WO2011047624A1 - 硫杂环稠合的萘四羧酸二酰亚胺衍生物、制法和应用 - Google Patents

硫杂环稠合的萘四羧酸二酰亚胺衍生物、制法和应用 Download PDF

Info

Publication number
WO2011047624A1
WO2011047624A1 PCT/CN2010/077932 CN2010077932W WO2011047624A1 WO 2011047624 A1 WO2011047624 A1 WO 2011047624A1 CN 2010077932 W CN2010077932 W CN 2010077932W WO 2011047624 A1 WO2011047624 A1 WO 2011047624A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid diimide
fused
naphthalenetetracarboxylic acid
formula
alkyl
Prior art date
Application number
PCT/CN2010/077932
Other languages
English (en)
French (fr)
Inventor
高希珂
狄重安
朱道本
刘云圻
李洪祥
姜标
Original Assignee
中国科学院上海有机化学研究所
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009101976119A external-priority patent/CN101693719B/zh
Priority claimed from CN 201010207565 external-priority patent/CN101885732B/zh
Application filed by 中国科学院上海有机化学研究所, 中国科学院化学研究所 filed Critical 中国科学院上海有机化学研究所
Priority to KR20127013047A priority Critical patent/KR101496931B1/ko
Priority to JP2012534531A priority patent/JP5416282B2/ja
Priority to EP10824465.8A priority patent/EP2492271B1/en
Publication of WO2011047624A1 publication Critical patent/WO2011047624A1/zh
Priority to US13/453,668 priority patent/US8471021B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/08Naphthalimide dyes; Phthalimide dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a sulfur heterocyclic fused naphthalene tetracarboxylic acid diimide organic semiconductor material, in particular to five thioheterocyclic fused naphthalene tetracarboxylic acid diimide derivatives, and a preparation method thereof and as The use of n-type organic semiconductor materials in organic thin film field effect transistors and the like. Background technique
  • organic semiconductor materials Compared with inorganic semiconductor materials (silicon, oxide, etc.), organic semiconductor materials have the advantages of simple preparation process, low cost, light weight, flexibility, and good compatibility with plastic substrates, etc., in flexible display, organic RF electronic trademarks. (ORFID), organic sensors, organic solar cells, etc. have broad application prospects (Forrest, SR Nature. 2004, 428, 911-918; Korzhov, M. et al. Physics Word. 2008, 29-33; Leenen, MAM Et al. Phys. Status Solidi A. 2009, 206, 588-597; Special issue: Organic Electronics and Optoelectronics, Forrest, SR; Thompson, ME ed. Chem. Rev. 2007, 107, 923-1386, etc.). With the development of technologies in the field of organic semiconductor materials and devices, organic electronic products that are thin, portable, flexible, wearable, and stylish will gradually enter people's lives, and will revolutionize the electronics industry and human life. Sexual change.
  • Organic semiconductor materials are key components of organic electronic devices. According to the type of carriers they transport, they are classified into P-type organic semiconductor materials/organic donor materials (hole transport) and n-type organic semiconductor materials/organic acceptors. Material (electronic transmission). On the whole, P-type organic semiconductor materials/organic donor materials are developing rapidly, and the organic thin film field effect transistors (OTFTs) of some solution-processable molecular materials can compete with amorphous silicon (McCulloch, I. et al). Nat. Mater. 2006, 5, 328-333.; Ebata, H.; et al. J. Am. Chem. Soc. 2007, 129, 15732-15733.; Osaka, I. Et al. J. Am. Chem.
  • n-type organic semiconductor materials organic acceptor materials
  • organic sensitizers are mostly P-type organic semiconductor materials (Odobel, F. et al. Acc. Chem. Res. 2010, 43, 1063-1071. ). Therefore, the development of n-type organic semiconductor materials/organic acceptor materials has lagged behind and has become a technical bottleneck in the development of organic electronics.
  • Naphthalene tetracarboxylic acid diimide is a typical class of n-type organic semiconductor materials widely used in the preparation of n-type OTFT devices.
  • NDI Naphthalene tetracarboxylic acid diimide
  • its smaller conjugated aromatic ring is difficult to form an effective ⁇ - ⁇ stack in a solid structure, and its OTFT device has a low electron mobility; on the other hand, a DI-OTFT device prepared by a solution processing method is less. And the film formation is poor and the performance is low.
  • the object of the present invention is to provide five kinds of sulfur heterocyclic fused naphthalenetetracarboxylic acid diimide derivatives: 2-(1,3-dithiacyclopentene-2-ylidene;)-2-propanedicyanide Fused naphthalenetetracarboxylic acid diimide derivative, 2-(1,3-dithiacyclopentene-2-ylidene)-2-cyanoacetic acid alkyl ester fused naphthalenetetracarboxylic acid diacid Imine derivative, 2-(1,3-dithiacyclopentene-2-ylidene)-2-phenylethyl cyanide-fused naphthalenetetracarboxylic acid diimide derivative, 1,4-dithiacyclo ring a naphthalenetetracarboxylic acid diimide derivative fused with hexadiene-2,3-dicarbonitrile, and a naphthalenetetracar
  • Still another object of the present invention is to provide a process for producing the above-described sulfur heterocyclic fused naphthalenetetracarboxylic acid diimide derivative.
  • Another object of the present invention is to provide an application of the above-described thioheterocyclic fused naphthalenetetracarboxylic acid diimide derivative, which is used as an ⁇ -type organic semiconductor material to construct an OTFT device.
  • the invention relates to five kinds of sulfur heterocyclic fused naphthalene tetracarboxylic acid diimide derivatives, and a preparation method and application thereof, Structure is as follows
  • R 1 and R 2 are respectively d to C 3 .
  • R 1 is preferably a C 8 ⁇ C 24 n-alkyl or branched alkyl group, more preferably a C 12 ⁇ C 24 n-alkyl or branched alkyl group, and still preferably C.
  • R 1 such as n-octyl, 2-ethyl-hexyl, 2-butyl- Octyl, 2-hexyl-octyl, 2-hexyl-fluorenyl, 3-hexyl-undecyl, 2-octyl-dodecyl, 2-decyltetradecyl;
  • R 2 is preferably C 2 ⁇ C 8 alkyl, more preferably C 2 to C 6 alkyl, and examples of R 2 include ethyl, n-hexyl, 2-ethylhexyl and the like; and R 3 is H or a halogen atom, preferably a H atom or a Br atom.
  • tetrabromonaphthalenetetracarboxylic acid diimide and 2,2-dicyano-1,1-dithiol sodium salt or 2-cyanoacetic acid alkyl ester-ethylene-1, 1-dithiol sodium salt or 2-phenylacetonitrile (or 4-halobenzenecyanate)-ethylene-1,1-dithiol sodium salt to obtain 1, 3-dithiacyclopentene fused naphthalene Tetracarboxylic acid diimide derivative (I-III); tetrabromonaphthalenetetracarboxylic acid diimide is reacted with 1,2-dicyanoethene-1,2-dithiol sodium salt to obtain dithicyclo ring Hexadiene-2,3-dicarbonitrile fused naphthalenetetracarboxylic acid diimide derivative (IV), further reacted to obtain ⁇ , ⁇ -dicyanothiophene fused naphthal
  • the organic thin film field-effect transistor prepared by the solution method using the first-class compound as the organic semiconductor layer show that the electron mobility can reach 0.42 cm 2 /Vs, the switching ratio is greater than 10 5 , and the threshold voltage is lower than 15 volts, its performance and environmental stability are better than the general n-type organic semiconductor.
  • the synthesis method disclosed by the invention is simple and effective; the raw material is easy to synthesize and prepare, and the synthesis cost is low; the obtained target compound has high purity.
  • the sulfur heterocyclic fused naphthalene tetracarboxylic acid diimide derivative prepared by the invention has a large ⁇ conjugated system and a flexible solubilized alkyl chain, and the organic electronic device can be prepared at low cost by a solution processing method (such as OTFT and OPV, etc.; the first compound is an ⁇ -type organic semiconductor material excellent in performance and stability.
  • the second compound is expected to function as a n-type organic semiconductor material sensitizer in dye-sensitized solar cells (coordination complexation with nickel oxide, etc.
  • Dibromo derivatives in III compounds are expected to be polymerized monomers and other donor polymer units
  • the D(donor)-A( aCCe ptor) conjugated polymer semiconductor material with narrow band gap absorption is expected to be used in organic solar cells;
  • the V compound has a lower LUMO level (-4.6 eV), which is expected It is used as a p-doping reagent in organic electronics.
  • SUMMARY OF THE INVENTION The present invention provides five thioheterocyclic fused naphthalenetetracarboxylic acid diimide derivatives having the following structure:
  • R 1 and R 2 are each d to C 3 .
  • R 1 is preferably C 8 -C 24 n-alkyl or branched alkyl, more preferably C 12 -C 24 n-alkyl or branched alkyl, still preferably C 8 , Ci 2 , C 14 , Ci 6 , Ci 7 , C 20 , C 24 n - alkyl or branched alkyl, specific examples of R 1 such as n-octyl, 2-ethyl-hexyl, 2-butyl- Octyl, 2-hexyl-octyl, 2-hexyl-fluorenyl, 3-hexyl-undecyl, 2-octyl-dodecyl, 2-decyltetradecyl;
  • R 2 is preferably C 2 ⁇ C 8 alkyl, more preferably C 2 to C 6 alkyl, and examples
  • the first species is a 2-naphthalene tetracarboxylic acid fused with 2-(1,3-dithiacyclopentene-2-ylidene)-2-propanediacetate;
  • the second species is 2-(1,3-dithiazide) Cyclopentene-2-ylidene;)-2-cyanoacetic acid alkyl ester fused naphthalenetetracarboxylic acid diimide derivative;
  • Group III is 2-(1,3-dithiacyclopentene- 2-Subphenyl)-2-phenylacetonitrile-fused naphthalenetetracarboxylic acid diimide derivative;
  • Group IV is 1,4-dithiacyclohexene-2,3-dicarbonitrile fused naphthalene IV
  • the fifth species is an ⁇ , ⁇ -dicyanothiophene-fused naphthalenetetracarboxylic acid diimi
  • step B (The molar ratio of CS 2 in step B is 1:5 ⁇ 10), and reacting at room temperature for 0.5 ⁇ 2 hours;
  • step D The compound obtained in the step D is mixed with hydrogen peroxide (recommended 30% hydrogen peroxide) in a molar ratio of 1:50 to 80 in an acid such as acetic acid or propionic acid at 100 to 120. Heat and stir under C for 0.5-1.5 hours; Recommended:
  • the organic solvent in the process is recommended to be benzene, toluene, xylene, acetic acid, tetrahydrofuran, dioxane or N, N-dimethylformamide.
  • steps A to D are carried out under the protection of an inert gas (high purity nitrogen or argon).
  • an inert gas high purity nitrogen or argon.
  • the alkyl cyanoacetate (CNCH 2 COOR 2 ) in Step B is synthesized according to the literature 3 ⁇ 4 Synth. Catal. 2005, 347, 33-38.
  • the process, wherein the reactants used in steps A, C and D, the N-alkyl (R 1 ) substituted by the formula VI, 2, 3, 6, 7-tetrabromonaphthalene tetracarboxylic acid diimide Reference method Org. Lett. 2007, 9, 3917-3920 reports method synthesis.
  • the product of the step A is a 2-(1,3-dithiacyclopentene-2-ylidene)propylidene condensed naphthalenetetracarboxylic derivative (the first species, R 1 is Ci Cso) N- or branched alkyl).
  • the method wherein the product of the step C is a 2-naphthalenetetracarboxylic acid diimide fused with an alkyl 2-(1,3-dithiacyclopentene-2-ylidene)-2-cyanoacetate
  • R 1 and R 2 are d ⁇ C 3 Q and d ⁇ C 12 n-alkyl or branched alkyl) or 2-(1,3-dithiacyclopentene-2-ylide; a -2-phenylacetonitrile-fused naphthalenetetracarboxylic acid diimide derivative
  • R 1 is a Ci Cso n-alkyl or branched alkyl group
  • R 3 is H or a halogen atom
  • step D is a 1,4-dithiacyclohexadiene-2,3-dicarbonitrile fused naphthalenetetracarboxylic acid diimide derivative (IV, R 1 is Ci Cso n-alkyl or branched alkyl).
  • step E is an ⁇ , ⁇ -dicyanothiophene-fused naphthalenetetracarboxylic acid diimide derivative (the V species, which is a cis-trans isomer compound, cannot be further separated, R 1 is Ci Cso n-alkyl or branched alkyl).
  • the target compound obtained in the steps A, C, D and E is purified by a silica gel column, and the eluent is a mixture of dichloromethane/petroleum ether or toluene/petroleum ether, the yield is 30 ⁇ 86 %.
  • the method, the new compound obtained in the steps A, C, D and E are one of mass spectrometry (MS-TOF), nuclear magnetic resonance spectroscopy, H-MR nuclear magnetic resonance ( 13 C-NMR), and elemental analysis. Or a variety of characterizations, the structure is correct.
  • the present invention gives a partial example compound 1-21 of five kinds of sulfur heterocyclic fused naphthalenetetracarboxylic acid diimide derivatives (I-V) and a synthesis scheme thereof.
