WO2011048869A1 - 波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法 - Google Patents

波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法 Download PDF

Info

Publication number
WO2011048869A1
WO2011048869A1 PCT/JP2010/063908 JP2010063908W WO2011048869A1 WO 2011048869 A1 WO2011048869 A1 WO 2011048869A1 JP 2010063908 W JP2010063908 W JP 2010063908W WO 2011048869 A1 WO2011048869 A1 WO 2011048869A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength tunable
tunable laser
wavelength
control parameter
temperature
Prior art date
Application number
PCT/JP2010/063908
Other languages
English (en)
French (fr)
Inventor
健志 岡本
健二 佐藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011537173A priority Critical patent/JP5424136B2/ja
Priority to US13/503,362 priority patent/US8767781B2/en
Publication of WO2011048869A1 publication Critical patent/WO2011048869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure

Definitions

  • the present invention relates to a wavelength tunable laser device, an optical module, and a wavelength tunable laser control method.
  • the WDM can simultaneously transmit a plurality of optical signals assigned to different carrier wavelengths (channels), and can increase the communication capacity according to the number of channels.
  • each channel wavelength is sufficiently separated. For example, by modulating at 10 gigabit / second per channel and transmitting 100 channels by one common optical fiber, the communication capacity reaches 1 terabit / second.
  • the C band (1530 to 1570 nm) that can be amplified by an optical fiber amplifier (EDFA: erbium-doped fiber amplifier) is widely used.
  • EDFA optical fiber amplifier
  • 100 types of laser devices corresponding to 100 channels used in optical communication are required. For this reason, costs such as inventory management and inventory of the laser device increase.
  • the light source of the wavelength tunable laser device for example, a light source (external resonator type wavelength tunable laser or the like) composed of a semiconductor optical amplifier (SOA: Semiconductor Optical Amplifier), a wavelength tunable filter, and a reflecting mirror.
  • the wavelength tunable filter controls the laser oscillation wavelength by changing the refractive index of the filter section (the refractive index of the material of the filter section).
  • Patent Documents 1 to 4 can be cited as publicly known documents in which wavelength tunable laser devices including such light sources are described.
  • the refractive index of the filter part for example, a carrier plasma effect by current, an electro-optic effect by applying voltage, a thermo-optic effect by heating a heater, or the like is used.
  • the above-described change in refractive index due to the thermo-optic effect can also occur due to a temperature change in the entire wavelength tunable laser element.
  • the temperature of the entire tunable laser element is controlled with a thermoelectric cooler (TEC) with an accuracy of 0.01K, for example.
  • TEC thermoelectric cooler
  • the power consumption of the TEC is larger than that of the tunable laser.
  • the power consumption of the wavelength tunable laser is about 0.2 W
  • power of about 2 W is required. That is, the power consumption of the current wavelength tunable laser device is almost determined by the TEC. Therefore, if a tunable laser device that does not require TEC or can reduce the power consumption of TEC can be realized, the power consumption of the optical output module can be greatly reduced.
  • Patent Documents 1 to 4 disclose an apparatus for controlling a wavelength tunable laser by a method other than temperature control by TEC. Specifically, it is as follows.
  • Patent Document 1 discloses an apparatus including a reflectance control mechanism using a directional coupler.
  • Patent Document 2 discloses an apparatus including an output light intensity control mechanism using a directional coupler.
  • Patent Document 3 discloses an apparatus including a mechanism for measuring the temperature of a wavelength tunable laser and adjusting a bias applied to the wavelength tunable laser according to the temperature.
  • Patent Document 4 discloses an apparatus including a mechanism that obtains a forward light output at a constant light intensity level by monitoring the photocurrent flowing through the electric field absorption unit and keeping the photocurrent value constant.
  • the wavelength tunable filter that determines the wavelength of the laser changes the refractive index due to a temperature change and the oscillation wavelength changes. For this reason, there is a problem that the operation of the wavelength tunable laser becomes unstable compared to the case of controlling to a constant temperature.
  • An object of the present invention is to provide a wavelength tunable laser device, an optical module, and a wavelength tunable laser control method that are power-saving and highly reliable.
  • a wavelength tunable laser device of the present invention includes: Including a wavelength tunable laser, a temperature sensing element, and a control unit;
  • the wavelength tunable laser includes a laser resonator including a light source and a wavelength tunable mechanism, and optical loss control means,
  • the temperature sensing element is thermally connected to the wavelength tunable laser and electrically connected to the control unit;
  • the control unit is electrically connected to the wavelength variable mechanism and the optical loss control means;
  • the temperature detection element detects the temperature of the wavelength tunable laser,
  • the control unit is Obtaining temperature information of the tunable laser from the temperature sensing element; Calculate the wavelength variable control parameter and the optical loss control parameter based on the temperature information, Controlling the wavelength variable mechanism based on the wavelength variable control parameter;
  • the optical loss control means is controlled based on the optical loss control parameter.
  • the optical module of the present invention is The tunable laser apparatus according to the present invention is included.
  • the control method of the wavelength tunable laser of the present invention is as follows: Using the wavelength tunable laser device of the present invention, Detecting the temperature of the wavelength tunable laser by the temperature detecting element; Acquiring temperature information of the wavelength tunable laser from the temperature sensing element by the control unit; Calculating a wavelength variable control parameter and an optical loss control parameter based on the temperature information by the control unit; Controlling the wavelength tunable mechanism based on the wavelength tunable control parameter by the controller; And a step of controlling the optical loss control means based on the optical loss control parameter by the control unit.
  • the present invention it is possible to provide a wavelength tunable laser device, an optical module, and a wavelength tunable laser control method that are power-saving and highly reliable.
  • FIG. 3A is a block diagram illustrating a configuration of an absorption region used in the wavelength tunable laser device according to the first embodiment.
  • (B) is a graph which shows the relationship between the injection current in the said absorption area
  • (A) is a schematic diagram which shows the structure of the light reflectivity variable mirror used for the wavelength variable laser apparatus of the said Embodiment 1.
  • FIG. (B) is a graph which shows the relationship between the applied voltage in the said light reflectivity variable mirror, and light reflectivity.
  • FIG. 3 is a block diagram illustrating a configuration of an example in which TEC is omitted in the wavelength tunable laser device of the first embodiment.
  • A is a graph explaining the change by the temperature of the gain width in a coupled quantum well.
  • B is a graph explaining the change with temperature of the gain width in a normal quantum well. It is a block diagram which shows the structure of the other example (Embodiment 2) in the wavelength tunable laser apparatus of this invention. It is a block diagram which shows the structure of the other example (Embodiment 3) in the wavelength tunable laser apparatus of this invention.
  • the tunable laser device the optical module, and the tunable laser control method of the present invention will be described in detail.
  • the present invention is not limited to the following embodiments.
  • symbol is attached
  • the numerical value may be strictly or may be approximately the numerical value.
  • FIG. 1 shows the configuration of the wavelength tunable laser device of this embodiment.
  • the tunable laser device 10 includes a tunable laser 11, a temperature detection element 12, and a control unit 13 as main components.
  • the wavelength tunable laser 11 includes a laser resonator including a gain region 111 that is a light source, a wavelength stabilization region 112 that is a wavelength tunable mechanism, and a wavelength tunable filter region 113, an absorption region 114a that is an optical loss control unit, and light reflection. And a variable rate mirror 114b.
  • the absorption region 114 a and the light reflectivity variable mirror 114 b are disposed on the light exit end face side of the gain region 111.
  • the wavelength stabilizing region 112 and the wavelength tunable filter region 113 are disposed on the opposite side of the gain region 111 from the light emitting end surface.
  • the wavelength tunable laser 11 and the temperature detection element 12 are mounted on the subcarrier 14 at an appropriate interval and are thermally connected.
  • the wavelength tunable laser 11 is mounted on a thermoelectric cooler (TEC) 15 through the subcarrier 14.
  • the TEC 15 corresponds to a “temperature control unit” that controls the temperature of the wavelength tunable laser 11.
  • the controller 13 includes a circuit 13a including a DSP (Digital Signal Processor) and a current distribution circuit 13b electrically connected to the circuit 13a.
  • the temperature detecting element 12 is electrically connected to the circuit 13a.
  • the current distribution circuit 13b is electrically connected to the absorption region 114a, the light reflectivity variable mirror 114b, the gain region 111, the wavelength stabilization region 112, the wavelength variable filter region 113, and the TEC 15. .
  • the wavelength tunable laser device 10 further includes a beam splitter 16 and a photodetector 17.
  • the photodetector 17 is electrically connected to the circuit 13a.
  • This wavelength tunable laser device 10 is mounted on a heat sink 18.
  • “upper side” is not limited to a state in which it is in direct contact with the upper surface (on) unless otherwise specified, and there is another component in between and direct contact. Also includes the state that is not (above). Similarly, “lower side” may be in a state of being in direct contact with the lower surface (on) unless otherwise specified, or in a state in which there are other components in between and there is no direct contact. (Below) is acceptable.
  • “on the upper surface” refers to a state of being in direct contact with the upper surface.
  • “on the lower surface” refers to a state of being in direct contact with the lower surface.
