WO2011052092A1 - 可変圧縮比内燃機関の制御装置 - Google Patents

可変圧縮比内燃機関の制御装置 Download PDF

Info

Publication number
WO2011052092A1
WO2011052092A1 PCT/JP2009/068772 JP2009068772W WO2011052092A1 WO 2011052092 A1 WO2011052092 A1 WO 2011052092A1 JP 2009068772 W JP2009068772 W JP 2009068772W WO 2011052092 A1 WO2011052092 A1 WO 2011052092A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression ratio
fuel
change
variable compression
internal combustion
Prior art date
Application number
PCT/JP2009/068772
Other languages
English (en)
French (fr)
Inventor
宮下 茂樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010539957A priority Critical patent/JP5077440B2/ja
Priority to PCT/JP2009/068772 priority patent/WO2011052092A1/ja
Publication of WO2011052092A1 publication Critical patent/WO2011052092A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control apparatus for a variable compression ratio internal combustion engine controlled by cooperative operation of a plurality of actuators including a variable compression ratio mechanism.
  • variable compression ratio internal combustion engine capable of mechanically changing the compression ratio.
  • the variable compression ratio internal combustion engine can realize the optimum compression ratio according to the load.
  • the change of the compression ratio in the variable compression ratio internal combustion engine is performed in response to a change in the load request from the driver, that is, an operation of the accelerator pedal.
  • the variable compression ratio mechanism which is an actuator, is moved at the fastest speed without delay according to the change in load.
  • the properties of the fuel used in the internal combustion engine are not necessarily constant, and sometimes different properties of fuel are used. For example, this applies to the case where high-octane gasoline is supplied to an internal combustion engine in which regular gasoline is used, or to the case where ethanol is supplied to an internal combustion engine in which gasoline is used. If the properties of the fuel used are different, the relationship between the load and the optimum compression ratio is also different. Even in such a case, according to the variable compression ratio internal combustion engine, optimum fuel efficiency can be obtained by changing the relationship between the load and the compression ratio in accordance with the fuel properties.
  • the present invention has been made to solve the above-described problems, and can simplify control during transient operation of a variable compression ratio internal combustion engine controlled by cooperative operation of a plurality of actuators including a variable compression ratio mechanism.
  • the purpose is to do so.
  • the present invention provides the following control device for a variable compression ratio internal combustion engine.
  • the control apparatus for a first variable compression ratio internal combustion engine includes a means for determining the properties of fuel used in the internal combustion engine, and the load after the change when the load required for the internal combustion engine changes. Means for changing the setting of the compression ratio according to the value and the fuel property, and means for operating the variable compression ratio mechanism according to the changed set compression ratio when the setting of the compression ratio is changed. For the means to operate the variable compression ratio mechanism, if the required load change is the same, the variable compression ratio mechanism is operated so that the period from the start to completion of the compression ratio change is the same regardless of the fuel properties There is a feature to do.
  • the period from the start to the completion of the change of the compression ratio is the same if the change in the load required for the internal combustion engine is the same regardless of the fuel properties. If the relationship between the required load change and compression ratio change period does not depend on the fuel properties, it is necessary to change the operation method of other actuators operated in cooperation with the variable compression ratio mechanism depending on the fuel properties. Absent. Therefore, according to the 1st control apparatus, control at the time of the transient operation accompanied by the change of a compression ratio can be simplified compared with the past.
  • the means for changing the setting of the compression ratio changes the setting of the compression ratio within the frame with the predetermined compression ratio as the upper limit.
  • the means for operating the variable compression ratio mechanism starts changing the compression ratio by changing the operating speed of the variable compression ratio mechanism according to the fuel property when the change in the compression ratio setting is a change from the upper limit compression ratio. The time from completion to completion is the same regardless of the fuel properties.
  • the means for operating the variable compression ratio mechanism is configured such that the operating speed of the variable compression ratio mechanism is controlled by the fuel property when the amount of change in the compression ratio for the same load change varies depending on the fuel property. Therefore, the period from the start to the end of the change of the compression ratio is made the same regardless of the fuel property.
  • the compression ratio is set differently depending on whether the fuel octane number is high or low.
  • the operating speed of the variable compression ratio mechanism is varied depending on whether the octane number of the fuel is high or low.
  • the control apparatus for a second variable compression ratio internal combustion engine includes a means for determining the property of fuel used in the internal combustion engine, and the load after the change when the load required for the internal combustion engine changes.
  • the means for operating the variable compression ratio mechanism includes a variable compression ratio so that if the required change in load is the same, the intermediate point in time from the start to completion of the compression ratio change is the same regardless of the fuel properties. It is characterized by operating the mechanism.
  • the second control device regardless of the fuel property, if the change in the load of the internal combustion engine is the same, the intermediate point in the period from the start to the completion of the change of the compression ratio is the same, It is avoided that any one of the compression ratio change start timing and the completion timing greatly deviates depending on the fuel property. If the relationship between the required load change and the compression ratio change period does not change greatly depending on the fuel properties, it is not necessary to change the operation method of other actuators operated in cooperation with the variable compression ratio mechanism depending on the fuel properties. . Therefore, according to the second control device, it is possible to simplify the control at the time of the transient operation accompanied by the change of the compression ratio as compared with the conventional case.
  • the means for changing the compression ratio setting changes the compression ratio setting within the frame with a predetermined compression ratio as an upper limit.
  • the means for operating the variable compression ratio mechanism changes the compression ratio by changing the timing for starting the operation of the variable compression ratio mechanism according to the fuel property. The intermediate point in the period from the start of change to completion is the same regardless of the fuel properties.
  • the means for operating the variable compression ratio mechanism is a timing for starting the operation of the variable compression ratio mechanism when the amount of change in the compression ratio with respect to the same load change varies depending on the fuel properties. Is changed according to the fuel properties, so that the intermediate time point from the start to the completion of the change of the compression ratio is made the same regardless of the fuel properties.
  • the compression ratio is set differently depending on whether the fuel octane number is high or low.
  • the operating speed of the variable compression ratio mechanism is varied depending on whether the octane number of the fuel is high or low.
  • FIG. 1 is a system diagram of a variable compression ratio internal combustion engine to which the present invention is applied. It is a figure which shows the relationship between the octane number of a fuel, and the theoretical optimal compression ratio with respect to a load. It is a figure which shows the relationship between the octane number of a fuel, and the optimal compression ratio in the mechanical restrictions with respect to a load. It is a figure for demonstrating operation
  • Embodiment 1 FIG. Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 6.
  • FIG. 1 is a system diagram of a variable compression ratio internal combustion engine to which the control device of the present embodiment is applied.
