of the prism plate 11 (see FIG. 13 described above).
  • a triangular prism-shaped prism array having a large number of ridge lines 24 is formed on the molding surface 22a of the lower mold 22, and at least on the slope of the prism array of the lower mold 22 on which the prism array is formed.
  • FIG. 16 is a diagram illustrating an example in which the illumination optical system 10 is applied to an image reading apparatus 30 for reading information.
  • 17A is a diagram of the prism plate 11 as viewed from the prism surface 12 side
  • FIG. 17B is a diagram illustrating the positional relationship between the prism surface 12 and the light guide 33.
  • symbol is attached
  • the illumination optical system 10 of the imaging device 30 irradiates the imaging target 31 with light so that reflected light from the imaging target 31 (for example, a palm) is received by an image sensor 32 as an imaging element. is there.
  • the illumination optical system 10 includes LEDs 16 as a plurality of light emitting elements arranged in an annular shape around the image sensor 32, a ring-shaped light guide (cylindrical body) 33 arranged above the plurality of LEDs 16, A ring-shaped prism plate 11 disposed on the light exit surface 33a of the light guide 33.
  • the light guide 33 is made of, for example, a transparent resin (or glass or the like), guides light from the plurality of LEDs 16 upward, and irradiates the imaging object 31 with uniform light through the prism plate 11.
  • the light guide 33 can guide the light from the LED 16 so as not to leak from the optical path. For this reason, the light guide 33 is formed in a ring shape in accordance with the arrangement state of the LEDs 16.
  • the ring shape refers to a ring shape having a hole in the center, and includes, for example, a circular ring, a square ring, an elliptical ring, and an oval ring.
  • this ring-shaped prism plate 11 is a triangular prism having a large number of ridge lines 13 in the radial direction so as to irradiate the imaging target 31 with light from the exit surface 33 a of the light guide 33.
  • the rows have prism surfaces 12 formed on the circumference. It should be noted that a large number of ridge lines 13 are preferably formed at regular intervals, but are not necessarily strictly spaced. Moreover, although many ridgelines 13 are formed in the radial direction toward the ring center, they do not have to strictly face the ring center.
  • the prism surface 12 is disposed so as to face the plurality of LEDs 16 (the light exit surface 33a side of the light guide 33). Furthermore, a minute uneven portion 14 is formed on the prism surface 12 of the ring-shaped prism plate 11 (see FIG. 17A).
  • the minute uneven portion 14 is the same as that described in the first embodiment and the like.
  • the light emitted from the LED 16 is guided by the ring-shaped light guide 33 toward the imaging target 31 that is a reading target.
  • An imaging system having an image sensor 32 and an optical lens 34 is disposed inside the ring-shaped light guide 33.
  • FIGS. 18A to 18D are views of the illumination optical system 10 of the imaging device 30 as viewed from the exit surface 15 side.
  • FIGS. 18A to 18D are diagrams comparing the directivity distributions of the emitted light from one point (point A) on the prism plate 11.
  • FIGS. 18A to 18D use the blast strength (injection time here) as a parameter.
  • an imaging system including an optical lens 34 and an image sensor 32 is disposed in the center of the imaging device 30.
  • the image sensor 32 is surrounded by a ring-shaped light guide 33 and a ring-shaped prism plate 11 superimposed thereon.
  • a plurality of LEDs 16 arranged in a ring form an illumination light source, and illumination light is emitted from the ring-shaped prism plate 11 via the light guide 33.
  • FIG. 18A to FIG. 18D it is assumed that blasting is not performed on the exit surface 15 side of the prism plate 11.
  • FIG. 18A shows a case where the prism surface 12 of the prism plate 11 is not subjected to blasting and shows the strongest directivity.
  • the light emitted from the point A is directed only in the tangential direction of the ring by the prism plate 11.
  • the illumination from the entire emission surface 15 of the ring-shaped prism plate 11 is added, the illumination is not directed in the radial direction, so that a donut-shaped illumination distribution in which the center of the ring is dark and the surroundings are bright.
  • FIG. 18B shows a case where the prism surface 12 is subjected to weak blasting
  • FIG. 18C shows a case where the prism surface 12 is subjected to stronger blasting.
  • the illumination light is emitted not only in the tangential direction but also in the radial direction.
  • the illumination also reaches the center of the ring.
  • the directivity changes depending on the strength of the blasting process, and the directivity is weaker in the case of FIG. 18C where the blasting process is relatively stronger than in FIG. 18B. For this reason, in FIG. 18C, the ellipse indicating the directivity distribution approaches a circle.
  • FIG. 18D shows a case where the prism surface 12 is sufficiently (strongly) blasted, and the directivity distribution shows omnidirectionality close to a circle.
  • the blasting process is sufficiently strong, the concavo-convex state has a sufficiently large amplitude.
  • the illumination light from the exit surface 15 of the ring-shaped prism plate 11 overlaps at the center of the ring, the illuminance at the center of the ring increases.
  • FIG. 19 is a diagram showing the positional relationship between the exit surface 15 of the prism plate 11 and the evaluation surface (illuminated surface) 17.
  • 20A to 20D are diagrams comparing the illuminance distribution of the illumination light on the evaluation surface 17.
  • the horizontal axis represents the distance r from the optical axis, and the vertical axis represents the illumination intensity (W / m 2).
  • 20A to 20D when the strength of the blasting process is expressed by the injection time, the injection time of FIG. 20A is 0 (no blasting process), and the injection time of FIG. 20B is 0 to 1/2 (weak blasting process).