  • the thioheterocyclic fused naphthalenetetracarboxylic acid diimide derivative of the present invention can be used for the preparation of an organic electronic device, for example, for preparing an organic thin film field effect transistor as a semiconductor active layer or for preparing an organic solar cell.
  • UV ultraviolet absorption spectroscopy
  • CV cyclic voltammetry
  • Figure 1 shows the ultraviolet absorption spectrum of Compound 1 in dichloromethane.
  • Figure 2 is a cyclic voltammetry curve of Compound 1 in dichloromethane.
  • Figure 3 is a UV absorption spectrum of Compound 9 in dichloromethane.
  • Figure 4 is a cyclic voltammetry curve of Compound 9 in dichloromethane.
  • Figure 5 is a UV absorption spectrum of Compound 12 in dichloromethane.
  • Figure 6 is a cyclic voltammetry curve of Compound 12 in dichloromethane.
  • Figure 7 is a UV absorption spectrum of Compound 15 in dichloromethane.
  • Figure 8 is a cyclic voltammetry curve of Compound 15 in dichloromethane.
  • Figure 9 is a UV absorption spectrum of Compound 18 in dichloromethane.
  • Figure 10 is a cyclic voltammetry curve of Compound 18 in dichloromethane.
  • Fig. 11 is a view showing the structure of an OTFT device in which a compound 1-5 or 7 or 9 or 10 or 15 or 18 is an organic layer.
  • Figure 12 is an output curve of the OTFT device of Compound 2.
  • Figure 13 is a transfer curve of the OTFT device of Compound 2 (electron mobility: 0.36 cm 2 /Vs, switching ratio 10 7 , threshold voltage 4 volts).
  • Figure 14 is an output curve of the OTFT device of Compound 9.
  • Figure 15 is a transfer curve of an OTFT device of Compound 9 (electron mobility: 10 - 3 cm 2 /Vs, a switching ratio of 10 4 , and a threshold voltage of 8 volts).
  • Figure 16 is an output curve of the OTFT device of Compound 15.
  • 17 is a transfer curve of an OTFT device of Compound 15 (electron mobility: 0.016 cm 2 /Vs, a switching ratio of 10 6 , and a threshold voltage of 10 volts).
  • Figure 18 is an output curve of the compound 18 OTFT device.
  • Figure 19 is a transfer curve of an OTFT device of Compound 18 (electron mobility: 10 - 3 cm 2 /Vs, a switching ratio of 10 5 , and a threshold voltage of 10 volts).
  • Example compounds 1-21 (Group I: 1-8; Group II: 9-11 8; Group III: 12 and 13;
  • Example 1-21 The synthetic route of Example 1-21 is as follows:
  • Ri 2-octyl-dodecyl
  • R 2 n-hexyl
  • TB DA (3.3 g, 5.7 mmol) and 2-mercapto-tetradecylamine (6.5 g, 18.4 mmol) were added to 50 mL of acetic acid under nitrogen, and the reaction was heated at 120 °C. Before the reaction solution became clear and the color began to darken (about 0.5-1 hour), the heating was stopped, and the temperature was lowered to room temperature. The reaction solution was poured into 400 mL of water, filtered, and the precipitate was washed with 200 mL of water and dried in vacuo to give a yellow solid. . The above yellow solid and phosphorus tribromide (2.0 mL, 21.1 mmol) were added to 120 mL dry toluene.
  • the 2-octyl-dodecylamine was replaced by 2-octyl-dodecylamine in the same manner as in the above, and the yield was 33% (calculated from TBNDA).
  • the 2-nonyl-decylamine was replaced by 2-hexyl-decylamine in the same manner as in 22, and the yield was 18% (calculated from TBNDA).
  • the 2-nonyl-undecylamine was replaced by 3-hexyl-undecylamine in the same manner as in the above, and the yield was 31% (calculated from TBNDA).
  • Example 1 Indole, ⁇ '-bis(2-indolyl-tetradecyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentane) Synthesis of alkene-2-ylidene-2-propanedicyano]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (1).
  • Example 2 ⁇ , ⁇ '-bis(2-octyl-dodecyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentane) Synthesis of ene-2-ylidene-2-propanedicyano]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (2).
  • Mass spectrometry MS (MALDI-TOF) mlz 1105.4 (M + );
  • Example 3 '-Di(2-hexyl-indenyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentene-2-ylidene) Synthesis of -2-propanedicyano]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (3).
  • Example 4 '-Di(2-hexyl-octyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentene-2-ylidene) Synthesis of 2-propanedicyano]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (4).
  • Example 5 '-Di(2-butyl-octyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentene-2-ya Synthesis of -2-propanedicyano]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (5).
  • Example 6 '-Di(2-ethyl-hexyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentene-2-ylidene) Synthesis of 2-propanedicyano]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (6).
  • Example 7 ⁇ , ⁇ '-bis(3-hexyl-monoalkyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentene- Synthesis of 2-subunit)-2-propanedicyano]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (7).
  • Example 8 ⁇ , ⁇ '-di(n-octyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentene-2-ylidene) Synthesis of 2-propanedicyano]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (8).
  • Example 9 ⁇ , ⁇ '-bis(2-octyl-dodecyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentane) Synthesis of ethyl-2-phenyl)-2-cyanoacetate]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (9).
  • Ethyl cyanoacetate (CNCH 3 COOEt, 297 mg, 2.63 mmol) and carbon disulfide (CS 2 , 0.16 mL, 2.63 mmol) were dissolved in 25 mL of THF at 0 to 5 ° C under a nitrogen atmosphere.
  • the reaction solution was added to a three-necked flask containing 132 mg (5.3 mmol) of sodium hydride (NaH, 96%) and 5 mL of THF for 0.5 hours.
  • the reaction solution was allowed to warm to room temperature and stirring was continued for 4 hours.
  • Example 10 ⁇ , ⁇ '-bis(2-octyl-dodecyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentane) Synthesis of ene-2-ylidene-2-n-cyanoacetic acid n-hexyl ester]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (10).
  • Example 11 ⁇ , ⁇ '-bis(n-octyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentene-2-ylidene) -2-Cyanoacetic acid 2-ethylhexyl ester] -Naphthalene-1,4,5,8-tetracarboxylic acid diimide (11).
  • Example 9 The procedure of the procedure of Example 9 was carried out using 2-ethylhexyl cyanoacetate and 29 instead of ethyl cyanoacetate and 23, respectively, to give a dark brown solid (11), yield 41%.
  • Example 8 ⁇ , ⁇ '-bis(2-mercapto-tetradecyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentane) Synthesis of ene-2-ylidene-2-phenylacetonitrile]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (12).
  • Example 13 ⁇ , ⁇ '-bis(2-octyl-dodecyl)-[2,3-d:6,7-d']-bis[2-(1,3-dithiacyclopentane) Synthesis of ene-2-ylidene-2-(4-bromophenylacetonitrile)]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (13).
  • Example 12 The procedure of the same procedure as in Example 12 was carried out using 4-bromobenzenecyanate and 23, respectively, to obtain a blue-purple solid (13), yield 60%.
  • Example 14 ⁇ , ⁇ '-bis(2-indolyl-tetradecyl)-[2,3-d:6,7-d']-bis[1,4-dithiacyclohexadiene- Synthesis of 2,3-dicarbonitrile]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (14).
  • Example 15 ⁇ , ⁇ '-bis(2-octyl-dodecyl)-[2,3-d:6,7-d']-bis[1,4-dithiacyclohexadiene- Synthesis of 2,3-dicarbonitrile]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (15).
  • Example 16 Indole, ⁇ '-bis(2-butyl-octyl)-[2,3-d:6,7-d']-bis[1,4-dithiacyclohexadiene-2, Synthesis of 3-dicarbonitrile]-naphthalene-1,4,5,8-tetracarboxylic acid diimide (16).
  • Example 18 ⁇ , ⁇ '-bis(2-mercapto-tetradecyl)-[2,3-d:6,7-d']-bis[ ⁇ , ⁇ -dicyanothiophene]-naphthalene Synthesis of -1,4,5,8-tetracarboxylic acid diimide (18).
  • Example 19 ⁇ , ⁇ '-bis(2-octyl-dodecyl)-[2,3-d:6,7-d']-bis[ ⁇ , ⁇ -dicyanothiophene]-naphthalene Synthesis of -1,4,5,8-tetracarboxylic acid diimide (19).
  • Example 20 ⁇ , ⁇ '-bis(2-butyl-octyl)-[2,3-d:6,7-d']-bis[ ⁇ , ⁇ -dicyanothiophene]-naphthalene-1 Synthesis of 4,5,8-tetracarboxylic acid diimide (20).
  • the UV absorption spectrum was carried out on a U-3900 spectrometer.
  • the sample solution was dichloromethane (molar concentration 1 ⁇ 10_ 6 ⁇ ) with a scan range of 800-200 ⁇ .
  • the optical band gap of the compound was calculated by the following formula:
  • Cyclic voltammetry was performed on a computer-controlled CHI610D electrochemical analyzer using a conventional three-electrode test system with a platinum electrode as the working electrode, a saturated calomel electrode (SCE) as the reference electrode, and a platinum wire as the counter electrode.
  • SCE saturated calomel electrode
  • SCE saturated calomel electrode
  • platinum wire platinum wire as the counter electrode.
  • the level of the material relative to the vacuum level is -4.44 eV, and the LUMO level of the material can be calculated from the formula of the following energy levels:
  • Naphthalenetetracarboxylic acid diimide derivatives fused by the same sulfur heterocycle (Group I: 1-8; Group II: 9-11; Group III: 12 and 13; Group IV: 14- 17; Group V: 18-21) has similar ultraviolet absorption spectrum and electrochemical properties, here compound 1 (R 1 is 2-mercapto-tetradecyl), 9 (R 1 is 2-octyl) -dodecyl, R 2 is ethyl), 12 (R 1 is 2-indolyl-tetradecyl, R 3 is H atom), 15 (R 1 is 2-octyl-dodecyl) And 18 (R 1 is 2-mercapto-tetradecyl) as an example.
  • Figure 1 shows the UV absorption spectra of Compound 1, which have a UV maximum absorption peak position of about 573 nm and an optical band gap of 2.1 eV.
  • the LUMO level calculated by the formula (2) is -4.35 eV.
  • Figure 3 shows the UV absorption spectrum of Compound 9, whose maximum terminal absorption peak position is about 581 nm, and the light is calculated by the formula (1).
  • the band gap is 2.0 eV.
  • the calculated LUMO level of equation (2) is -4.23 eV.
  • the absorption peak of the compound 12 has a maximum absorption peak position of about 655 nm, and the optical band gap calculated by the formula (1) is 1.8 eV.
  • Fig. 7 shows the ultraviolet absorption spectrum of the compound 15, which has a maximum absorption peak position of about 550 nm, and an optical band gap of 2.0 eV calculated by the formula (1).
  • the calculated LUMO level of equation (2) is -4.28 eV.
  • Figure 9 shows the UV absorption spectrum of Compound 18, which has a maximum absorption peak position of 250 to 318 nm and a peak absorption peak of 545 nm, but the absorption is weak, showing a weak intramolecular charge transfer.
  • the calculated optical band gap is 2.2 eV.
  • the calculated LUMO level of equation (2) is -4.63 eV.
  • the V compound has a lower LUMO energy level and is a good class of electron acceptor materials.
  • Fig. 11 is a view showing the structure of an organic thin film field effect transistor (OTFT) using the above compound as a semiconductor layer.
  • the OTFT device of the present invention is prepared by dissolving 5-10 mg of the compound 1-5 or 7 or 9 or 15 or 18 in 1 ml of chloroform on an OTS-modified Si0 2 /Si substrate.
  • Figure 12 and Figure 13 show the output curve and transfer curve of an OTFT device of Compound 2, respectively.
  • Figure 14 and Figure 15 show the output curve and transfer curve of an 0TFT device of compound 9, respectively;
  • Figure 1 o6 and Figure 17 show the output curve and transfer curve of an OTFT device of compound 15, respectively;
  • Figure 19 shows the output curves and transfer curves of an OTFT device of Compound 18.
  • the invention adopts a solution processing method to prepare a naphthalene tetracarboxylic acid diimide derivative based on a novel sulfur heterocyclic condensation.
  • the preliminary test results of the gold electrode OTFT device of the first type compound electron mobility up to 0.42 cm 2 /V_s, switching ratio greater than 10 5 , threshold voltage lower than 15 V, and the device has good air stability and voltage operation stability.
  • the present invention is not limited to the 21 example compounds disclosed, and the sulfur heterocyclic fused naphthalenetetracarboxylic acid diimide derivatives are various, and the scope of the present invention is defined by the appended claims.
  • Table 1 shows the electrical property characterization data of OTFT devices based on compounds 1-5, 7, 9, 15 and 18 at different annealing temperatures, including the highest (average) electron mobility (in cm 2 /Vs), off ratio (.. / n // ff) and the threshold voltage (T, unit: V).