  • the variable compression ratio internal combustion engine (hereinafter simply referred to as an engine) in FIG. 1 is a 4-stroke spark ignition reciprocating engine.
  • the engine 2 is an actuator for controlling the operation thereof, in addition to an ignition device 4, a throttle 6, a variable valve timing mechanism (hereinafter referred to as VVT) 8 and the like provided in a general engine, and a variable compression ratio mechanism 10. It also has.
  • VVT variable valve timing mechanism
  • the variable compression ratio mechanism 10 is a mechanism that changes the compression ratio (mechanical compression ratio), which is the ratio between the cylinder volume and the combustion chamber volume, by mechanically changing the combustion chamber volume.
  • mechanical compression ratio is the ratio between the cylinder volume and the combustion chamber volume.
  • As a method of changing the combustion chamber volume for example, there is a method of changing the reciprocating position of the piston in the cylinder by moving the cylinder block in the axial direction of the cylinder with respect to the crankcase by an electric motor.
  • the specific structure of such a variable compression ratio mechanism is disclosed in Japanese Patent Application Laid-Open No. 2007-309298, Japanese Patent Application Laid-Open No. 2004-092639, or Japanese Patent Application Laid-Open No. 2009-138607. With respect to the present invention, there is no limitation on the specific configuration and mechanism of the variable compression ratio mechanism 10 as long as at least the compression ratio can be mechanically changed.
  • All the actuators 4, 6, 8, 10 including the variable compression ratio mechanism 10 are cooperatively operated by an ECU (Electronic control unit) 12.
  • ECU Electronic control unit
  • a large number of sensors are connected to the ECU 12 in order to grasp the state of the engine 2, the vehicle environment, or requests from the driver.
  • One of such sensors is an accelerator opening sensor 14 and a fuel property sensor 16.
  • the ECU 12 knows the magnitude of the load requested by the driver from the signal of the accelerator opening sensor 14, that is, the signal indicating the opening of the accelerator pedal. Further, the ECU 12 determines the property of the fuel used in the engine 2 based on the signal from the fuel property sensor 16.
  • the fuel property sensor mentioned here is not only a dedicated sensor for detecting or measuring the fuel property itself such as the presence / absence of a specific component, component ratio, viscosity, volatility, and average molecular weight, but also required for distinguishing the fuel property. All sensors that can obtain accurate information are included.
  • the knock sensor corresponds to the fuel property sensor.
  • the fuel property is determined by calculating the combustion speed of the fuel from the in-cylinder pressure
  • the in-cylinder pressure sensor corresponds to the fuel property sensor.
  • the fuel property is determined from the concentration of alcohol contained in the fuel
  • the alcohol concentration sensor corresponds to the fuel property sensor.
  • the air-fuel ratio sensor corresponds to the fuel property sensor.
  • the ECU 12 determines the level of the octane number of the fuel as the fuel property, and the fuel property sensor 16 inputs information necessary for the determination of the octane number of the fuel to the ECU 12.
  • the octane number of the fuel determined based on the information from the fuel property sensor 16 is used as information for operating the variable compression ratio mechanism 10.
  • the ECU 12 operates the variable compression ratio mechanism 10 in accordance with a signal from the accelerator opening sensor 14, and controls the compression ratio of the engine 2 to an optimum compression ratio according to the load required by the driver. Then, the relationship between the required load and the set value of the compression ratio according to the operation is changed according to the octane number of the fuel.
  • FIG. 2 is a graph showing the relationship between the octane number of the fuel in a steady state and the theoretical optimum compression ratio with respect to the load. From FIG. 2, it can be seen that it is desirable to increase the compression ratio as the load decreases. It can also be seen that when a fuel with a high octane number is used, it is preferable to set a high compression ratio if the load is the same as compared with a case where a fuel with a high octane number is used.
  • the compression ratio that can be realized by the variable compression ratio mechanism 10 has mechanical limitations determined by its structure.
  • the relationship between the octane number of the fuel and the optimum compression ratio with respect to the load is as shown in FIG.
  • the compression ratio is set to the upper limit compression ratio regardless of the octane number of the fuel.
  • the compression ratio setting will be lowered as the load increases, but if a high octane fuel is used, the compression ratio will be Set to the upper limit compression ratio.
  • the set value of the compression ratio is lowered as the load increases.
  • the ECU 12 stores a map of the relationship between the octane number and the optimum compression ratio with respect to the load shown in FIG.
  • ECU12 sets the compression ratio according to a load and an octane number with reference to the map, and operates the variable compression ratio mechanism 10 according to the set compression ratio. More specifically, when the required load changes, for example, when the accelerator pedal is depressed by the driver, the ECU 12 changes the compression ratio setting according to the changed load value and octane number, and the set compression after the change
  • the variable compression ratio mechanism 10 is operated according to the ratio.
  • FIG. 3 shows a rule for determining the optimum compression ratio in the steady state from the required load and the octane number. During transient operation in which the compression ratio changes, the variable compression ratio mechanism 10 is operated according to a different rule.
  • the operation method of the variable compression ratio mechanism 10 employed during the transient operation corresponds to one feature of the present embodiment.
  • the setting of the operation speed of the variable compression ratio mechanism 10 is changed depending on whether the octane number of the fuel being used is high or low. Specifically, if a low-octane fuel is used, the ECU 12 sets the variable compression ratio mechanism 10 at the fastest speed without delay according to the required load change, as in the conventional operation method. Make it work. On the other hand, if high-octane fuel is used, the ECU 12 operates the variable compression ratio mechanism 10 at a slower speed than when low-octane fuel is used.
  • variable compression ratio mechanism 10 is always operated at the highest speed regardless of the octane level, the compression ratio can be changed even if the required change in the load is the same due to the difference in the required change in the compression ratio. The time required for the change will vary.
  • the period from the start to the completion of the change of the compression ratio is made the same regardless of the octane number. be able to.
  • FIG. 4 and 5 are diagrams showing how the compression ratio changes in response to a change in load when the variable compression ratio mechanism 10 as described above is actually operated during transient operation.
  • FIG. 4 is a diagram showing the relationship between the load and the compression ratio when low-octane fuel is used.
  • the solid line in FIG. 4 corresponds to the relationship between the load and the optimum compression ratio when the low-octane fuel shown in FIG. 3 is used.
  • FIG. 5 is a diagram showing the relationship between the load and the compression ratio when high-octane fuel is used.
  • the solid line in FIG. 5 corresponds to the relationship between the load and the optimum compression ratio when the high octane fuel shown in FIG. 3 is used.
  • a dotted line with an arrow indicates a change in compression ratio with respect to a change in load realized by operating the variable compression ratio mechanism 10.
  • the slope of each line in the figure that is, the ratio of the change in the compression ratio with respect to the change in load is the ratio of the change in the compression ratio with respect to the change in time, i.e., the rate of change in the compression ratio.
  • the compression ratio along the solid line showing the relationship between the load and the optimal compression ratio, corresponding to the load B from the compression ratio X A corresponding to the load A The compression ratio changes to XBL .
  • the change speed of the compression ratio at this time is the speed when the variable compression ratio mechanism 10 is operated at the fastest speed.
  • the compression ratio rather than along the solid line showing the relationship between the load and the optimal compression ratio
  • the load from the compression ratio X A corresponding to the load A B Changes substantially linearly up to the compression ratio X BH corresponding to.