  • the injection time in FIG. 20C was 1 ⁇ 2 (slightly strong blasting process), and the injection time in FIG. 20D was 1 (strong blasting process).
  • FIG. 21 is a diagram collectively showing the illuminance distributions of FIGS. 20A to 20D.
  • FIG. 20A is a figure corresponding to FIG. 18A.
  • FIG. 20A shows the illuminance distribution when the prism surface 12 (and the exit surface 15) is not blasted. In this case, the illumination light does not reach the center of the ring of the ring-shaped prism plate 11, and the ring periphery has an annularly bright donut-shaped illuminance distribution.
  • FIG. 20B is a diagram corresponding to FIG. 18B.
  • FIG. 20B shows the illuminance distribution when the prism surface 12 is subjected to weak blasting.
  • the illumination light is also distributed in the radial direction due to the diffusion effect of the blasting process, and the illumination reaches the center of the ring while the ring periphery has an annular and bright donut-like feature.
  • FIG. 20C corresponds to FIG. 18C.
  • FIG. 20C shows the illuminance distribution when the blasting process on the prism surface 12 is performed more strongly than in FIG. 18B. In this case, the distribution of the illumination light to the center of the ring is large, and the illuminance distribution is uniform over the entire evaluation surface 17.
  • FIG. 20D corresponds to FIG. 18D.
  • FIG. 20D shows the illuminance distribution when the prism surface 12 is sufficiently (strongly) blasted.
  • the directivity of the emitted light in the ring tangential direction disappears, and the illumination intensity is unimodal (shaped like one mountain) due to the concentration of illumination light at the center of the ring.
  • the shape of this illuminance distribution is basically the same as when the ring-type prism plate 11 is not provided. That is, it is the same as the case where a strong blasting process is performed on one side of a transparent glass flat plate.
  • the strength of the blast processing of the prism surface 12 is changed, the illuminance distribution on the evaluation surface 17 changes as shown in FIGS. 20A to 20D.
  • FIG. 21 collectively shows the illuminance distributions of FIGS. 20A to 20D.
  • the illuminance distribution continuously changes from an annular a curve through a b curve and a c curve to a unimodal d curve due to the strength of the blasting process.
  • the desired illuminance distribution characteristic of the illumination light can be obtained by the strength of the blasting process of the prism surface 12.
  • the illuminance distribution itself can be controlled without depending on the prism plate 11.
  • the illuminance distribution can be controlled only by the radial emission direction and diffusivity even without directivity in the ring tangential direction.
  • both the prism surface 12 and the exit surface 15 of the prism plate 11 may be blasted (see FIG. 13).
  • a plurality of LEDs 16 arranged around the image sensor 32 and a triangular prism shape having a large number of ridge lines 13 in the radial direction so as to irradiate the image sensor 32 with light from the plurality of LEDs 16.
  • a ring-shaped prism plate 11 in which a prism surface 12 having a prism row formed on the periphery thereof is arranged toward the plurality of LEDs 16 and minute uneven portions 14 are formed on the prism surface 12, thereby emitting illumination light.
  • the illuminance distribution can be controlled while giving directional characteristics to the direction.
  • FIG. 22 is a diagram illustrating the illumination optical system 10 in which the shape of the emission surface 33a of the ring-shaped light guide 33 is a truncated cone-shaped slope.
  • FIG. 23A is a view showing the appearance of the truncated cone-shaped prism plate 11, and FIG. 23B is a view showing an enlargement of the B portion.
  • symbol is attached
  • the emission surface 33a of the light guide 33 and the prism surface 12 of the prism plate 11 are flat surfaces, but in the present embodiment, they have a truncated cone shape. That is, the light emission surface 15 of the light guide 33 is formed into a truncated cone-shaped slope according to the light amount distribution of the LED 16, the size of the light guide 33, the size of the irradiated surface that is the imaging target, the distance to the irradiated surface, and the like. May be more appropriate.
  • the emission surface 15 of the ring-shaped light guide 33 is a truncated cone-shaped slope, and similarly, the shape of the ring-shaped prism plate 11 is also a truncated cone-shaped slope. It becomes a three-dimensional thing.
  • the ring-shaped prism plate 11 disposed so as to overlap the light exit surface 33a of the light guide 33 is formed on a truncated cone-shaped slope.
  • the prism plate 11 has a prism surface 12 on which a triangular prism-shaped prism array having a large number of ridge lines 13 in the radial direction is formed on the circumference. ing.
  • the number of prism rows is, for example, 180 at a vertex angle of 90 degrees and a depth of 0.2 mm (a prism row pitch of 2 °).
  • the fine irregularities 14 are formed on the prism surface 12 by sandblasting.
  • a diffusion surface is formed on the prism surface 12 by the minute uneven portions 14.
  • the concavo-convex portion 14 is formed by performing the blasting process on the prism surface 12 of the prism plate 11
  • the present invention is not limited to this.
  • by performing blasting on both the prism surface 12 and the exit surface 15 it becomes possible to widely control the directivity characteristics of illumination light.
  • the exit surface 33a of the light guide 33 is a truncated cone-shaped inclined surface
  • the exit surface 15 of the prism plate 11 is a truncated cone inclined surface, and light is diffused and emitted from the exit surface 15.
  • the illuminance distribution at this time is considered to conform to the illuminance distribution curves a to d shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 照明光の出射方向に指向性を与え、かつ照度分布を制御することのできるプリズム板を得る。プリズム板11は、多数の稜線13を有する三角柱形状のプリズム列が形成されたプリズム面12と、このプリズム面12に形成された微小凹凸部14と、を有している。