  • At the one side may be in a state where it is in direct contact with one side unless otherwise specified, or may be in a state where there are other components in between and there is no direct contact. . The same applies to “at the both side”. “On the one side” refers to the state of direct contact with one side. The same applies to “on the both side”.
  • both the absorption region and the light reflectivity variable mirror are included as the optical loss control means.
  • the present invention is not limited to this example, and the absorption region or the light reflectivity is variable. Either one of the mirrors may be provided, or another light loss control unit may be provided.
  • the other optical loss control means include an optical waveguide using a semiconductor having a band gap wavelength composition narrower than that of laser light as a core layer. This optical waveguide is optically connected to the gain region by, for example, a known butt joint technique. However, this connection is not limited to butt joint technology.
  • the gain region 111 that is an active element (light source) of the wavelength tunable laser 11 is a semiconductor optical amplifier (SOA).
  • SOA semiconductor optical amplifier
  • MQW multiple quantum well
  • the multiple quantum well generates and amplifies light in response to current injection.
  • the wavelength stabilization region 112 that is a passive element of the wavelength tunable laser 11 is a region that is configured with a bulk composition or multiple quantum wells and has a wide band gap that does not absorb laser oscillation light.
  • the wavelength stabilization region 112 changes its refractive index in response to current injection or voltage application.
  • the gain region 111 and the wavelength stabilization region 112 can be manufactured using, for example, a known butt joint technique, a known selective growth technique, a known load coupling technique, or the like. Both regions are sufficiently electrically separated. Between the two regions, for example, there is a separation resistance of 1 k ⁇ or more so that currents do not interfere with each other.
  • the wavelength tunable laser 11 includes the wavelength stabilization region 112 and the wavelength tunable filter region 113 which are wavelength tunable mechanisms as described above.
  • the oscillation wavelength can be controlled.
  • the wavelength tunable filter region 113 include a ring resonator, a disk resonator, a distributed reflection (DBR) filter, and the like.
  • FIG. 2A shows an exemplary configuration of the absorption region 114a.
  • the arrows in the figure indicate the light propagation direction.
  • the semiconductor 21 is sandwiched between the energizing electrodes 22a and 22b.
  • the light absorption loss increases due to the free carrier absorption effect associated with energization (current injection) by the energization electrodes 22a and 22b.
  • the oscillation threshold value of the semiconductor laser can be kept constant. Thereby, for example, a decrease in the semiconductor laser oscillation threshold due to a temperature decrease can be prevented.
  • FIG. 3A shows an example of the configuration of the light reflectivity variable mirror 114b.
  • the light reflectivity variable mirror 114 b includes a current-carrying electrode 31, a directional coupler 32, and a reflecting mirror 33.
  • the directional coupler 32 is optically connected to one ends of the optical waveguides 34a and 34b.
  • the other end of the optical waveguide 34a is optically connected to the gain region 111.
  • the laser light emitted from the gain region 111 is incident on the directional coupler 32 through the optical waveguide 34a.
  • the incident laser light is reflected by the reflecting mirror 33.
  • a certain proportion of the reflected light is fed back to the gain region 111 side through the optical waveguide 34a.
  • the other light is emitted to the outside through the optical waveguide 34b.
  • FIG. 3A when the other end of the optical waveguide 34b is optically connected to the functional element 35, the light is modulated, attenuated, etc. by the functional element 35, for example. Receives wavelength conversion, etc.
  • the ratio of the light returned to the gain region 111 side can be adjusted by changing the optical path length of the directional coupler 32, for example.
  • the optical path length of the directional coupler 32 can be changed by changing the refractive index in the directional coupler 32 due to the carrier plasma effect accompanying energization by the energizing electrode 31. As a result, as shown in FIG. 3B, it is possible to control the light reflectance of the light emitting end face of the gain region which is a light source.
  • the temperature detection element 12 is thermally connected to the wavelength tunable laser 11. With this thermal connection, the temperature of the wavelength tunable laser 11 can be detected.
  • the temperature detecting element 12 monitors the temperature while the wavelength tunable laser 11 is driven. Examples of the temperature detection element 12 include a thermistor.
  • the circuit 13a including the DSP acquires temperature information of the wavelength tunable laser 11 from the temperature detection element 12, and calculates various control parameters based on the temperature information. Details will be described later.
  • the current distribution circuit 13b controls the absorption region 114a, the light reflectivity variable mirror 114b, the gain region 111, the wavelength stabilization region 112, the wavelength variable filter region 113, and the TEC 15 based on the various control parameters. To do. Details will be described later.
  • the wavelength tunable laser 11 is mounted on the TEC 15 that controls the element temperature via the subcarrier 14.
  • a TEC temperature control unit
  • the TEC is not operated while the temperature of the wavelength tunable laser is within a temperature range in which the drive current in the gain region can be controlled to be constant by the control based on the light absorption loss and the light reflectance.
  • the TEC is operated so that the temperature of the wavelength tunable laser is within the above-described temperature range.
  • the wavelength tunable laser device according to the present embodiment may be a device that temporarily operates the TEC only at an extremely low temperature or a high temperature, for example, in the normal use environment temperature range, without the need to operate the TEC.
  • the wavelength tunable laser apparatus of the present invention is used for an application in which the temperature of the wavelength tunable laser does not need to be within the above temperature range by the TEC, for example, as shown in FIG. It is not necessary to have. In this way, a low-cost and small device can be obtained.
  • a part of the laser beam A emitted from the wavelength tunable laser 11 is branched to the optical power B by the beam splitter 16 for optical output monitoring.
  • the optical power B is received by the photodetector 17 for optical output monitoring.
  • the optical power of the optical output can be known from the branching ratio of the beam splitter 16.
  • the photodetector 17 include a photodiode and an avalanche photodiode.
  • the temperature detecting element 12 monitors the temperature of the wavelength tunable laser 11 when the wavelength tunable laser apparatus of the present embodiment is movable.
  • the temperature information a of the wavelength tunable laser 11 obtained by this monitoring is output to the circuit 13a.
  • the circuit 13a calculates an absorption region control parameter for controlling the absorption region 114a and a light reflectance variable mirror control parameter for controlling the light reflectance variable mirror 114b.
  • the absorption region control parameter include a current (Ima) injected into the absorption region 114a, a voltage (Vma) applied to the absorption region 114a, and the like.
  • the absorption region control parameter one type may be used alone, or a plurality of types may be used in combination.
  • the current (Imb) injected into the light reflectivity variable mirror 114b (directional coupler 32) and the light reflectivity variable mirror 114b (directional coupler 32) are applied.
  • the light reflectivity variable mirror control parameter one type may be used alone, or a plurality of types may be used in combination.
  • the light output information C acquired through the photodetector 17 may be referred to.
  • only one of the absorption region and the light reflectivity variable mirror is used, only one of the two parameters may be used.
  • a current (Ima, arrow b1 in FIG. 1) is injected into the absorption region 114a from the current distribution circuit 13b through the energization electrodes 22a and 22b based on the absorption region control parameter, and light absorption of the absorption region 114a is performed. Control the loss.
  • a voltage (Vmb, arrow b2 in FIG. 1) is applied from the current distribution circuit 13b to the light reflectivity variable mirror 114b (directional coupler 32) through the conduction electrode 31. Then, the light reflectance by the light reflectance variable mirror 114b is controlled.
  • the output light intensity of the laser light A emitted from the wavelength tunable laser 11 can be set to a desired value.
  • the oscillation threshold and efficiency can be made constant based on the laser theory, so that the above-described effects can be obtained.
  • the laser theory will be described using mathematical expressions.
  • the following formula is a theoretical formula, and the actual phenomenon in the wavelength tunable laser apparatus of the present invention may not completely match the following formula and the description thereof.
  • the numerical values are examples and do not limit the present invention.
  • the drive current to the gain region necessary to obtain the desired optical output is determined by the oscillation threshold current and efficiency.
  • the oscillation threshold current correlates with the oscillation threshold gain gth and is expressed by the following formula (1).
  • ⁇ M mirror loss of wavelength tunable laser
  • ⁇ i internal loss of wavelength tunable laser
  • ⁇ i internal loss of wavelength tunable laser
  • ⁇ i internal loss
  • N carrier density
  • dg / dN differential gain
  • the efficiency of the wavelength tunable laser correlates with the external differential quantum efficiency ⁇ d and is expressed by the following formula (2).
  • ⁇ d ⁇ i ⁇ M / ( ⁇ M + ⁇ i) (2)
  • ⁇ i Internal differential quantum efficiency
  • the wavelength tunable laser device of the present invention it is easy to control the wavelength tunable laser and it is not necessary to increase the drive current in the gain region even at high temperatures, so that the lifetime of the element is not deteriorated. High reliability.
  • the circuit 13a uses the wavelength stabilization region control parameter for controlling the wavelength stabilization region 112 based on the temperature information a, and the wavelength tunable filter.
  • a tunable filter region control parameter for controlling the region 113 is calculated.
  • the wavelength stabilization region control parameter include a current (IPC) injected into the wavelength stabilization region 112 and the like.