  • the change rate of the compression ratio at this time is slower than the change rate when the low-octane fuel is used, as can be seen by comparing the slope of the dotted line shown in FIG. 4 with the slope of the dotted line shown in FIG. It is.
  • the amount of change in the compression ratio that accompanies load changes is less than when low-octane fuel is used.
  • the period from the start to the completion of the ratio change can be made the same.
  • FIG. 6 is a time chart showing the operation of the engine 2 realized by the operation of the variable compression ratio mechanism 10 described above.
  • the lowermost part of FIG. 6 shows a change in the opening degree of the accelerator pedal, that is, a change in required load.
  • the uppermost part of FIG. 6 shows a change in ignition timing controlled by the ignition device 4.
  • the second stage of FIG. 6 shows a change in valve timing controlled by the VVT 8.
  • the third row in FIG. 6 shows a change in the compression ratio controlled by the variable compression ratio mechanism 10.
  • the fourth stage of FIG. 6 shows a change in the load factor (cylinder filling efficiency) controlled by the throttle 6. According to FIG. 6, it can be seen that the actuators 4, 6, 8, and 10 are cooperatively operated according to changes in the required load.
  • two lines, a thick line and a thin line are drawn as lines indicating the change in compression ratio.
  • the thin line indicates the change in compression ratio realized by the operation of the variable compression ratio mechanism 10 when low octane number fuel is used
  • the thick line indicates the variable compression ratio when high octane number fuel is used.
  • the change of the compression ratio realized by operation of the mechanism 10 is shown.
  • the change rate of the compression ratio is slower than when low-octane fuel is used.
  • the period from the start to the completion of the change of the compression ratio is the same regardless of the octane number of the fuel.
  • the operation method of the other actuators 4, 6, 8 operated in cooperation with the variable compression ratio mechanism 10 Does not need to be changed depending on the octane number of the fuel. That is, as is clear from FIG. 6, only the variable compression ratio mechanism 10 needs to change the operation method according to the octane number of the fuel, and the other actuators 4, 6 and 8 have the octane number of the fuel. The same operation method can be taken regardless of the difference. Therefore, according to the present embodiment, it is possible to simplify the control at the time of transient operation accompanied by the change of the compression ratio as compared with the conventional case, and thereby it is possible to simplify the adaptation at the design stage. .
  • FIG. 1 A second embodiment of the present invention will be described with reference to FIGS. 1, 7 and 8.
  • FIG. 1 A second embodiment of the present invention will be described with reference to FIGS. 1, 7 and 8.
  • variable compression ratio mechanism 10 of the first embodiment has a variable operation speed, but the variable compression ratio mechanism 10 of the present embodiment cannot change the operation speed.
  • the present embodiment and the first embodiment are different in the operation method of the variable compression ratio mechanism 10 employed during the transient operation.
  • the setting of the operation timing of the variable compression ratio mechanism 10 is changed depending on whether the octane number of the fuel being used is high or low. Specifically, if a low-octane fuel is used, the ECU 12 operates the variable compression ratio mechanism 10 without delay according to a change in load, similarly to the conventional operation method. On the other hand, if high-octane fuel is used, the ECU 12 operates the variable compression ratio mechanism 10 at a later timing than when low-octane fuel is used.
  • the operation speed of the variable compression ratio mechanism 10 is a constant speed regardless of the octane number.
  • the intermediate point in the period from the start to the end of the change in the compression ratio does not depend on the octane number. In the same manner, it can be avoided that one of the compression ratio change start timing and the completion timing greatly deviates depending on the octane number.
  • FIG. 7 is a diagram showing how the compression ratio changes in response to a change in load when the variable compression ratio mechanism 10 as described above is actually operated during transient operation.
  • FIG. 7 is a diagram showing the relationship between the load and the compression ratio when high-octane fuel is used, and the solid line in FIG. 7 shows the case where the high-octane fuel shown in FIG. 3 is used. This corresponds to the relationship between the load and the optimum compression ratio.
  • the relationship between the load and the compression ratio when low-octane fuel is used is as shown in FIG. 4 as in the first embodiment.
  • a dotted line with an arrow in FIG. 7 shows a change in the compression ratio with respect to a change in the load realized by operating the variable compression ratio mechanism 10 when a high-octane fuel is used.
  • the compression ratio does not follow the solid line indicating the relationship between the load and the optimum compression ratio, but starts to decrease at an early timing, and is substantially reduced to the compression ratio X BH in parallel with the solid line indicating the relationship between the load and the optimum compression ratio. It changes linearly.
  • the amount of change in the compression ratio that accompanies a change in load is less than when low-octane fuel is used.
  • the intermediate point in the period from the start to the completion of the ratio change can be made the same.
  • FIG. 8 is a time chart showing the operation of the engine 2 realized by the operation of the variable compression ratio mechanism 10 described above.
  • the bottom row in FIG. 8 shows a change in the accelerator pedal opening, that is, a required load change.
  • the uppermost part of FIG. 8 shows a change in ignition timing controlled by the ignition device 4.
  • the second stage of FIG. 8 shows a change in valve timing controlled by the VVT 8.
  • the third row in FIG. 8 shows a change in the compression ratio controlled by the variable compression ratio mechanism 10.
  • the fourth stage of FIG. 8 shows the change in the load factor controlled by the throttle 6. According to FIG. 8, it can be seen that the actuators 4, 6, 8, and 10 are cooperatively operated according to changes in the required load.
  • two lines, a thick line and a thin line are drawn as lines indicating the change in compression ratio.
  • the thin line indicates the change in compression ratio realized by the operation of the variable compression ratio mechanism 10 when low octane number fuel is used
  • the thick line indicates the variable compression ratio when high octane number fuel is used.
  • the change of the compression ratio realized by operation of the mechanism 10 is shown. As can be seen by comparing these two lines, when the high-octane fuel is used, the amount of change in the compression ratio is smaller than when the low-octane fuel is used.
  • the compression ratio change start timing that is, the timing of starting the operation of the variable compression ratio mechanism 10 is delayed as compared with the case where the low octane number fuel is used.
  • the intermediate point in the period from the start to completion of the compression ratio change is the same regardless of the fuel octane number, and either the compression ratio change start timing or the completion timing depends on the octane number high or low. Large deviations are avoided.
  • the operation method of the other actuators 4, 6, 8 operated in cooperation with the variable compression ratio mechanism 10 depends on the octane number. There is no need to change. That is, as is clear from FIG. 8, only the variable compression ratio mechanism 10 needs to be changed in accordance with the octane number of the fuel, and the other actuators 4, 6, and 8 have different octane numbers. The same operation method can be taken regardless. Therefore, according to the present embodiment, it is possible to simplify the control at the time of transient operation accompanied by the change of the compression ratio as compared with the conventional case, and thereby it is possible to simplify the adaptation at the design stage. .
  • the operation method of the variable compression ratio mechanism 10 is changed depending on the octane number of the fuel used.
  • the octane number can be determined in more detail, it is possible to make a fine change according to the value of the octane number, not just whether the octane number is high or low.
  • the higher the octane value the slower the operation speed of the variable compression ratio mechanism 10 may be.
  • the timing for starting the operation of the variable compression ratio mechanism 10 may be delayed as the octane value increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