Description

プリズム板、撮像装置の照明光学系、及びプリズム板の成形型
 本発明は、入射した光の出射方向等を制御可能なプリズム板、撮像装置の照明光学系、及びプリズム板の成形型に関する。
 図1は、プリズム板111による光の出射方向の制御を示す図である。また、図2は、そのプリズム板111をII-II方向から見た図であり、図3は、プリズム板111による出射光の指向特性を示す図である。
 図1に示すように、プリズム板111は、多数の稜線113を有するプリズム列が平行に配置されたプリズム面112を有し、このプリズム面112側から入射する光(実線及び破線)を左右に偏向する機能を備えている。このため、プリズム板111は、光の出射方向を制御する光学素子として照明光学系などに用いられている。
 また、図2及び図3の実線で示すように、プリズム面112に垂直に入射した光は、図3の左右方向(接線方向)のみに偏向し、稜線113の方向には向かわない。
 これらの図1~図3から、プリズム面112側から入射した光線は、プリズム板111で偏向する様子がわかる。
 また、図1及び図3の破線で示すように、光が垂直ではなく3次元的にいろいろな方向から入射した場合には、出射方向も入射方向に応じて変化するが、やはり稜線113の方向には光は指向せず、図3の左右方向に強い指向性を示す。
 このように、入射光の方向を制御しても、稜線113の方向には出射光を指向させることはできない。したがって、照明に指向性を持たせながらもデッドゾーンを作りたくない場合、すなわち、プリズム列の稜線方向にも照明光を分配するためには、出射光を拡散させる必要がある。
 図4は、プリズム板111の出射面にブラスト処理を施して微小凹凸部(拡散面)114を形成した例を示す図である。また、図5は、出射面にブラスト処理を施したプリズム板111による出射光の指向特性を示す図であり、図6は、そのプリズム板111をVI-VI方向から見た図である。
 この場合、図5及び図6に示すように,プリズム板111で偏向した光は出射面で拡散され,一部は稜線113の方向にも指向する。その結果、プリズム板111を出射する照明光は左右方向への指向性を維持しながらも全方向に光を分配することができる。
 図7は、プリズム板111を出射面から見たときの出射光の指向性分布を示す図である。
 同図7で明らかなように、プリズム板111から出射した光は左右に長い楕円状の指向性を示す。このように、出射面にブラスト処理を施して拡散効果を持たせれば、照明の出射方向にデッドゾーンをなくすことができる。また、ブラストの強さによって出射光の指向性を制御することができる。
 同様に、例えば、特許文献1には、出射光制御板の出射面側に微小な凸部をランダムに形成し、この微小な凸部で入射面側から入射した光を散乱させる技術が開示されている。また、特許文献2には、導光板からの斜め入射光をプリズムシートで垂直方向に変換し、さらに出射面に形成した微小凹凸部により出射光を拡散させる技術が開示されている。
 しかしながら、前述した従来技術や、特許文献1及び特許文献2の技術では、図5及び図6から明らかなように、出射光の光軸はプリズムによって偏向しているため、強い指向性を残している。その結果、図7に示す出射光の指向性分布は、常に横長の楕円であり、プリズムの稜線方向への光の分配、すなわち指向性の制御には限界があった。
特許第4198246号公報 特開2007-264639号公報
 本発明は、入射した光の出射方向に指向性を与え、かつ照度分布を制御することのできるプリズム板、撮像装置の照明光学系、及びプリズム板の成形型を提供する。
 プリズム板は、片面に多数の稜線を有する三角柱形状のプリズム列が形成されたプリズム面と、当該プリズム面に形成された微小凹凸部と、を有する。
 また、撮像装置の照明光学系は、撮像対象物からの反射光を撮像素子で受光して撮像すべく前記撮像対象物に光を照射する撮像装置の照明光学系において、前記撮像素子の周囲に配置された複数の発光素子と、前記複数の発光素子からの光を前記撮像対象物に照射すべく、半径方向に多数の稜線を有する三角柱形状のプリズム列が周上に形成されたプリズム面を前記複数の発光素子側に向け配置しかつ前記プリズム面に微小凹凸部を形成したリング状のプリズム板と、を有する。
 さらに、プリズム板の成形型は、対向配置された第1の型及び第2の型を有し、これら第1の型及び第2の型の間に配置された成形素材を加熱軟化して加圧しプリズム板を成形する、あるいは第1の型および第2の型の間に成形素材を射出してプリズム板を射出成形するプリズム板の成形型において、前記第1の型及び第2の型の一方の成形面に、多数の稜線を有する三角柱形状のプリズム列を形成するとともに、前記第1の型及び第2の型の少なくとも前記プリズム列が形成された側の当該プリズム列の斜面に微小凹凸部を形成した。
プリズム板による光の出射方向の制御を示す図である。 同上のプリズム板をII-II方向から見た図である。 プリズム板による出射光の指向特性を示す図である。 プリズム板の出射面にブラスト処理を施して拡散面にした例を示す図である。 出射面にブラスト処理を施したプリズム板による出射光の指向特性を示す図である。 同上のプリズム板をVI-VI方向から見た図である。 プリズム板を出射面から見たときの出射光の指向性分布を示す図である。 本実施の形態のプリズム板の外観斜視図である。 プリズム板による出射光の指向特性を示す図である。 同上のプリズム板をX-X方向から見た図である。 プリズム面に強いブラスト処理を施した場合の出射面側からみた出射光の指向特性を示す図である。 プリズム面に強いブラスト処理を施した場合の光の屈折状態を模式的に示す図である。 プリズム面へのブラスト噴射時間を短縮した場合の光の屈折状態を模式的に示す図である。 プリズム面へのブラスト噴射圧(流速)を低くした場合の光の屈折状態を模式的に示す図である。 プリズム板から出射した光の指向特性を示す図である。 同上のプリズム板をXIV-XIV方向から見た図である。 プリズム板の成形金型の構成を示す図である。 照明光学系を情報読み取り用の撮像装置に応用した例を示す図である。 プリズム板をプリズム面側から見た図である。 プリズム面と導光体との位置関係を示す図である。 ブラスト処理を施さない場合の出射光の指向特性分布を示す図である。 ブラスト処理が弱い場合の出射光の指向特性分布を示す図である。 ブラスト処理が中程度の場合の出射光の指向特性分布を示す図である。 ブラスト処理が最大の場合の出射光の指向特性分布を示す図である。 プリズム板の出射面と評価面との位置関係を示す図である。 ブラスト処理を施さない場合の出射光による評価面における照度分布を示す図である。 ブラスト処理が弱い場合の出射光による評価面における照度分布を示す図である。 ブラスト処理が中程度の場合の出射光による評価面における照度分布を示す図である。 ブラスト処理が最大の場合の出射光による評価面における照度分布を示す図である。 ブラスト処理を施さない場合からブラスト処理が最大の場合までの夫々の出射光による評価面における照度分布をまとめて示した図である。 リング状の導光体の出射面の形状を円錐台斜面とした照明光学系を示す図である。 円錐台状のプリズム板の外観を示す図である。 同上のB部拡大を示す図である。
 以下、図面に基づき本発明の実施の形態を説明する。
 [第1の実施の形態]
 図8は、本実施の形態のプリズム板11の外観斜視図である。また、図9は、プリズム板11による出射光の指向特性を示す図であり、図10は、そのプリズム板11をX-X方向から見た図である。