  • Examples of the wavelength tunable filter region control parameter include a current (IF) injected into the wavelength tunable filter region 113.
  • a current (IPC, arrow d in FIG. 1) is injected from the current distribution circuit 13b into the wavelength stabilization region 112 based on the wavelength stabilization region control parameter to control the wavelength stabilization region 112.
  • a current (IF, arrow e in FIG. 1) is injected from the current distribution circuit 13b into the wavelength tunable filter region 113 to control the wavelength tunable filter region 113.
  • the wavelength tunable laser device of this embodiment has high reliability.
  • both the wavelength tunable mechanism and the optical loss control means can be controlled by the above-described control mechanism based on the temperature information of the wavelength tunable laser obtained from the temperature detection element. For this reason, for example, the device structure is simple compared to the case where the wavelength variable mechanism and the optical loss control means are controlled by separate control mechanisms.
  • the circuit 13a calculates a gain region control parameter for controlling the gain region 111 based on the temperature information a.
  • this control parameter is an arbitrary parameter, it need not be calculated, but is preferably calculated.
  • the gain region control parameter include a current (ISOA) injected into the gain region 111.
  • ISOA current
  • the light output information C acquired via the photodetector 17 may be referred to.
  • a current (ISOA, arrow c in FIG. 1) is injected into the gain region 111 from the current distribution circuit 13b based on the gain region control parameter to control the gain region 111.
  • the output light intensity of the laser light A emitted from the wavelength tunable laser 11 can be controlled to a desired value with higher accuracy.
  • the circuit 13a calculates a TEC control parameter (temperature control unit control parameter) for controlling the TEC 15 based on the temperature information a.
  • this control parameter is an arbitrary parameter, it need not be calculated, but is preferably calculated.
  • the TEC control parameter include a current (ITEC) injected into the TEC 15 and the like.
  • IRC current
  • light output information C acquired through the photodetector 17 may be referred to.
  • the current distribution circuit 13b to the TEC 15 based on the TEC control parameter.
  • the TEC 15 is operated by injecting a current (ITEC, arrow f in FIG. 1).
  • the temperature of the wavelength tunable laser is lowered to the above temperature range.
  • the wavelength and output light intensity of the laser light A emitted from the wavelength tunable laser 11 can be set to desired values.
  • the reliability of the wavelength tunable laser device of the present embodiment is further increased.
  • the wavelength tunable laser device of the present embodiment can be used as a light source of an optical module, for example. By doing in this way, an optical module with power saving and high reliability can be obtained.
  • the gain region in the wavelength tunable laser may include, for example, a coupled quantum well structure.
  • the coupled quantum well structure is not particularly limited. For example, at least two or more types of quantum wells having different gain peak wavelengths are sequentially stacked, and a barrier layer existing between them is stacked.
  • the quantum structure is characterized in that at least one layer thickness is 2 nm to 5 nm.
  • the coupled quantum well structure can obtain, for example, a wide gain band of 60 nm or more without degrading characteristics such as threshold current. For this reason, a necessary wavelength variable range can be maintained.
  • the gain region has a limited gain band.
  • the oscillation wavelength range is limited by this gain band.
  • This gain band shifts to the longer wavelength side with increasing temperature.
  • the gain band shifts to a long wavelength side of about 0.4 nm per 1 ° C., for example, under a condition where the current density is constant. For this reason, when operating the wavelength tunable laser within a certain temperature range, the overlapping wavelength tunable range from the lower limit to the upper limit of the operating temperature becomes narrow or, in the worst case, there is no overlap.
  • the coupled quantum well structure for example, three types of quantum well structures each having different gain peaks are prepared, and these quantum structures are used as one unit.
  • the well is made of 1.63 ⁇ m composition compressive strain InGaAsP with a width of 5.5 nm
  • the barrier is made of 1.25 ⁇ m composition InGaAsP
  • four quantum wells are stacked.
  • the thickness of the barrier layer between the first and second quantum wells and between the third and fourth quantum wells is 4 nm
  • the thickness of the barrier layer between the second and third quantum wells is 10 nm.
  • the well is made of 1.52 ⁇ m composition compression strained InGaAsP with a width of 5 nm, and the barrier is made of 1.25 ⁇ m composition InGaAsP.
  • the thickness of the barrier layer is the same as that of the first quantum well structure.
  • the well has a width of 4.5 nm of 1.52 ⁇ m composition compressive strain InGaAsP and the barrier has a 1.25 ⁇ m composition InGaAsP.
  • the thickness of the barrier layer is the same as that of the first quantum well structure.
  • quantum well structures are grown at a growth pressure of 98.6 kPa and a growth temperature of 625 ° C., for example, in the order of the third, second, and first. In this way, a coupled quantum well structure can be formed.
  • a semiconductor optical amplifier SOA
  • SOA semiconductor optical amplifier
  • FIG. 6 shows the configuration of the wavelength tunable laser device of this embodiment.
  • functional elements 61 are monolithically integrated on the side opposite to the gain region 111 side of the absorption region 114a and the light reflectivity variable mirror 114b.
  • the wavelength tunable laser device 60 has the same configuration as the wavelength tunable laser device of the first embodiment shown in FIG.
  • the TEC has an arbitrary configuration and is not necessarily provided, but is preferably provided as in the first embodiment.
  • the functional element 61 is monolithically integrated on the same subcarrier (semiconductor substrate) 14 as the wavelength tunable laser 11, but for example, a separately prepared element may be combined. Moreover, the functional element 61 may be optically connected to the wavelength tunable laser 11 in a folded form via the light reflectivity variable mirror 32, for example, as shown in FIG. It may be directly optically connected to the light emitting end face of the wavelength tunable laser 11. Examples of the functional element 61 include an optical modulator that modulates laser light emitted from the wavelength tunable laser, an optical variable attenuator that attenuates laser light, and a wavelength conversion element that converts the wavelength of laser light. One type of the functional element may be used alone, or a plurality of types may be used in combination.
  • the wavelength tunable laser can be controlled, for example, in the same manner as when the wavelength tunable laser device of Embodiment 1 shown in FIG. 1 is used, except for the following points.
  • the circuit 13 a including the DSP calculates a functional element control parameter for controlling the functional element 61 based on the temperature information a of the wavelength tunable laser 11.
  • Examples of the functional element control parameter include a current (Imc) injected into the functional element 61.
  • Imc current
  • the light output information C acquired through the photodetector 17 may be referred to.
  • a current (Imc, arrow g in FIG. 6) is injected from the current distribution circuit 13b into the functional element 61 based on the functional element control parameter to control the functional element 61.
  • functions such as modulation with respect to laser light and variable light output attenuation (shutter) can be added.
  • the functional element control based on the functional element control parameter may be performed independently of the control based on other control parameters, for example.
  • FIG. 7 shows the configuration of the wavelength tunable laser device of this embodiment.
  • the wavelength tunable laser device 70 further includes a dummy current injection region 71 on the opposite side of the wavelength tunable laser 11 from the absorption region 114a and the light reflectivity variable mirror 114b side.
  • the dummy current injection region 71 corresponds to a part of the current path that makes the total power applied to the wavelength tunable laser 11 constant.
  • the wavelength tunable laser device 70 has the same configuration as the wavelength tunable laser device of the second embodiment shown in FIG.
  • the TEC has an arbitrary configuration and is not necessarily provided, but is preferably provided as in the first embodiment.
  • the wavelength tunable laser can be controlled, for example, as in the case of using the wavelength tunable laser device of Embodiment 2 shown in FIG. 6 except for the following points.
  • the circuit 13 a including the DSP calculates a dummy current injection region control parameter (current path control parameter) for controlling the dummy current injection region 71 based on the temperature information a of the wavelength tunable laser 11.
  • a dummy current injection region control parameter include total input power control current (ID) injected into the dummy current injection region 71.
  • ID total input power control current
  • light output information C acquired via the photodetector 17 may be referred to.
  • a total input power control current (ID, arrow h in FIG. 7) is injected from the current distribution circuit 13b into the dummy current injection region 71 based on the dummy current injection region control parameter, and the dummy current injection region 71 is injected.
  • the total amount of dummy power and element control power, the amount of heat generated inside the element, and the heat radiation to the outside via the heat sink are balanced. be able to.
  • the wavelength tunable laser device of the present invention is power-saving and highly reliable. Therefore, the wavelength tunable laser apparatus of the present invention can be applied to a medium and long distance light source for wavelength multiplexing communication used for, for example, a trunk line system and an access system. However, its use is not limited and can be applied to a wide range of fields.
  • Wavelength tunable laser device 11 Wavelength tunable laser 12 Temperature sensing element 13 Control unit 13a Circuit including DSP 13b Current distribution circuit 14 Subcarrier 15 TEC 16 Beam splitter 17 Photo detector 18 Heat sink 21 Semiconductors 22a, 22b, 31 Conducting electrode 32 Directional coupler 33 Reflector 34a, 34b Optical waveguide 35, 61 Functional element 71 Dummy current injection region 111 Gain region (light source) 112 Wavelength stabilization region (wavelength variable mechanism) 113 Wavelength tunable filter region (wavelength tunable mechanism) 114a Absorption region (light loss control means) 114b Light reflectivity variable mirror (light loss control means)