 可変圧縮比機構を含む複数のアクチュエータの協調操作によって制御される可変圧縮比内燃機関の過渡運転時の制御を簡素化できるようにする。 内燃機関に使用されている燃料の性状を判定する。内燃機関に要求される負荷が変化した場合には、変化後の負荷の値と燃料性状とに応じて圧縮比の設定を変更し、変更後の設定圧縮比に従って可変圧縮比機構を操作する。その際、要求される負荷の変化が同じであれば圧縮比の変更開始から完了までの期間は燃料性状に拠らず同じであるように可変圧縮比機構を操作する。

Description

可変圧縮比内燃機関の制御装置
 本発明は、可変圧縮比機構を含む複数のアクチュエータの協調操作によって制御される可変圧縮比内燃機関の制御装置に関する。
 例えば、特開2007-309298号公報、特開2004-092639号公報、或いは、特開2009-138607号公報に開示されているように、圧縮比を機械的に変更可能な可変圧縮比内燃機関が知られている。燃費を良好に保つことができる最適圧縮比は負荷によって異なるが、可変圧縮比内燃機関によれば、負荷に応じた最適圧縮比を実現することができる。
 可変圧縮比内燃機関における圧縮比の変更は、ドライバーからの負荷要求の変更、つまり、アクセルペダルの操作を受けて行なわれる。その場合、要求された負荷の変化に追従するように圧縮比は速やかに変更されることが望ましいことから、アクチュエータである可変圧縮比機構は負荷の変化に応じて遅延なく最速の速度で動かされる。しかし、要求される負荷変化に完全に追従可能な強力なアクチュエータを備えることは、スペース効率や駆動エネルギーの燃費への影響の点から困難である。このため、可変圧縮比機構を最速の速度で動作させたとしても実際圧縮比と最適圧縮比との間にはずれが生じる可能性がある。したがって、負荷の変化に応じて圧縮比を変更する際には、過渡運転時の燃焼を成立させるべく点火装置による点火時期の補正が併用されることになる。また、過渡運転時には、可変バルブタイミング機構やスロットル等の各種アクチュエータも可変圧縮比機構や点火装置とともに協調操作される。これらのアクチュエータも可変圧縮比機構と同様にその動作速度には制約がある。このため、過渡運転時の制御を最適化するためには、可変バルブタイミング機構やスロットル等の動作期間や動作タイミングも含めて、協調操作される全アクチュエータの操作方法を適合させることが必要とされる。
 ところで、内燃機関に使用される燃料の性状は必ずしも一定ではなく、時として異なる性状の燃料が使用される場合がある。例えば、レギュラーガソリンが使用されていた内燃機関にハイオクガソリンが給油された場合や、ガソリンが使用されていた内燃機関にエタノールが給油された場合がそれに該当する。使用される燃料の性状が異なったものになれば、負荷と最適圧縮比との関係も異なったものになる。そのような場合であっても、可変圧縮比内燃機関によれば、燃料性状に応じて負荷と圧縮比との関係を変更することによって最適な燃費性能を得ることができる。
 燃料性状に応じて負荷と圧縮比の設定との関係を変更した場合、負荷の変化が同一であっても圧縮比の変更開始から完了までの期間は異なったものになる。負荷が変化した場合の圧縮比の必要変更量は燃料性状に拠って変化するのに対し、可変圧縮比機構の動作速度は、圧縮比を負荷の変化に追従させるべく、常に最速の速度に設定されるためである。このように、燃料性状に拠って圧縮比の変更に要する期間が異なる場合、可変圧縮比機構と協調して操作される他のアクチュエータの過渡運転時の操作方法(動作速度、動作タイミング等)もそれに合わせて変更する必要が有る。しかしながら、使用が想定されるあらゆる燃料性状との組み合わせにおいて過渡運転の最適化を図るためには、複雑な制御が必要となり、その結果、各アクチュエータの操作方法の適合に要する時間を多大なものにしてしまう。
 本発明は、上述のような課題を解決するためになされたもので、可変圧縮比機構を含む複数のアクチュエータの協調操作によって制御される可変圧縮比内燃機関の過渡運転時の制御を簡素化できるようにすることを目的とする。
 このため、本発明は次のような可変圧縮比内燃機関の制御装置を提供する。
 本発明の第1の可変圧縮比内燃機関の制御装置は、内燃機関に使用されている燃料の性状を判定する手段と、内燃機関に要求される負荷が変化した場合に、変化後の負荷の値と燃料性状とに応じて圧縮比の設定を変更する手段と、圧縮比の設定が変更された場合に、変更後の設定圧縮比に従って可変圧縮比機構を操作する手段とを備える。可変圧縮比機構を操作する手段には、要求される負荷の変化が同じであれば圧縮比の変更開始から完了までの期間は燃料性状に拠らず同じであるように可変圧縮比機構を操作するという特徴がある。
 上記の第1の制御装置によれば、燃料性状がどのようであろうとも、内燃機関に要求される負荷の変化が同じであれば圧縮比の変更開始から完了までの期間は同じになる。要求される負荷の変化と圧縮比の変更期間との関係が燃料性状に拠らないのであれば、可変圧縮比機構と協調して操作される他のアクチュエータの操作方法を燃料性状によって変える必要がない。したがって、第1の制御装置によれば、圧縮比の変更を伴う過渡運転時の制御を従来に比較して簡素化することができる。
 第1の制御装置の一つの態様では、圧縮比の設定を変更する手段は、所定の圧縮比を上限としてその枠内で圧縮比の設定を変更する。可変圧縮比機構を操作する手段は、圧縮比の設定の変更が上限圧縮比からの変更である場合、可変圧縮比機構の動作速度を燃料性状に応じて変更することによって、圧縮比の変更開始から完了までの期間を燃料性状に拠らず同じにする。
 また、第1の制御装置の別の態様では、可変圧縮比機構を操作する手段は、同じ負荷の変化に対する圧縮比の変更量が燃料性状によって異なる場合、可変圧縮比機構の動作速度を燃料性状に応じて変更することによって、圧縮比の変更開始から完了までの期間を燃料性状に拠らず同じにする。
 なお、第1の制御装置に関する上記2つの態様においては、燃料性状の判定が燃料のオクタン価の高低の判定であるならば、燃料のオクタン価が高い場合と低い場合とで圧縮比の設定を異ならせ、また、燃料のオクタン価が高い場合と低い場合とで可変圧縮比機構の動作速度を異ならせるのが好ましい。
 本発明の第2の可変圧縮比内燃機関の制御装置は、内燃機関に使用されている燃料の性状を判定する手段と、内燃機関に要求される負荷が変化した場合に、変化後の負荷の値と燃料性状とに応じて圧縮比の設定を変更する手段と、圧縮比の設定が変更された場合に、変更後の設定圧縮比に従って可変圧縮比機構を操作する手段とを備える。可変圧縮比機構を操作する手段には、要求される負荷の変化が同じであれば圧縮比の変更開始から完了までの期間の中間時点は燃料性状に拠らず同じであるように可変圧縮比機構を操作するという特徴がある。
 上記の第2の制御装置によれば、燃料性状がどのようであろうとも、内燃機関の負荷の変化が同じであれば圧縮比の変更開始から完了までの期間の中間時点は同じになり、圧縮比の変更開始タイミングと完了タイミングの何れか一方が燃料性状に拠って大きくずれてしまうことは回避される。要求される負荷の変化と圧縮比の変更期間との関係が燃料性状によって大きく変わらないならば、可変圧縮比機構と協調して操作される他のアクチュエータの操作方法を燃料性状によって変える必要がない。したがって、第2の制御装置によれば、圧縮比の変更を伴う過渡運転時の制御を従来に比較して簡素化することができる。
 第2の制御装置の一つの態様では、圧縮比の設定を変更する手段は、所定の圧縮比を上限としてその枠内で圧縮比の設定を変更する。可変圧縮比機構を操作する手段は、圧縮比の設定の変更が上限圧縮比からの変更である場合、可変圧縮比機構の操作を開始するタイミングを燃料性状に応じて変更することによって、圧縮比の変更開始から完了までの期間の中間時点を燃料性状に拠らず同じにする。
 また、第2の制御装置の別の態様では、可変圧縮比機構を操作する手段は、同じ負荷の変化に対する圧縮比の変更量が燃料性状によって異なる場合、可変圧縮比機構の操作を開始するタイミングを燃料性状に応じて変更することによって、圧縮比の変更開始から完了までの期間の中間時点を燃料性状に拠らず同じにする。
 なお、第2の制御装置に関する上記2つの態様においては、燃料性状の判定が燃料のオクタン価の高低の判定であるならば、燃料のオクタン価が高い場合と低い場合とで圧縮比の設定を異ならせ、また、燃料のオクタン価が高い場合と低い場合とで可変圧縮比機構の動作速度を異ならせるのが好ましい。