 本実施の形態のプリズム板11は、片面に多数の稜線13を有する三角柱形状のプリズム列が形成されたプリズム面12と、このプリズム面12に形成された微小凹凸部14と、を有している。
 なお、本実施の形態では、光の入射面側をプリズム面12とし、また、プリズム面12と反対側の光の出射面側を出射面15と呼んで区別する。
 三角柱形状のプリズム列を有するプリズム面12は、周知の成形手段等によって形成することができる。微小凹凸部14は、例えば、プリズム面12にブラスト処理を施すことで形成することができる。なお、ブラスト処理は、被加工物の表面に珪砂等の非金属粒や金属粒を高速で噴きつけ、表面を粗化する処理方法であるが、本実施の形態ではサンドブラスト処理を想定している。また、微小凹凸部14は、三角柱形状のプリズム列の斜面に形成されている。この微小凹凸部14により光の拡散面が形成される。
 ここで、微小凹凸部14とは、例えばサンドブラスト処理により、相対的に微小な凹部と凸部とがアレイ状又はランダムに連続して形成されている領域をいう。例えば、凸部の形状としては、半球形状、球形状、円錐(台)形状、あるいは角錐(台)形状等の種々の形状が考えられる。また、微小凹凸部14の凹部と凸部のピッチや、凹凸の高さ(深さ)も、出射面15からの光の輝度分布等を考慮して決定することができる。さらに、これら凹部と凸部のピッチや凹凸の高さ(深さ)は、使用する光の波長によっても影響される。
 なお、プリズム板11のプリズム面12に形成された多数の稜線13は、互いに平行である場合の他に、プリズム板11がリング状の場合は、半径方向に多数の稜線13を有する三角柱形状のプリズム列が円周上に形成されている場合も含む(後述する図17A参照)。
 また、サンドブラスト処理により、プリズム面12に微小凹凸部14を形成して拡散面とした場合、使用する砂の射出圧や射出時間を制御することによって所望の出射光の輝度分布を得ることができる。しかし、ここでは、サンドブラスト処理についての説明は省略する。
 さらに、本実施の形態では、微小凹凸部14を、サンドブラスト処理によって形成した場合について説明したが、これに限らない。例えば、微小凹凸部14を形成することができれば、必ずしもサンドブラスト処理を用いる必要はなく、成形型を用いた成形手段やそれ以外の手段を用いてもよい。
 このように、光の入射面側であるプリズム面12にブラスト処理を施して、微小凹凸部14を形成することにより、出射面15からの出射光の指向特性を制御することができる。この出射光の指向特性は、ブラストの強さ、すなわち、微小凹凸部14の凹凸の深さによって自由に制御することができる。
 なお、図9は、プリズム板11のプリズム面12に施したブラスト処理が比較的弱い場合の指向特性を示す図である。
 図9及び図10において、LED16からプリズム面12に入射した光は、プリズム面12のプリズム斜面で屈折により偏向すると同時に、微小凹凸部14によって拡散される。そして、プリズム面12で拡散することによって稜線13の長手方向を含む全方向に光が分配される。
 この場合、光量分布の中心である光の光軸Oは、プリズム斜面の角度で決まる方向に進む。そして、全体としては指向特性が保たれることになり、出射面15側にブラスト処理を施した場合と同様な指向特性が得られる。出射面15から出射する光は、ブラスト処理が弱い場合は微小凹凸部14の個々の凹凸が浅いため、結果的にプリズム面12のプリズム斜面で決まる方向に指向特性をもつことになると考えられる。
 図11は、プリズム面12に強いブラスト処理を施した場合の出射面15側からみた出射光の指向特性を示す図である。また、図12Aは、プリズム面に強いブラスト処理を施した場合の光の屈折状態を模式的に示す図、図12Bは、プリズム面へのブラスト噴射時間を短縮した場合の光の屈折状態を模式的に示す図、図12Cは、プリズム面へのブラスト噴射圧(流速)を低くした場合の光の屈折状態を模式的に示す図である。
 図11に示すように、強いブラスト処理によりプリズム面12に微小凹凸部14を形成すると、出射面15からの出射光の指向特性は完全に消失し、無指向性の分布となる。
 図12Aは、後述する図20Dの無指向性の場合の表面凹凸の模式図を示したものであり、この場合、個々の微小凹凸部14は、プリズム面12の全体に深く凹凸が刻まれている。このとき、ブラスト処理を、図の鉛直下側(出射面15と垂直方向の下側)から施すとすると、個々の微小凹凸部14の表面は鉛直面から水平面まで広範囲の角度を有している。また、個々の微小凹凸部14は、例えば半球状又は鉄砲玉状(この形状はブラスト流速、時間等で制御可能)ゆえ、微小凹凸部14の表面の法線は鉛直方向を中心にして、まんべんなく分布していることになる。
 LED16からの入射光線Lは、個々の微小な凹凸部14に入射し、その点の法線とのなす角に従って偏向する。このため、光の偏向方向も、図12Aの鉛直方向(偏向なし)を中心に幅広く分布する。このため、プリズム面12での光の入射面は全体的に斜面となっているものの、入射光線の偏向方向には影響を及ぼさない。このため、この図12Aのプリズム板11は結果的に無指向性を示すことになると考えられる。
 このように、プリズム面12にブラスト処理を施す場合、ブラスト処理の強弱によって自由に出射光の指向特性を制御することができる。なお、ブラスト処理の強弱は、ブラストの粒体噴射における流速、又は噴射時間などによって制御することができる。また、ブラストの粒体噴射における流速や噴射時間の基準は、粒体噴射に使用する粒径やプリズム板11の材質等によっても異なってくる。
 また、図12Bは、弱いブラスト処理として噴射時間を短くした場合の表面凹凸の模式図を示している。
 この場合、微小凹凸部14の密度がまばら(微小凹凸部14の密度が半分)になって、プリズム面12の傾斜部分が半分残った状態となっている。これにより、入射光はプリズム偏向(凹凸なし部)と拡散(凹凸部)が混在し、出射光は指向性をもちかつ拡散すると考えられる。
 さらに、図12Cは、弱いブラスト処理として流速(噴射圧)を弱めた場合の表面凹凸の模式図を示している。
 噴射圧を弱くすると、微小凹凸部14の凹凸の深さが浅くなり、凹凸表面の法線は、プリズム面12の角度を中心に小さく分布(例えば30°±30°)する。その結果、拡散光の光軸はプリズム偏向(プリズム面12の偏向特性)と同一になり、入射光が偏向角を中心に拡散して、拡散光はその前後の角度に分布すると考えられる。こうして、前記と同様に、出射光は指向性をもちかつ拡散すると考えられる。
 なお、粒体としてガラスビーズを用いてブラスト処理を行う場合は、微小凹凸部14は滑らかになるため、弱いブラスト処理を施すことに相当する。このため、出射光は楕円状の強い指向特性となる。
 なお、図12A~図12Cは、あくまでも説明のための模式図であり、実際の表面形状とは異なっている。サンドブラストを施したプリズム面の実際の凹凸は、振幅も周期も不均一で、図12A~図12Cに示したような半球形状や釣鐘状等にはならない場合もある。
 しかし、全体的にプリズム面の凹凸の振幅は大きく、前述したように、表面の法線の方向がまんべんなく分布して、結果的に出射光は無指向性を示すことになる。
 ここで、プリズム面の表面凹凸の状態、すなわちプリズム面の表面粗さは、JIS-B0601に規定されているパラメータで表すことができる。
 その1つである算術平均粗さRa(μm)は、凹凸の状態を断面形状に相当する粗さ曲線で表した上で、表面の振幅の平均線を求め、その方向にx軸をとり、振幅を平均線からの偏差f(x)としたときに、
 