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 省電力で、かつ信頼性の高い波長可変レーザ装置を提供する。 本発明の波長可変レーザ装置10は、光源111と波長可変機構112、113とを含むレーザ共振器と光損失制御手段114a、114bとを含む波長可変レーザ11と、波長可変レーザ11の温度を検知する温度検知素子12と、制御部13とを含み、制御部13が、温度検知素子12から波長可変レーザ11の温度情報aを取得し、温度情報aに基づき波長可変制御パラメータd、eおよび光損失制御パラメータb1、b2を算出し、波長可変制御パラメータd、eに基づき波長可変機構112、113を制御し、光損失制御パラメータb1、b2に基づき光損失制御手段114a、114bを制御することを特徴とする。

Description

波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法
 本発明は、波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法に関する。
 近年、急速なインターネットの普及に伴い、通信トラフィックの大容量化が求められている。この求めに応えて、システム単チャンネルあたりの伝送速度の向上、および波長分割多重(WDM:Wavelength Division Multiplexing)化によるチャンネル数の拡大が進んでいる。前記WDMは、異なる搬送波長(チャンネル)に割り当てられる複数の光信号を同時に伝送でき、チャンネル数に応じて通信容量を増大可能である。前記WDMでは、各チャンネル波長が十分に隔てられている。例えば、1チャンネルあたり10ギガビット/秒で変調して、100チャンネル分を1つの共通な光ファイバで伝送することによって、通信容量は1テラビット/秒に達する。
 近年の中長距離光通信では、光ファイバ増幅器(EDFA:エルビウム・ドープ・ファイバ・アンプリファイヤ)で増幅することのできるC帯(1530~1570nm)が、広く用いられている。前記WDMでは、例えば、光通信で用いられる100チャンネルに対して、それぞれに応じた100品種のレーザ装置が必要となる。このため、レーザ装置の在庫管理や棚卸し等のコストが増大する。この問題の解決のために、中長距離通信では、前述のC帯を1台のレーザ装置で全てカバーできる波長可変レーザ装置が求められている。
 前記波長可変レーザ装置の光源としては、例えば、半導体光増幅器(SOA:セミコンダクター・オプティカル・アンプリファイヤ)と、波長可変フィルタと、反射鏡とから構成される光源(外部共振器型波長可変レーザ等)がある。前記波長可変フィルタは、フィルタ部の屈折率(フィルタ部の材料の屈折率)を変化させてレーザの発振波長を制御する。このような光源を備える波長可変レーザ装置が記載された公知文献としては、例えば、特許文献1から4があげられる。
特開平3-9587号公報 特開2008-242366号公報 特表2007-533151号公報 特開2000-124541号公報
 フィルタ部の屈折率(フィルタ部の材料の屈折率)の変化には、例えば、電流によるキャリアプラズマ効果、電圧印加による電気光学効果、ヒータ加熱による熱光学効果等が用いられる。前述の熱光学効果による屈折率の変化は、波長可変レーザの素子全体の温度変化によっても起こりうる。この変化を避けるために、波長可変レーザの素子全体の温度を、熱電クーラ(TEC:Thermoelectric Cooler)によって、例えば、0.01Kの精度で制御する。
 しかしながら、TECは、その消費電力が波長可変レーザの消費電力と比較して大きい。一例として、波長可変レーザの消費電力が0.2W程度であるのに対し、TECの温度を75℃から25℃まで50℃下げるためには、2W程度の電力が必要である。すなわち、現状の波長可変レーザ装置の消費電力は、TECによりほぼ決定される。したがって、TECを必要としない、またはTECの消費電力を削減可能な波長可変レーザ装置を実現できれば、光出力モジュールの消費電力を大幅に低減できる。
 前述の特許文献1から4には、TECによる温度制御以外の方法で波長可変レーザを制御する装置が開示されている。具体的には、以下のとおりである。特許文献1には、方向性結合器を用いた反射率制御機構を備える装置が開示されている。また、特許文献2には、方向性結合器を用いた出力光強度制御機構を備える装置が開示されている。また、特許文献3には、波長可変レーザの温度を測定し、その温度に応じて波長可変レーザに印加するバイアスを調整する機構を備える装置が開示されている。また、特許文献4には、電界吸収部に流れる光電流をモニタし、この光電流値を一定に保持することで一定光強度レベルの前方光出力を得る機構を備える装置が開示されている。
 しかしながら、特許文献1、2および4に記載の装置では、レーザの波長を決定する波長可変フィルタが、温度変化により屈折率が変化して発振波長が変化してしまう。このため、一定温度に制御する場合に比べて、波長可変レーザの動作が不安定になるという問題がある。
 また、特許文献1から3に記載の装置では、レーザ素子の温度が上昇すると、活性層における利得ピーク波長の長波化と利得低下とが起こり、レーザ光出力が低下する。このため、温度が変化しても一定の出力を得るには、高温になるほど高い電流密度でレーザを駆動させる必要がある。この結果、素子寿命劣化(信頼性劣化)をまねくおそれがある。
 本発明の目的は、省電力で、かつ信頼性の高い波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法を提供することにある。
 前記目的を達成するために、本発明の波長可変レーザ装置は、
 波長可変レーザと、温度検知素子と、制御部とを含み、
 前記波長可変レーザが、光源と波長可変機構とを含むレーザ共振器と、光損失制御手段とを含み、
 前記温度検知素子が、前記波長可変レーザに熱的に接続され、かつ前記制御部に電気的に接続され、
 前記制御部が、前記波長可変機構と前記光損失制御手段とに電気的に接続され、
 前記温度検知素子が、前記波長可変レーザの温度を検知し、
 前記制御部が、
 前記温度検知素子から前記波長可変レーザの温度情報を取得し、
 前記温度情報に基づき波長可変制御パラメータおよび光損失制御パラメータを算出し、
 前記波長可変制御パラメータに基づき前記波長可変機構を制御し、
 前記光損失制御パラメータに基づき前記光損失制御手段を制御することを特徴とする。
 また、本発明の光モジュールは、
 前記本発明の波長可変レーザ装置を含むことを特徴とする。
 また、本発明の波長可変レーザの制御方法は、
 前記本発明の波長可変レーザ装置を使用し、
 前記温度検知素子により前記波長可変レーザの温度を検知する工程と、
 前記制御部により前記温度検知素子から前記波長可変レーザの温度情報を取得する工程と、
 前記制御部により前記温度情報に基づき波長可変制御パラメータおよび光損失制御パラメータを算出する工程と、
 前記制御部により前記波長可変制御パラメータに基づき前記波長可変機構を制御する工程と、
 前記制御部により前記光損失制御パラメータに基づき前記光損失制御手段を制御する工程とを含むことを特徴とする。
 本発明によれば、省電力で、かつ信頼性の高い波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法を提供できる。
本発明の波長可変レーザ装置における一例(実施形態1)の構成を示すブロック図である。 (a)は、前記実施形態1の波長可変レーザ装置に用いられる吸収領域の構成を示すブロック図である。(b)は、前記吸収領域における注入電流と光吸収損失との関係を示すグラフである。 (a)は、前記実施形態1の波長可変レーザ装置に用いられる光反射率可変ミラーの構成を示す模式図である。(b)は、前記光反射率可変ミラーにおける印加電圧を光反射率との関係を示すグラフである。 前記実施形態1の波長可変レーザ装置におけるTECを省略した例の構成を示すブロック図である。 (a)は、結合量子井戸における利得幅の温度による変化を説明するグラフである。(b)は、通常の量子井戸における利得幅の温度による変化を説明するグラフである。 本発明の波長可変レーザ装置におけるその他の例(実施形態2)の構成を示すブロック図である。 本発明の波長可変レーザ装置におけるさらにその他の例(実施形態3)の構成を示すブロック図である。
 以下、本発明の波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法について、詳細に説明する。ただし、本発明は、以下の実施形態に限定されない。なお、以下の図1から図7において、同一部分には、同一符号を付している。また、本発明において、数値限定により発明を特定する場合は、厳密にその数値でも良いし、約その数値でも良い。
(実施形態1)
 図1に、本実施形態の波長可変レーザ装置の構成を示す。図示のとおり、この波長可変レーザ装置10は、波長可変レーザ11と、温度検知素子12と、制御部13とを主要な構成要素として含む。前記波長可変レーザ11は、光源である利得領域111と波長可変機構である波長安定化領域112および波長可変フィルタ領域113とを含むレーザ共振器と、光損失制御手段である吸収領域114aおよび光反射率可変ミラー114bとを含む。前記吸収領域114aおよび前記光反射率可変ミラー114bは、前記利得領域111の光出射端面側に配置されている。前記波長安定化領域112および前記波長可変フィルタ領域113は、前記利得領域111の前記光出射端面とは反対面の側に配置されている。前記波長可変レーザ11と前記温度検知素子12とは、適切な間隔をあけてサブキャリア14上に実装され、かつ熱的に接続されている。前記波長可変レーザ11は、前記サブキャリア14を介して、熱電クーラ(TEC)15上に搭載されている。TEC15は、波長可変レーザ11の温度を制御する「温度制御部」に相当する。前記制御部13は、DSP(Digital Signal Processor)を含む回路13aと、前記回路13aに電気的に接続された電流分配回路13bとを含む。前記温度検知素子12は、前記回路13aに電気的に接続されている。前記電流分配回路13bは、前記吸収領域114a、前記光反射率可変ミラー114b、前記利得領域111、前記波長安定化領域112、前記波長可変フィルタ領域113および前記TEC15に、電気的に接続されている。この波長可変レーザ装置10は、さらに、ビームスプリッタ16とフォトディテクタ17とを含む。前記フォトディテクタ17は、前記回路13aに電気的に接続されている。この波長可変レーザ装置10は、ヒートシンク18上に搭載されている。