本発明が適用される可変圧縮比内燃機関のシステム図である。 燃料のオクタン価と負荷に対する理論上の最適圧縮比との関係を示す図である。 燃料のオクタン価と負荷に対する機械的制約の中での最適圧縮比との関係を示す図である。 本発明の実施の形態1において低オクタン価燃料が使用されている場合にとられる過渡運転時の可変圧縮比機構の操作を説明するための図である。 本発明の実施の形態1において高オクタン価燃料が使用されている場合にとられる過渡運転時の可変圧縮比機構の操作を説明するための図である。 本発明の実施の形態1によって実現される過渡運転時の可変圧縮比内燃機関の動作を示す図である。 本発明の実施の形態2において高オクタン価燃料が使用されている場合にとられる過渡運転時の可変圧縮比機構の操作を説明するための図である。 本発明の実施の形態2によって実現される過渡運転時の可変圧縮比内燃機関の動作を示す図である。
実施の形態1.
 本発明の実施の形態1について図1乃至図6の各図を参照して説明する。
 図1は、本実施の形態の制御装置が適用される可変圧縮比内燃機関のシステム図である。図1の可変圧縮比内燃機関(以下、単にエンジンという)は、4ストロークの火花点火式レシプロエンジンである。このエンジン2は、その運転を制御するためのアクチュエータとして、一般的なエンジンに備えられる点火装置4、スロットル6、可変バルブタイミング機構(以下、VVTという)8等に加えて、可変圧縮比機構10も備えている。
 可変圧縮比機構10は、燃焼室容積を機械的に変更することによりシリンダ容積と燃焼室容積との比である圧縮比(機械圧縮比)を変化させる機構である。燃焼室容積を変更する方法としては、例えば、電動モータによってクランクケースに対してシリンダブロックをシリンダの軸方向に移動させてシリンダ内でのピストンの往復位置を変化させる方法がある。このような可変圧縮比機構の具体的な構造に関しては、特開2007-309298号公報、特開2004-092639号公報、或いは、特開2009-138607号公報に開示されている。本発明に関しては、少なくとも圧縮比を機械的に変更さえできればよいので、可変圧縮比機構10の具体的な構成や仕組みには限定はない。
 可変圧縮比機構10を含む全てのアクチュエータ4,6,8,10は、ECU(Electronic control unit)12によって協調操作される。
 ECU12には、エンジン2の状態や車両環境、或いはドライバーからの要求を把握するために多数のセンサが接続されている。そのようなセンサ類の中の1つがアクセル開度センサ14と燃料性状センサ16である。ECU12は、アクセル開度センサ14の信号、すなわち、アクセルペダルの開度を表す信号によって、ドライバーが要求している負荷の大きさを知る。また、ECU12は、燃料性状センサ16からの信号によって、エンジン2に使用されている燃料の性状を判定する。なお、ここでいう燃料性状センサには、特定成分の含有の有無、成分割合、粘度、揮発度、平均分子量といった燃料性状そのものを検出或いは測定する専用のセンサだけでなく、燃料性状の判別に必要な情報を得ることができる全てのセンサが含まれる。例えば、ノックの頻度によって燃料のオクタン価を判定するのであれば、燃料性状センサにはノックセンサが該当する。筒内圧力から燃料の燃焼速度を算出することで燃料性状を判定するのであれば、燃料性状センサには筒内圧センサが該当する。また、燃料に含まれるアルコールの濃度から燃料性状を判定するのであれば、燃料性状センサにはアルコール濃度センサが該当する。また、空燃比フィードバック制御の補正量から燃料が重質か軽質かを判定するのであれば、燃料性状センサには空燃比センサが該当する。本実施の形態では、ECU12は燃料性状として燃料のオクタン価の高低を判定し、燃料性状センサ16は燃料のオクタン価の判定に必要な情報をECU12に入力しているものとする。
 燃料性状センサ16からの情報に基づいて判定された燃料のオクタン価は、可変圧縮比機構10を操作するための情報として用いられる。詳しくは、ECU12は、アクセル開度センサ14の信号に応じて可変圧縮比機構10を操作し、エンジン2の圧縮比をドライバーから要求される負荷に応じた最適圧縮比に制御する。そして、その操作の際に従う要求負荷と圧縮比の設定値との関係を燃料のオクタン価によって変更する。
 図2は、定常状態における燃料のオクタン価と負荷に対する理論上の最適圧縮比との関係を示す図である。図2からは、負荷が低くなるにつれて圧縮比を高くすることが望ましいことが分かる。また、オクタン価が高い燃料が用いられている場合には、オクタン価が高い燃料が用いられている場合よりも、負荷が同じであるなら圧縮比を高く設定するほうが望ましいことも分かる。
 しかし、可変圧縮比機構10によって実現可能な圧縮比には、その構造から決まる機械的な制約がある。その機械的な制約の中での上限圧縮比を考慮した場合には、燃料のオクタン価と負荷に対する最適圧縮比との関係は図3に示すようになる。図3に従えば、極低負荷領域では燃料のオクタン価に拠らず圧縮比は上限圧縮比に設定される。低負荷域では、低オクタン価の燃料が使用されている場合は負荷の増大に応じて圧縮比の設定値は下げられることになるが、高オクタン価の燃料が使用されている場合には圧縮比は上限圧縮比に設定される。中高負荷域では、高オクタン価の燃料が使用されている場合も負荷の増大に応じて圧縮比の設定値は下げられることになる。
 ECU12には、図3に示すオクタン価と負荷に対する最適圧縮比との関係をマップ化したものが記憶されている。ECU12は、そのマップを参照して負荷とオクタン価とに応じた圧縮比を設定し、設定した圧縮比に従って可変圧縮比機構10を操作する。より具体的には、ドライバーによりアクセルペダルが踏み込まれる等して要求負荷が変化すると、ECU12は、変化後の負荷の値とオクタン価とに応じて圧縮比の設定を変更し、変更後の設定圧縮比に従って可変圧縮比機構10を操作する。ただし、図3は、あくまでも要求負荷とオクタン価とから定常状態における最適圧縮比を決定するための規則を示したものである。圧縮比が変化する過渡運転時には、それとは別の規則に従って可変圧縮比機構10の操作が行なわれる。
 過渡運転時に採られる可変圧縮比機構10の操作方法は、本実施の形態が有する1つの特徴に該当する。本実施の形態では、使用されている燃料のオクタン価が高いか低いかによって、可変圧縮比機構10の動作速度の設定が変えられる。具体的には、低オクタン価の燃料が用いられているのであれば、ECU12は、従来の操作方法と同様に、要求される負荷の変化に応じて遅延なく最速の速度で可変圧縮比機構10を動作させる。一方、高オクタン価の燃料が用いられているのであれば、ECU12は、低オクタン価の燃料が用いられている場合に比較して遅い速度で可変圧縮比機構10を動作させる。
 これは、燃料のオクタン価が高い場合と低い場合とで、要求される負荷が変化した場合の圧縮比の必要変更量に違いが生じるからである。その違いは、要求される負荷の増大に応じて圧縮比が上限圧縮比からより低い圧縮比に変更される場合において顕著となる。仮に、オクタン価の高低に関わらず可変圧縮比機構10を常に最速の速度で動作させるならば、圧縮比の必要変更量の違いから、要求される負荷の変化が同一であったとしても圧縮比の変更に要する期間は異なったものになる。これに対し、圧縮比の必要変更量の多少に合わせて可変圧縮比機構10の動作速度の設定を変えれば、圧縮比の変更開始から完了までの期間をオクタン価の高低に拠らず同じにすることができる。
 図4及び図5は、過渡運転時に上述のような可変圧縮比機構10の操作が実際に行われた場合、負荷の変化に対して圧縮比がどのように変化するかを示した図である。図4は、低オクタン価燃料が使用されている場合の負荷と圧縮比との関係を示す図である。図4中の実線は、図3に示す低オクタン価燃料が使用された場合の負荷と最適圧縮比との関係に対応している。一方、図5は、高オクタン価燃料が使用されている場合の負荷と圧縮比との関係を示す図である。図5の実線は、図3に示す高オクタン価燃料が使用された場合の負荷と最適圧縮比との関係に対応している。
 ここでは、各図に示すように負荷がAからBに増大する場合の圧縮比の変化について説明する。各図中に矢印付きの点線で示すのが、可変圧縮比機構10の操作によって実現される負荷の変化に対する圧縮比の変化である。図中の各線の傾き、すなわち、負荷の変化に対する圧縮比の変化の割合は、負荷が単調に増大している状況では、時間の変化に対する圧縮比の変化の割合、すなわち、圧縮比の変化速度に対応する。
 低オクタン価燃料が使用されている場合は、図4に示すように、圧縮比は負荷と最適圧縮比との関係を示す実線に沿って、負荷Aに対応する圧縮比Xから負荷Bに対応する圧縮比XBLまで変化する。このときの圧縮比の変化速度は、可変圧縮比機構10を最速の速度で動作させたときの速度である。
 高オクタン価燃料が使用されている場合は、図5に示すように、圧縮比は負荷と最適圧縮比との関係を示す実線に沿うのではなく、負荷Aに対応する圧縮比Xから負荷Bに対応する圧縮比XBHまで略直線的に変化する。このときの圧縮比の変化速度は、図4に示す点線の傾きと図5に示す点線の傾きとを比較して分かるように、低オクタン価燃料が使用されている場合の変化速度よりも遅い速度である。高オクタン価燃料が使用されている場合は、低オクタン価燃料が使用されている場合よりも負荷の変化に伴う圧縮比の変化量が少ないので、その分、圧縮比の変化速度を遅くすることで圧縮比の変更開始から完了までの期間を同じにすることができる。