   Ra=1/L・∫ |f(x)|dx
 
 で表されるパラメータである。
 なお、Lは、x軸方向にとった基準長さである。
 また、プリズム面の表面粗さは、JIS-B0601:1994に規定されているパラメータで表すことができる(十点平均粗さRz)。
 これは、山の高さと谷の深さの夫々最大から5番目まで選び、その平均を加算した値で、最大振幅と類似な意味をもつパラメータである。
 これらのパラメータを用いて、図9及び図11の凹凸状態を表すと、弱いブラスト処理を施した図9の場合には、例えばRa=0.8μm、Rz=5.5μmである。この場合、凹凸振幅が小さく、プリズム斜面で決まる方向への指向性を残す特性となる。
 また、図11のように、強いブラスト処理を施した場合の表面粗さは、例えばRa=1.6μm、Rz=16.4μmである。この場合、凹凸振幅が十分大きく、出射光の指向性は消失する。
 本実施の形態によれば、プリズム板11は、多数の稜線13を有する三角柱形状のプリズム列が形成されたプリズム面12と、このプリズム面12に形成された微小凹凸部14と、を有するので、この微小凹凸部14により照明光の出射方向に指向性を与え、かつ照度分布を制御することができる。
 [第2の実施の形態]
 図13及び図14は、本実施の形態のプリズム板11を示す図であり、図13は、プリズム板11から出射した光の指向特性を示す図、図14は、そのプリズム板11をXIV-XIV方向から見た図である。
 なお、第1の実施の形態と同一又は相当する部材には同一の符号を付して説明する。
 本実施の形態では、光の入射側のプリズム面12にブラスト処理を施して微小凹凸部14を形成するとともに、照明光の出射側の出射面15にもブラスト処理を施して微小凹凸部14’を形成している。こうして、プリズム面12に入射した光は、プリズム面12の微小凹凸部14で拡散され、さらに、出射面15の微小凹凸部14’で拡散されて出射される。
 この場合、出射面15からの出射光の指向性の制御は、入射側のプリズム面12のブラストの強弱が支配的であることは、第1の実施の形態と同様である。
 本実施の形態によれば、プリズム面12に加えて出射面15にもブラスト処理を加えることによって、更に細かい指向性の制御を行うことができる。また、プリズム面12から入射した光が、入射側のプリズム面12と出射側の出射面15との2回の拡散によって、より滑らかな照明光分布が得られるという利点もある。
 [第3の実施の形態]
 図15は、本実施の形態のプリズム板11の成形金型20の構成を示す図である。
 第1の実施の形態では、プリズム板11のプリズム面12に直接的にブラスト処理を施し、微小凹凸部14を形成した場合について説明した。しかし、微小凹凸部14の形成方法はこれに限らない。例えば、成形手段によっても形成することができる。
 一般に、プリズム板11は、アクリルなどのプラスチック素材を成形して製造される。このため、実際には、図15に示すように、成形金型20に微小凹凸部25を形成し、この微小凹凸部25を成形素材23に転写し、プリズム板11を成形することが行われる。
 すなわち、成形金型20は、対向配置された上型21及び下型22を有している。そして、これら上型21の成形面21aと下型22の成形面22aとの間に、プラスチック素材23が配置される。この状態で、プラスチック素材23を所定温度に加熱軟化する。次いで、上型21及び下型22を相対的に接近移動してプラスチック素材23を加圧し、プリズム板11を成形する。図15は上述の加圧成形法の金型を説明する図であるが,成形素材を金型で囲まれた空間に射出して成形する射出成形(インジェクション)法を用いても全く同様である。
 この成形金型20は、下型22の成形面22aに、多数の稜線24を有する三角柱形状のプリズム列を形成するとともに、このプリズム列が形成された斜面に、微小凹凸部25を形成している。この微小凹凸部25は、例えばブラスト処理によって形成することができる。こうすることで、成形素材23に微小凹凸部25を転写してプリズム板11を成形することができる。ただし、下型22に微小凹凸部25を形成する場合、微細加工であればブラスト処理以外の方法を用いても構わない。
 なお、本実施の形態では、下型22に微小凹凸部25を形成した場合について説明したが、これに限らない。例えば、上型21の成形面21aにも微小凹凸部を形成してもよい。これにより、プリズム板11のプリズム面と出射面の両方に微小凹凸部を形成することができる(前述した図13参照)。
 本実施の形態によれば、例えば下型22の成形面22aに、多数の稜線24を有する三角柱形状のプリズム列を形成するとともに、少なくともプリズム列が形成された下型22のプリズム列の斜面に微小凹凸部25を形成し、この微小凹凸部25を成形素材23に転写することで、照明光の出射方向に指向性を与え、かつ照度分布を制御可能なプリズム板11を得ることができる。
 [第4の実施の形態]
 図16は、照明光学系10を情報読み取り用の撮像装置30に応用した例を示す図である。また、図17Aは、プリズム板11をプリズム面12側から見た図、図17Bは、プリズム面12と導光体33との位置関係を示す図である。なお、第1の実施の形態と同一又は相当する部材には同一の符号を付して説明する。
 この撮像装置30の照明光学系10は、撮像対象物31(例えば手のひら)からの反射光を撮像素子としてのイメージセンサ32で受光して撮像すべく、撮像対象物31に光を照射するものである。
 この照明光学系10は、イメージセンサ32の周囲に円環状に配置された複数の発光素子としてのLED16と、複数のLED16の上方に配置されたリング状の導光体(円筒体)33と、この導光体33の出射面33a上に配置されたリング状のプリズム板11と、を有している。
 なお、導光体33は、例えば透明な樹脂(又はガラス等)で構成され、複数のLED16からの光を上方に導き、プリズム板11を介して撮像対象物31に均一な光を照射する。この導光体33により、LED16からの光が光路から漏れないように導くことが可能である。このため、導光体33は、LED16の配置状態に合わせ、リング状に形成されている。
 なお、リング状とは、中央に孔を有する輪状のものをいい、例えば円形リング、方形リング、楕円リング、長円リング等を含む。
 このリング状のプリズム板11は、図17Aに示すように、導光体33の出射面33aからの光を撮像対象物31に照射すべく、半径方向に多数の稜線13を有する三角柱形状のプリズム列が円周上に形成されたプリズム面12を有している。なお、多数の稜線13は等間隔に形成されていることが望ましいが、必ずしも厳密に等間隔でなくてもよい。また、多数の稜線13はリング中心に向けて半径方向に形成されているが、厳密にリング中心を向いていなくてもよい。
 また、図17Bに示すように、このプリズム面12が複数のLED16(導光体33の出射面33a側)に対向するように配置している。さらに、このリング状のプリズム板11のプリズム面12には、微小凹凸部14が形成されている(図17A参照)。
 この微小凹凸部14は、第1の実施の形態等で説明したものと同様である。
 そして、図16に示したように、LED16から出射された光は、リング状の導光体33によって、読取対象である撮像対象物31に向けて導かれる。リング状の導光体33の内側には、イメージセンサ32と光学レンズ34を有する撮像系が配置されている。
 図18A~図18Dは、撮像装置30の照明光学系10を出射面15側から見た図である。また、この図18A~図18Dは、プリズム板11上の1点(A点)からの出射光の指向特性分布を比較した図である。
 なお、この図18A~図18Dの指向性分布は、ブラスト強さ(ここでは噴射時間)をパラメータにしている。
 また、撮像装置30の中央には、光学レンズ34とイメージセンサ32からなる撮像系が配置されている。
 そして、このイメージセンサ32の周囲を、リング状の導光体33及びその上に重ねられたリング状のプリズム板11が囲んでいる。この場合、環状に並べられた複数のLED16が照明光源となり、導光体33を経てリング状のプリズム板11から照明光が出射される。
 以下に説明する図18A~図18Dにおいて、プリズム板11の出射面15側にはブラスト処理を施していないものとする。