 なお、本発明において、「上に(upper side)」は、特に断らない限り、上面に直接接触している状態(on)に限定されず、間に他の構成要素等が存在し、直接接触していない状態(above)も含む。同様に、「下に(lower side)」は、特に断らない限り、下面に直接接触している状態(on)でも良いし、間に他の構成要素等が存在し、直接接触していない状態(below)でも良い。また、「上面に(on the upper surface)」は、上面に直接接触している状態を指す。同様に、「下面に(on the lower surface)」は、下面に直接接触している状態を指す。「片面側に(at the one side)」は、特に断らない限り、片面側に直接接触している状態でも良いし、間に他の構成要素等が存在し、直接接触していない状態でも良い。「両面側に(at the both side)」も、同様とする。「片面に(on the one side)」は、片面に直接接触している状態を指す。「両面に(on the both side)」も、同様とする。
 また、本実施形態の波長可変レーザ装置では、光損失制御手段として、吸収領域および光反射率可変ミラーの両方を含むが、本発明は、この例に限定されず、吸収領域または光反射率可変ミラーのいずれか一方を備えていてもよいし、別の光損失制御手段を備えてもよい。前記別の光損失制御手段としては、例えば、レーザ光より狭いバンドギャップ波長組成の半導体をコア層とする光導波路等があげられる。この光導波路は、例えば、公知のバットジョイント技術等により、前記利得領域に光学的に接続される。ただし、この接続は、バットジョイント技術に限定されない。
 本実施形態の波長可変レーザにおいて、前記波長可変レーザ11の能動素子(光源)である前記利得領域111は、半導体光増幅器(SOA)である。前記半導体光増幅器には、多重量子井戸(MQW:Multiple Quantum Well)が形成されている。前記多重量子井戸により、電流の注入に応じて光が発生・増幅される。
 前記波長可変レーザ11の受動素子である前記波長安定化領域112は、バルク組成または多重量子井戸で構成され、かつレーザ発振光を吸収しない程度にバンドギャップが広く設定されている領域である。前記波長安定化領域112は、電流の注入または電圧の印加に応じて、その領域の屈折率が変化する。前記利得領域111と前記波長安定化領域112とは、例えば、公知のバットジョイント技術、公知の選択成長技術、公知の装荷結合技術等を用いて作製することができる。前記両領域は、十分に電気的に離れている。前記両領域間には、例えば、1kΩ以上の分離抵抗があり、互いに電流が干渉しないようにされている。
 前記波長可変レーザ11は、前述のとおり、波長可変機構である前記波長安定化領域112と前記波長可変フィルタ領域113とを含む。これらにより、発振波長を制御可能である。前記波長可変フィルタ領域113としては、例えば、リング型共振器、ディスク型共振器、分布反射型(DBR)フィルタ等があげられる。
 図2(a)に、前記吸収領域114aの一例の構成を示す。同図における矢印は、光の伝搬方向を示す。前記吸収領域114aでは、半導体21が通電用電極22aおよび22bに挟持されている。前記吸収領域114aでは、図2(b)に示すように、前記通電用電極22aおよび22bによる通電(電流注入)に伴う自由キャリア吸収効果により、光吸収損失が増大する。前記吸収領域に通電(電流注入)して光吸収損失を増大させることで、半導体レーザの発振しきい値を一定に保つことが可能となる。これにより、例えば、温度低下による半導体レーザ発振しきい値の低下を防止することができる。
 図3(a)に、前記光反射率可変ミラー114bの構成の一例を示す。前記光反射率可変ミラー114bは、通電用電極31と方向性結合器32と反射鏡33とを含む。前記方向性結合器32は、光導波路34aおよび34bの一端に光学的に接続されている。前記光導波路34aの他端は、前記利得領域111に光学的に接続されている。
 前記光反射率可変ミラー114bでは、前記利得領域111から出射されたレーザ光が、前記光導波路34aを介して前記方向性結合器32に入射される。前記入射したレーザ光は、前記反射鏡33により反射される。この反射光のうち、一定の割合の光は、前記光導波路34aを介して前記利得領域111側に帰還される。それ以外の光は、前記光導波路34bを介して外部に出射される。図3(a)に示すように、前記光導波路34bの他端が、機能素子35に光学的に接続されている場合には、前記光は、前記機能素子35により、例えば、変調、減衰、波長変換等を受ける。前記利得領域111側に帰還させる光の割合は、例えば、前記方向性結合器32の光路長を変化させることで調整可能である。前記通電電極31による通電に伴うキャリアプラズマ効果により、前記方向性結合器32における屈折率を変化させることで、前記方向性結合器32の光路長を変化させることができる。この結果、図3(b)に示すように、光源である前記利得領域の光出射端面の光反射率を制御することができる。
 前述のとおり、前記温度検知素子12は、前記波長可変レーザ11に熱的に接続されている。この熱的接続により、前記波長可変レーザ11の温度を検知可能である。前記温度検知素子12は、前記波長可変レーザ11が駆動している間、その温度をモニタする。前記温度検知素子12としては、例えば、サーミスタ等があげられる。
 前記DSPを含む回路13aは、前記温度検知素子12から前記波長可変レーザ11の温度情報を取得し、この温度情報に基づいて、各種制御パラメータを算出する。詳細は後述する。前記電流分配回路13bは、前記各種制御パラメータに基づき、前記吸収領域114a、前記光反射率可変ミラー114b、前記利得領域111、前記波長安定化領域112、前記波長可変フィルタ領域113および前記TEC15を制御する。詳細は後述する。
 本実施形態の波長可変レーザ装置では、前述のとおり、前記波長可変レーザ11は、前記サブキャリア14を介して素子温度を制御する前記TEC15に搭載されている。本発明では、TEC(温度制御部)は必ずしも必要はないが、例えば、以下のような場合が想定されるため、TECを備えていることが好ましい。すなわち、後述の光吸収損失および光反射率の制御による波長可変レーザの制御範囲は有限であるため、利得領域の駆動電流を一定に制御できる温度範囲も有限である。前記波長可変レーザの温度が、前述の光吸収損失および光反射率による制御により利得領域の駆動電流を一定に制御できる温度範囲内にある間は、例えば、前記TECを作動させないでおく。一方、その温度範囲を超えた場合には、前記TECを作動させて、前記波長可変レーザの温度を前述の温度範囲内となるようにする。このようにすることで、本実施形態の波長可変レーザ装置の全駆動時間における消費電力の平均を大幅に低減可能となる。この結果、本実施形態の波長可変レーザ装置は、省電力である。本実施形態の波長可変レーザ装置は、例えば、通常の使用環境温度範囲では、前記TECを作動させる必要がなく、極めて低温または高温でのみ、一時的に前記TECを作動させる装置でもよい。
 また、前記波長可変レーザの温度を、例えば、前記TECにより前述の温度範囲内とする必要のない用途に、本発明の波長可変レーザ装置を用いる場合には、図4に示すように、前記TECを備えなくともよい。このようにすれば、低コストで、かつ小型な装置とすることができる。
 前記波長可変レーザ11から出射されるレーザ光Aは、前記ビームスプリッタ16により、その一部が光出力モニタ用として光パワーBに分岐される。前記光パワーBは、光出力モニタ用の前記フォトディテクタ17に受光される。これにより、前記ビームスプリッタ16の分岐比から、光出力の光パワーを知ることができる。前記フォトディテクタ17としては、例えば、フォトダイオード、アバランシェフォトダイオード等があげられる。
 つぎに、図1から3に基づき、本実施形態の波長可変レーザ装置を使用した波長可変レーザの制御方法を説明する。
 本実施形態の波長可変レーザ装置の可動時において、前記温度検知素子12は、前記波長可変レーザ11の温度をモニタしている。このモニタにより得られた前記波長可変レーザ11の温度情報aは、前記回路13aに出力される。前記回路13aは、前記温度情報aに基づき、前記吸収領域114aを制御するための吸収領域制御パラメータ、および前記光反射率可変ミラー114bを制御するための光反射率可変ミラー制御パラメータを算出する。前記吸収領域制御パラメータとしては、前記吸収領域114aに注入される電流(Ima)、前記吸収領域114aに印加される電圧(Vma)等があげられる。前記吸収領域制御パラメータは、一種類を単独で用いてもよいし、複数種類を併用してもよい。前記光反射率可変ミラー制御パラメータとしては、前記光反射率可変ミラー114b(方向性結合器32)に注入される電流(Imb)、前記光反射率可変ミラー114b(方向性結合器32)に印加される電圧(Vmb)等があげられる。前記光反射率可変ミラー制御パラメータは、一種類を単独で用いてもよいし、複数種類を併用してもよい。
 なお、前記両パラメータの算出には、前記温度情報aに加えて、前記フォトディテクタ17を介して取得する光出力情報Cを参照してもよい。また、前記吸収領域または前記光反射率可変ミラーのいずれか一方のみを用いる場合には、前記両パラメータもいずれか一方のみでよい。
 ついで、前記吸収領域制御パラメータに基づき前記電流分配回路13bから、前記通電用電極22aおよび22bを通じて前記吸収領域114aに電流(Ima、図1における矢印b1)を注入し、前記吸収領域114aの光吸収損失を制御する。前記光反射率可変ミラー制御パラメータに基づき前記電流分配回路13bから、前記通電用電極31を通じて前記光反射率可変ミラー114b(方向性結合器32)に電圧(Vmb、図1における矢印b2)を印加し、前記光反射率可変ミラー114bによる光反射率を制御する。このようにすることで、本実施形態の波長可変レーザ装置では、前記波長可変レーザ11から出射されるレーザ光Aの出力光強度を所望の値にすることができる。
 本発明の波長可変レーザ装置では、波長可変レーザの温度が変化した場合でも、レーザ理論に基づき、その発振しきい値および効率を一定にできるため、前述の効果が得られる。以下、前記レーザ理論について、数式を用いて説明する。ただし、以下の数式は理論式であり、本発明の波長可変レーザ装置における実際の現象は、下記数式およびその説明と完全には一致しない場合がある。また、数値は例示であり、本発明を何ら限定しない。
 所望の光出力を得るのに必要な利得領域への駆動電流は、発振しきい電流と効率により決定される。前記発振しきい電流は、発振しきい利得gthと相関があり、下記数式(1)で表される。
 