 上述の可変圧縮比機構10の操作によって実現されるエンジン2の動作をタイムチャートで示したのが図6である。図6の最下段は、アクセルペダルの開度の変化、すなわち、要求される負荷の変化を示している。図6の最上段は、点火装置4によって制御される点火時期の変化を示している。図6の2段目は、VVT8によって制御されるバルブタイミングの変化を示している。図6の3段目は、可変圧縮比機構10によって制御される圧縮比の変化を示している。図6の4段目は、スロットル6によって制御される負荷率(シリンダの充填効率)の変化を示している。図6によれば、要求負荷の変化に応じて各アクチュエータ4,6,8,10が協調操作されていることが分かる。
 図6の3段目には、圧縮比の変化を示す線として太線と細線の2本の線が引かれている。このうちの細線は、低オクタン価燃料が使用されている場合の可変圧縮比機構10の操作によって実現される圧縮比の変化を示し、太線は、高オクタン価燃料が使用されている場合の可変圧縮比機構10の操作によって実現される圧縮比の変化を示している。これら2本の線を比較して分かるように、高オクタン価燃料が使用されている場合は、低オクタン価燃料が使用されている場合よりも圧縮比の変更量が少ない。しかし、高オクタン価燃料が使用されている場合は、低オクタン価燃料が使用されている場合よりも圧縮比の変化速度は遅くされる。その結果、圧縮比の変更開始から完了までの期間は燃料のオクタン価の高低に拠らず同じになっている。
 要求される負荷の変化と圧縮比の変更期間との関係が燃料のオクタン価に拠らないのであれば、可変圧縮比機構10と協調して操作される他のアクチュエータ4,6,8の操作方法は燃料のオクタン価によって変える必要がない。つまり、図6から明らかなように、燃料のオクタン価に応じて操作方法を変更する必要があるのは可変圧縮比機構10のみであり、他のアクチュエータ4,6,8に関しては、燃料のオクタン価の違いに拠らず同じ操作方法をとることができる。したがって、本実施の形態によれば、圧縮比の変更を伴う過渡運転時の制御を従来に比較して簡素化することが可能であり、それにより設計段階における適合の簡素化を図ることもできる。
 実施の形態2.
 本発明の実施の形態2について図1、図7及び図8の各図を参照して説明する。
 本実施の形態の制御装置は、実施の形態1と同様、図1に示す構成の可変圧縮比内燃機関に適用することができる。ただし、実施の形態1の可変圧縮比機構10はその動作速度は可変であったが、本実施の形態の可変圧縮比機構10はその動作速度を変更することができないものとする。
 本施の形態と実施の形態1とは、過渡運転時に採られる可変圧縮比機構10の操作方法に違いがある。本実施の形態では、使用されている燃料のオクタン価が高いか低いかによって、可変圧縮比機構10の動作タイミングの設定が変えられる。具体的には、低オクタン価の燃料が用いられているのであれば、ECU12は、従来の操作方法と同様に、負荷の変化に応じて遅延なく可変圧縮比機構10を動作させる。一方、高オクタン価の燃料が用いられているのであれば、ECU12は、低オクタン価の燃料が用いられている場合に比較して遅いタイミングで可変圧縮比機構10を動作させる。ただし、本実施の形態では、可変圧縮比機構10の動作速度はオクタン価の高低に拠らず一定の速度である。
 燃料のオクタン価が高い場合と低い場合とでは、負荷が変化した場合の圧縮比の必要変更量に違いが生じる。その違いは、負荷の増大に応じて圧縮比が上限圧縮比からより低い圧縮比に変更される場合において顕著となる。仮に、オクタン価の高低に関わらず可変圧縮比機構10を常に一定のタイミングで動作させるならば、圧縮比の必要変更量の違いから、負荷の変化が同一であったとしても圧縮比の変更に要する期間には大きな違いが生じる。これに対し、圧縮比の必要変更量の多少に合わせて可変圧縮比機構10の動作タイミングの設定を変えれば、圧縮比の変更開始から完了までの期間の中間時点をオクタン価の高低に拠らず同じにして、圧縮比の変更開始タイミングと完了タイミングの何れか一方がオクタン価の高低に拠って大きくずれてしまうことを回避することができる。
 図7は、過渡運転時に上述のような可変圧縮比機構10の操作が実際に行われた場合、負荷の変化に対して圧縮比がどのように変化するかを示した図である。詳しくは、図7は、高オクタン価燃料が使用されている場合の負荷と圧縮比との関係を示す図であって、図7中の実線は、図3に示す高オクタン価燃料が使用された場合の負荷と最適圧縮比との関係に対応している。なお、低オクタン価燃料が使用されている場合の負荷と圧縮比との関係は、実施の形態1と同じく図4に示す通りとなる。
 ここでは、図7に示すように負荷がAからBに増大する場合の圧縮比の変化について説明する。図7中に矢印付きの点線で示すのが、高オクタン価燃料が使用されている場合に可変圧縮比機構10の操作によって実現される負荷の変化に対する圧縮比の変化である。この場合、圧縮比は負荷と最適圧縮比との関係を示す実線に沿うのではなく、早いタイミングで低下し始め、負荷と最適圧縮比との関係を示す実線と平行に圧縮比XBHまで略直線的に変化する。高オクタン価燃料が使用されている場合は、低オクタン価燃料が使用されている場合よりも負荷の変化に伴う圧縮比の変化量が少ないので、その分、早いタイミングで圧縮比を変化させることで圧縮比の変更開始から完了までの期間の中間時点を同じにすることができる。
 上述の可変圧縮比機構10の操作によって実現されるエンジン2の動作をタイムチャートで示したのが図8である。図8の最下段は、アクセルペダルの開度の変化、すなわち、要求される負荷の変化を示している。図8の最上段は、点火装置4によって制御される点火時期の変化を示している。図8の2段目は、VVT8によって制御されるバルブタイミングの変化を示している。図8の3段目は、可変圧縮比機構10によって制御される圧縮比の変化を示している。図8の4段目は、スロットル6によって制御される負荷率の変化を示している。図8によれば、要求負荷の変化に応じて各アクチュエータ4,6,8,10が協調操作されていることが分かる。
 図8の3段目には、圧縮比の変化を示す線として太線と細線の2本の線が引かれている。このうちの細線は、低オクタン価燃料が使用されている場合の可変圧縮比機構10の操作によって実現される圧縮比の変化を示し、太線は、高オクタン価燃料が使用されている場合の可変圧縮比機構10の操作によって実現される圧縮比の変化を示している。これら2本の線を比較して分かるように、高オクタン価燃料が使用されている場合は、低オクタン価燃料が使用されている場合よりも圧縮比の変更量が少ない。しかし、高オクタン価燃料が使用されている場合は、低オクタン価燃料が使用されている場合よりも圧縮比の変化開始タイミング、すなわち、可変圧縮比機構10の操作を開始するタイミングは遅くされる。その結果、圧縮比の変更開始から完了までの期間の中間時点は燃料のオクタン価の高低に拠らず同じになり、圧縮比の変更開始タイミングと完了タイミングの何れか一方がオクタン価の高低に拠って大きくずれてしまうことは回避される。
 要求される負荷の変化と圧縮比の変更期間との関係がオクタン価によって大きく変わらないならば、可変圧縮比機構10と協調して操作される他のアクチュエータ4,6,8の操作方法はオクタン価によって変える必要がない。つまり、図8から明らかなように、燃料のオクタン価に応じて操作方法を変更する必要があるのは可変圧縮比機構10のみであり、他のアクチュエータ4,6,8に関しては、オクタン価の違いに拠らず同じ操作方法をとることができる。したがって、本実施の形態によれば、圧縮比の変更を伴う過渡運転時の制御を従来に比較して簡素化することが可能であり、それにより設計段階における適合の簡素化を図ることもできる。
その他.
 以上、本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、次のように変形して実施してもよい。
 上述の実施の形態では、使用されている燃料のオクタン価の高低によって可変圧縮比機構10の操作方法が変更されている。しかし、オクタン価をより詳しく判定できるならば、単にオクタン価が高いか低いかではなく、オクタン価の値に応じた細かな変更を行うようにしてもよい。実施の形態1の操作方法であれば、オクタン価の値が高いほど、可変圧縮比機構10の動作速度を遅くすればよい。実施の形態2の操作方法であれば、オクタン価の値が高いほど、可変圧縮比機構10の操作を開始するタイミングを遅くすればよい。
2 エンジン
4 点火装置
6 スロットル
8 可変バルブタイミング機構
10 可変圧縮比機構
12 ECU
14 アクセル開度センサ
16 燃料性状センサ