 図18Aは、プリズム板11のプリズム面12にもブラスト処理を施していない場合であり、最も強い指向性を示す例である。
 この図18Aでは、A点から出射した光は、プリズム板11によってリングの接線方向にのみ指向する。この場合、リング状のプリズム板11の出射面15全体からの照明を足し合わせると、半径方向には指向しないため、リングの中心部が暗く周囲が明るいドーナツ状の照明分布になる。
 図18Bは、プリズム面12に弱いブラスト処理を施した場合であり、図18Cは、それよりも強くプリズム面12にブラスト処理を施した場合である。
 図18B及び図18Cのいずれの場合も、接線方向のみならず半径方向へも照明光が出射されることがわかる。これによって、リングの中心部へも照明が届くようになる。また、ブラスト処理の強さによって指向性が変化し、ブラスト処理が比較的強い図18Cの場合の方が、図18Bに比べて指向性が弱くなっている。このため、図18Cでは、指向性分布を示す楕円が円に近づいている。
 前述のように、表面粗さパラメータによって図18B及び図18Cのプリズム面の凹凸状態を表すと、例えばブラスト処理が弱い図18Bの場合は、Ra=0.8μm、Rz=5.5μmである。また、ブラスト処理が中程度の図18Cの場合は、Ra=1.3μm、Rz=12.8μmである。すなわち、図18Cの方が凹凸の振幅は大きくなっている。
 さらに、図18Dは、プリズム面12にブラスト処理を十分に(強く)施した場合であり、指向性分布は円に近い無指向性を示している。
 この図18Dの場合のプリズム面の凹凸状態は、例えばRa=1.6μm、Rz=16.4μmである。このように、ブラスト処理が十分に強いため、十分振幅の大きな凹凸状態となっている。
 この場合には、リング状のプリズム板11の出射面15からの照明光は、リング中心部で重なることから、リング中心部の照度は高くなる。
 図19は、プリズム板11の出射面15と評価面(被照射面)17との位置関係を示す図である。
 同図19では、撮像系の光軸をz軸とし、プリズム板11の出射面15をz=0の平面としたときに、z=z1の平面を評価面(被照射面)17とした図である。
 また、図20A~図20Dは、評価面17における照明光の照度分布を比較した図である。なお、横軸を光軸からの距離r、縦軸を照明の照度(W/m2)としている。
 この図20A~図20Dは、ブラスト処理の強さを噴射時間で表した場合、図20Aの噴射時間は0(ブラスト処理なし)、図20Bの噴射時間は0~1/2(弱いブラスト処理)、図20Cの噴射時間は1/2(若干強いブラスト処理)、図20Dの噴射時間を1(強いブラスト処理)であった。
 さらに、図21は、図20A~図20Dの照度分布をまとめて示した図である。
 以上において、図20Aは図18Aに対応する図である。この図20Aは、プリズム面12(および出射面15)にブラスト処理がない場合の照度分布を示している。この場合、リング状のプリズム板11のリング中心部に照明光は届かず、リング周辺部が円環状に明るいドーナツ状の照度分布となる。
 図20Bは図18Bに対応する図である。この図20Bは、プリズム面12に弱いブラスト処理を施した場合の照度分布を示している。この場合、ブラスト処理の拡散効果によって半径方向にも照明光が分配され、リング周辺部が円環状に明るいドーナツ状の特徴をもちながらリング中心部へも照明が届いている。
 図20Cは図18Cに対応する図である。この図20Cは、プリズム面12へのブラスト処理を図18Bよりも強く施した場合の照度分布を示している。この場合、リング中心部への照明光の分配が大きくなり、評価面17の全体に均一な照度分布となっている。
 図20Dは図18Dに対応する図である。この図20Dは、プリズム面12へ十分に(強く)ブラスト処理を施した場合の照度分布を示している。この場合、出射光のリング接線方向への指向性は消失し、リング中心部への照明光の集中により単峰性(1つの山のような形状)の照度分布となっている。この照度分布の形は、リング型のプリズム板11がない場合と基本的に同じである。すなわち、透明なガラス平板の片面に強いブラスト処理を施した場合と同様である。
 このように、プリズム面12のブラスト処理の強さを変えていくと、評価面17における照度分布は図20A~図20Dのように変化する。
 図21は、図20A~図20Dの照度分布をまとめて示したものである。
 同図21のように、ブラスト処理の強弱により、照度分布は、円環状のa曲線から、b曲線,c曲線を経て、単峰性のd曲線まで連続的に変化する。このように、プリズム面12のブラスト処理の強弱によって所望の照明光の照度分布特性を得ることができる。
 なお、照明光の出射にあたり、リング接線方向に指向特性を持たせることは、撮像系においては取得画像に物体表面の陰影をつけたり、あるいは陰影を避ける場合に効果がある。
 また、リング接線方向に指向特性を持たせることで、物体からの反射光にも指向特性を与えて正反射光を避けたり、強調したりすることもできる。一方、照度分布そのものはプリズム板11によらずとも制御することができる。例えば、照度分布は、リング接線方向への指向性がなくても半径方向の出射方向と拡散度のみで制御することができる。
 なお、本実施の形態では、プリズム板11の出射面15側にはブラスト処理を施していないものとして説明したが、これに限らない。例えば、プリズム板11のプリズム面12と出射面15の両方にブラスト処理を施してもよい(図13参照)。この場合は、プリズム面12のみにブラスト処理を施した場合に比較して、照明光の出射方向の指向特性と照度分布を幅広く制御することができる。
 本実施の形態によれば、イメージセンサ32の周囲に配置された複数のLED16と、この複数のLED16からの光をイメージセンサ32に照射すべく、半径方向に多数の稜線13を有する三角柱形状のプリズム列が周上に形成されたプリズム面12を複数のLED16側に向け配置しかつプリズム面12に微小凹凸部14を形成したリング状のプリズム板11と、を有することにより、照明光の出射方向に指向特性を与えながら照度分布を制御することができる。
 [第5の実施の形態]
 図22は、リング状の導光体33の出射面33aの形状を円錐台状の斜面とした照明光学系10を示す図である。また、図23Aは、円錐台状のプリズム板11の外観を示す図、図23Bは、そのB部拡大を示す図である。なお、第1の実施の形態と同一又は相当する部材には同一の符号を付して説明する。
 第1~第4の実施の形態では、導光体33の出射面33a及びプリズム板11のプリズム面12を平面としていたが、本実施の形態では円錐台状とした。
 すなわち、LED16の光量分布、導光体33のサイズ、撮像対象物である被照射面のサイズ及び被照射面までの距離などによって、導光体33の出射面15を円錐台状の斜面とする方が適切な場合がある。
 この場合には、図22に示すように、リング状の導光体33の出射面15を円錐台状の斜面とし、同様に、リング状のプリズム板11の形状も、円錐台状の斜面をもつ立体的なものになる。
 図23Aにおいて、導光体33の出射面33aに重ねて配置されるリング状のプリズム板11は、円錐台状の斜面に形成されている。また、図23Bにおいて、このプリズム板11は、第4の実施の形態と同様に、半径方向に多数の稜線13を有する三角柱形状のプリズム列が円周上に形成されたプリズム面12を有している。このプリズム列は、例えば頂角90度、深さ0.2mmで180本(プリズム列のピッチ2°)である。
 さらに、図23Bに示すように、プリズム面12にサンドブラストにより微小凹凸部14を形成している。この微小凹凸部14により、プリズム面12に拡散面が形成されている。
 なお、本実施の形態では、プリズム板11のプリズム面12にブラスト処理を施して微小凹凸部14を形成した場合について説明したが、これに限らない。例えば、プリズム面12と出射面15の両方にブラスト処理を施すことによって(図13参照)、照明光の指向特性を幅広く制御することが可能となる。
 本実施の形態によれば、導光体33の出射面33aを円錐台状の傾斜面とし、また、プリズム板11の出射面15を円錐台斜面として、その出射面15から光を拡散出射させることにより、照明光の出射方向に指向特性を与えながら照度分布を制御することができる。このときの照度分布は、前述した図21の照度分布曲線a~dに準じるものと考えられる。