αM+αi=Γgth=Γ(N-Ng)dg/dN≒ΓNdg/dN   (1)
 
Γ:光閉じ込め係数
αM:波長可変レーザのミラー損失
αi:内部損失
N:キャリア密度
Ng:透明キャリア密度
dg/dN:微分利得
 
 また、前記波長可変レーザの効率は、外部微分量子効率ηdと相関があり、下記数式(2)で表される。
 
ηd=ηiαM/(αM+αi)   (2)
 
ηi:内部微分量子効率
 
 例えば、利得領域にInGaAsP/InP系材料を用いた場合、温度が20K上昇すると、dg/dNは5.4%減少し、ηdは7.4%減少する。例えば、温度変化前のαMが20cm-1、αiが20cm-1であり、温度が20K上昇する場合は、光反射率可変ミラーの光反射率低下によりαMを22.6cm-1まで増大させる。また、吸収領域の電流注入量を減らすことによる光吸収損失減少によりαiを19.5cm-1まで減少させる。このようにすることで、gthとηdとを一定に保つことができる。この結果、利得領域への駆動電流を一定に保つことが可能となる。
 以上のとおり、本発明の波長可変レーザ装置では、波長可変レーザの制御が容易であり、かつ高温時においても利得領域の駆動電流を上昇させる必要がないため、素子寿命の劣化をまねくことがなく、信頼性が高い。
 本実施形態の波長可変レーザ装置では、前記両パラメータと共に、前記回路13aは、前記温度情報aに基づき、前記波長安定化領域112を制御するための波長安定化領域制御パラメータ、および前記波長可変フィルタ領域113を制御するための波長可変フィルタ領域制御パラメータを算出する。前記波長安定化領域制御パラメータとしては、例えば、前記波長安定化領域112に注入される電流(IPC)等があげられる。前記波長可変フィルタ領域制御パラメータとしては、例えば、前記波長可変フィルタ領域113に注入される電流(IF)等があげられる。なお、これらのパラメータの算出には、前記温度情報aに加えて、前記フォトディテクタ17を介して取得する光出力情報Cを参照してもよい。
 ついで、前記波長安定化領域制御パラメータに基づき前記電流分配回路13bから、前記波長安定化領域112に電流(IPC、図1における矢印d)を注入して、前記波長安定化領域112を制御する。前記波長可変フィルタ領域制御パラメータに基づき前記電流分配回路13bから、前記波長可変フィルタ領域113に電流(IF、図1における矢印e)を注入して、前記波長可変フィルタ領域113を制御する。このようにすることで、本実施形態の波長可変レーザ装置では、発振波長を所望の波長とすることができる。このため、温度変化による波長可変フィルタの屈折率変化等による発振波長の変化により、波長可変レーザの動作が不安定になることがない。この結果、本実施形態の波長可変レーザ装置は、信頼性が高い。また、本実施形態の波長可変レーザ装置では、波長可変機構および光損失制御手段の両方を、温度検知素子から得られる波長可変レーザの温度情報に基づく、前述の制御機構により制御可能である。このため、例えば、前記波長可変機構および前記光損失制御手段を別々の制御機構により制御する場合と比較して、その装置構造が単純である。
 本実施形態の波長可変レーザ装置では、前述のパラメータに加えて、前記回路13aは、前記温度情報aに基づき、前記利得領域111を制御するための利得領域制御パラメータを算出する。本発明では、この制御パラメータは、任意のパラメータであるため、算出しなくともよいが、算出することが好ましい。前記利得領域制御パラメータとしては、例えば、前記利得領域111に注入される電流(ISOA)等があげられる。なお、このパラメータの算出には、前記温度情報aに加えて、前記フォトディテクタ17を介して取得する光出力情報Cを参照してもよい。
 ついで、前記利得領域制御パラメータに基づき前記電流分配回路13bから、前記利得領域111に電流(ISOA、図1における矢印c)を注入して、前記利得領域111を制御する。このようにすることで、例えば、前記波長可変レーザ11から出射されるレーザ光Aの出力光強度を、より高精度に所望の値に制御することができる。
 本実施形態の波長可変レーザ装置では、前述のパラメータに加えて、前記回路13aは、前記温度情報aに基づき、前記TEC15を制御するためのTEC制御パラメータ(温度制御部制御パラメータ)を算出する。本発明では、この制御パラメータは、任意のパラメータであるため、算出しなくともよいが、算出することが好ましい。前記TEC制御パラメータとしては、例えば、前記TEC15に注入される電流(ITEC)等があげられる。なお、前記TEC制御パラメータの算出には、前記温度情報aに加えて、前記フォトディテクタ17を介して取得する光出力情報Cを参照してもよい。
 前記吸収領域114aおよび前記光反射率可変ミラー114bによる制御可能な温度範囲より、例えば、前記波長可変レーザ11の温度が上昇した場合、前記TEC制御パラメータに基づき前記電流分配回路13bから、前記TEC15に電流(ITEC、図1における矢印f)を注入して前記TEC15を作動させる。これにより、前述の温度範囲内まで前記波長可変レーザの温度を低下させる。このようにすることで、例えば、前述の温度範囲を超えるような場合でも、前記波長可変レーザ11から出射されるレーザ光Aの波長および出力光強度を所望の値にすることができる。この結果、例えば、本実施形態の波長可変レーザ装置の信頼性が、より高くなる。
 本実施形態の波長可変レーザ装置は、例えば、光モジュールの光源として用いることができる。このようにすることで、省電力で、かつ信頼性の高い光モジュールを得ることができる。
 本実施形態の波長可変レーザ装置では、前記波長可変レーザにおける利得領域は、例えば、結合量子井戸構造を含んでもよい。前記結合量子井戸構造は、特に制限されないが、例えば、2から5種類の異なる利得ピーク波長を有する量子井戸が、少なくとも各種類2つ以上連続して積層されており、その間に存在する障壁層の少なくとも一つの層厚が2nmから5nmであることを特徴とする量子構造である。前記結合量子井戸構造は、閾値電流などの特性を劣化させることなく、例えば、60nm以上の広い利得帯域を得ることができる。このため、必要な波長可変範囲を保持できる。
 利得領域は、ある限られた利得帯域を有する。この利得帯域により発振波長範囲は制限される。この利得帯域は、温度上昇と共に長波長側にシフトする。利得帯域は、電流密度が一定の条件下では、例えば、1℃あたり約0.4nm長波長側にシフトする。このため、ある温度範囲で波長可変レーザを動作させる場合、動作温度の下限から上限までで重なる波長可変範囲が狭くなるか、最悪の場合、重なりが存在しなくなる。図5(b)に示すように、通常の量子井戸構造の利得帯域は、例えば、40nm程度である。このため、温度が50℃変化した場合の利得帯域の重なりは、40-20=20nmとなる。この結果、例えば、前述のC帯におけるフルバンド駆動が困難となる。一方、図5(a)に示すように、前述の結合量子井戸構造の利得帯域は、例えば、60nm以上である。このため、温度が50℃変化した場合の利得帯域の重なりは、60-20=40nmとなる。この結果、例えば、前述のC帯におけるフルバンド駆動が可能となる。したがって、結合量子井戸構造を用いれば、例えば、より信頼性を高めることができる。