Claims (8)

  1.  可変圧縮比機構を含む複数のアクチュエータの協調操作によって制御される可変圧縮比内燃機関の制御装置において、
     前記内燃機関に使用されている燃料の性状を判定する燃料性状判定手段と、
     前記内燃機関に要求される負荷が変化した場合に、変化後の負荷の値と燃料性状とに応じて圧縮比の設定を変更する設定変更手段と、
     圧縮比の設定が変更された場合に、変更後の設定圧縮比に従って前記可変圧縮比機構を操作する操作手段と、
    を備え、
     前記操作手段は、負荷の変化が同じであれば圧縮比の変更開始から完了までの期間は燃料性状に拠らず同じになるように前記可変圧縮比機構を操作することを特徴とする可変圧縮比内燃機関の制御装置。
  2.  前記設定変更手段は、所定の圧縮比を上限としてその枠内で圧縮比の設定を変更し、
     前記操作手段は、圧縮比の設定の変更が上限圧縮比からの変更である場合には、前記可変圧縮比機構の動作速度を燃料性状に応じて変更することによって、圧縮比の変更開始から完了までの期間を燃料性状に拠らず同じにすることを特徴とする請求の範囲1に記載の可変圧縮比内燃機関の制御装置。
  3.  前記操作手段は、同じ負荷の変化に対する圧縮比の変更量が燃料性状によって異なる場合には、前記可変圧縮比機構の動作速度を燃料性状に応じて変更することによって、圧縮比の変更開始から完了までの期間を燃料性状に拠らず同じにすることを特徴とする請求の範囲1に記載の可変圧縮比内燃機関の制御装置。
  4.  前記燃料性状判定手段は、燃料のオクタン価の高低を判定し、
     前記設定変更手段は、燃料のオクタン価が高い場合と低い場合とで圧縮比の設定を異ならせ、
     前記操作手段は、燃料のオクタン価が高い場合と低い場合とで前記可変圧縮比機構の動作速度を異ならせることを特徴とする請求の範囲2又は3に記載の可変圧縮比内燃機関の制御装置。
  5.  可変圧縮比機構を含む複数のアクチュエータの協調操作によって制御される可変圧縮比内燃機関の制御装置において、
     前記内燃機関に使用されている燃料の性状を判定する燃料性状判定手段と、
     前記内燃機関に要求される負荷が変化した場合に、変化後の負荷の値と燃料性状とに応じて圧縮比の設定を変更する設定変更手段と、
     圧縮比の設定が変更された場合に、変更後の設定圧縮比に従って前記可変圧縮比機構を操作する操作手段と、
    を備え、
     前記操作手段は、負荷の変化が同じであれば圧縮比の変更開始から完了までの期間の中間時点は燃料性状に拠らず同じになるように前記可変圧縮比機構を操作することを特徴とする可変圧縮比内燃機関の制御装置。
  6.  前記設定変更手段は、所定の圧縮比を上限としてその枠内で圧縮比の設定を変更し、
     前記操作手段は、圧縮比の設定の変更が上限圧縮比からの変更である場合には、前記可変圧縮比機構の操作を開始するタイミングを燃料性状に応じて変更することによって、圧縮比の変更開始から完了までの期間の中間時点を燃料性状に拠らず同じにすることを特徴とする請求の範囲1に記載の可変圧縮比内燃機関の制御装置。
  7.  前記操作手段は、同じ負荷の変化に対する圧縮比の変更量が燃料性状によって異なる場合には、前記可変圧縮比機構の操作を開始するタイミングを燃料性状に応じて変更することによって、圧縮比の変更開始から完了までの期間の中間時点を燃料性状に拠らず同じにすることを特徴とする請求の範囲1に記載の可変圧縮比内燃機関の制御装置。
  8.  前記燃料性状判定手段は、燃料のオクタン価の高低を判定し、
     前記設定変更手段は、燃料のオクタン価が高い場合と低い場合とで圧縮比の設定を異ならせ、
     前記操作手段は、燃料のオクタン価が高い場合と低い場合とで前記可変圧縮比機構の操作を開始するタイミングを異ならせることを特徴とする請求の範囲6又は7に記載の可変圧縮比内燃機関の制御装置。
PCT/JP2009/068772 2009-11-02 2009-11-02 可変圧縮比内燃機関の制御装置 WO2011052092A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010539957A JP5077440B2 (ja) 2009-11-02 2009-11-02 可変圧縮比内燃機関の制御装置
PCT/JP2009/068772 WO2011052092A1 (ja) 2009-11-02 2009-11-02 可変圧縮比内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068772 WO2011052092A1 (ja) 2009-11-02 2009-11-02 可変圧縮比内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2011052092A1 true WO2011052092A1 (ja) 2011-05-05