Claims (12)

  1.  片面に多数の稜線を有する三角柱形状のプリズム列が形成されたプリズム面と、
     当該プリズム面に形成された微小凹凸部と、を有する
     ことを特徴とするプリズム板。
  2.  前記微小凹凸部の凹凸の深さを、前記プリズム面に入射した光が前記プリズム面と反対側の出射面から出射する光の指向特性に応じて変化させた
     ことを特徴とする請求項1に記載のプリズム板。
  3.  前記微小凹凸部をブラスト処理により形成した
     ことを特徴とする請求項1又は2に記載のプリズム板。
  4.  前記微小凹凸部を、前記プリズム面と前記出射面の両方に形成した
     ことを特徴とする請求項1に記載のプリズム板。
  5.  前記プリズム面を円錐台状の斜面に形成した
     ことを特徴とする請求項1に記載のプリズム板。
  6.  撮像対象物からの反射光を撮像素子で受光して撮像すべく前記撮像対象物に光を照射する撮像装置の照明光学系において、
     前記撮像素子の周囲に配置された複数の発光素子と、
     前記複数の発光素子からの光を前記撮像対象物に照射すべく、半径方向に多数の稜線を有する三角柱形状のプリズム列が周上に形成されたプリズム面を前記複数の発光素子側に向け配置しかつ前記プリズム面に微小凹凸部を形成したリング状のプリズム板と、を有する
     ことを特徴とする撮像装置の照明光学系。
  7.  前記微小凹凸部の凹凸の深さを、前記プリズム面に入射した光が前記プリズム面と反対側の出射面から出射する光の指向特性に応じて変化させた
     ことを特徴とする請求項6に記載の撮像装置の照明光学系。
  8.  前記微小凹凸部をブラスト処理により形成した
     ことを特徴とする請求項6又は7に記載の撮像装置の照明光学系。
  9.  前記微小凹凸部を、前記プリズム面と前記出射面の両方に形成した
     ことを特徴とする請求項6に記載の撮像装置の照明光学系。
  10.  前記プリズム面を円錐台状の斜面に形成した
     ことを特徴とする請求項6に記載の撮像装置の照明光学系。
  11.  対向配置された第1の型及び第2の型を有し、これら第1の型及び第2の型の間に配置された成形素材を加熱軟化して加圧しプリズム板を成形する、あるいは第1および第2の型に囲まれた空間に成形素材を射出してプリズム板を成形するプリズム板の成形型において、
     前記第1の型及び第2の型の一方の成形面に、多数の稜線を有する三角柱形状のプリズム列を形成するとともに、
     前記第1の型及び第2の型の少なくとも前記プリズム列が形成された側の当該プリズム列の斜面に微小凹凸部を形成した
     ことを特徴とするプリズム板の成形型。
  12.  前記微小凹凸部をブラスト処理により形成した
     ことを特徴とする請求項11に記載のプリズム板の成形型。
PCT/JP2010/000211 2009-10-30 2010-01-15 プリズム板、撮像装置の照明光学系、及びプリズム板の成形型 WO2011052101A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127010169A KR101377846B1 (ko) 2009-10-30 2010-01-15 프리즘판, 촬상 장치의 조명 광학계, 및 프리즘판의 성형틀
EP10826242A EP2495588A4 (en) 2009-10-30 2010-01-15 PRISM PLATE, OPTICAL ILLUMINATION SYSTEM OF IMAGING DEVICE, AND PRISM PLATE MOLD
CN201080047798.5A CN102576102B (zh) 2009-10-30 2010-01-15 摄像装置的照明光学系统
JP2011538211A JP5337256B2 (ja) 2009-10-30 2010-01-15 撮像装置の照明光学系
US13/499,393 US20130128571A1 (en) 2009-10-30 2012-03-30 Prism plate, illumination optical system of imaging device, and forming die of prism plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009251481 2009-10-30
JP2009-251481 2009-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/499,393 Continuation US20130128571A1 (en) 2009-10-30 2012-03-30 Prism plate, illumination optical system of imaging device, and forming die of prism plate

Publications (1)

Publication Number Publication Date
WO2011052101A1 true WO2011052101A1 (ja) 2011-05-05

Family

ID=43921540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000211 WO2011052101A1 (ja) 2009-10-30 2010-01-15 プリズム板、撮像装置の照明光学系、及びプリズム板の成形型

Country Status (6)

Country Link
US (1) US20130128571A1 (ja)
EP (2) EP3026470A1 (ja)
JP (1) JP5337256B2 (ja)
KR (1) KR101377846B1 (ja)
CN (1) CN102576102B (ja)
WO (1) WO2011052101A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190919A1 (ja) * 2012-06-18 2013-12-27 コニカミノルタ株式会社 照明装置
WO2019163003A1 (ja) * 2018-02-20 2019-08-29 富士通フロンテック株式会社 撮像装置用の照明光学系

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777447B (zh) * 2012-10-17 2016-03-16 深圳市绎立锐光科技开发有限公司 一种光源系统、波长转换装置及相关投影系统
CN103943753A (zh) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 发光二极管光源及其制作方法、背光源及显示装置
WO2015184456A1 (en) * 2014-05-30 2015-12-03 Osram Sylvania Inc. Light control films and lighting devices including same
AT520942B1 (de) * 2018-03-15 2019-09-15 Werner Faerber Verfahren zur Herstellung einer Lichtlenkfolie und damit hergestellte Folie
WO2021150813A1 (en) 2020-01-24 2021-07-29 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same
CN221079143U (zh) 2023-05-22 2024-06-04 亮视技术公司 背光单元