 前記結合量子井戸構造は、例えば、それぞれ、異なる利得ピークを有する量子井戸構造を3種類準備し、これらの量子構造を一つのユニットとして用いる。
 1つ目の量子井戸構造は、井戸を1.63μm組成圧縮歪InGaAsPの5.5nm幅、障壁は1.25μm組成InGaAsPとし、4つの量子井戸を積層する。そのうち、1番目と2番目の量子井戸の間、および3番目と4番目の量子井戸の間の障壁層の厚さを4nmとし、2番目と3番目の間の障壁層の厚さを10nmとする。すなわち、1番目と2番目、3番目と4番目の量子井戸をそれぞれ結合化する。
 2つ目の量子井戸構造は、井戸を1.52μm組成圧縮歪InGaAsPの5nm幅、障壁は1.25μm組成InGaAsPとする。障壁層の厚さは、1つ目の量子井戸構造と同じとする。
 3つ目の量子井戸構造は、井戸を1.52μm組成圧縮歪InGaAsPの4.5nm幅、障壁は1.25μm組成InGaAsPとする。障壁層の厚さは、1つ目の量子井戸構造と同じとする。
 これらの量子井戸構造を、例えば、3つ目、2つ目、1つ目の順に成長圧力98.6kPa、成長温度625℃で成長させる。このようにして、結合量子井戸構造を形成可能である。また、この量子井戸構造の前後に、SCH(分離閉じこめヘテロ構造)を配置することで、半導体光増幅器(SOA)を形成することができる。
(実施形態2)
 図6に、本実施形態の波長可変レーザ装置の構成を示す。図6に示すとおり、この波長可変レーザ装置60では、吸収領域114aおよび光反射率可変ミラー114bの前記利得領域111側とは反対側に、機能素子61がモノリシック集積されている。この点を除き、この波長可変レーザ装置60は、図1に示す実施形態1の波長可変レーザ装置と同様の構成である。なお、TECは、任意の構成であり、必ずしも備えなくともよいが、前述の実施形態1と同様に、備えることが好ましい。
 前記機能素子61は、前記波長可変レーザ11と同じサブキャリア(半導体基板)14上にモノリシック集積されているが、例えば、別途準備した素子を組合せてもよい。また、前記機能素子61は、例えば、図3(a)に示すように、前記光反射率可変ミラー32を介して折り返した形で前記波長可変レーザ11に光学的に接続されてもよいし、前記波長可変レーザ11の光出射端面に直接光学的に接続されてもよい。前記機能素子61としては、例えば、前記波長可変レーザから出射されるレーザ光を変調する光変調器、レーザ光を減衰する光可変減衰器、レーザ光を波長変換する波長変換素子等があげられる。前記機能素子は、一種類を単独で用いてもよいし、複数種類を併用してもよい。
 本実施形態の波長可変レーザ装置では、以下の点を除き、例えば、図1に示す実施形態1の波長可変レーザ装置を使用した場合と同様に、波長可変レーザを制御可能である。
 DSPを含む回路13aは、前記波長可変レーザ11の温度情報aに基づき、前記機能素子61を制御するための機能素子制御パラメータを算出する。前記機能素子制御パラメータとしては、例えば、前記機能素子61に注入される電流(Imc)等があげられる。なお、前記機能素子制御パラメータの算出には、前記温度情報aに加えて、フォトディテクタ17を介して取得する光出力情報Cを参照してもよい。
 ついで、前記機能素子制御パラメータに基づき前記電流分配回路13bから、前記機能素子61に電流(Imc、図6における矢印g)を注入し、前記機能素子61を制御する。このようにすることで、前述の実施形態1の効果に加えて、例えば、レーザ光に対する変調や可変光出力減衰(シャッタ)等の機能を追加することができる。なお、前記機能素子制御パラメータに基づく機能素子の制御は、例えば、他の制御パラメータに基づく制御と独立して行ってもよい。
(実施形態3)
 図7に、本実施形態の波長可変レーザ装置の構成を示す。図7に示すとおり、この波長可変レーザ装置70は、波長可変レーザ11の吸収領域114aおよび光反射率可変ミラー114b側とは反対側に、ダミー電流注入領域71をさらに含む。ダミー電流注入領域71は、波長可変レーザ11に印加される全電力を一定にする電流経路の一部に相当する。この点を除き、この波長可変レーザ装置70は、図6に示す実施形態2の波長可変レーザ装置と同様の構成である。なお、TECは、任意の構成であり、必ずしも備えなくともよいが、前述の実施形態1と同様に、備えることが好ましい。
 本実施形態の波長可変レーザ装置では、以下の点を除き、例えば、図6に示す実施形態2の波長可変レーザ装置を使用した場合と同様に、波長可変レーザを制御可能である。
 DSPを含む回路13aは、前記波長可変レーザ11の温度情報aに基づき、前記ダミー電流注入領域71を制御するためのダミー電流注入領域制御パラメータ(電流経路制御パラメータ)を算出する。前記ダミー電流注入領域制御パラメータとしては、例えば、前記ダミー電流注入領域71に注入されるトータル投入電力制御電流(ID)等があげられる。なお、前記ダミー電流注入領域制御パラメータの算出には、前記温度情報aに加えて、フォトディテクタ17を介して取得する光出力情報Cを参照してもよい。
 ついで、前記ダミー電流注入領域制御パラメータに基づき前記電流分配回路13bから、前記ダミー電流注入領域71にトータル投入電力制御電流(ID、図7における矢印h)を注入して、前記ダミー電流注入領域71を制御する。このようにすることで、前述の実施形態1および2の効果に加えて、ダミー電力と素子制御電力との総量と、素子内部での発熱量とヒートシンクを介した外部への放熱とを釣り合わせることができる。この結果、前記波長可変レーザ11の温度制御を行わない場合に起こり得る、各種制御パラメータに基づくトータル投入電力の増減による素子温度の発散を防止可能である。
 以上のとおり、本発明の波長可変レーザ装置は、省電力で、かつ信頼性が高い。従って、本発明の波長可変レーザ装置は、例えば、幹線系、アクセス系に使用される波長多重通信用の中長距離光源に適用することができる。ただし、その用途は限定されず、広い分野に適用可能である。
 以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 この出願は、2009年10月22日に出願された日本出願特願2009-243914を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10、60、70  波長可変レーザ装置
11   波長可変レーザ
12   温度検知素子
13   制御部
13a  DSPを含む回路
13b  電流分配回路
14   サブキャリア
15   TEC
16   ビームスプリッタ
17   フォトディテクタ
18   ヒートシンク
21   半導体
22a、22b、31  通電用電極
32   方向性結合器
33   反射鏡
34a、34b  光導波路
35、61  機能素子
71   ダミー電流注入領域
111  利得領域(光源)
112  波長安定化領域(波長可変機構)
113  波長可変フィルタ領域(波長可変機構)
114a 吸収領域(光損失制御手段)
114b 光反射率可変ミラー(光損失制御手段)