Description

硫杂环稠合的萘四羧酸二酰亚胺衍生物、 制法和应用 技术领域
本发明涉及硫杂环稠合的萘四羧酸二酰亚胺类有机半导体材料,具体地说涉 及五种硫杂环稠合的萘四羧酸二酰亚胺衍生物、及制备方法和作为 n-型有机半导 体材料在有机薄膜场效应晶体管等中的应用。 背景技术
相对于无机半导体材料 (硅、 氧化物等), 有机半导体材料具有制备工艺简 单、成本低、质量轻、柔韧性、和塑料衬底良好的兼容性等优点, 其在柔性显示、 有机射频电子商标 (ORFID)、 有机传感器、 有机太阳能电池等方面有着广阔的 应用前景(Forrest, S. R. Nature. 2004, 428, 911-918; Korzhov, M. et al. Physics Word. 2008, 29-33; Leenen, M. A. M. et al. Phys. Status Solidi A. 2009, 206, 588-597; Special issue: Organic Electronics and Optoelectronics, Forrest, S. R.; Thompson, M. E. ed. Chem. Rev. 2007, 107, 923-1386等)。 随着有机半导体材料与器件相关领域 技术的发展, 轻薄、 便携、 可弯曲、 可贴身穿戴、 个性时尚的有机电子产品将逐 步走进人们的生活, 并将给电子产业和人类的生活带来革命性的变化。
有机半导体材料是有机电子器件的关键组份, 按其传输载流子的类型, 分为 P-型有机半导体材料 /有机给体材料 (空穴传输) 和 n-型有机半导体材料 /有机受 体材料 (电子传输)。 整体来说, P-型有机半导体材料 /有机给体材料发展较快, 一些可溶液加工的分子材料的有机薄膜场效应晶体管 (OTFT ) 性能可以和无定 型硅相媲美 (McCulloch, I. et al. Nat. Mater. 2006, 5, 328-333.; Ebata, H.; et al. J. Am. Chem. Soc. 2007, 129, 15732-15733.; Osaka, I. Et al. J. Am. Chem. Soc. 2010, 732, 5000-5001. ), 一些 D-A结构的聚合物给体材料和有机受体材料 (PCBM, 一种富勒烯衍生物) 构筑的有机异质结太阳能电池的光电转换效率高达 7.4% (Liang, Y. et al. Adv. Mater. 2010, 22, E135-E138. )0 在有机薄膜场效应晶体管 ( OTFT ) 领域, n-型有机半导体材料对于构筑有机 p-n结二极管、 双极性晶体 管和低功耗、 高噪声容限的互补电路具有举足轻重的作用 (Newman, C. R. et al Chem. Mater. 2004, 16, 4436-4451 ; Klauk, H. et al. Nature. 2007, 445, 745-748; Yan, H. et al. Nature. 2009, 457, 679-686)。 在有机太阳能电池(OPV)领域, 本体异质 结有机太阳能电池广泛采用的 n-型有机半导体材料(有机受体材料)多限于富勒 烯衍生物 (如 PCBM等); 在有机敏化太阳能电池中, 采用的有机半导体敏化剂 多为 P-型有机半导体材料(Odobel, F. et al. Acc. Chem. Res. 2010, 43, 1063-1071. )。 因此, n-型有机半导体材料 /有机受体材料发展滞后, 已成为有机电子学发展的 技术瓶颈。
萘四羧酸二酰亚胺(NDI)是一类典型的 n-型有机半导体材料, 广泛用于制 备 n-型 OTFT器件。 然而, 其较小的共轭芳环, 在固体结构中难以形成有效的 π-π堆积, 其 OTFT器件的电子迁移率较低; 另一方面, 用溶液加工方法制备的 DI-OTFT器件较少,而且成膜性较差、性能较低。为了寻求兼具高电子迁移率、 环境稳定、易加工性能的 η-型有机半导体材料,发明人报道五种硫杂环稠合的萘 四羧酸二酰亚胺衍生物 (CN200910197611.9, 优先权日: 2009年 10月 23 日; CN201010207565.9,优先权日: 2010年 6月 23 日): 2-(1,3-二噻环戊烯 -2-亚基) -2- 丙二氰稠合的萘四羧酸二酰亚胺衍生物, 2-(1,3-二噻环戊烯 -2-亚基) -2-氰基乙 酸烷基酯稠合的萘四羧酸二酰亚胺衍生物, 2-(1,3-二噻环戊烯 -2-亚基; )-2-苯乙氰 稠合的萘四羧酸二酰亚胺衍生物, 1,4-二噻环己二烯 -2,3-二腈稠合的萘四羧酸二 酰亚胺衍生物, 和 α,β-二氰基噻吩稠合的萘四羧酸二酰亚胺衍生物, 并将其中部 分化合物应用于 OTFT器件。 发明目的
本发明的目的在于提供五种硫杂环稠合的萘四羧酸二酰亚胺衍生物: 2-(1,3- 二噻环戊烯 -2-亚基; )-2-丙二氰稠合的萘四羧酸二酰亚胺衍生物, 2-(1,3-二噻环戊 烯 -2-亚基) -2-氰基乙酸烷基酯稠合的萘四羧酸二酰亚胺衍生物, 2-(1,3-二噻环戊 烯 -2-亚基) -2-苯乙氰稠合的萘四羧酸二酰亚胺衍生物, 1,4-二噻环己二烯 -2,3-二 腈稠合的萘四羧酸二酰亚胺衍生物, 和 α,β-二氰基噻吩稠合的萘四羧酸二酰亚胺 衍生物。
本发明的又一目的还在于提供上述硫杂环稠合的萘四羧酸二酰亚胺衍生物 的制备方法。
本发明的另一目的在于提供上述硫杂环稠合的萘四羧酸二酰亚胺衍生物的 应用, 用作 η-型有机半导体材料构筑 OTFT器件。 发明概要
本发明涉及五种硫杂环稠合的萘四羧酸二酰亚胺衍生物及制法和应用, 结构如下
Figure imgf000005_0001
式中 R1和 R2分别为 d 〜 C3。和 d 〜 C12的正烷基或分支烷基, R1优选 C8 〜C24的正烷基或分支烷基,更优选 C12〜C24的正烷基或分支烷基,还优选 C8, Ci2, C14, Ci6, C17, C20, C24的正烷基或分支烷基, R1的具体例子如正辛基, 2-乙基 -己基、 2-丁基-辛基、 2-己基-辛基, 2-己基-癸基, 3-己基 -十一烷基, 2-辛基-十 二烷基, 2-癸基十四烷基; R2优选 C2〜C8烷基, 更优选 C2〜C6烷基, R2的例子包 括乙基、 正己基, 2-乙基己基等; R3为 H或卤素原子, 优选 H原子或 Br原子。
系在惰性气体保护下, 四溴代萘四羧酸二酰亚胺与 2,2-二氰基 -1,1-二硫醇钠 盐或 2-氰基乙酸烷基酯 -乙烯 -1, 1-二硫醇钠盐或 2-苯乙氰 (或 4-卤代苯乙氰) - 乙烯 -1, 1-二硫醇钠盐反应得 1, 3-二噻环戊烯稠合的萘四羧酸二酰亚胺衍生物 ( I -III); 四溴代萘四羧酸二酰亚胺与 1, 2-二氰基乙烯 -1, 2-二硫醇钠盐反应得 二噻环己二烯 -2,3-二腈稠合的萘四羧酸二酰亚胺衍生物(IV ),进一步反应得 α,β-二氰基噻吩稠合的萘四羧酸二酰亚胺衍生物 (V , 为顺反异构化合物, 不能 进一步分离)。 这些化合物均为 η-型有机半导体材料。 其中, 用溶液法制备的以 第 I类化合物为有机半导体层的有机薄膜场效应晶体管,初步测试结果显示: 其 电子迁移率可达 0.42 cm2/Vs, 开关比大于 105, 阈值电压低于 15伏, 其性能和 环境稳定性均优于一般 n-型有机半导体。
本发明的优点在于:
本发明披露的合成方法简单有效; 原料易于合成制备, 合成成本低; 得到的 目标化合物纯度高。
2. 本发明制备的硫杂环稠合的萘四羧酸二酰亚胺衍生物具有大 π共轭体系 和柔性促溶的烷基链, 可以用溶液加工的方法低成本制备有机电子器件 (如 OTFT和 OPV等);第 I种化合物是一种性能和稳定性优异的 η-型有机半导体材 料。 除了在 η-沟道 OTFT器件上的应用外, 第 II种化合物有望作为 n-型有机半 导体材料敏化剂在染料敏化太阳能电池中发挥作用 (水解后和氧化镍等配位复 合); 第 III种化合物中的二溴代衍生物有望作为聚合单体和其他给体聚合单元构 筑窄带隙宽吸收的 D(donor)-A(aCCeptor)共轭聚合物半导体材料,有望在有机太阳 能电池中得到应用; 第 V种化合物具有较低的 LUMO能级 (-4.6 eV), 有望作 为 p-doping试剂在有机电子学中得到应用。 发明内容 本发明提供的五种硫杂环稠合的萘四羧酸二酰亚胺衍生物,其结构如下式所
Figure imgf000006_0001
式中 R1和 R2分别为 d〜 C3。和 d〜 C12的正烷基或分支烷基; R1优选 C8〜C24 的正烷基或分支烷基,更优选 C12〜C24的正烷基或分支烷基,还优选 C8, Ci2, C14, Ci6, Ci7, C20, C24的正烷基或分支烷基, R1的具体例子如正辛基, 2-乙基-己基、 2-丁基-辛基、 2-己基-辛基, 2-己基-癸基, 3-己基 -十一烷基, 2-辛基 -十二烷基, 2-癸基十四烷基; R2优选 C2〜C8烷基, 更优选 C2〜C6烷基, R2的例子包括乙基、 正己基, 2-乙基己基等; R3为 H或卤素原子, 优选 H或 Br原子。
第 I种为 2-(1,3-二噻环戊烯 -2-亚基) -2-丙二氰稠合的萘四羧衍生物; 第 II种 为 2-(1,3-二噻环戊烯 -2-亚基; )-2-氰基乙酸烷基酯稠合的萘四羧酸二酰亚胺衍生 物; 第 III种为 2-(1,3-二噻环戊烯 -2-亚基) -2-苯乙氰稠合的萘四羧酸二酰亚胺衍生 物; 第 IV种为 1,4-二噻环己烯 -2,3-二腈稠合的萘四羧酸二酰亚胺衍生物; 第 V种 为 α,β-二氰基噻吩稠合的萘四羧酸二酰亚胺衍生物(为顺反异构化合物, 不能进 一步分离)。
上述硫杂环稠合的萘四羧酸二酰亚胺衍生物具体描述如下:
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0003
式中 R R2、 R3如前所述。 本发明制备五种硫杂环稠合的萘四羧酸二酰亚胺衍生物的方法,其推荐步骤 如下:
A) 2,2-二氰基 -乙烯 -1, 1-二硫醇钠盐与通式为 (VI)的 N-烷基 (R1 ) 取代的 2,3,6,7-四溴代萘四羧酸二酰亚胺以摩尔比 2.5〜4: 1在有机溶剂如苯、 甲苯、 二甲 苯、 乙酸、 四氢呋喃, 二氧六环或 N,N-二甲基甲酰胺中, 于室温和 40〜60°C分别 反应 0.5〜2小时和 0.5〜1小时或直接于室温下反应 1〜6小时;
Figure imgf000008_0001
B) 氰基乙酸烷基酯 (CNCH2COOR2) 或苯乙氰或 4-卤代苯乙氰, 氢化钠 (NaH) 和二硫化碳 (CS2) 以摩尔比 1:2〜3:1〜1.5 (进一步推荐摩尔比依次为
1:2〜2.1:1〜1.1)在有机溶剂如四氢呋喃, 二氧六环或 N,N-二甲基甲酰胺中, 先后 于 0〜5 °C和室温下分别反应 0.5-1小时和 2〜4小时, 获得 2-氰基乙酸烷基酯- 乙烯 -1, 1-二硫醇钠盐或 2-苯乙氰 -乙烯 -1, 1-二硫醇钠盐或 2- (4-卤代苯乙氰) -乙烯 -1, 1-二硫醇钠盐;
C) 向步骤 B)制备的反应液中 (含 2-氰基乙酸烷基酯 -乙烯 -1,1-二硫醇钠 盐或 2-苯乙氰 -乙烯 -1, 1-二硫醇钠盐或 2- (4-卤代苯乙氰) -乙烯 -1, 1-二硫醇 钠盐) 加入通式为 VI 的 N-烷基 (R1) 取代的 2,3,6,7-四溴代萘四羧酸二酰亚胺
(与步骤 B中 CS2的摩尔比为 1:5〜10), 于室温下反应 0.5〜2小时;
D) 通式为 VI的 N-烷基 (R1) 取代的 2, 3, 6, 7-四溴代萘四羧酸二酰亚胺 与 1, 2-二氰基乙烯 -1, 2-二硫醇钠盐 (推荐从 TCI购买或参照文献 Inorg. Synth. 1967, 10, 8.合成) 以摩尔比 1:2〜3.5在有机溶剂如四氢呋喃, 二氧六环或 N, N- 二甲基甲酰胺中, 于室温下反应 0.5-1小时;
E) 将步骤 D制得的化合物与双氧水(推荐 30%的双氧水)以摩尔比 1:50〜80 在酸如乙酸或丙酸中, 于 100〜120。C 下加热搅拌 0.5-1.5小时; 推荐:
所述的方法中的有机溶剂推荐为苯、 甲苯、 二甲苯、 乙酸、 四氢呋喃、 二氧 六环或 N, N-二甲基甲酰胺。
所述的方法, 步骤 A中的 2,2-二氰基 -乙烯 -1,1-二硫醇钠盐参照文献 J Org. Chem. 1964, 29, 660-665.合成。
所述的方法, 步骤 A〜D在惰性气体 (高纯氮气或氩气) 保护下进行反应。 所述的方法, 步骤 B中的氰基乙酸烷基酯 (CNCH2COOR2) 参照文献 ¾ Synth. Catal.2005, 347, 33-38.合成。 所述的方法, 其中步骤 A, C和 D中所用反应物, 通式 VI的 N-烷基 (R1 ) 取代的 2, 3, 6, 7-四溴代萘四羧酸二酰亚胺参照文献 Org. Lett. 2007, 9, 3917-3920 报道方法合成。
所述的方法, 其中步骤 A的产物为 2-(1,3-二噻环戊烯 -2-亚基)丙二氰稠合的 萘四羧衍生物 (第 I种, R1为 Ci Cso的正烷基或分支烷基)。
所述的方法,其中步骤 C的产物为 2-(1,3-二噻环戊烯 -2-亚基) -2-氰基乙酸烷 基酯稠合的萘四羧酸二酰亚胺(第 II种, R1和 R2分别为 d〜 C3Q和 d〜 C12的正 烷基或分支烷基)或 2-(1,3-二噻环戊烯 -2-亚基; )-2-苯乙氰稠合的萘四羧酸二酰亚 胺衍生物 (第 III种, R1为 Ci Cso正烷基或分支烷基, R3为 H或卤素原子)。
所述的方法,其中步骤 D得到的产物为 1,4-二噻环己二烯 -2,3-二腈稠合的萘 四羧酸二酰亚胺衍生物 (第 IV种, R1为 Ci Cso正烷基或分支烷基)。