Family

ID=43921534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068772 WO2011052092A1 (ja) 2009-11-02 2009-11-02 可変圧縮比内燃機関の制御装置

Country Status (2)

Country Link
JP (1) JP5077440B2 (ja)
WO (1) WO2011052092A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193760A (ja) * 1997-07-23 1999-04-06 Honda Motor Co Ltd エンジン制御装置およびその制御方法
JP2003193872A (ja) * 2001-12-26 2003-07-09 Nissan Motor Co Ltd 自己着火エンジンの制御装置
JP2004150353A (ja) * 2002-10-30 2004-05-27 Toyota Motor Corp エンジンの圧縮比変更方法と可変圧縮比エンジン
JP2004308431A (ja) * 2003-04-02 2004-11-04 Toyota Motor Corp 圧縮比の変更方法と可変圧縮比エンジン
JP2005030289A (ja) * 2003-07-11 2005-02-03 Nissan Motor Co Ltd レシプロ式可変圧縮比機関
JP2005127212A (ja) * 2003-10-23 2005-05-19 Toyota Motor Corp 内燃機関の制御装置
JP2008088988A (ja) * 2007-12-26 2008-04-17 Toyota Motor Corp 可変圧縮比エンジン

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234541A (ja) * 1990-12-30 1992-08-24 Mazda Motor Corp エンジンのバルブタイミング制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193760A (ja) * 1997-07-23 1999-04-06 Honda Motor Co Ltd エンジン制御装置およびその制御方法
JP2003193872A (ja) * 2001-12-26 2003-07-09 Nissan Motor Co Ltd 自己着火エンジンの制御装置
JP2004150353A (ja) * 2002-10-30 2004-05-27 Toyota Motor Corp エンジンの圧縮比変更方法と可変圧縮比エンジン
JP2004308431A (ja) * 2003-04-02 2004-11-04 Toyota Motor Corp 圧縮比の変更方法と可変圧縮比エンジン
JP2005030289A (ja) * 2003-07-11 2005-02-03 Nissan Motor Co Ltd レシプロ式可変圧縮比機関
JP2005127212A (ja) * 2003-10-23 2005-05-19 Toyota Motor Corp 内燃機関の制御装置
JP2008088988A (ja) * 2007-12-26 2008-04-17 Toyota Motor Corp 可変圧縮比エンジン

Also Published As

Publication number Publication date
JP5077440B2 (ja) 2012-11-21
JPWO2011052092A1 (ja) 2013-03-14

Similar Documents

Publication Publication Date Title
CN102220929A (zh) 气缸燃烧性能监测与控制
JP5043165B2 (ja) 内燃機関の制御装置
EP2977597B1 (en) Control device and control method for internal combustion engines
JP2009019504A (ja) エンジンの制御方法並びに制御装置
JP2010223068A (ja) 内燃機関の制御装置
EP2851539A1 (en) Control device and control method for internal combustion engine
KR20110040765A (ko) 내연 엔진을 위한 연료 품질에 따른 분사 시간 제어
JP5691910B2 (ja) エンジン制御装置
EP2372141A1 (en) Ignition timing controller of internal combustion engine
US8068944B2 (en) Control apparatus for internal combustion engine
US9032936B2 (en) Control device for internal combustion engine
JP5077440B2 (ja) 可変圧縮比内燃機関の制御装置
JP2008196409A (ja) 内燃機関の燃焼制御装置
JP4270099B2 (ja) 内燃機関の制御装置
JP4839892B2 (ja) エンジンの点火時期制御方法及びエンジンの点火時期制御装置
JP2011064103A (ja) 内燃機関の制御装置
JP4941069B2 (ja) 内燃機関の吸気制御装置
JP4602383B2 (ja) 可変動弁式内燃機関の制御装置
US8240289B2 (en) Control apparatus for internal combustion engine
JP2013060827A (ja) 内燃機関の停止方法、内燃機関、及びそれを搭載した車両
JP2011196263A (ja) 内燃機関の制御装置
KR101703755B1 (ko) 가변 밸브 리프트 시스템의 점화각도 제어 장치 및 방법
JP2009209904A (ja) 可変動弁エンジンの制御装置
JP4807353B2 (ja) 駆動力源制御装置
JP4862813B2 (ja) 駆動力源制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010539957

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850871

Country of ref document: EP

Kind code of ref document: A1