Claims (17)

  1.  波長可変レーザと、温度検知素子と、制御部とを含み、
     前記波長可変レーザが、光源と波長可変機構とを含むレーザ共振器と、光損失制御手段とを含み、
     前記温度検知素子が、前記波長可変レーザに熱的に接続され、かつ前記制御部に電気的に接続され、
     前記制御部が、前記波長可変機構と前記光損失制御手段とに電気的に接続され、
     前記温度検知素子が、前記波長可変レーザの温度を検知し、
     前記制御部が、
     前記温度検知素子から前記波長可変レーザの温度情報を取得し、
     前記温度情報に基づき波長可変制御パラメータおよび光損失制御パラメータを算出し、
     前記波長可変制御パラメータに基づき前記波長可変機構を制御し、
     前記光損失制御パラメータに基づき前記光損失制御手段を制御することを特徴とする波長可変レーザ装置。
  2.  前記光損失制御手段が、吸収領域および光反射率可変ミラーの少なくとも一方であり、
     前記吸収領域は、前記レーザ共振器の光吸収損失を制御可能であり、
     前記光反射率可変ミラーは、前記レーザ共振器の光出射端面の光反射率を制御可能であり、
     前記吸収領域を制御する前記光損失制御パラメータが、吸収領域制御パラメータであり、
     前記光反射率可変ミラーを制御する前記光損失制御パラメータが、光反射率可変ミラー制御パラメータであることを特徴とする請求の範囲1記載の波長可変レーザ装置。
  3.  前記吸収領域制御パラメータが、前記吸収領域に注入される電流、および前記吸収領域に印加される電圧の少なくとも一方であることを特徴とする請求の範囲2記載の波長可変レーザ装置。
  4.  前記光源が、利得領域を含み、
     前記利得領域が、結合量子井戸構造を含むことを特徴とする請求の範囲1から3のいずれか一項に記載の波長可変レーザ装置。
  5.  前記波長可変機構が、波長可変フィルタ領域および波長安定化領域を含むことを特徴とする請求の範囲1から4のいずれか一項に記載の波長可変レーザ装置。
  6.  前記光反射率可変ミラーが、通電用電極と方向性結合器と反射鏡とを含むことを特徴とする請求の範囲2から5のいずれか一項に記載の波長可変レーザ装置。
  7.  さらに、前記波長可変レーザの温度を制御する温度制御部を含むことを特徴とする請求の範囲1から6のいずれか一項に記載の波長可変レーザ装置。
  8.  さらに、変調器、光可変減衰器および波長変換素子からなる群から選択される少なくとも一つの機能素子を含むことを特徴とする請求の範囲1から7のいずれか一項に記載の波長可変レーザ装置。
  9.  さらに、前記波長可変レーザに印加される全電力を一定にする電流経路を含むことを特徴とする請求の範囲1から8のいずれか一項に記載の波長可変レーザ装置。
  10.  請求の範囲1から9のいずれか一項に記載の波長可変レーザ装置を含むことを特徴とする光モジュール。
  11.  請求の範囲1から9のいずれか一項に記載の波長可変レーザ装置を使用し、
     前記温度検知素子により前記波長可変レーザの温度を検知する工程と、
     前記制御部により前記温度検知素子から前記波長可変レーザの温度情報を取得する工程と、
     前記制御部により前記温度情報に基づき波長可変制御パラメータおよび光損失制御パラメータを算出する工程と、
     前記制御部により前記波長可変制御パラメータに基づき前記波長可変機構を制御する工程と、
     前記制御部により前記光損失制御パラメータに基づき前記光損失制御手段を制御する工程とを含むことを特徴とする波長可変レーザの制御方法。
  12.  前記吸収領域を制御する前記光損失制御パラメータが、吸収領域制御パラメータであり、
     前記光反射率可変ミラーを制御する前記光損失制御パラメータが、光反射率可変ミラー制御パラメータであることを特徴とする請求の範囲11記載の波長可変レーザの制御方法。
  13.  前記吸収領域制御パラメータが、前記吸収領域に注入される電流、および前記吸収領域に印加される電圧の少なくとも一方であることを特徴とする請求の範囲12記載の波長可変レーザの制御方法。
  14.  請求の範囲4から9のいずれか一項に記載の波長可変レーザ装置を使用し、
     前記制御部により前記温度情報に基づき利得領域制御パラメータを算出する工程と、
     前記制御部により前記利得領域制御パラメータに基づき前記利得領域を制御する工程とをさらに含むことを特徴とする請求の範囲11から13のいずれか一項に記載の波長可変レーザの制御方法。
  15.  請求の範囲7から9のいずれか一項に記載の波長可変レーザ装置を使用し、
     前記制御部により前記温度情報に基づき温度制御部制御パラメータを算出する工程と、
     前記制御部により前記温度制御部制御パラメータに基づき前記温度制御部を制御する工程とをさらに含むことを特徴とする請求の範囲11から14のいずれか一項に記載の波長可変レーザの制御方法。
  16.  請求の範囲8または9記載の波長可変レーザ装置を使用し、
     前記制御部により前記温度情報に基づき機能素子制御パラメータを算出する工程と、
     前記制御部により前記機能素子制御パラメータに基づき前記機能素子を制御する工程とをさらに含むことを特徴とする請求の範囲11から15のいずれか一項に記載の波長可変レーザの制御方法。
  17.  請求の範囲9記載の波長可変レーザ装置を使用し、
     前記制御部により前記温度情報に基づき電流経路制御パラメータを算出する工程と、
     前記制御部により前記電流経路制御パラメータに基づき前記電流経路を制御する工程とをさらに含むことを特徴とする請求の範囲11から16のいずれか一項に記載の波長可変レーザの制御方法。
PCT/JP2010/063908 2009-10-22 2010-08-18 波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法 WO2011048869A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011537173A JP5424136B2 (ja) 2009-10-22 2010-08-18 波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法
US13/503,362 US8767781B2 (en) 2009-10-22 2010-08-18 Wavelength tunable laser device, optical module, and method of controlling wavelength tunable laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-243914 2009-10-22
JP2009243914 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011048869A1 true WO2011048869A1 (ja) 2011-04-28

Family

ID=43900109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063908 WO2011048869A1 (ja) 2009-10-22 2010-08-18 波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法

Country Status (3)

Country Link
US (1) US8767781B2 (ja)
JP (1) JP5424136B2 (ja)
WO (1) WO2011048869A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633561A (zh) * 2012-08-23 2014-03-12 佳能株式会社 可变波长表面发射激光器
JP2015041681A (ja) * 2013-08-21 2015-03-02 住友電工デバイス・イノベーション株式会社 発光モジュールの制御方法
US9711942B2 (en) 2014-11-19 2017-07-18 Fujitsu Optical Components Limited Laser apparatus and optical transmitter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104054283A (zh) * 2012-01-24 2014-09-17 瑞典爱立信有限公司 用于优化光网络的重新配置的设备和方法
US9685755B2 (en) * 2012-03-13 2017-06-20 Danmarks Tekniske Universitet Laser system with wavelength converter
EP2908391A1 (en) * 2014-02-17 2015-08-19 Alcatel Lucent Method for controlling the wavelength of a laser source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318083A (ja) * 1989-06-14 1991-01-25 Canon Inc 半導体レーザ
JPH07111354A (ja) * 1993-10-12 1995-04-25 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザの駆動装置
JPH1084130A (ja) * 1996-09-06 1998-03-31 Hamamatsu Photonics Kk 発光素子
JP2008147290A (ja) * 2006-12-07 2008-06-26 Nec Corp 量子構造及びそれを含む光増幅器、波長可変レーザ
JP2008218947A (ja) * 2007-03-08 2008-09-18 Nippon Telegr & Teleph Corp <Ntt> 波長可変半導体レーザ素子及びその制御装置、制御方法
WO2008126276A1 (ja) * 2007-03-30 2008-10-23 Fujitsu Limited 光送信装置およびその制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390200B1 (en) 1989-03-31 1994-06-08 Canon Kabushiki Kaisha Semiconductor laser element selectively emitting lights of different wavelengths
JPH039587A (ja) 1989-06-07 1991-01-17 Matsushita Electric Ind Co Ltd 光送信器
JP2000124541A (ja) 1998-10-21 2000-04-28 Hitachi Ltd 半導体レーザおよび半導体レーザモジュール
US7061943B2 (en) * 2000-06-29 2006-06-13 Agility Communications, Inc. Controller calibration for small form factor sampled grating distributed Bragg reflector laser
GB0408415D0 (en) * 2004-04-15 2004-05-19 Univ Cambridge Tech Control device and method
JP4924144B2 (ja) 2007-03-29 2012-04-25 日本電気株式会社 光通信モジュール及び半導体レーザ出力制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318083A (ja) * 1989-06-14 1991-01-25 Canon Inc 半導体レーザ
JPH07111354A (ja) * 1993-10-12 1995-04-25 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザの駆動装置
JPH1084130A (ja) * 1996-09-06 1998-03-31 Hamamatsu Photonics Kk 発光素子
JP2008147290A (ja) * 2006-12-07 2008-06-26 Nec Corp 量子構造及びそれを含む光増幅器、波長可変レーザ
JP2008218947A (ja) * 2007-03-08 2008-09-18 Nippon Telegr & Teleph Corp <Ntt> 波長可変半導体レーザ素子及びその制御装置、制御方法
WO2008126276A1 (ja) * 2007-03-30 2008-10-23 Fujitsu Limited 光送信装置およびその制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633561A (zh) * 2012-08-23 2014-03-12 佳能株式会社 可变波长表面发射激光器
JP2015041681A (ja) * 2013-08-21 2015-03-02 住友電工デバイス・イノベーション株式会社 発光モジュールの制御方法
US9711942B2 (en) 2014-11-19 2017-07-18 Fujitsu Optical Components Limited Laser apparatus and optical transmitter

Also Published As

Publication number Publication date
JP5424136B2 (ja) 2014-02-26
US20120219024A1 (en) 2012-08-30
JPWO2011048869A1 (ja) 2013-03-07
US8767781B2 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
JP5567226B2 (ja) 半導体レーザモジュール
JP4934344B2 (ja) 半導体光集積素子及び半導体光集積デバイス
US6516017B1 (en) Multiwavelength semiconductor laser device with single modulator and drive method therefor
JP5424136B2 (ja) 波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法
US20170324218A1 (en) External cavity laser with reduced optical mode-hopping
JP2013089961A (ja) 波長モニタ、波長固定レーザ及び波長固定レーザの出射光波長の調整方法
US10020638B2 (en) Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
JP2013168500A (ja) 光半導体装置
JP2019083351A (ja) 半導体光増幅器、半導体レーザモジュール、および波長可変レーザアセンブリ
US6704338B2 (en) Semiconductor laser device, semiconductor laser module, and semiconductor laser control method
JP2012169499A (ja) 半導体レーザモジュール
JP6038059B2 (ja) 波長可変光源および波長可変光源モジュール
TWI379478B (en) Electroabsorption-modulated fabry-perot laser and methods of making the same
JP2013118315A (ja) 半導体レーザ装置および半導体レーザモジュール
Chen et al. Nano-ITLA based on thermo-optically tuned multi-channel interference widely tunable laser
US20230187906A1 (en) Wavelength-variable laser
US10511150B2 (en) Wavelength-variable laser
JP2016162828A (ja) 波長可変レーザ装置
JP2010034114A (ja) レーザ装置、レーザモジュールおよび波長多重光通信システム
JP6761391B2 (ja) 半導体光集積素子
JP2005129824A (ja) 半導体レーザ装置
GB2408146A (en) Semiconductor laser device, semiconductor laser module, and optical fiber amplifier
JP2012058432A (ja) 半導体ゲイン領域集積型マッハツェンダ変調器
JP4653940B2 (ja) 通信用光制御装置
JP2018046144A (ja) 波長可変レーザ、波長可変レーザ装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537173

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13503362

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10824721

Country of ref document: EP

Kind code of ref document: A1