所述的方法,其中步骤 E得到的产物为 α,β-二氰基噻吩稠合的萘四羧酸二酰 亚胺衍生物 (第 V种, 为顺反异构化合物, 不能进一步分离, R1为 Ci Cso正烷 基或分支烷基)。
所述的方法,其中步骤 A, C, D和 E得到的目标化合物经硅胶层析柱提纯, 淋洗剂为二氯甲焼 /石油醚或甲苯 /石油醚混合液, 产率在 30〜86%。
所述的方法, 步骤 A, C, D和 E中所得新化合物经质谱(MS-TOF)、 核磁 共振氢谱 ^H- MR 核磁共振碳谱 (13C-NMR)、 元素分析中的一种或多种表 征, 结构无误。
如实施例中反应式 (1 ) 所示, 本发明给出了五种硫杂环稠合萘四羧酸二酰 亚胺衍生物( I -V ) 的部分实例化合物 1-21及其合成方案。 2-(1,3-二噻环戊烯 -2-亚基)丙二氰稠合的萘四羧衍生物 (第 I种) 的八个实例化合物 1-8, 其取代 基 R1 分别为 2-癸基-十四烷基 ( 2-decyltetradecyl ), 2-辛基-十二烷基
(2-octyldodecyl), 2-己基 -癸基 ( 2-hexyldecyl ) , 2-己基 -辛基 (2-hexyloctyl), 2- 丁基 -辛基 ( 2-butyloctyl ), 2-乙基 -己基 ( 2-ethylhexyl ), 3-己基-十一烷基
( 3-hexylundecyl) 和正辛基。 2-(1,3-二噻环戊烯 -2-亚基) -2-氰基乙酸烷基酯稠合 的萘四羧酸二酰亚胺衍生物 (第 Π种) 的三个实例化合物 9-11, 其取代基 R1和 R2分别为 2-辛基-十二烷基 (2-octyldodecyl) 和乙基 (ethyl); 2-辛基-十二烷基
( 2-octyldodecyl ) 和正己基 (n-hexyl ) ; 正辛基 (n-octyl ) 禾 P 2-乙基 -己基
(2-ethylheXyl)。2-(l,3-二噻环戊烯 -2-亚基) -2-苯乙氰稠合的萘四羧酸二酰亚胺衍 生物 (第 III种) 的两个实例化合物 12 ( R1和 R2分别为 2-癸基-十四烷基 ( 2-decyltetradecyl ) 和 H ) 和 13 ( R1 和 R2分别为 2-辛基-十二烷基
(2-octyldodecyl) 和 Br)。 1,4-二噻环己二烯 -2,3-二腈稠合的萘四羧酸二酰亚胺 衍生物 (第 IV种) 的四个实例化合物 14-17, 其取代基 R1分别为 2-癸基-十四烷 基 ( 2-decyltetradecyl ) , 2-辛基-十二烷基 ( 2-octyldodecyl ) , 2-丁基 -辛基
(2-butyloctyl)和正辛基(n-octyl)。 α,β-二氰基噻吩稠合的萘四羧酸二酰亚胺衍 生物(第 V种, 为顺反异构化合物, 不能进一步分离)的四个实例化合物 18-21, 其取代基 R1分别为 2-癸基-十四烷基 ( 2-decyltetradecyl ), 2-辛基-十二烷基
(2-octyldodecyl), 2-丁基 -辛基 (2-butyloctyl) 禾口正辛基 (n-octyl)。
本发明的硫杂环稠合的萘四羧酸二酰亚胺衍生物可用于制备有机电子器件, 例如用于作为半导体活性层制备有机薄膜场效应晶体管或者用于制备有机太阳 能电池。
用紫外吸收光谱 (UV) 研究了化合物 1-21 的光物理性质; 用循环伏安法 ( CV) 研究了化合物 1-21 的电化学性质; 并用溶液加工的方法制备了化合物 1-5, 7, 9, 10, 15和 18的有机薄膜场效应晶体管器件。 附图说明
图 1为化合物 1在二氯甲烷中的紫外吸收光谱。
图 2为化合物 1在二氯甲烷中的循环伏安曲线。
图 3为化合物 9在二氯甲烷中的紫外吸收光谱。
图 4为化合物 9在二氯甲烷中的循环伏安曲线。
图 5为化合物 12在二氯甲烷中的紫外吸收光谱。
图 6为化合物 12在二氯甲烷中的循环伏安曲线。
图 7为化合物 15在二氯甲烷中的紫外吸收光谱。
图 8为化合物 15在二氯甲烷中的循环伏安曲线。
图 9为化合物 18在二氯甲烷中的紫外吸收光谱。
图 10为化合物 18在二氯甲烷中的循环伏安曲线。
图 11为以化合物 1-5或 7或 9或 10或 15或 18为有机层的 OTFT器件的结 构示意图。
图 12为化合物 2的 OTFT器件的输出曲线。
图 13为化合物 2的 OTFT器件的转移曲线 (电子迁移率为: 0.36 cm2/Vs, 开关比为 107, 阈值电压为 4伏)。 图 14为化合物 9的 OTFT器件的输出曲线。
图 15为化合物 9的 OTFT器件的转移曲线 (电子迁移率为: 10_3 cm2/Vs, 开关比为 104, 阈值电压为 8伏)。
图 16为化合物 15的 OTFT器件的输出曲线。
图 17为化合物 15的 OTFT器件的转移曲线(电子迁移率为: 0.016 cm2/Vs, 开关比为 106, 阈值电压为 10伏)。
图 18为化合物 18的 OTFT器件的输出曲线。
图 19为化合物 18的 OTFT器件的转移曲线 (电子迁移率为: 10_3 cm2/Vs, 开关比为 105, 阈值电压为 10伏)。 具体实施方式
下述实施例将有助于进一步理解本发明, 但不能限制本发明的内容。
( 1 ) 实施例化合物 1-21 (第 I种: 1-8; 第 II种: 9-11 8; 第 III种: 12和 13;
第 IV种: 14-17; 第 V种: 18-21 ) 的制备方法
实施例 1-21的合成路线如下式所示:
Figure imgf000012_0001
II
9: Ri = 2-辛基 -十二烷基, R2 =乙基
10: Ri = 2-辛基 -十二烷基, R2=正己基
11: =正辛基, R2= 2-乙基 -己基
Figure imgf000012_0002
iu体反应式 (l)
原料 2,3,6,7-四溴代萘四羧酸二酰亚胺衍生物 (TBNDI:22-29, 化学结构如 下图所示) 的合成:
Figure imgf000013_0001
Figure imgf000013_0002
2,3,6,7-四溴代萘四甲酸二酐 (TBNDA) 和 Ν,Ν'-二 (正辛基) -2,3,6,7-四溴 代萘 -1,4,5,8-四羧酸二酰亚胺 (29 ) 参照文献 Org. Lett. 2007, 9, 3917-3920合成; 2-癸基-十四烷基胺, 2-辛基-十二烷基胺, 2-己基-癸基胺, 2-丁基-辛基胺参照文 献 Org. Lett. 2008, 10, 5333-5336 报道方法合成; 2-己基-辛基胺参照专利 US2361524报道方法合成; 3-己基 ^一烷基胺参照文献 J Org. Chem. 1961, 26, 3980-3987报道方法合成; 2-乙基-己基胺由 Aldrich购买。
Ν,Ν'-二 (2-癸基 -十四烷基) -2,3,6,7-四溴代萘 -1,4,5,8-四羧酸二酰亚胺 (22 ) 的合成:
在氮气保护下,将 TB DA (3.3 g, 5.7 mmol)和 2-癸基 -十四烷基胺 (6.5 g, 18.4 mmol)加入到 50 mL的乙酸中, 于 120 °C加热反应。 在反应液变澄清且颜色开 始变深前 (约 0.5-1小时), 停止加热, 降至室温, 将反应液倾入 400 mL水中, 过滤, 用 200 mL水洗涤沉淀, 真空干燥, 得到黄色固体。 将上述黄色固体和三 溴化磷 (2.0 mL, 21.1 mmol)加入到 120 mL干燥的甲苯中。加热回流 1小时, 降至 室温, 倾入 400 mL水中, 用甲苯 (200 mL x 3) 萃取三次, 合并有机相, 减压旋 出溶剂。 以二氯甲焼 /石油醚 (1/2 ) 为淋洗剂, 用硅胶层析柱对粗产品进行分离 提纯, 得到 1.35 g黄色固体(22), 产率为 19 % (以 TB DA为起始原料计算)。 质谱: MS (MALDI-TOF) mlz 1257.6 (M+);
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.852-0.894 (m, 6H,— CH3), 1.287-1.409 (m, 8H, CH2), 1.235 (b, 40H, CH2), 1.970-2.005 (m, 1H, CH), 4.159-4.184 (d, J = 7.50 Hz, 2H, -CH2-N);
核磁碳谱: 13C- MR (100 MHz, CDC13): δ 14.10, 22.67, 26.25, 29.33, 29.56, 29.64, 30.01, 31.50, 31.90, 36.50, 46.60, 125.75, 126.32, 135.23, 160.18 (CO).
Ν,Ν'-二(2-辛基 -十二烷基) -2,3,6,7-四溴代萘 -1,4,5,8-四羧酸二酰亚胺(23 ) 的合成:
用 2-辛基-十二烷基胺代替 2-癸基-十四烷基胺, 合成方法同 22, 产率为 33% (以 TBNDA为起始原料计算)。
质谱: MS (MALDI-TOF) mlz 1144.8 (M+);
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.863-0.888 (m, 6H,— CH3), 1.235 (b, 32H, CH2), 1.966-2.008 (m, 1H, CH), 4.159-4.183 (d, J = 7.20 Hz, 2H, -CH2-N);
核磁碳谱: 13C- MR (100 MHz, CDC13): δ 13.96, 22.52, 26.12, 29.15, 29.18, 29.38, 29.42, 29.87, 31.38, 31.73, 36.36, 46.46, 125.62, 126.18, 135.10, 160.05 (CO).
Ν,Ν'-二 (2-己基-癸基) -2,3,6,7-四溴代萘 -1,4,5,8-四羧酸二酰亚胺 (24 ) 的 合成:
用 2-己基 -癸基胺代替 2-癸基-十四烷基胺, 合成方法同 22, 产率为 18% (以 TBNDA为起始原料计算)。
质谱: MS (MALDI-TOF) m/z: 1030.9 (M+);
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.835-0.878 (m, 6H, -CH3), 1.238-1.305 (m, 24H, - CH2- ), 1.975 (m, 1H, CH), 4.147-4.172 (d, 2H, J = 7.50 Hz, -CH2-N);
核磁碳谱: 13C- MR (100 Hz, CDC13): δ 14.108, 14.122, 22.668, 26.275, 26.298: 29.316, 29.539, 29.715, 30.029, 31.562, 31.599, 31.807, 31.895, 36.557, 46.645, 125.816, 126.381, 135.284, 160.247 (C=0).
Ν,Ν'-二 (2-己基-辛基) -2,3,6,7-四溴代萘 -1,4,5,8-四羧酸二酰亚胺 (25 ) 的 合成:
用 2-己基 -辛基胺代替 2-癸基-十四烷基胺, 合成方法同 22, 产率为 22% (以 TB DA为起始原料计算)。
质谱: MS (MALDI-TOF) m/z: 976.2 (M + 2H)+;
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.834-0.876 (m, 6H, -CH3), 1.252-1.363 (m, 20H, -CH2— ), 1.963-1.991 (m, 1H, CH), 4.157-4.181 (d, 2H, J = 7.20 Hz, -CH2-N);
核磁碳谱: 13C- MR (100 Hz, CDC13): δ 14.076, 22.636, 26.252, 29.687, 31.562: 31.779, 36.557, 46.617, 125.821, 126.386, 135.288, 160.260 (C=0).
Ν,Ν'-二 (2-丁基-辛基) -2,3,6,7-四溴代萘 -1,4,5,8-四羧酸二酰亚胺 (26 ) 的合 成:
用 2-丁基 -辛基胺代替 2-癸基-十四烷基胺, 合成方法同 22, 产率为 25% (以 TB DA为起始原料计算)。
质谱: MS (MALDI-TOF) m/z: 918.9 (M+), 940.9 (M + Na)+;
核磁氢谱: 1H- MR (300 MHz, CDCl3)5(ppm): 0.834-0.902 (m, 6H, -CH3), 1.251-1.365 (m, 16H, -CH2— ), 1.955-2.002 (m, 1H, CH), 4.163-4.186 (d, 2H, J = 6.90 Hz, -CH2-N).
核磁碳谱: 13C- MR (100 Hz, CDCI3): δ 13.085, 13.110, 21.668, 22.101, 25.278: 27.502, 28.724, 30.267, 30.585, 30.812, 35.557, 45.638, 124.832, 125.397, 134.285, 159.270 (C=0).
Ν,Ν'-二 (2-乙基-己基) -2,3,6,7-四溴代萘-四羧酸二酰亚胺 (27 ) 的合成: 用 2-乙基 -己基胺代替 2-癸基-十四烷基胺, 合成方法同 22, 产率为 33%。 质谱: [MS (TOF)] m/z: 806.8 (M+), 884.3 (M+2K)+.
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.859-0.969 (m, 6H), 1.287-1.409 (m, 8H), 1.923-1.967 (m, 1H), 4.169-4.194 (d, J = 7.50 Hz, 2H).
Ν,Ν'-二 (3-己基 ^一烷基) -2,3,6,7-四溴代萘 -1,4,5,8-四羧酸二酰亚胺 (28 ) 的合成:
用 3-己基-十一烷基胺代替 2-癸基-十四烷基胺, 合成方法同 22, 产率为 31% (以 TBNDA为起始原料计算)。
质谱: MS (MALDI-TOF) m/z: 1060.2 (M + 2H)+;
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.889-0.901 (m, 6H, -CH3), 1.280-1.326 (m, 24H, - CH2- ), 1.463 (br, 1H, CH), 1.648-1.722 (m, 2H), 4.187-4.239 (m, 2H, -CH2-N). 核磁碳谱: 13C- MR (100 MHz, CDC13): δ 14.416, 22.976, 26.869, 26.899, 29.638: 29.928, 29.995, 30.330, 32.080, 32.184, 32.206, 33.784, 36.315, 41.555, 125.878: 126.815, 135.681, 159.895(C=0). 第 I种材料, 实施例 1-8 (化学结构如下图所示):
Figure imgf000016_0001
实施例 1 : Ν,Ν'-二(2-癸基 -十四烷基) -[2,3-d:6,7-d']-双 [2- ( 1,3-二噻环戊烯 -2-亚基) -2-丙二氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (1 ) 的合成。
氮气保护下, 在 100 ml三口瓶中加入 126 mg (0.1 mmol) Ν,Ν'-二 (2-癸基- 十四烷基) -2,3,6,7-四溴代萘 -1,4,5,8-四羧酸二酰亚胺(22), 56 mg (0.3 mmol) 2,2- 二氰基 -乙烯 -1,1-二硫醇二钠盐, 20 mL四氢呋喃, 在 50°C下反应 1小时, 减压 旋去溶剂。 粗产物经硅胶层析柱提纯 (淋洗液为:二氯甲焼 /石油醚 = 3/1 ) , 得 到紫黑色固体 (化合物 1 ) 60 mg, 产率为 50 %。 Mp: 240 °C (from DSC);
质谱: MS (MALDI-TOF) mlz 1215.8 (M+);
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.849-0.889 (m, 6H,— CH3), 1.231 (b, 40H, CH2), 1.988-2.014 (m, 1H, CH), 4.219-4.244 (d, J = 7.50 Hz, 2H, -CH2-N);
核磁碳谱: 13C- MR (100 MHz, CDC13): δ 14.11, 22.68, 26.28, 29.34, 29.57, 29.64, 30.01, 31.49, 31.91, 36.59, 46.49, 71.22 (=C(CN)2), 111.58, 111.72 (C≡N), 125.09, 145.33, 161.96 (C=0), 181.93 (=CS2).;
元素分析: 分子式: C70H98N6O4S4; 理论值: C, 69.15; H, 8.12; N, 6.91; 实 测值: C, 69.41; H, 8.37; N, 6.67。
实施例 2: Ν,Ν'-二(2-辛基 -十二烷基) -[2,3-d:6,7-d']-双 [2- ( 1,3-二噻环戊烯 -2-亚基) -2-丙二氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (2 ) 的合成。
用 23代替 22, 合成方法同 1, 产率为 53%。 Mp: 265 °C (from DSC);
质谱: MS (MALDI-TOF) mlz 1105.4 (M+);
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.840-0.891 (m, 6H,— CH3), 1.236 (b, 32H, CH2), 2.002-2.022 (m, 1H, CH), 4.222-4.246 (d, J = 7.20 Hz, 2H, -CH2-N);
核磁碳谱: 13C- MR (100 MHz, CDC13): δ 14.13, 22.67, 22.69, 26.28, 29.30, 29.35, 29.52, 29.57, 29.65, 30.02, 31.49, 31.87, 31.93, 36.59, 46.48, 71.22 (=C(CN)2), 111.60, 111.74 (C≡N), 125.10, 145.35, 161.97 (C=0), 181.95 (=CS2).;
元素分析: 分子式: C62H82N604S4; 理论值: C, 67.48; H, 7.49; N, 7.62; 实 测值: C, 67.38; H, 7.58; N, 7.56。
实施例 3: '-二 (2-己基-癸基) -[2,3-d:6,7-d']-双 [2- ( 1,3-二噻环戊烯 -2- 亚基) -2-丙二氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (3 ) 的合成。
用 24代替 22, 合成方法同 1, 产率为 54%。 Mp: 317-319 °C;
质谱: MS (MALDI-TOF) m/z: 1036.4 (M + 2Na)+;
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.845-0.869 (m, 6H, -CH3), 1.249 (m, 24H, -CH2- ), 2.006 (m, 1H, CH), 4.220-4.245 (d, 2H, J = 7.50 Hz, -CH2-N);
核磁碳谱: 13C- MR (100 Hz, CDC13): δ 14.039, 22.567, 22.613, 26.141, 26.233: 29.242, 29.460, 29.613, 29.951, 31.458, 31.710, 31.821, 36.566, 46.390, 71.224 (=C(CN)2), 111.552 (C≡N), 117.696, 125.071, 145.321, 161.932 (C=0), 181.862 (=CS2).
元素分析: 分子式: C54H66N604S4; 理论值: C, 65.42; H, 6.71; N, 8.48; 实 测值: C, 65.19; H, 6.60; N, 8.45。
实施例 4: '-二 (2-己基-辛基) -[2,3-d:6,7-d']-双 [2- ( 1,3-二噻环戊烯 -2- 亚基) -2-丙二氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (4 ) 的合成。
用 25代替 22, 合成方法同 1, 产率为 47%。 Mp: 349-351 °C;
质谱: MS (MALDI-TOF) m/z: 937.0 (M + 3H)+, 1089.0 (M + 4K)+;
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.849-0.892 (m, 6H, -CH3), 1.268 (m, 20H, -CH2— ), 1.980-2.033 (m, 1H, CH), 4.221-4.246 (d, 2H, J = 7.50Hz, -CH2-N);
核磁碳谱: 13C- MR (100 Hz, CDC13): δ 14.097, 22.625, 26.201, 29.670, 31.503: 31.766, 36.639, 46.398, 71.336 (=C(CN)2), 111.614 (C≡N), 117.724, 125.115, 145.383, 161.973 (C=0), 181.877 (=CS2).
元素分析: 分子式: C5QH58N604S4; 理论值: C, 64.21; H, 6.25; N, 8.99; 实 测值: C, 64.12; H, 6.20; N, 8.84。
实施例 5: '-二 (2-丁基-辛基) -[2,3-d:6,7-d']-双 [2- ( 1,3-二噻环戊烯 -2- 亚基) -2-丙二氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (5 ) 的合成。
用 26代替 22, 合成方法同 1, 产率为 68%。 Mp: 369-371 °C;
质谱: MS (MALDI-TOF) m/z: 881.2 (M + 3H)+ , 1033.3 (M + 4K)+;
核磁氢谱: H- MR (300 MHz, CDC13) δ (ppm): 0.845-0.917 (m, 6H, -CH3), 1.264 (m, 16H, -CH2— ), 2.011 (m, 1H, CH), 4.223-4.246 (d, 2H, J = 6.90Hz, -CH2-N);
元素分析: 分子式: C46H50N6O4S4; 理论值: C, 62.84; H, 5.73; N, 9.56; 实 验值: C, 62.38; H, 5.55; N, 9.43„
实施例 6: '-二 (2-乙基-己基) -[2,3-d:6,7-d']-双 [2- ( 1,3-二噻环戊烯 -2- 亚基) -2-丙二氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (6 ) 的合成。
用 27代替 22, 合成方法同 1, 产率为 51%。
质谱: [MS (TOF)] m/z: 767.5 (M+).
核磁氢谱: 1H- MR (500 MHz, CDC13) δ (ppm): 0.89-0.92 (t, J = 7.50 Hz, 3H): 0.94-0.97 (t, J = 7.50 Hz, 3H), 1.29-1.42 (m, 8H), 1.96-1.98 (m, 1H), 4.20-4.28 (m, 2H).
元素分析: 分子式: C38H34N604S4; 理论值: C, 59.51; H, 4.47; N, 10.96; 实测值: C, 59.51; H, 4.38; N, 10.84。
实施例 7: Ν,Ν'-二(3-己基 ^一烷基) -[2,3-d:6,7-d']-双 [2- ( 1,3-二噻环戊烯 -2-亚基) -2-丙二氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (7) 的合成。
用 28代替 22, 合成方法同 1, 产率为 65%。 Mp: 330-332 °C;
质谱: MS (MALDI-TOF) m/z: 1018.7 M+;
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.860-0.903 (m, 6H, -CH3), 1.254-1.311 (m, 24H, -CH2- ), 1.492 (br, 1H, CH), 1.702 (br, 2H), 4.262-4.324 (m, 2H, -CH2-N);
核磁碳谱: 13C- MR (100 MHz, CDC13): δ 14.408, 22.954, 22.976, 26.809, 26.891, 29.631, 29.899, 29.936, 30.286, 32.013, 32.139, 32.176, 33.702, 33.740, 36.308, 41.139, 71.397 (=C(CN)2), 111.839 (C≡N), 118.151, 125.319, 145.425, 161.816 (C=0), 182.234 (=CS2);
元素分析: 分子式: C56H70N6O4S4; 理论值: C, 65.98; H, 6.92; N, 8.24.; 实验 值: C, 65.96; H, 7.10; N, 8.09.
实施例 8: Ν,Ν'-二 (正辛基) -[2,3-d:6,7-d']-双 [2- ( 1,3-二噻环戊烯 -2-亚基) -2-丙二氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (8 ) 的合成。
用 29代替 22, 合成方法同 1, 产率为 62%。
质谱: [MS (TOF)] m/z: 767.3 (M+).
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.864 (3Η), 1.258-1.301 (m, 10H), 1.792 (m, 2H), 4.299 (t, 2H).
元素分析: 分子式: C38H34N604S4; 理论值: C, 59.51; H, 4.47; N, 10.96; 实测值: C, 59.45; H, 4.46; N, 10.58。 第 Π类材料, 实施例 9-11 (化学结构如下图所示):
Figure imgf000020_0001
实施例 9: Ν,Ν'-二 (2-辛基 -十二烷基) -[2,3-d:6,7-d']-双 [2-(1,3-二噻环戊烯 -2-亚基) -2-氰基乙酸乙酯] -萘 -1,4,5,8-四羧酸二酰亚胺 (9) 的合成。
具体合成步骤是:
将氰基乙酸乙酯(CNCH3COOEt, 297 mg, 2.63 mmol)和二硫化碳(CS2, 0.16 mL, 2.63 mmol) 溶于 25mL THF中, 于 0〜5 °C下, 在氮气保护下, 缓慢滴加上述 溶液到装有 132 mg (5.3 mmol)氢化钠 (NaH, 96%)禾口 5 mL THF 的三口瓶中, 历 时 0. 5小时, 将反应液升至室温, 继续搅拌反应 4小时, 向反应液中加入 300 mg ( 0. 26 mmol ) 的 Ν,Ν'-二 (2-辛基 -十二烷基) -2, 3, 6, 7-四溴代萘四羧酸二酰亚 胺(23 ),在室温下, 继续反应 0. 5小时, 减压旋去溶剂。 粗产物经硅胶层析柱提 纯(淋洗液为二氯甲焼 /石油醚, V/V = 3/2),得到暗红色固体(化合物 9) 270 mg, 产率 86 %。
质谱: [MS (TOF)] m/z: 1196.6 (M+).
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.847-0.857 (m, 6H, CH3), 1.224 (b, 32H, CH2), 1.415-1.464 (t, J = 7.35 Hz, 3H, (OCH2)CH3), 2.041 (b, 1H, CH), 4.228-4.252 (d, J = 7.2 Hz, 2H, -CH2-N), 4.398-4.467 (q, J = 6.9 Hz, 2H, - CH2- O).
核磁碳谱: 13C- MR (100 Hz, CDC13): δ 14.076, 14.182, 22.650, 26.460, 29.344: 29.649, 30.094, 31.571, 31.909, 36.524, 46.339, 63.061(-CH2OOC), 91.232, 113.825 (C≡N), 116.954, 117.635, 117.866, 124.681, 143.181, 148.172, 161.824, 162.042, 162.417, 177.222 (=CS2);
元素分析: 分子式: C66H92N408S4; 理论值: C, 66.18; H, 7.74; N, 4.68; 实 测值: C, 66.24; H, 7.79; N, 4.45。
实施例 10: Ν,Ν'-二 (2-辛基 -十二烷基) -[2,3-d:6,7-d']-双 [2-(1,3-二噻环戊烯 -2-亚基) -2-氰基乙酸正己酯] -萘 -1,4,5,8-四羧酸二酰亚胺 (10 ) 的合成。
具体合成步骤是:
用氰基乙酸正己酯代替氰基乙酸乙酯,合成方法同实施例 9中步骤, 制备得 到深棕色固体 (10 ) , 产率 59%。
质谱: [MS (TOF)] m/z: 1308.7 (M+).
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.854-0.942 (m, 9H, CH3), 1.223-1.368 (m, 38H, CH2), 1.741-1.832 (m, 2H, CH2), 2.043 (b, 1H, CH), 4.227-4.251 (d, J = 7.2 Hz, 2H, -CH2-N), 4.335-4.378 (t, J = 6.5 Hz, 2H,— CH2— O). 核磁碳谱: 13C- MR (100 Hz, CDC13): δ 13.997, 14.076, 22.501, 25.469, 26.455: 28.492, 29.344, 30.099, 31.261, 31.418, 31.566, 31.909, 36.515, 46.335, 67.154 (— CH2OOC), 91.274, 113.825 (C≡N), 116.797, 117.005, 117.644, 117.862, 124.737, 143.278, 148.237, 161.852, 162.065, 162.491, 177.209 (=CS2);
元素分析: 分子式: C74H108N4O8S4; 理论值: C, 67.85; H, 8.31; N, 4.28; 实 测值: C, 67.87; H, 8.57; N, 3.85。
实施例 11 : Ν,Ν'-二(正辛基) -[2,3-d:6,7-d']-双 [2-(1,3-二噻环戊烯 -2-亚基) -2- 氰基乙酸 2-乙基己基酯] -萘 -1,4,5,8-四羧酸二酰亚胺 (11 ) 的合成。
具体合成步骤是:
用氰基乙酸 2-乙基己基酯和 29分别代替氰基乙酸乙酯和 23,合成方法同实 施例 9中步骤, 制备得到深棕色固体 (11 ) , 产率 41 %。
质谱: [MS (TOF)] m/z: 1051.1 (M+ + Na), 1074.1 (M+ + 2Na).
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.926-0.932 (m, 9H, CH3), 1.302 (b, 18H, CH2), 1.784-1.814 (m, 3H, overlapped, CH3CH2CH and CH), 4.282-4.295 (m, 4H, overlapped, -CH2-N and— CH2— O).
元素分析: 分子式: C54H68N408S4; 理论值: C, 63.01; H, 6.66; N, 5.44; 实 测值: C, 63.03; H, 6.61; N, 5.34。 第 III类材料, 实施例 12和 13 (化学结构如下图所示):
Figure imgf000022_0001
实施例 8: Ν,Ν'-二 (2-癸基 -十四烷基) -[2,3-d:6,7-d']-双 [2-(1,3-二噻环戊烯 -2-亚基) -2-苯乙氰] -萘 -1,4,5,8-四羧酸二酰亚胺 (12) 的合成。
具体合成步骤是:
在氮气保护下, 将 40.9 mg ( 1.7 mmol) 氢化钠 (NaH, 96%), 92 μL苯乙 氰 (0.8 mmol) 禾口 5 mL DMF加入 50 mL 的三口瓶中, 于 0〜5 °C下, 反应 0. 5小时 后加入 53 μί ( 0.88 mmol) 二硫化碳, 反应液升至室温, 继续反应 2小时, 向反 应液中加入 103 mg ( 0.08 mmol) Ν,Ν'-二 (2-癸基 -十四烷基) -2, 3, 6, 7-四溴代 萘四羧酸二酰亚胺 (22), 室温下, 继续反应 0.5小时, 将反应液倾入 100 mL水 中, 溶 4 x 50 mL二氯甲烷溶液萃取, 合并有机相, 干燥后, 减压旋去溶剂。 粗 产物经硅胶层析柱提纯 (淋洗液为二氯甲焼 /石油醚, V/V = 4/5 ) , 得到蓝紫色 固体 (化合物 12) 52 mg, 产率 48 %。
质谱: [MS (TOF)] m/z: 1317.7 (M+).
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.837-0.878 (m, 6H, CH3), 1.217 (b, 40H, CH2), 2.014 (m, 1H, CH), 4.158-4.185 (m, 2H, -CH2-N), 7.419—7.471 (m, 1H, Ar-H), 7.518-7.568, (m, 2H, Ar-H), 7.677-7.704, (d, J = 8.1 Hz, 2H, Ar-H).
实施例 13: Ν,Ν'-二 (2-辛基 -十二烷基) -[2,3-d:6,7-d']-双 [2-(1,3-二噻环戊烯 -2-亚基) -2- (4-溴苯乙氰) ]-萘 -1,4,5,8-四羧酸二酰亚胺 (13) 的合成。
具体合成步骤是:
分别用 4-溴代苯乙氰和 23代替苯乙氰和 22,合成方法同实施例 12中步骤, 制备得到蓝紫色固体 (13) , 产率 60 %。
质谱: [MS (TOF)] m/z: 1364.7 (M+ H)+.
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.855 (b, 6H), 1.221 (b, 32H), 1.993 (b, 1H, CH), 4.165 (b, 2H, -CH2-N), 7.580 (m, 2H, Ar-H), 7.664, (m, 2H: Ar-H). 第 III类材料, 实施例 14-17 (化学结构如下图所示):
Figure imgf000023_0001
Figure imgf000023_0002
实施例 14: Ν,Ν'-二 (2-癸基 -十四烷基) -[2,3-d:6,7-d']-双 [1,4-二噻环己二烯 -2,3-二腈] -萘 -1,4,5,8-四羧酸二酰亚胺 (14 ) 的合成。
氮气保护下, 在 100 ml三口瓶中加入 700 mg (0.56 mmol) Ν,Ν'-二(2-癸基-十 四烷基) -2,3,6,7-四溴代萘四羧酸二酰亚胺 (22), 313 mg (1.68 mmol) 1, 2_二氰 基乙烯 -1, 2-二硫醇钠盐 (从 TCI购买), 70 mL四氢呋喃, 在室温反应 1小时, 减 压旋去溶剂。 粗产物经硅胶层析柱提纯 (淋洗液为甲苯 /石油醚, V/V = 2/l ) , 得到红色固体 (化合物 14 ) 270 mg, 产率为 39.6 %。
质谱: [MS (TOF)] m/z: 1217.3 (M + 2H)2+.
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.852-0.895 (m, 6H, CH3), 1.246 (b, 40H, CH2), 1.929-1.970 (m, 1H, CH), 4.113-4.138 (d, J = 7.5 Hz, 2H, -CH2-N).
核磁碳谱: 13C- MR (100 Hz, CDC13): δ 13.109, 21.675, 25.097, 28.337, 28.578: 28.605, 28.643, 28.656, 28.685, 29.003, 30.444, 30.907, 35.569, 45.313, 110.373, 120.923, 122.111, 125.086, 139.321, 160.468; FT-IR (KBr, cm"1) v 2922.7 (s), 2852.2, 2208.5 (; C≡N)。
元素分析: 分子式: C70H98N6O4S4; 理论值: C, 69.15; H, 8.12; N, 6.91; 实 测值: C, 69.45; H, 7.96; N, 6.86。
实施例 15: Ν,Ν'-二 (2-辛基 -十二烷基) -[2,3-d:6,7-d']-双 [1,4-二噻环己二烯 -2,3-二腈] -萘 -1,4,5,8-四羧酸二酰亚胺 (15 ) 的合成。
具体合成步骤是:
用 23代替 22, 合成方法同实施例 14中步骤, 制备得到红色固体(15 ) , 产率 为 34.5 %。
质谱: [MS (TOF)] m/z: 1105.7 (M + 2H)2+.
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.871 (m, 6H, CH3), 1.251 (b, 32H, CH2), 1.951 (b, 1H, CH), 4.116-4.138 (d, J = 6.6 Hz, 2H, -CH2-N).
核磁碳谱: 13C- MR (100 Hz, CDC13): δ 14.085, 22.654, 26.108, 29.238, 29.316: 29.511, 29.557, 29.590, 29.622, 29.983, 31.474, 31.895, 36.576, 46.335, 111.367 (C≡N), 121.899 (=C(CN)S), 123.089, 126.103, 140.390, 161.478 (C=0);
元素分析: 分子式: C62H82N604S4; 理论值: C, 67.48; H, 7.49; N, 7.62; 实 测值: C, 67.66; H, 7.35; N, 7.61。
实施例 16: Ν,Ν'-二 (2-丁基-辛基) -[2,3-d:6,7-d']-双 [1,4-二噻环己二烯 -2,3- 二腈] -萘 -1,4,5,8-四羧酸二酰亚胺 (16 ) 的合成。
具体合成步骤是:
用 26代替 22, 合成方法同实施例 14中步骤, 制备得到红色固体(16 ) , 产率 为 72.5 %。
质谱: [MS (TOF)] m/z: 882.0 (M+ 3H)3+ , 902.0 (M+ Na)+.
核磁氢谱: 1H- MR (500 MHz, CDC13) δ (ppm): 0.854-0.928 (m, 6H, CH3), 1.281 (b, 16H, CH2), 1.958 (b, 1H, CH), 4.121-4.145 (d, J = 7.2 Hz, 2H, -CH2-N). 实施例 17: Ν,Ν'-二(正辛基) -[2,3-d:6,7-d']-双 [1,4-二噻环己二烯 -2,3-二腈] - 萘 -1,4,5,8-四羧酸二酰亚胺 (17 ) 的合成。
具体合成步骤是:
用 29代替 22, 合成方法同实施例 14中步骤, 制备得到红色固体(17 ) , 产率 为 66%。 质谱: [MS (TOF)] m/z: 769.9, (M+ 3H)3+
核磁氢谱: 1H- MR (500 MHz, CDC13) δ (ppm): 0.868-0.913 (t, J = 6.75 Hz, 3H, CH3), 1.253-1.400 (m, 10H, CH2), 1.721-1.749 (m, 2H, CH2), 4.149-4.199 (t, J = 7.5 Hz, 2H, -CH2-N).
第 V类材料, 实施例 18-21 (化学结构如下图所示, 为顺反异构化合物, 不 能进一步分离):
Figure imgf000025_0001
实施例 18: Ν,Ν'-二 (2-癸基 -十四烷基) -[2,3-d:6,7-d']-双 [α,β-二氰基噻吩] - 萘 -1,4,5,8-四羧酸二酰亚胺 (18) 的合成。
具体合成步骤是:
在 100 ml三口瓶中加入 118 mg (0.1 mmol) Ν,Ν'-二 (2-癸基 -十四烷基) -[2,3-d:6,7-d']-双 [1,4-二噻环己烯 -2,3-二腈] -萘 -1,4,5,8-四羧酸二酰亚胺(14)和 50 mL 丙酸, 加热搅拌至固体溶解, 向反应液中加入 1.74 mL 30%的 H202 ( 17 mmol), 于 120 °C 下加热搅拌反应 1小时, 反应液降至室温, 倾入 200 mL水中, 抽滤, 所得粗产品干燥后, 经硅胶层析柱提纯(淋洗液为二氯甲焼 /石油醚, V/V = 2/1 ) , 得到亮红色固体 (化合物 18) 34 mg, 产率为 30%。
质谱: [MS (TOF)] m/z: 1174.6 (M + Na)+, 1196.7 (M + 2Na)2+, 1212.6 (M + Na 核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.848-0.890 (m, 6H, CH3), 1.230-1.410 (m, br, 40H, CH2), 2.055-2.134 (m, 1H, CH), 4.299-4.375 (m, 2H, CH2-N).
核磁碳谱: 13C- MR (100 Hz, CDCI3): δ 14.134, 22.703, 26.215, 26.327, 26.485: 29.375, 29.605, 29.655, 29.679, 29.704, 30.002, 31.514, 31.590, 31.777, 31.932, 36.632, 46.126, 46.164, 46.617, 111.015, 111.059, 111.112, 111.314, 117.423, 117.794: 117.822, 119.807, 121.025, 123.652, 124.453, 135.969, 136.035, 136.872, 137.552, 143.576, 144.402, 161.244 (C=0), 162.558 (C=0);
元素分析: 分子式: C70H98N6O4S2 ; 理论值: C, 73.00; H, 8.58; N, 7.30; 实 测值: C, 73.16; H, 8.55; N, 6.90。
实施例 19: Ν,Ν'-二 (2-辛基 -十二烷基) -[2,3-d:6,7-d']-双 [α,β-二氰基噻吩] - 萘 -1,4,5,8-四羧酸二酰亚胺 (19 ) 的合成。
用 15代替 14, 合成方法同实施例 18中步骤, 制备得到红色固体(19 ) , 产率 为 52%。
质谱: [MS (TOF)] m/z: 1142.0 (M + 3H)3+, 1064.0 (M + 2H + Na)3+,
1085.0 (M + 2Na)2+, 1101.0 (M + Na + K)2+.
核磁氢谱: 1H- MR (300 MHz, CDC13) δ (ppm): 0.837-0.867 (m, 6H, CH3), 1.230-1.411 (m, 32H, CH2), 2.053-2.127 (m, 1H, CH), 4.297-4.375 (m, 2H, CH2-N).
实施例 20 : Ν,Ν'-二 (2-丁基-辛基) -[2,3-d:6,7-d']-双 [α,β-二氰基噻吩] -萘 -1,4,5,8-四羧酸二酰亚胺 (20 ) 的合成。
用 16代替 14, 合成方法同实施例 18中步骤, 制备得到红色固体(20 ) , 产率 为 37.4%。
质谱: [MS (TOF)] m/z: 838.6 (M + Na)+, 860.7 (M + 2Na)2+, 876.6 (M + Na +
K)2+.
核磁氢谱: 1H- MR (500 MHz, CDC13) δ (ppm): 0.831-0.900 (m, 6H, CH3), 1.253-1.417 (m, 16H, CH2), 2.066-2.147 (m, 1H, CH), 4.300-4.377 (m, 2H, CH2-N). 实施例 21 : Ν,Ν'-二 (正辛基) -[2,3-d:6,7-d']-双 [α,β-二氰基噻吩] -萘 -1,4,5,8- 四羧酸二酰亚胺 (21 ) 的合成。
用 17代替 14, 合成方法同实施例 18中步骤, 制备得到红色固体(21 ) , 产率 为 46.5 %。 质谱: [MS (TOF)] m/z: 705.5 (M + 3H)3+, 727.5 (M + 2H + Na)3+, 748.5 (M + 2Na)2+, 764.5 (M + Na + K)2+, 780.5 (M + 2K)2+.
核磁氢谱: 1H- MR (500 MHz, CDC13) δ (ppm): 0.864-0.896 (t, 3H, CH3), 1.254-1.512 (m, 10H, CH2), 1.799-1.903 (m, 2H, CH2), 4.366-4.445 (m, 2H, CH2-N).
以上五种硫杂环稠合的萘四羧酸二酰亚胺衍生物的 21 个实例化合物 ( 1-21 ) , 可溶于常见的有机溶剂, 如氯仿、 甲苯、 氯苯、 二氯苯等。 室温下, 除化合物 6和 8具有较低溶解度外,其余化合物在氯仿、 四氢呋喃等常用溶剂中 的溶解度 > 5 mg/mLo .
( 2 )第 I -V种硫杂环稠合的萘四羧酸二酰亚胺衍生物的实例化合物 (1-21 ) 的紫外吸收光谱和电化学性质
紫外吸收光谱在 U-3900 光谱仪上进行, 样品溶液二氯甲烷中 (摩尔浓度为 1 χ 10_6 Μ), 扫描范围为 800-200 匪, 化合物的光学带隙由以下公式计算得到:
Egap opt = 1240 ηιη/λοη86ι (1)
循环伏安法测试在计算机控制的 CHI610D电化学分析仪上进行, 采用传统 的三电极测试体系, 铂电极为工作电极, 饱和甘汞电极 (SCE) 作为参比电极, 铂丝作为对电极, 样品溶于新蒸的二氯甲烷 (摩尔浓度为 l x lO_3 M), Bu4 PF6 (0.1 M)作为支持电解质, 扫描速度为 50 mV/s, 以饱和甘汞为参比, 饱和甘汞 能级相对于真空能级的为 -4.44 eV, 材料的 LUMO能级可以由以下能级的公式 计算得到:
ELUMO = -(Ei/2 redl + 4.44) eV (2)
因同一种硫杂环稠合的萘四羧酸二酰亚胺衍生物 (第 I种: 1-8; 第 II种: 9-11; 第 III种: 12和 13; 第 IV种: 14-17; 第 V种: 18-21 ) 具有相似的的紫外 吸收光谱和电化学性质, 这里以化合物 1 (R1为 2-癸基-十四烷基), 9 (R1为 2- 辛基 -十二烷基, R2为乙基), 12 (R1为 2-癸基 -十四烷基, R3为 H原子), 15 (R1 为 2-辛基 -十二烷基) 和 18 (R1为 2-癸基 -十四烷基) 为例进行说明。
图 1给出了化合物 1的紫外吸收光谱, 它们的紫外最大吸收峰位置为 573 nm左右, 光学带隙为 2.1eV。 图 2给出了化合物 1的循环伏安曲线, 显示了两 个可逆的氧化还原过程, 其半波电位分别为 E1/2 redl = -0.09 eV和 E1/2 red2 = -0.63 eV, 由公式 (2)计算所得的 LUMO能级为 -4.35 eV。 图 3给出了化合物 9的紫 外吸收光谱, 它的最大末端吸收峰位置为 581 nm左右, 由公式(1 )计算得到光 学带隙为 2.0 eV。 图 4给出了化合物 9的循环伏安曲线, 显示了两个可逆的氧化 还原过程,其半波电位分别为 E1/2 redl = -0.21 eV和 E1/2 red2 = -0.68 eV,由公式 (2) 计算所得的 LUMO能级为 -4.23 eV。 如图 5所示, 化合物 12的吸收光谱的最大 吸收峰位置为 655 nm左右, 由公式 (1 ) 计算得到光学带隙为 1.8 eV。 化合物 12的循环伏安曲线(图 6)显示了一个不可逆的氧化还原过程(出现了肩峰)和 一个可逆的氧化还原过程 (E1/2 red2 = -0.81 eV), 其起始还原电位 Ered°nset = -0.23 eV, 由以下公式 (3 ) 计算所得的 LUMO能级为 -4.17 eV。
ELUMo = -(Ered0nset + 4.4) eV (3)
图 7给出了化合物 15的紫外吸收光谱, 它的最大吸收峰位置为 550 nm左 右, 由公式(1 )计算得到光学带隙为 2.0 eV。 图 8给出了化合物 15的循环伏安 曲线,显示了两个可逆的氧化还原过程,其半波电位分别为 E1/2redl = -0.16 eV和 Ei/2 red2 = -0.64 eV, 由公式 (2) 计算所得的 LUMO能级为 -4.28 eV。
图 9给出了化合物 18 的紫外吸收光谱, 它的最大吸收峰位置在 250〜318 nm, 末端吸收峰值为 545 nm, 但吸收较弱, 显示出较弱的分子内电荷转移, 由 公式(1 )计算得到光学带隙为 2.2 eV。 图 10给出了化合物 18的循环伏安曲线, 显示了两个可逆的氧化还原过程, 其半波电位分别为 E1/2 redl = 0.19 eV和 E1/2 red2 = -0.40 eV, 由公式 (2) 计算所得的 LUMO能级为 -4.63 eV。 第 V种化合物具 有较低的 LUMO能级, 是一类良好的电子受体材料。
(3) 化合物 1-5, 7, 9, 10, 15和 18作为半导体活性层制备有机薄膜场效应晶体 管
图 11给出了以上述化合物为半导体层的有机薄膜场效应晶体管(OTFT)的 结构示意图。 如图 11所示, 本发明中 OTFT器件的制备方法为: 将 5-10 mg的 化合物 1-5或 7或 9或 15或 18溶于 1ml氯仿中,在 OTS修饰的 Si02/Si基底上 (高掺杂的硅衬底作为栅极, 热氧化二氧化硅绝缘层的厚度为 450 nm, 电容为 lO nFcm-2) 甩上一层约 10-80 nm厚度的有机半导体薄膜 (为提高器件性能, 将 薄膜进行退火), 在有机薄膜的上面利用掩模板沉积金源漏电极, 从而制得上电 极结构的 OTFT器件,器件的半导体沟道长度为 50μιη,沟道宽度为 3 mm。 OTFT 的电性能用 Keithley 4200半导体测试仪在空气中室温下测到。 化合物 1-5, 7, 9, 15和 18的 OTFT器件 (≥10个) 的电性能表征数据 (包括迁移率、 开关比和阈 值电压) 列于表 1中。
图 12和图 13分别给出了化合物 2的一个 OTFT器件的输出曲线和转移曲线 图;图 14和图 15分别给出了化合物 9的一个 0TFT器件的输出曲线和转移曲线; 图 1 o6和图 17分别给出了化合物 15的一个 OTFT器件的输出曲线和转移曲线; 图 18和图 19分别给出了化合物 18的一个 OTFT器件的输出曲线和转移曲线图。
本发明用溶液加工的方法制备了基于新型硫杂环稠合的萘四羧酸二酰亚胺衍生
o
物的多个 OTFT器件。其中,第 I类化合物的金电极 OTFT器件的初步测试结果: 电子迁移率高达 0.42 cm2/V_s, 开关比大于 105, 阈值电压低于 15 V, 而且器件 具有良好的空气稳定性和电压操作稳定性。
本发明不限于所披露的 21个实例化合物, 硫杂环稠合的萘四羧酸二酰亚胺 衍生物种类繁多, 本发明的保护范围以所附权利要求书限定为准。
表 1为基于化合物 1-5, 7, 9, 15和 18的 OTFT器 o件在不同退火温度下的电性能表 征数据, 包括最高 (平均) 电子迁移率 ( , 单位: cm2/Vs)、 开关比 (/。n//。ff) 和阈值电压 ( T, 单位: V)。
120 °C 160。C 180。C 4 Ι。!Ι。 FT 4 Ι。!Ι。 νΊ 4 Ι。!Ι。 νΊ
(cm2/Vs) (V) (cm2/Vs) (V) (cm2/Vs) (V)
0.12 (0.09) 105-106 -2 - 4 0.20 (0.15) 105-106 -2 - 5 0.15 (0.14) 105-106 -2 - 1
0.14 (0.10) 105-106 -2 - 6 0.25 (0.20) 105-106 0-8 0.42 (0.32) 105-10 ο7 0-5
0.10 (0.09) 105-106 2-10 0.14 (0.13) 105-106 2-10 0.19 (0.17) 105-106 5-11
0.08 (0.07) 105-106 1-5 0.16 (0.15) 105-106 3-11 0.21 (0.20) 105-106 2-10
0.12 (0.11) 105-106 6-3 0.15 (0.14) 105-106 8-14 0.21 (0.19) 106-108 7-14
0.14 (0.12) -1-5 0.26 (0.24) -1-7 0.20 (0.18) -2-4
103-104 32-45 UxlO—3 103-104 12-35 4xl0—3 103-104 10-16
(3xl0—4) (9xl0—4) (2xl0—3)
1.5xl0—3 104-105 20-40 1.6xl0—2 104-105 10-35 7xl0—3 104-105 20-41
(1.2xl0—3) (1.3xl0—2) (5xl0—3)
1.2xl0—3 104-105 2-11
(6xl0—4)
表 1

Claims

权利要求书
1、 一 硫杂环稠合的萘四羧酸二酰亚胺衍生物, 具有如下结构式:
Figure imgf000030_0001
式中 R1和 R2分别为 d〜 C3。和 d〜 C12的正烷基或分支烷基; R3为 H或卤 素原子。
2、 根据权利要求 1所述的一类硫杂环稠合的萘四羧酸二酰亚胺衍生物, 其 特征是具有如下式 (1)、(II)和 (III)所示结构式的 1,3-二噻环戊烯稠合的萘四羧酸二 酰亚 生物:
Figure imgf000030_0002
式中 R R2、 R3如权利要求 1所述。
3、 根据权利要求 1所述的一类硫杂环稠合的萘四羧酸二酰亚胺衍生物, 其 特征是具有结构式如下式 (IV)所示的 1,4-二噻环己二烯 -2,3-二腈稠合的萘四羧酸 二酰亚胺衍生物和下式 (V)所示的 α,β-二氰基噻吩稠合的萘四羧酸二酰亚胺衍生 物, 其中式 (V) 所示的 α,β-二氰基噻吩稠合的萘四羧酸二酰亚胺衍生物为一对顺 反异构化合 不能进一步分离:
Figure imgf000031_0001
V
式中 R1如前所述。
4. 根据权利要求 1-3 中任一项所述的一类硫杂环稠合的萘四羧酸二酰亚胺 衍生物, 其中 R1为 C8〜 C24的正烷基或分支烷基。
5. 根据权利要求 1所述的一类硫杂环稠合的萘四羧酸二酰亚胺衍生物, 其 中所述化合物选自下组:
οε
Figure imgf000032_0001
Z£6LLO/OlOZ l3/13d Z9L 0/U0Z OAV
Figure imgf000033_0001
Figure imgf000034_0001
32 6、 一种制备如权利要求 1至 3任一项所述的一类硫杂环稠合的萘四羧酸二 酰亚胺衍生物, 其特征是通过步骤 A)获得通式为 (I)的 1,3-二噻环戊烯稠合的萘 四羧酸二酰亚胺衍生物, 通过步骤 B和 C获得通式为 (II)和 (III)的 1,3-二噻环戊 烯稠合的萘四羧酸二酰亚胺衍生物, 通过步骤 D) 获得通式为 (IV)的 1,4-二噻环 己二烯 -2,3-二腈稠合的萘四羧酸二酰亚胺衍生物, 通过步骤 E) 获得通式为 (V) 的 α,β-二氰基噻吩稠合的萘四羧酸二酰亚胺衍生物, 第 V类衍生物为顺反异构化 合物, 不能进一步分离:
Α)2,2-二氰基 -乙烯 -1, 1-二硫醇钠盐与通式为 (VI)的 Ν-烷基 R1取代的 2,3,6,7- 四溴代萘四羧酸二酰亚胺以摩尔比 2.5〜4: 1在有机溶剂中, 于室温和 40〜60°C分 别反应 0.5〜2小时和 0.5〜1小时 1〜6小时;
Figure imgf000035_0001
VI
B ) 氰基乙酸烷基酯 CNCH2COOR2或苯乙氰或 4-卤代苯乙氰、 氢化钠 NaH 和二硫化碳 CS2以摩尔比 1 :2〜3 : 1〜1.5在有机溶剂中, 先后于 0〜5 °C和室温下分 别反应 0. 5-1小时和 2〜4小时;
C) 向步骤 B )制备的反应液中 (含 2-氰基乙酸烷基酯 -乙烯 -1,1-二硫醇钠 盐或 2-苯乙氰 -乙烯 -1, 1-二硫醇钠盐或 2- (4-卤代苯乙氰) -乙烯 -1, 1-二硫醇 钠盐)加入通式为 (VI)的 N-烷基 R1取代的 2,3,6,7-四溴代萘四羧酸二酰亚胺, 所 述的 N-烷基 R1取代的 2,3,
6,7-四溴代萘四羧酸二酰亚胺与步骤 B中 CS2的摩尔 比为 1 :5-10, 于室温下反应 0. 5-2小时;
D)通式为 VI的 N-烷基 R1取代的 2, 3, 6, 7-四溴代萘四羧酸二酰亚胺与 1, 2- 二氰基乙烯 -1, 2-二硫醇钠盐以摩尔比 1 :2〜3.5 在有机溶剂中, 于室温下反应 0. 5-1小时;
E) 将 1,4-二噻环己二烯 -2,3-二腈稠合的萘四羧酸二酰亚胺衍生物与双氧水 以摩尔比 1 :50〜80在酸中, 于 100〜120。C 下反应 0. 5〜1. 5小时;
其中, I 1、 R2、 R3如权利要求 1所述; 通式 (1)、 (II), (III) (IV) (V)的硫 杂环稠合的萘四羧酸二酰亚胺衍生物如权利要求 1至 3所述。
7、 如权利要求 6所述的方法中, 其特征是所述的有机溶剂为苯、 甲苯、 二 甲苯、 乙酸、 四氢呋喃、 二氧六环或 N,N-二甲基甲酰胺。
8、 如权利要求 6所述的方法中, 其特征是所述的有机溶剂为四氢呋喃、 二 氧六环或 N, N-二甲基甲酰胺。
9、如权利要求 6所述的方法,其特征是所述的反应步骤 A-D是在惰性气体 保护下进行, 步骤 A, C, D和 E所述的产物经硅胶柱提纯。
10、 如权利要求 6所述的方法, 其特征是步骤 E中所述的酸为乙酸或丙酸。
11、一种如权利要求 1至 5任一项所述的硫杂环稠合的萘四羧酸二酰亚胺衍 生物的用途, 其特征是用于制备有机电子器件。
12、 如权利要求 11所述的硫杂环稠合的萘四羧酸二酰亚胺衍生物的用途, 其特征是用于作为半导体活性层制备有机薄膜场效应晶体管或者用于制备有机 太阳能电池。
PCT/CN2010/077932 2009-10-23 2010-10-21 硫杂环稠合的萘四羧酸二酰亚胺衍生物、制法和应用 WO2011047624A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20127013047A KR101496931B1 (ko) 2009-10-23 2010-10-21 황을 포함한 헤테로고리-융합된 나프탈렌테트라카르복실산 디이미드 유도체, 이의 제조방법 및 용도
JP2012534531A JP5416282B2 (ja) 2009-10-23 2010-10-21 硫黄含有複素環が縮合したナフタレンテトラカルボン酸ジイミド誘導体及びその製造方法と応用
EP10824465.8A EP2492271B1 (en) 2009-10-23 2010-10-21 Sulfur containing heterocycle-fused naphthalene tetracarboxylic acid diimide derivatives, preparation method and use thereof
US13/453,668 US8471021B2 (en) 2009-10-23 2012-04-23 Sulfur containing heterocycle-fused naphthalene tetracarboxylic acid diimide derivatives, preparation method and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910197611.9 2009-10-23
CN2009101976119A CN101693719B (zh) 2009-10-23 2009-10-23 以萘四羧酸二酰亚胺为核的硫杂共轭化合物、制法和应用
CN201010207565.9 2010-06-23
CN 201010207565 CN101885732B (zh) 2010-06-23 2010-06-23 硫杂环稠合的萘四羧酸二酰亚胺衍生物、及制法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/453,668 Continuation US8471021B2 (en) 2009-10-23 2012-04-23 Sulfur containing heterocycle-fused naphthalene tetracarboxylic acid diimide derivatives, preparation method and use thereof

Publications (1)

Publication Number Publication Date
WO2011047624A1 true WO2011047624A1 (zh) 2011-04-28

Family

ID=43899837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077932 WO2011047624A1 (zh) 2009-10-23 2010-10-21 硫杂环稠合的萘四羧酸二酰亚胺衍生物、制法和应用

Country Status (5)

Country Link
US (1) US8471021B2 (zh)
EP (1) EP2492271B1 (zh)
JP (1) JP5416282B2 (zh)
KR (1) KR101496931B1 (zh)
WO (1) WO2011047624A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532035A (ja) * 2011-08-12 2014-12-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se カルバゾロカルバゾール−ビス(ジカルボキシミド)及びその半導体としての使用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444058B2 (en) 2013-04-25 2016-09-13 Basf Se Preparation of pi-extended naphthalene diimides and their use as semiconductor
JP6332644B2 (ja) * 2013-04-30 2018-05-30 国立研究開発法人理化学研究所 化合物、高分子化合物、有機半導体材料、有機半導体デバイス、化合物の合成方法、高分子化合物の合成方法
KR102435389B1 (ko) * 2015-04-13 2022-08-22 삼성전자주식회사 유기 광전 소자, 이미지 센서 및 전자장치
WO2017022735A1 (ja) * 2015-08-04 2017-02-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
JP6675563B2 (ja) * 2016-07-12 2020-04-01 国立研究開発法人理化学研究所 芳香族化合物及びその用途
KR102436596B1 (ko) * 2016-08-11 2022-08-25 메르크 파텐트 게엠베하 테트라아자피렌 코어를 포함하는 유기 반도체성 화합물
CN114805286B (zh) * 2022-05-06 2023-06-16 深圳职业技术学院 一种萘并氧硫杂卓类衍生物的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361524A (en) 1937-02-26 1944-10-31 Schering Corp beta-alkyl-substituted ethylamines
CN1526702A (zh) * 2003-03-07 2004-09-08 中国科学院化学研究所 芴-萘二酰亚胺衍生物化合物和应用
CN101550104A (zh) * 2009-05-11 2009-10-07 深圳大学 苯-萘二酰亚胺衍生物、制备方法及其应用
CN101693719A (zh) * 2009-10-23 2010-04-14 中国科学院上海有机化学研究所 以萘四羧酸二酰亚胺为核的硫杂共轭化合物、制法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378948B2 (ja) * 2002-02-21 2009-12-09 チッソ株式会社 酸無水物、液晶配向膜および液晶表示素子
JP4821118B2 (ja) * 2004-02-12 2011-11-24 Jnc株式会社 ジアミン、ポリマー、液晶配向膜および液晶表示素子
CN101069298A (zh) * 2004-08-30 2007-11-07 国立大学法人京都大学 有机半导体发光装置以及使用了该发光装置的显示装置
US7579619B2 (en) * 2005-04-20 2009-08-25 Eastman Kodak Company N,N′-di(arylalkyl)-substituted naphthalene-based tetracarboxylic diimide compounds as n-type semiconductor materials for thin film transistors
DE102005061997A1 (de) * 2005-12-23 2007-07-05 Basf Ag Naphthalintetracarbonsäurederivate und deren Verwendung
CN100567294C (zh) * 2005-12-30 2009-12-09 财团法人工业技术研究院 N型有机半导体材料
WO2007146250A2 (en) * 2006-06-12 2007-12-21 Northwestern University Naphthalene-based semiconductor materials and methods of preparing and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361524A (en) 1937-02-26 1944-10-31 Schering Corp beta-alkyl-substituted ethylamines
CN1526702A (zh) * 2003-03-07 2004-09-08 中国科学院化学研究所 芴-萘二酰亚胺衍生物化合物和应用
CN101550104A (zh) * 2009-05-11 2009-10-07 深圳大学 苯-萘二酰亚胺衍生物、制备方法及其应用
CN101693719A (zh) * 2009-10-23 2010-04-14 中国科学院上海有机化学研究所 以萘四羧酸二酰亚胺为核的硫杂共轭化合物、制法和应用

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Chem. Rev.", vol. 107, 2007, article "Special issue: Organic Electronics and Optoelectronics", pages: 923 - 1386
ADV. SYNTH. CATAL., vol. 347, 2005, pages 33 - 38
EBATA, H. ET AL., J. AM. CHEM. SOC., vol. 129, 2007, pages 15732 - 15733
FORREST, S. R., NATURE, vol. 428, 2004, pages 911 - 918
INORG. SYNTH., vol. 10, 1967, pages 8
J. ORG. CHEM., vol. 26, 1961, pages 3980 - 3987
J. ORG. CHEM., vol. 29, 1964, pages 660 - 665
KLAUK, H. ET AL., NATURE, vol. 445, 2007, pages 745 - 748
KORZHOV, M. ET AL., PHYSICS WORD., 2008, pages 29 - 33
LEENEN, M. A. M. ET AL., PHYS. STATUS SOLIDI A., vol. 206, 2009, pages 588 - 597
LIANG, Y. ET AL., ADV. MATER., vol. 22, 2010, pages E135 - E138
MCCULLOCH, I. ET AL., NAT. MATER., vol. 5, 2006, pages 328 - 333
NEWMAN, C. R. ET AL., CHEM. MATER., vol. 16, 2004, pages 4436 - 4451
ODOBEL, F. ET AL., ACC. CHEM. RES., vol. 43, 2010, pages 1063 - 1071
ORG. LETT., vol. 10, 2008, pages 5333 - 5336
ORG. LETT., vol. 9, 2007, pages 3917 - 3920
OSAKA, I. ET AL., J. AM. CHEM. SOC., vol. 132, 2010, pages 5000 - 5001
See also references of EP2492271A4
YAN, H. ET AL., NATURE, vol. 457, 2009, pages 679 - 686

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532035A (ja) * 2011-08-12 2014-12-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se カルバゾロカルバゾール−ビス(ジカルボキシミド)及びその半導体としての使用
US9583719B2 (en) 2011-08-12 2017-02-28 Basf Se Carbazolocarbazol-bis(dicarboximides) and their use as semiconductors

Also Published As

Publication number Publication date
US20120253045A1 (en) 2012-10-04
JP2013508311A (ja) 2013-03-07
JP5416282B2 (ja) 2014-02-12
KR20120085825A (ko) 2012-08-01
US8471021B2 (en) 2013-06-25
EP2492271A1 (en) 2012-08-29
EP2492271B1 (en) 2018-05-09
EP2492271A4 (en) 2016-12-14
KR101496931B1 (ko) 2015-02-27

Similar Documents

Publication Publication Date Title
Li et al. Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%
Li et al. A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset
Cao et al. Design, synthesis, and structural characterization of the first dithienocyclopentacarbazole-based n-type organic semiconductor and its application in non-fullerene polymer solar cells
Li et al. Non-fullerene acceptors based on fused-ring oligomers for efficient polymer solar cells via complementary light-absorption
Kozma et al. Synthesis and characterization of new electron acceptor perylene diimide molecules for photovoltaic applications
WO2011047624A1 (zh) 硫杂环稠合的萘四羧酸二酰亚胺衍生物、制法和应用
Yang et al. A solution-processable D–A–D small molecule based on isoindigo for organic solar cells
Chen et al. Asymmetric fused thiophenes for field-effect transistors: crystal structure–film microstructure–transistor performance correlations
Liu et al. Solution-processed, indacenodithiophene-based, small-molecule organic field-effect transistors and solar cells
TW201348285A (zh) 有機半導體聚合物及含有機半導體聚合物之太陽能電池
Wu et al. Synthesis, structures, and properties of thieno [3, 2-b] thiophene and dithiophene bridged isoindigo derivatives and their organic field-effect transistors performance
Li et al. Low bandgap donor-acceptor π-conjugated polymers from diarylcyclopentadienone-fused naphthalimides
Zhou et al. Diketopyrrolopyrrole-based small molecules for solution-processed n-channel organic thin film transistors
Chen et al. Solution-processable tetrazine and oligothiophene based linear A–D–A small molecules: Synthesis, hierarchical structure and photovoltaic properties
Srivani et al. Small molecular non-fullerene acceptors based on naphthalenediimide and benzoisoquinoline-dione functionalities for efficient bulk-heterojunction devices
Li et al. Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells
KR20200131166A (ko) 유기반도체용 삼성분 공중합체, 이의 제조방법 및 이를 포함하는 유기반도체 소자
Zhang et al. Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells
Zhan et al. Synthesis and optoelectronic properties of a novel molecular semiconductor of dithieno [5, 6-b: 11, 12-b′] coronene-2, 3, 8, 9-tetracarboxylic tetraester
Chae et al. Preparation of new semiconducting tetraphenylethynyl porphyrin derivatives and their high-performing organic field-effect transistors
Hoang et al. New semiconducting multi-branched conjugated molecules based on π-extended triphenylene and its application to organic field-effect transistor
CN114349771B (zh) 一种六苯并蔻基非富勒烯受体材料及其制备和应用
Wang et al. Design and synthesis of two conjugated semiconductors containing quinoidal cyclopentadithiophene core
Dang et al. Tuning the Isomeric Fused Heteroaromatic Core of Small Donor–Acceptor Molecules to Alter Their Crystalline Nature and Enhance Photovoltaic Performance
Yang et al. Squaraine dyes containing diphenylamine group: Effects of different type structures on material properties and organic photovoltaic performances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534531

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127013047

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010824465

Country of ref document: EP