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148408A (ja) * 1992-11-11 1994-05-27 Sekisui Chem Co Ltd 光制御シート
JPH09184906A (ja) * 1995-12-28 1997-07-15 Enplas Corp 光制御部材及びサイドライト型面光源装置
JP2004327051A (ja) * 2003-04-21 2004-11-18 Nikkei Seisakusho:Kk 表示ランプ用プリズム及び表示ランプ
JP2006259379A (ja) * 2005-03-17 2006-09-28 Canon Inc 発光装置
WO2007108443A1 (ja) * 2006-03-17 2007-09-27 Mitsubishi Rayon Co., Ltd. プリズムシート、面光源装置、およびプリズムシートの製造方法
JP2007264639A (ja) 2007-03-30 2007-10-11 Omron Corp 拡散板及び面光源装置
JP2008242002A (ja) * 2007-03-27 2008-10-09 Asahi Kasei Chemicals Corp プリズム付き拡散板
JP4198246B2 (ja) 1998-11-16 2008-12-17 株式会社クラレ 面光源素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139927U (ja) * 1981-02-27 1982-09-01
JPH09223184A (ja) * 1996-02-19 1997-08-26 Asahi Optical Co Ltd 画像読み取り用照明装置
US6280063B1 (en) * 1997-05-09 2001-08-28 3M Innovative Properties Company Brightness enhancement article
KR100432438B1 (ko) * 2001-01-18 2004-05-22 주식회사 송산 빛을 회절 및 확산시키는 프리즘 디퓨저
JP2005258011A (ja) 2004-03-11 2005-09-22 Canon Inc 照明装置および撮影装置
JP5508712B2 (ja) * 2005-07-08 2014-06-04 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 平面的に配列された光源により放出される収束光線の実現
DE102006023142A1 (de) * 2006-05-16 2007-11-22 Sick Ag Kamera-Beleuchtungseinheit
US20080151375A1 (en) * 2006-12-26 2008-06-26 Ching-Bin Lin Light guide means as dually effected by light concentrating and light diffusing
KR100912260B1 (ko) * 2007-03-28 2009-08-17 제일모직주식회사 표면에 일정 조도를 갖는 액정표시장치용 광학 프리즘 시트
KR100864321B1 (ko) * 2007-06-19 2008-10-20 제일모직주식회사 프리즘 계곡부위에 무정형의 돌기형상을 가지는 광확산체를포함하는 디퓨져 프리즘 시트 및 이를 이용한액정표시장치
CN101349772B (zh) * 2007-07-20 2011-06-29 鸿富锦精密工业(深圳)有限公司 背光模组及其光学板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148408A (ja) * 1992-11-11 1994-05-27 Sekisui Chem Co Ltd 光制御シート
JPH09184906A (ja) * 1995-12-28 1997-07-15 Enplas Corp 光制御部材及びサイドライト型面光源装置
JP4198246B2 (ja) 1998-11-16 2008-12-17 株式会社クラレ 面光源素子
JP2004327051A (ja) * 2003-04-21 2004-11-18 Nikkei Seisakusho:Kk 表示ランプ用プリズム及び表示ランプ
JP2006259379A (ja) * 2005-03-17 2006-09-28 Canon Inc 発光装置
WO2007108443A1 (ja) * 2006-03-17 2007-09-27 Mitsubishi Rayon Co., Ltd. プリズムシート、面光源装置、およびプリズムシートの製造方法
JP2008242002A (ja) * 2007-03-27 2008-10-09 Asahi Kasei Chemicals Corp プリズム付き拡散板
JP2007264639A (ja) 2007-03-30 2007-10-11 Omron Corp 拡散板及び面光源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2495588A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190919A1 (ja) * 2012-06-18 2013-12-27 コニカミノルタ株式会社 照明装置
WO2019163003A1 (ja) * 2018-02-20 2019-08-29 富士通フロンテック株式会社 撮像装置用の照明光学系
US11526066B2 (en) 2018-02-20 2022-12-13 Fujitsu Frontech Limited Illumination optical system for imaging device

Also Published As

Publication number Publication date
CN102576102B (zh) 2014-12-31
US20130128571A1 (en) 2013-05-23
JP5337256B2 (ja) 2013-11-06
KR20120056882A (ko) 2012-06-04
KR101377846B1 (ko) 2014-03-25
EP3026470A1 (en) 2016-06-01
EP2495588A4 (en) 2013-03-27
JPWO2011052101A1 (ja) 2013-03-14
CN102576102A (zh) 2012-07-11
EP2495588A1 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5337256B2 (ja) 撮像装置の照明光学系
KR0168879B1 (ko) 렌티큘러 렌즈, 면광원 및 액정 표시 장치
US9347643B2 (en) Light flux controlling apparatus
EP3248038B1 (en) Light source with a collimator and lenslet arrays
US10386567B2 (en) Optical sheet for liquid crystal display device, backlight unit for liquid crystal display device and production method of optical sheet for liquid crystal display device
JPWO2008069324A1 (ja) 光拡散性光学フィルム及びその製造方法、プリズムシート、並びに面光源装置
WO2003031869A1 (fr) Source lumineuse locale avec guide de lumiere
WO2007000962A1 (ja) 照明装置およびこれに用いられる光制御部材並びにこれらを用いた画像表示装置
US10627078B2 (en) Method and system for producing a beam of illumination having smooth edges
JP2008159274A (ja) 導光板、導光板成形用金型、導光板成型用金型の製造方法及び導光板の製造方法
CN115185125B (zh) Mini-LED光源内嵌式背光模组
JP2000352719A (ja) 液晶表示装置用導光板及びその製造方法
JP2004145035A (ja) 面光源装置及びこれに用いる導光板の製造方法
CN113805267A (zh) 一种导光板及背光源结构
CN217879709U (zh) 一种高分光比导光板及其光源模块、显示组件
JP2017519328A (ja) Ledレンズ及びこのledレンズを備えるled光源
US20180347783A1 (en) Optic and Apparatus for Making an Optic
WO2017186006A1 (zh) 棱镜片及其制作方法、背光模组及vr显示装置
TW201523055A (zh) 導光板及背光模組
KR101219097B1 (ko) 광 효율이 우수한 광학 시트, 그 제조 방법, 이를 포함하는 백라이트 유닛 및 디스플레이 장치
JP2012098595A (ja) 導光体製造用型部材及びその製造方法
CN212364633U (zh) 光学模块及身份验证装置
JP6572719B2 (ja) 導光体、面光源装置及び照明装置
WO2023071594A1 (zh) 一种匀光膜及其制备方法
JPH09159833A (ja) 導光体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047798.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826242

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538211

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010826242

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127010169

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE